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Abstract—There is a growing need for telerehabilitation.
For people with neuromuscular disorders, Functional Electrical
Stimulation (FES) cycling is a commonly used rehabilitation
technique. Studies have shown that by coordinating movement
between the lower and upper limbs can lead to faster restoration
of walking in many cases. The author’s previous development
of a strongly coupled bilateral telerobotic system met two
separate goals: enabling a therapist to direct rehabilitative
efforts remotely, and extend the benefit of in-home FES re-
habilitation sessions by coordinating limb movement. However,
the previously developed system did not restrict the trajectories
of the leader-cycle system, thus increasing the possibility that
the system might operate outside of beneficial rehabilitative
cadence ranges. In this work, a control barrier function (CBF)
is designed to ensure safety of the leader-cycle system (i.e.,
constrain the cadence within a desired operating range). Once
safety of the leader is guaranteed, Lyapunov-based analysis is
used to show that the follower-cycle FES/motor actuated system
produces global exponential tracking of the leader-cycle position
and cadence.

Index Terms—Control Barrier Function, Functional Electri-
cal Stimulation (FES), Rehabilitation Robotics, Teleoperation

I. INTRODUCTION

Due to the ongoing global pandemic, the need for
telemedicine solutions has become a pressing issue. While
several remotely provided options have been developed for
general medical care, people who require ongoing physical
rehabilitation have, in many cases, been overlooked [1].
For people with neuromuscular disorders (NDs), functional
electrical stimulation (FES) is a beneficial rehabilitation tech-
nique [2], [3], shown to produce marked improvement in both
physiological and psychological health [4]–[6]. Therefore,
we are motivated to develop FES telerehabilitation solutions
for people with NDs.

Recent work to improve in FES rehabilitative cycling,
in general, has featured the use of Lyapunov-based, non-
linear control to adapt for unknown parameters inherent to
human/machine systems [7]. These developments have also
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allowed for switching between motor assistance and FES-
induced muscle effort, ensuring that stimulation is only ap-
plied to selected muscle groups when within ideal regions of
the crank cycle to produce positive torque production, leading
to extended duration of rehabilitation sessions by delaying
the onset of muscle fatigue and reducing uncomfortable over-
stimulation [8]. General rehabilitation studies have shown
that coordinating leg and arm movements on a mechanically
connected cycle can improve walking for stroke patients
[9] and suggest that neural connections are likely to exist
between lower and upper limbs [10]. Recent results specific
to FES rehabilitation, where FES is applied to the legs and
arms to enforce coordinated effort, produced a significant
improvement in both walking cadence and duration [11].

Motor recovery might also be improved through planned,
repetitive movement [12] designed to be enjoyable for the
participant, thus improving their physical and emotional state
simultaneously [13]. Rehabilitation for those with NDs is
typically a long process, requiring several visits with a
physical therapist, as well as regular weekly rehabilitation
exercise at home [14]. However, unsupervised participants
often do not find in-home rehabilitation systems enjoyable
enough to continue treatment, motivating the development of
game-based, teleoperative rehabilitative systems [14]–[16].
These rehabilitation systems often direct the participant’s
desired trajectories as determined by a remote therapist-
controller (i.e., leader) teleoperation system [17], [18]. How-
ever, these systems do not provide haptic feedback (i.e.,
kinematic feedback to the teleoperation controller) so that
the leader-cycle operator is informed of the rehabilitation
participant’s (i.e., follower’s) current performance. Therefore,
there is motivation to produce a FES telerehabilitation system
to meet the needs of two separate cases: first, enabling
physical therapists to provide remote assistance to people
with NDs, and second, improving rehabilitative outcomes
through coordinated upper and lower limb movement, while
encouraging completion of recurrent in-home therapies by
returning the rehabilitation participant’s ability to direct the
performance of the FES-actuated cycle. To this end, the
author’s recent work [19] developed a strongly coupled,
bilateral teleoperated [20] FES rehabilitation system, where
FES stimulation of the upper limbs was not required to
maintain limb coordination, and where split-crank cycles
were used to capture asymmetric impairments (Figure 1).

However, in returning free-will to the leader-system oper-
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ator, no guarantee of performance within desirable rehabil-
itation ranges exist. Therefore, building on recent results in
[21], this work introduces leader-system safety through the
use of a control barrier function (CBF), where leader-cycle
trajectories are constrained within a well-defined safe set of
operation (i.e., a therapist-determined desirable rehabilitative
cadence range) while maintaining haptic feedback to the
operator. Once safety of the leader-cycle is guaranteed,
Lyapunov-based analysis of the nonlinear, switched follower-
cycle dynamics is performed, showing global exponential
tracking to the desired leader-cycle trajectory.

