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Abstract— Recently, Reinforcement Learning (RL) techniques
have seen significant progress in the robotics domain. This
can be attributed to robust simulation frameworks that offer
realistic environments to train. However, there is a lack of
platforms which offer environments that are conducive to med-
ical robotic tasks. Having earlier designed the Asynchronous
Multibody Framework (AMBF) - a real-time dynamics sim-
ulator well-suited for medical robotics tasks, we propose an
open source AMBF-RL (ARL) toolkit to assist in designing
control algorithms for these robots, as well as a module to
collect and parse expert demonstration data. We validate ARL
by attempting to partially automate the task of debris removal
on the da Vinci Research Kit (dVRK) Patient Side Manipulator
(PSM) in simulation by calculating the optimal policy using both
Deep Deterministic Policy Gradient (DDPG) and Hindsight
Experience Replay (HER) with DDPG. The trained policies
are successfully transferred onto the physical dVRK PSM and
tested. Finally, we draw a conclusion from the results and
discuss our observations of the experiments conducted.

I. INTRODUCTION

Reinforcement Learning (RL) techniques have seen signif-
icant progress in the robotics domain [1]. Open-source RL
frameworks such as OpenAl: Gym [2] and Baselines [3] have
enabled effortless implementation of complex algorithms
in simulation and real robots. The availability of robust
simulation platforms that offer realistic simulation environ-
ments and easy integration with these RL frameworks have
contributed to the increased adoption of these techniques.
Most of these platforms also offer the ability to transfer
trained models to the real robots with minimal modifications
[4]. This added benefit reduces the engineering effort and
cost associated with the direct implementation of RL on
physical robots [5].

While the utilization of learning-based techniques have pro-
liferated in most domains of robotics, they remain scarce in
the field of medical robotics. Recent efforts have proposed
automating surgical tasks in Robot Assisted Surgeries (RAS)
to circumvent frequent clutching [6], eliminate heuristic tun-
ing and processing high-dimensional data [7], reducing the
cognitive load on surgeons [8], [9] and utilizing simulations
for collection of large amounts of data [10]. Despite these
significant efforts, there remains a disconnect in making these
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techniques accessible to a broader range of researchers, as
access to the robotic platforms is not feasible for a large
portion of the medical robotics community.

Previously, we developed the Asynchronous Multi-Body
Framework (AMBF) [11] - a real-time dynamics simulator
geared towards medical robotic applications, capable of sim-
ulating soft tissue [12], and offering a suite of surgical robot
models like the da Vinci Research Kit (d4VRK) [13], Raven
II [14], and Neuro Robot [15]. In this paper, we propose an
open source RL toolkit AMBF-RL (ARL)' that integrates
with AMBF. We present the design architecture and features
that can significantly enhance the implementation of RL
algorithms for medical robots. We develop a module to
collect expert-demonstrated data from dVRK Patient Side
Manipulator (PSM) to use for tasks that involve Learning
from Demonstration [16], [17]. We validate the ARL toolkit
by performing a reach task that portrays debris removal in an
operating room. Deep Deterministic Policy Gradient (DDPG)
[18], and Hindsight Experience Replay (HER) with DDPG
[19] are implemented to obtain policies to complete this task.
The trained policies are successfully transferred to the dVRK
PSM to reach the desired goal.

II. BACKGROUND

Researchers have made substantial efforts in applying RL
based techniques to control robots, specifically in the fields
of manipulation [20], [21] and mobility [5], [22]. There are
some common problems that are associated with training on
physical robots such as restricted environments [1], costly
roll-outs [23], and an emphasis on safe exploration due
to hardware constraints [24]. To circumvent these prob-
lems, realistic models of robots are created and trained in
simulation. Once a satisfactory RL model is trained, the
model can be transferred onto the real robot (Sim2Real)
[4]. Additionally, training in a simulation environment has
the benefit of faster training which can be leveraged by
accelerating the simulated physics and/or launching multiple
training instances to overcome the exploration-exploitation
dilemma [1].