Figure 1. A teleoperated cycling testbed is shown, where A denotes the
leader (hand-cycle), B denotes the FES unit and corresponding stimulation
pads placed on the right quadriceps, and C denotes the follower split-crank
cycle.

II. PROBLEM FORMULATION

The cycling system dynamics, where the subscripts l and f
denote the leader- and follower-cycling devices respectively,
are modeled as [22]

τi (zi, t) , Mi (qi) q̈i + Vi (zi) q̇i +Gi (qi)

+Pi (zi) + biq̇i + di (t) ,

where the angular position is denoted by qi ∈ Qi ⊆ R, where
Qi represents the set of all measurable crank angles. Angular
velocity is denoted by q̇i ∈ R, and angular acceleration is
denoted by q̈i ∈ R. The concatenated state vector is defined
as zi , (qi, q̇i). The collection of all input torques is denoted
by τi : Qi×R×R>0. The unknown, nonlinear inertial effects,
centripetal-Coriolis effects, gravitational effects, passive vis-
coelastic muscle forces, viscous damping effects, and system
disturbances are denoted by Mi : Qi → R, Vi : Qi × R →
R, Gi : Qi → R, Pi : Qi × R → R, bi ∈ R>0, and
di : R≥0 → R, respectively. To simplify further development,
an auxiliary collection of right-hand side terms is defined as
τrhs,i , Vi (zi) q̇i + Gi (qi) + Pi (zi) + biq̇i + di (t) , such
that

τi (zi, t) = Mi (qi) q̈i + τrhs,i. (1)

A. Follower rehabilitative FES-cycle dynamic model

An FES-enabled rehabilitative split-crank cycle, such as
that used in [19] and [23], serves as the follower cycling
device. The dynamic model of a single side of the cycle is
modeled independently without loss of generality. The cycle-
rider lower body switched dynamics for one side are modeled
as [24]

τf (zf , t) ,τe,f+τM (zf )+τvol,f (t) . (2)

The respective torques applied about the follower-cycle crank
axis include the subsequently designed motor torque, denoted
by τe,f ∈ R, the resultant torque due to application of FES
stimulation, denoted by τM : Qf ×R→ R, and the resultant
torque due to the volitional efforts of the rehabilitation
participant, denoted by τvol,f : R≥0 → R.

The FES induced muscle torque in (2) is modeled as the
summation of all muscle forces produced by individually
stimulated muscle groups, such that [25]

τM (zf ) =
∑

m∈M
gm (zf )um, (3)

where the subscript m ∈ M = {Q,G,H} indicates the
quadriceps femoris (Q), gluteal (G), and hamstring (H)
muscle groups. For each m ∈M, the unknown, state depen-
dent, nonlinear muscle control effectiveness in (3) is denoted
by gm : Qf × R → R≥0, and the muscle control input is
denoted by um : Qf → R. Let the set of all crank angles
across which each muscle group is stimulated be denoted
by Qm ⊂ Qf , such that Qm , {qf ∈ Qf | Tm (qf ) > εm}
[26], where εm ∈ (0,max (Tm)) represents the user-defined
minimum torque transfer ratio required to ensure positive
crank torque values for each muscle group, and Tm: Qf → R
represents the torque transfer ratio for the corresponding
muscle group. Let QFES ⊂ Qf denote the region about
the crank cycle where FES is applied, where QFES ,
∪

m∈M
{Qm} .

The muscle control input (i.e., stimulation intensity) ap-
plied to each muscle group um : Qf → R, is defined as [26]

um (qf ) , σm (qf ) kmus, (4)

for every m ∈ M, where σm : Qf → {0, 1} denotes a
switching signal such that

σm (qf ) ,

 1

0

if qf ∈Qm
if qf ∈Q\QFES ,

(5)

the positive constant km ∈ R≥0 is selected in relation to
the rider’s comfort level during stimulation, and us ∈ R
represents the subsequently designed FES control input.

The electric motor torque is expressed as [25]

τe,f , ge,fue,f , (6)

where the known, constant relationship between the applied
electric motor current and the resulting torque about the
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crank axis is represented by ge,f ∈ R≥0, and the subse-
quently designed motor control input for the follower-cycle
is represented by ue,f ∈ R.

Substituting (3), (4), and (6) into (1) and rearranging yields
the open-loop follower-cycle dynamic equation

gM (zf )us + ge,fuef = Mf (qf ) q̈f + τrhs,f − τvol,f (t) ,
(7)

where the summation of muscle torque efficiencies across
all muscle groups gM : Qf × R → R is represented by
gM (zf ) ,

∑
m∈M

gm (zf )σm (qf ) km [25].

B. Leader-cycle dynamic model

The generalized dynamic model for the leader-cycling
system, following the same development as the follower FES
split-crank rehabilitation cycle, is modeled as

ge,lue,l = Ml (ql) q̈l + τrhs,l − τvol,l (t), (8)

where the only torque produced by the leader-cycle operator
is purely volitional. Therefore, the muscle control input has
been eliminated. The known, constant relationship between
the applied electric motor current and the resulting torque
about the leader-cycle crank axis is represented by ge,l ∈
R≥0, the subsequently designed motor control input for the
leader-cycle is represented by ue,l ∈ R, and the torque due to
the volitional efforts of the leader-system operator is denoted
by τvol,l : R≥0 → R.

C. Universal model properties

The follower-cycle/rider dynamics in (7) and the leader-
cycle/operator dynamics in (8) have the following properties
and assumptions for each i, where i ∈ {l, f} [23].

Property 1. Ṁi (qi) = 2Vi (zi) .

Property 2. The unknown inertia term can be bounded by
cm,i ≤ Mi (qi) ≤ cM,i, where cm,i and cM,i ∈ R>0 are
known positive constants.

Property 3. The unknown centripetal-Coriolis term can be
bounded by |Vi (zi)| ≤ cV,i |q̇i|, where cV,i ∈ R>0 is a
known positive constant.

Property 4. The unknown gravitational torques can be
bounded by |Gi (qi)| ≤ CG,i, where cG,i ∈ R>0 is a known
positive constants.

Property 5. The unknown passive viscoelastic tissue torques
can be bounded as |Pi (zi)| ≤ cP1,i + cP2,i |q̇i|, where
cP1,i and cP2,i ∈ R>0 are known positive constants.

Property 6. The unknown viscous friction term can be
bounded as |bi| ≤ cb,i, where cb,i ∈ R>0 is a known positive
constant.

Property 7. The unknown muscle stimulation efficiency
term in (7) can be bounded below by gM ≤ gM (zf ) , for
all qf ∈ QFES and q̇f ∈ R, where gM ∈ R>0 is a known
positive constant [25].

Assumption 1. Volitional torques can be combined with
unknown disturbance torques and bounded as |τvol,i|+|di| ≤
cd,i, where cd,i ∈ R>0 is a known positive constant.

III. CONTROL DEVELOPMENT

A. Leader-cycle Controller

The primary control objective of the leader-cycle system
is to restrict the cadence of the follower-cycle within a
safe operating range selected for optimal rehabilitation while
maintaining the operator’s ability to dictate the desired
cadence of the follower-cycle within the selected range. Let
q̇d ∈ R>0 represent the midpoint of the desired rehabilitative
cadence range. The secondary objective is to apply haptic
feedback proportional to the subsequently defined follower-
cycle trajectory error signal e1 ∈ R, such that the leader-
cycle operator is aware of the magnitude of the mismatch
between the actual and desired cadence.

To quantify the primary objective, a tracking error signal
e0 ∈ R is defined as

e0 , q̇d − q̇l, (9)

where q̇d represents the operator-selected set point of the
desired cadence range. Using the methods developed in [21],
the barrier function candidate B : Ql ×R→ R is defined as

B (zl) , 1
2Ml (ql)

[
e20 − e2

]
, (10)

where e ∈ R>0 represents a user-selected constant that
defines the desired cadence range about the set point q̇d such
that the CBF safe set is

S = {zl ∈ Ql × R : |e0| ≤ ē} ,
= R× [q̇d − ē, q̇d + ē] .