Although RL training environments are prevalent in robotics,
they can be improved to increase their adoption in medical
robotics. Recent efforts in automating surgical tasks using
RL are limited to a few tasks such as cutting [25], suction
[26], and suture hand-off [16] which demonstrate a growing
demand for a framework that offers environments tailored

ttps://github.com/WPI-AIM/ambf_rl
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(a) dVRK PSM

(b) Neuro Robot

(c) Raven II

Fig. 1: Examples of surgical robots modeled in AMBF.

towards medical robotics. Other works by Tan et al. [27]
and Baek er al. [28] employ RL techniques for residency
training and later automated resection using the V-REP [29]
simulator. Researchers [30] have also demonstrated RL based
surgical planning for cutting of soft tissue by deriving a ten-
sioning policy to improve cutting accuracy. In 2019, Richter
et al. [26] developed the first open-sourced RL environments
for surgical robotics called dVRL and recently Xu et al. [31]
designed a simulation platform for surgical robot learning
that can be utilized for dVRK. To the best of our knowledge,
dVRL and SurRoL are the only source RL environments for
surgical robotics. Therefore, the following text provides an
overview of dVRL and SurRoL and the motivation behind
designing an RL toolkit for medical robotics using AMBF
simulator.

A. Current RL environments available for Surgical Robots

dVRL offers open source environments that extend the
OpenAl Gym framework by interfacing it with V-REP [29].
In their paper, the authors demonstrated debris removal and
suction in simulation and transferred the learnt model onto
a physical dVRK system to validate their environments.
SurRoL was built based on PyBullet [32], which is a Python
wrapper for Bullet physics. The authors utilized the dVRK
meshes available from AMBF to train the dVRK PSM and
ECM to perform tasks such as needle reach, needle pick,
needle regrasp and tracking using ECM. Despite its novelty,
the dVRL and SurROL has shortcomings that include (i)
few environments for surgical tasks, (ii) complexity while
incorporating soft-body dynamics due to the underlying
simulation framework used in dVRL - VREP, and that (iii)
only offers environments for the dVRK PSM and ECM.
AMBF and ARL improve upon these shortcomings by pro-
viding more surgical environments, the capability to simulate
surgical tasks on soft tissue, and a larger variety of medical
robot models. To maintain consistency in validating the ARL
toolkit, we performed the task of debris removal with a
simulated dVRK PSM, and transferred the model onto the
physical system.

B. Asynchronous Multi-Body Framework (AMBF)

AMBF is an open-source dynamic simulator that offers real-
time simulation and haptic interaction of multi-bodies includ-

ing robots, free bodies, and puzzles with support for training
Neural Network for high-level control of robots [11]. The
simulator utilizes and extends CHAI-3D [33] to provide real-
time haptic interaction of multiple Input Interface Devices
(IIDs). Examples of supported devices include the dVRK
Master Tool Manipulator (MTM) and Razer Hydra Game
Controllers in addition commercial haptic devices already
incorporated by CHAI-3D. AMBF also offers support for
simulation and interaction of soft bodies [12]. This capability
is crucial in applications where manipulation and interaction
with soft tissue are required (eg., suturing, cutting, pinching).
AMBF provides a complementary Python client which offers
a low barrier to entry interface with AMBF and a medium
for training using Artificial Intelligence techniques.

AMBF simplifies describing a robot through its own front-
end human-readable format (ADF) [11]. There are no limita-
tions regarding the number of children or parents for a given
joint in ADF in contrast to the more conventional spatial tree
structure formats such as in URDF or SDF. This allows for
a simplified description of parallel mechanisms which is ad-
vantageous for surgical robot simulation applications where
most robots possess some form of closed-loop mechanisms.

Finally, several medical robots such as the dVRK (Fig. 1a),
MRI-compatible Neurorobot [15] (Fig. 1b), and Raven II
[14] (Fig. 1c) have already been modeled and provided as
examples in AMBF. The ease of modeling medical robots
in AMBF and the extensibility of the framework to provide
realistic interactions between the robot and the environment
provides an accessible platform for testing and development
of new learning algorithms and control schemes on robots.

III. ARCHITECTURE

This section provides an overview of AMBF’s communi-
cation architecture and its incorporation with ARL. Next,
the design overview of ARL is presented - it emphasizes
on components of AMBF that enhance the functioning of
ARL and provide an overview of its workflow. This section
also expands on features specific to surgical robotics for the
simulator (AMBF).

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 12,2022 at 14:01:04 UTC from IEEE Xplore. Restrictions apply.



afWORLD HANDLE

)

{ |

f
i ASYNCHRONOUS

ROS NETWORK

AMBF PYTHON CLIENT

\
I
__J

Tensorboard
Port

OBJECT
IDENTIFICATION

%

~fPIAIND ANV LIAMNL &

N SN

I\

~fDIAINDANYV LUARINI

afRIGIDBODY HANDLE

ASYNCHRONOUS

-~
L
=
"

__)

ROS NETWORK

]\

Fig. 2: Design of the AMBF Python Client. The identified afObjects are segregated from each other and any afObject can
be queried by the ARL ENV class which wraps the AMBF Python Clients API and exposes an OpenAl Gym compatible

APL

A. AMBF: Features that enhance ARL

AMBF utilizes Robot Operating Software (ROS) [34] as
the communications middleware. In its implementation, all
objects (bodies, sensors, cameras, lights etc.) (afObjects) own
an exclusive instance of a base class called afObjComm.
Similarly, the World object (afWorld) owns an instance of
afWorldComm. Each communication instance is dispatched
in a separate thread where the publishing (afState) and
subscribing (afCommand) of ROS topics is performed. For
the subscribers, rather than utilizing the default Spinner
implementation, Custom Callback Queue are used. This
provides encapsulation for the flow of data between different
instances. For the afState and afCommand of each type of
afObject, custom message payloads® are defined.

The distributed and asynchronous communication architec-
ture of AMBF is leveraged by the AMBF Python client,
shown in Fig. 2. The client identifies afObjects and dis-
patches exclusive threads for handling them. By doing so,
the Python client encapsulates the data and the control of
data-flow and thus provides an implementation where low
over-head instances of various afObjects can be queried
in isolation. This provides for an easy integration with RL
frameworks and accomplished using the ARL ENV class
(Fig. 2).

Since the underlying AMBF communication architecture is
asynchronous, the ARL ENV class implements a step con-
trol mechanism to synchronize between actions, states and
rewards. Additionally, the active simulation in AMBF can be

’https://github.com/WPI-AIM/ambf/tree/ambf-1.0/
ambf_ros_modules/ambf_msgs/

dynamically throttled to compensate for the communication
and training-related delays. This is achieved by setting a
throttle flag, the number of jump steps and a clock in the
afCommand payload of afWorld to step the simulation as
shown in Fig. 3. This process is automated by the ARL
ENV.

AMBF also supports speeding up the simulation to increase
training speed and a headless mode (no Graphical User
Interface). These modes are accessible via Command Line
Interface (CLI) arguments at launch. The headless mode
not only reduces the load on system resources (Fig. I), but
also allows for the simulation to be run on window-less
servers - a growing need due to the high resource usage
required for training neural network models. rosbag’s have
been integrated with ARL ENYV to allow for a standardized
data storage and replay mechanism.

| afWorld Msg ‘ | afWorld Msg | | afWorld Msg |
YES External No. Skip

Clock Steps
afRigidBody
Enable Comm Thread

Throttle
Internal Clock Physics Physice

with Dynamic Update

Step Step

Fig. 3: Interface for dynamically throttling the simulation in
AMBEF using the afWorld’s afCommand message payload.

B. AMBF Reinforcement Learning (ARL) Environments

ARL integrates AMBF with OpenAl Gym by leveraging
its API. ARL currently provides environments for DDPG,
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Memory Usage (GB) CPU Usage (%)

Average, Maximum, Minimum Average  Maximum — Minimum
With GUI 0.7 18.08 19.25 16.67
Without GUI 0.5 9.83 8.83 10.91

TABLE I: CPU and Memory usage of ARL with and without
Graphical User Interface (GUI). Both profiles were run on
the same computer with the same background and foreground
processes running. Specifications: AMD Ryzen 5 3600 6-
Core Processor (12 threads) and 32 GB Corsair Vengeance
DDR4 RAM

DDPG+HER and Generative Adversarial Imitation Learning
(GAIL) [35] to train with the dVRK PSM Robot. This API is
presented below and can be implemented to add more robots.
Depending on the RL algorithm, either the main Gym envi-
ronment (list of observation states) or goal Gym environment
can be extended. For the goal Gym environment, the state
of the robot consists of a dictionary containing: observation
(current observations of the state), achieved goal (current
result attained by the robot) and desired goal (final result
to be achieved).

o Reset: This method resets the robot to home position
(preset by user) and generates a goal position using
random sampling

o Init: This method creates an instance of the AMBF

Python client which is used to get a handle to the desired
robot. Next the state and action space is initialized based
on the input parameters. Users also need to define which
joints of the robot need to be controlled by the Python
client.
Input: action space limit, joints to control, goal
position range, position error threshold, goal error
margin, joint limits, workspace limits, enable step
throttling

o Step: This method gets the current state of the robot and
takes the action. The next state is found by computing
the forward and inverse kinematics of the robot. Then
the robot is commanded to the desired state and the
resulting reward is computed. While the next state is
computed, users also need to ensure that the Kinematic
and Dynamic constraints of the robot are also defined
in this method.