(11)

To render the set S uniformly globally asymptotically stable
(UGAS), we constrain the leader cycle control input to ensure
that B (zl) acts as a Lyapunov function outside the set S. The
leader-cycle control input is constrained to be selected from
the mapping [21]

U (z) ,
{
ue,l ∈ R : ∇BT (zl) f (zl, ue,l) ≤ −γ

}
, (12)

where f (zl, ue,l) ,
[
żl,1, żl,2

]T
=

[q̇l, M−1l (ql) [ge,lue,l + τvol,l − τrhs,l (zl, t)]]T , and γ
is any function designed to be positive outside of S.
The uncertainties of the leader-cycle dynamics prevent
computation of the constraint defining U . Therefore, a
worst-case upper bound of the product ∇BT (zl) f (zl, ue,l)
is determined for controller development and Lyapunov-
based stability analysis. Using Property 1 and
canceling like terms yields ∇BT (zl) f (zl, ue,l) =
−Vle2 − e0 (ge,lue,l + τvol,l − τrhs,l (zl, t)) which, using
Properties 3-6 and rearranging terms, can be upper bounded
by

∇BT (zl) f (zl, ue,l) ≤ −e0ge,lue,l + C1 + C2 |e0|+ C3e
2
0,

(13)
where C1, C2, C3 ∈ R>0 are known constants.
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Choosing the operator selectable control gains
K1, K2, K3 ∈ R>0 such that Ki ≥ Ci, for every
i ∈ {1, 2, 3} , the inequality in (13) can be rewritten as

∇BT (zl) f (zl, ue,l) ≤ −e0ge,lue,l +Ku (e0) , (14)

where Ku (e0) , K1 + K2 |e0| + K3e
2
0. We define the

constraining function γ : R→ R as γ (e0) , KM

(
e20 − e2

)
,

which is always positive outside of S. It is now possible to
define a calculable control input constraint by substituting
(14) into (12), which yields

U (e0) , {ue,l ∈ R : −e0ge,lue,l +Ku (e0)

≤ −KM

(
e20 − e2

)}
, (15)

From the resulting constrained set, the implementable
leader-cycle control input is defined as

u∗e,l (e0) , arg min
ue,l∈U

|ue,l − unom|2 (16)

s.t. − e0ge,lue,l +Ku (e0) + γ (e0) ≤ 0,

where u∗e,l ∈ R represents the minimum allowable follower-
cycle control input and unom is any locally Lipschitz nominal
controller [21]. From (16) the solution for the minimum
follower-cycle control input u∗e,l can be expressed as in
[21]. To satisfy the secondary objective of providing haptic
feedback of follower-cycle performance to the leader-cycle
operator, the nominal controller unom : R→ R is defined as
unom (e1) , −kfbe1, where e1:Ql × Qf → R denotes the
subsequently defined follower-cycle trajectory error signal
and kfb ∈ R>0 is an operator-selected positive constant,
yielding the leader-cycle motor control input

u∗e,l (e0, e1) =

− b(e0)
a(e0)

b (e0)− a (e0) kfbe1 > 0

−kfbe1 otherwise,
(17)

where a, b : R→ R are defined from the condition in (16) as
a (e0) , −e0ge,l and b (e0) , Ku (e0)+γ (e0), respectively.
According to [21, Lem. 1], the controller in (16) is feasible
and there is no division by zero in (17) if, whenever a (e0) =
0, the following condition holds: b (e0) < 0. In the developed
application, a (e0) = 0 only if e0 = 0. Therefore, the user-
selected parameters must be designed to ensure that

b (0) = K1 −KMe
2 < 0. (18)

B. Follower-cycle Controller

The control objective of the follower-cycle system is to
develop a strongly coupled telerobotic system [20], where
the desired trajectory of the FES/motor actuated lower-body
cycling system is defined by the angular position of the
leader-cycle system. To quantify the objective, the trajectory
error signal e1 and an auxiliary error signal e2 : R→ R are
defined as

e1 , ql − qf , (19)

e2 , ė1 + αe1, (20)

where α ∈ R≥0 is an operator-selected constant. Taking
the time derivative of (20), pre-multiplying by Mf , and
substituting in (19) yields

Mf (qf ) ė2 = Mf (qf ) [q̈l − q̈f + αe1] . (21)

Solving the open-loop follower-cycle dynamic system (7) for
Mf q̈f , substituting the result into (21), and using Property 1
to cancel like terms produces

Mf (qf ) ė2 = Mf (qf ) q̈l − Vf (zf ) e2

−gM (zf )us − ge,fue,f
−e1 + χ (z) ,

(22)

where z , (zl, zf ) , and the auxiliary term χ : Qf × Ql ×
R2 → R is defined as

χ (z) , bc,f q̇f + Vf (zf ) q̇l + Vfαe1

+Gf (qf ) + Pf (zf ) + df (t)

+τvol,f (t) + (Mf (qf )α+ 1) e0.