Input: action
Returns: Observation, Reward, Done, Info

Stable-Baselines [36] provides an interface that could be used
to define RL model parameters such as the actor learning
rate, number of training steps and number of exploration
steps. Fig. (4) shows the workflow followed to train a model.
The make command creates an object handle to the spawned
robots in AMBF through its Python client and throttles the
simulation when enabled. For training, it is possible to either
load a previously trained model and continue training or
start training a new model. Finally, the model is saved and
evaluated. Users can also provide specific values for roll-

Configuration

Define RL
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» Observation Space

* Action Space
* Reward

Select RL
Algorithm

Setup AMBF
Environment + Goal

¥

Training

Build and Reset Environment

Continue
Training?

Load Checkpoint

Train

¥

Evaluate and Translate

Save trained policy

Evaluate generated trajectories

‘ | Deploy model on real robot ‘ ‘

Fig. 4: Workflow for Creating, Training and Evaluating a RL
Model.

out, training and evaluation of their model. In the roll-out
phase, the agent explores and populates the replay buffer with
state transition parameters until the maximum number of roll-
out steps. Then the model gets trained on the data which is
randomly sampled from the replay buffer. Additionally, an
evaluation environment can be used to test the learnt policies
at regular intervals.

C. Creating Expert Data for RL

Continuous space RL algorithms suffer from exploration
inefficiency leading to increased training time or erroneous
results [7], [17]. A possible workaround to tackle this issue
would be using user recorded data to train the RL model
initially. Therefore, a module was developed to bag ros data
from AMBF and process the data in a format that could
be used to train algorithms such as GAIL. The process for
creating expert data is simple - while the expert is using the
dVRK’s MTM, the rostopics of the PSM’s joint trajectories
are bagged. After that a dictionary of Observations, Actions,
Rewards, Episode returns and Episode Starts are generated
by discretizing the collected data. A discretization factor can
be set to change the accuracy when comparing the discretized
data with the collected data. The collection of data using
the provided module could potentially help improve the
training efficiency and perform complex surgical tasks such
as picking a suturing needle etc .
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D. Containerised templates for high compute training

ARL also offers containerised environments that can be
deployed on workstations or High Performance Clusters
(HPC) using either docker or singularity. The container
launches 4 processes independently - a roscore instance, a
headless AMBF process, a training script which wraps the
ARL Environment, and a tensorboard script to view the status
of training in real-time. The user has the option to bind
local ports to the remote server and/or the container host
to subscribe to ROS topics being published in real-time. By
loading the same robot model in AMBF, ARL allows play-
back of joint states as afCommand messages for afObjects.
This allows local AMBF clients to render and jog robots
that are undergoing training on a cluster. Similarly, another
port can be bound to the server and/or container to view
tensorboard logs in real-time.

1V. EXPERIMENT
A. Description

We validated ARL by performing a reach task that por-
trays debris removal surgical task with a simulated dVRK
PSM in AMBF and transferred the learnt policy to the
physical dVRK PSM. Two models were trained to ob-
tain an optimal policy to perform this task - DDPG, and
DDPG+HER. A simple observation space was selected for
both RL models consisting of the end-effector’s Cartesian po-
sition and velocity. For simplifying the training process, the
workspace limits were set to S = {s|x € [~60mm,55mm], y €
[—50mm,60mm], z € [—200mm, —90mm) }.

A desired goal position was randomly selected with the only
constraint that it lies within the dVRK PSM’s reachable
workspace. Since RL is a goal based learning technique,
the reward function was computed as the L2 norm of the
distance between the tip of the end-effector (achieved goal)
and the desired goal. We identified parameters that could
significantly influence the reward and shaped the reward
according to Alg. 1. An episode is successfully completed
when the computed L2 norm between the achieved and
desired goals is within 10mm. We explored 2 separate reward
schemes for this experiment - a sparse reward scheme, and
a continuous reward scheme. In the case of the sparse
reward scheme, a reward of {+1/0} was given for success
and failure respectively for DDPG; Similarly, a reward of
{+1/ — 1} was given for DDPG+HER. In contrast, the
continuous reward scheme used a common reward for both
models - the reward received by the agent directly depended
on the L2 norm between current end-effector’s tip position
and the desired goal position. The action space size was
chosen to be 3 (corresponding to the desired Cartesian
position of the end-effector). To ensure stability of RL
algorithms during training, the action space limits for RL
algorithms were set to be symmetric and normalized between
values [—1,1]. These values were then scaled down to a
limit of [—5mm,5mm] with a resolution of 1mm. Therefore,
the action space was set to A = {a|x € [-5mm,5mm]|,y €
[—5mm,5mm], z € [—5mm, —5mm]}.