Using Properties 2-6, Assumption 1, and the result of the
subsequent stability analysis for the leader-cycle system, the
upper bound on χ is defined as

|χ| ≤ c1 + c2α |e1|+ c3 |e2|+ cV,fα
2e21, (23)

where c1, c2, c3 ∈ R≥0 are known constants.
From (19), (20), (22), and the subsequent stability analysis,

the FES control input us : R→ R is designed as

us (e2) = σsk1e2 , (24)

where k1 ∈ R≥0 is an operator-selected constant control
gain, and the discontinuous switching signal σs : Qf →
{0, 1} indicates when the follower-cycle is within the FES
stimulation regions such that

σs (qf ) ,

 1

0

if qf ∈ QFES
if qf ∈Q\QFES .

(25)

From (19), (20), (22), and the subsequent stability analysis,
the follower-cycle motor control input ue,f : R2 → R is
designed as

ue,f (z) = σek2e2 + sgn (e2)
(
k3 + k4 |e1|+ k5e

2
1

)
,

(26)
where k2, k3, k4, k5 ∈ R≥0 are operator-selected con-
stant control gains. A discontinuous switching signal
σe : Qf → [0, 1], designed to allow for variable motor as-
sistance for maximal rehabilitative benefit, is defined as [19]

σe (qf ) ,

 1∏
m∈M

(1− βmσm)

if qf ∈Q\QFES
if qf ∈QFES ,

(27)
where 0 < βm ≤ 1, for every m ∈ M, are operator-
selected constants to set the proportional level of motor
current applied within each FES region.
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Substituting (24) and (26) into (22) yields the closed-loop
follower-cycle dynamic equation

Mf (qf ) ė2 = χ (z) +Mf (qf ) q̈l−Vf (zf ) e2−e1
−gM (zf )σsk1e2 − ge,fσek2e2
−ge,f

[
sgn (e2)

(
k3 + k4 |e1|+ k5e

2
1

)]
.

(28)

IV. STABILITY ANALYSIS

A. Leader-cycle system stability

We first analyze the safety of the leader-cycle indepen-
dently. Consider the differential equation żl = hl (zl),
where hl (zl) , (q̇l, q̈l). A set of physically realistic inital
conditions is defined as D , {zl ∈ Ql × R : |q̇l| ≤ cl}, for
some cl ∈ R. Furthermore, cl is selected large enough such
that the safe set S ⊂ D.

Theorem 1. For the motor actuated leader-cycle system
described by the differential equation żl = hl (zl), the
controller u∗e,l is locally Lipschitz continuous and the set
S is UGAS, provided that the feasibility condition in (18) is
met such that

KM > K1

e2
.

Moreover, D is forward invariant, and q̈l is uniformly
bounded along any solution starting in the set D.

Proof: The claim that u∗e,l is locally Lipschitz follows
from [21, Lem. 1]. The proof that S is UGAS is identical to
the proof of [27, Thm. 1]. Let zl : dom zl → R2 be a solution
to żl ∈ hl (zl) with zl (0) ∈ D. The definition of UGAS leads
to the conclusion that e0, q̇l ∈ L∞. In particular, q̇l (t) ∈
D for all t ∈ dom zl, meaning that D is forward invariant.
Since u∗e,l is continuous, u∗e,l is bounded along the closed-
loop trajectories. Using Properties 2-6 and Assumption 1,
|q̈l| ≤ c1 + c2 |q̇l| + c3q̇

2
l . Thus, because q̇l is bounded by

a known constant on D, so is q̈l. Since q̇l never leaves D,
we conclude that q̈l is uniformly bounded along any solution
starting in the set D.

B. Follower-cycle system stability

Consider the FES/motor actuated follower-cycle modeled
in (2). The closed-loop follower-cycle dynamic equation in
(28) is dependent on both the leader and follower states (i.e.,
the concatenated state vector z). Because the FES and motor
control inputs for the follower-cycle are discontinuous by
design, we use the Filippov regularization of the closed-
loop dynamics to conduct a stability analysis. Using the K
operator defined in [28], we analyze the differential inclusion
ż ∈ K [h] (z), where h (z) , (q̇l, q̈l, q̇f , q̈f ). We consider
solutions flowing in the set Z , D ×Qf × R.