Since the learnt policy resulted in desired Cartesian positions,
the values were directly applicable to the real dVRK using
the CISST-SAW Libraries [37], [38].

Algorithm 1: Reward Function Definition for ARL
dVRK PSM Environment
function Reward (achievedgoal, desiredgoal,

info):
fCompute distance between desired and achieved
goal
if Sparse Reward; then
if Computed Distance <Goal Error Margin
then
‘ Reward = 1
else
| Reward = 0 (DDPG) or -1 (DDPG+HER)
end
end
if Continuous Reward then
‘ Reward =1 - Maxlrr({‘;)zlglu\;igfx:‘tat;;frfg/grz\pace
end
return Reward
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Fig. 5: Success Rate of the DDPG and DDPG+HER Models
for dVRK PSM Reach Task with different Maximum Num-
ber of Steps per Episode (Average of 3 Iterations). Each
iteration consisted of 20 trials to reach the goal position.

B. Results

The success rate was defined as the number of times the
dVRK PSM was able to reach the goal state out of 20
trials. Fig. 5 shows the success rate of the two models across
different maximum number of steps allowed per episode. The
models were trained for 4 millions steps and an aggregate
of 3 iterations was used to calculate the success rate. The
following observations were made:

DDPG: Achieved a maximum success rate of 61% when the
maximum of number of steps allowed per episode was
varied between 50-300.

DDPG+HER: Achieved a maximum success rate of 100%
when the maximum number of steps allowed per
episode was greater than or equal to 250.
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The dVRK PSM was successfully able to reach the desired
position with a success rate of 100% for episodes which
allow 250 or greater steps and goal error margin of 10mm
while using DDPG+HER model.
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Fig. 6: Time per episode in minutes vs the number of
episodes while comparing training on the cluster? vs training

on a workstation*

The above experiments were carried out on a workstation.
To validate the performance increase obtained by deploying
ARL on the cluster, we measured the time taken to com-
plete 100 episodes. Fig. 6 shows the increased performance
obtained by running the training phase on the cluster. Both
profiles were run on the same computer with the same
background and foreground processes running.
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Fig. 7: Rewards received by dVRK PSM over 4 million

steps during (a) DDPG (orange) and (b) DDPG+HER (blue)
models training.
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V. DISCUSSION

From the observations made in the previous section, it
can be noted that the model trained using DDPG+HER
performed better than the DDPG model. Fig. 7 describes
the progression of rewards received by the agent during the
training process for DDPG (Fig. 7a), and DDPG+HER (Fig.
7b) respectively. It can be seen that the rewards received by
the agent increased significantly after few thousands steps for
DDPG+HER, whereas the DDPG model received fluctuating
rewards throughout training resulting in improper training.

We believe that this could be because of the instability
of DDPG due to hyper-parameter sensitivity [39]. We also
experienced difficulties while training new environments due
to deceptive gradients [40], [41]. Other factors that could
have affected training included selection of appropriate noise
which can cause inefficient exploration of states [42]. After
obtaining optimal policies, we observed that the dVRK PSM
performed the desired motion of reaching the goal position
required for debris removal successfully. The seamless trans-
fer of the trained policy from simulation to the physical robot
shows ARL’s flexibility to help researchers test their novel
techniques without needing access to the physical robots.

To conclude, we have presented ARL: a real-time simulation
based RL toolkit that is tailored for medical robots. The
toolkit was validated on the dVRK PSM by performing
a reach task which portrayed debris removal using the
model trained with DDPG+HER technique. ARL’s ability to
leverage HPC by running on containerized versions makes
it suitable for learning techniques. The added benefits of
running a headless instance allows it to be compatible with
a larger variety of servers, including window-less ones.

3

VI. FUTURE WORK

The added capability of simulating tissue dynamics using
AMBEF reduces the complexity of automating tissue-specific
tasks using RL techniques for future applications. Further-
more, a database can be created to store successful hyper-
parameter values for trained models, easing the adoption
of ARL amongst new users. Future experiments can also
leverage the containerization and synchronous training ca-
pabilities of ARL to train multiple instances of the same
task to improve performance by utilizing parameter noise for
exploration [43] and explore newer algorithms like the Twin
Delayed DDPG (TD3) [44]. The expert data collected from
users performing surgical tasks could be used to pre-train
RL algorithms [35] using the learning from demonstration
module present in ARL. ARL also offers the opportunity to
explore new frontiers of RL based techniques to automate
medical tasks such as controlling exoskeletons, ablating
cancerous tissue, etc. through the variety of medical robot
models it has to offer.
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