A positive definite, radially unbounded, common Lya-
punov function candidate for the follower-cycle, VL : Z →
R≥0, is defined as

VL (z) = 1
2e

2
1 + 1

2Mf (qf ) e22. (29)

Theorem 2. From the result in Thm. 1, for any solution
starting in D, there exists Cl ∈ R≥0 such that |q̈l| ≤ Cl.
Therefore, for the FES and motor actuated rehabilitation
follower-cycle system described by the differential inclusion
ż ∈ K [h] (z), the set A , {z ∈ Z : e1 = e2 = 0} is
exponentially stable from Z , and every maximal solution
to the dynamics are complete, provided the following gain
conditions are met

gMk1 + ge,fνk2 > c3, (30)

k2 >
c3
ge,f

, (31)

k3 >
c1 + cM,fCl

ge,f
, (32)

k4 >
c2
ge,f

α, (33)

k5 >
cV,f
ge,f

α2, (34)

α ∈ (0, 1) . (35)

Proof: Using the notion of the generalized time deriva-
tive in [29, Defn. 3] and the fact that the Filippov regulariza-
tion of the dynamics are identical to the original dynamics
except the sgn function is replaced by the generalized SGN
function, solving (20) for ė1 and substituting along with (28)
into the generalized time derivative of (29), using Property
1 to cancel like terms, and rearranging yields

˙̄VL (z) =χe2 +Mf q̈le2 − αe21 − gMσsk1e22
− ge,fσek2e22 − ge,f |e2|

(
k3 + k4 |e1|+ k5e

2
1

)
.

(36)

Using Properties 2, 6, and 7, from (36) the generalized time
derivative is upper bounded for all z ∈ Z by

˙̄VL (z) ≤ |e2|
(
c1 + c2α |e1|+ c3 |e2|+ cV,fα

2e21
)

+cM,fCl |e2| − αe21
−
(
gMσsk1 + ge,fσek2

)
e22 − ge,fk3 |e2|

−ge,fk4 |e1| |e2| − ge,fk5e21 |e2| .
Selecting gain values to meet the conditions in (32)-(35)
yields

˙̄VL (z) ≤ c3e22 − αe21 −
(
gMσsk1 + ge,fσek2

)
e22. (37)

When qf ∈ QFES , σs = 1 and σe ∈ [0, 1] . Let
ν , minqf∈QFES

{σe} . Selecting the gain values to meet
the condition in (30) yields the negative definite inequality
˙̄VL (z) ≤ −αe21 − λ1e22, where λ1 , gMk1 + ge,fνk2 − c3.

When qf ∈ Q\QFES , σs = 0 and σe = 1. Selecting
the gain values to meet the condition in (31) yields the
negative definite inequality ˙̄VL (z) ≤ −αe21 − λ2e22, where
λ2 , ge,fk2 − c3. Let λ , min (λ1, λ2) . Then,

˙̄VL (z) ≤ −αe21 − λe22,

for all z ∈ Z . From (29) it can be shown that ˙̄VL ≤
−min(α,λ)ψ2

VL. Using Property 1, the constraint in (34) that
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α ∈ (0, 1) , and the fact that ‖z‖2A = 1
2

(
e21 + ė21

)
, where

‖z‖A := infy∈A |z − y| , there exists ψ1, ψ2 ∈ R>0 such
that

ψ1 ‖z‖2A ≤ VL (z) ≤ ψ2 ‖z‖2A
for all z ∈ Z . By invoking [30, Thm. 1] we conclude that
A is exponentially stable (ES) from Z . For any maximal
solution z : Iz → Z to ż ∈ K [h] (z), where Iz ⊂ [0,∞) ,
e1, e2 ∈ L∞ using the definition of ES. Since q̇l ∈ L∞
via Theorem 1, it follows from the definition of e2 that
q̇f ∈ L∞. Thus, the controllers us and ue,f are bounded
along the closed-loop trajectories. It follows that the dynam-
ics K [h] (z (Iz)) are bounded, and from [31, Lem. 3.3] we
conclude that Iz = [0,∞), meaning that maximal solutions
to the dynamic system are complete.

V. CONCLUSION

A CBF was used to produce a safe, teleoperated FES
cycling system, such that the leader-cycle trajectory is con-
strained within a operator-defined desirable rehabilitative
cadence range. Lyapunov-based analysis was used on the
companion FES/motor actuated switched nonlinear follower-
cycle, showing global exponential tracking of the leader-
cycle trajectory. Future work includes further testing to
determine system capabilities for people with NDs, as well as
the development of more informative, physics-based haptic
feedback (i.e., unom) to the leader-cycle operator.
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