
AMBF-RL: A real-time simulation based Reinforcement Learning
toolkit for Medical Robotics

Vignesh Manoj Varier1,∗, Dhruv Kool Rajamani1,∗, Farid Tavakkolmoghaddam1,

Adnan Munawar2, Gregory S Fischer1

Abstract— Recently, Reinforcement Learning (RL) techniques
have seen significant progress in the robotics domain. This
can be attributed to robust simulation frameworks that offer
realistic environments to train. However, there is a lack of
platforms which offer environments that are conducive to med-
ical robotic tasks. Having earlier designed the Asynchronous
Multibody Framework (AMBF) - a real-time dynamics sim-
ulator well-suited for medical robotics tasks, we propose an
open source AMBF-RL (ARL) toolkit to assist in designing
control algorithms for these robots, as well as a module to
collect and parse expert demonstration data. We validate ARL
by attempting to partially automate the task of debris removal
on the da Vinci Research Kit (dVRK) Patient Side Manipulator
(PSM) in simulation by calculating the optimal policy using both
Deep Deterministic Policy Gradient (DDPG) and Hindsight
Experience Replay (HER) with DDPG. The trained policies
are successfully transferred onto the physical dVRK PSM and
tested. Finally, we draw a conclusion from the results and
discuss our observations of the experiments conducted.

I. INTRODUCTION

Reinforcement Learning (RL) techniques have seen signif-

icant progress in the robotics domain [1]. Open-source RL

frameworks such as OpenAI: Gym [2] and Baselines [3] have

enabled effortless implementation of complex algorithms

in simulation and real robots. The availability of robust

simulation platforms that offer realistic simulation environ-

ments and easy integration with these RL frameworks have

contributed to the increased adoption of these techniques.

Most of these platforms also offer the ability to transfer

trained models to the real robots with minimal modifications

[4]. This added benefit reduces the engineering effort and

cost associated with the direct implementation of RL on

physical robots [5].

While the utilization of learning-based techniques have pro-

liferated in most domains of robotics, they remain scarce in

the field of medical robotics. Recent efforts have proposed

automating surgical tasks in Robot Assisted Surgeries (RAS)

to circumvent frequent clutching [6], eliminate heuristic tun-

ing and processing high-dimensional data [7], reducing the

cognitive load on surgeons [8], [9] and utilizing simulations

for collection of large amounts of data [10]. Despite these

significant efforts, there remains a disconnect in making these

1Authors with the Robotics Engineering Department, Worcester
Polytechnic Institute, WPI, 100 Institute Road, MA 01609, USA
{vvarier, dkoolrajamani, ftavakkolmoghadd,
gfischer}@wpi.edu
2 Author with Laboratory for Computational Sensing and Robotics,
Johns Hopkins University, Baltimore, Maryland 21218, USA
{amunawar}@jhu.edu
∗ Authors had equal contributions in preparation of this manuscript.

techniques accessible to a broader range of researchers, as

access to the robotic platforms is not feasible for a large

portion of the medical robotics community.

Previously, we developed the Asynchronous Multi-Body

Framework (AMBF) [11] - a real-time dynamics simulator

geared towards medical robotic applications, capable of sim-

ulating soft tissue [12], and offering a suite of surgical robot

models like the da Vinci Research Kit (dVRK) [13], Raven

II [14], and Neuro Robot [15]. In this paper, we propose an

open source RL toolkit AMBF-RL (ARL)1 that integrates

with AMBF. We present the design architecture and features

that can significantly enhance the implementation of RL

algorithms for medical robots. We develop a module to

collect expert-demonstrated data from dVRK Patient Side

Manipulator (PSM) to use for tasks that involve Learning

from Demonstration [16], [17]. We validate the ARL toolkit

by performing a reach task that portrays debris removal in an

operating room. Deep Deterministic Policy Gradient (DDPG)

[18], and Hindsight Experience Replay (HER) with DDPG

[19] are implemented to obtain policies to complete this task.

The trained policies are successfully transferred to the dVRK

PSM to reach the desired goal.

II. BACKGROUND

Researchers have made substantial efforts in applying RL

based techniques to control robots, specifically in the fields

of manipulation [20], [21] and mobility [5], [22]. There are

some common problems that are associated with training on

physical robots such as restricted environments [1], costly

roll-outs [23], and an emphasis on safe exploration due

to hardware constraints [24]. To circumvent these prob-

lems, realistic models of robots are created and trained in

simulation. Once a satisfactory RL model is trained, the

model can be transferred onto the real robot (Sim2Real)
[4]. Additionally, training in a simulation environment has

the benefit of faster training which can be leveraged by

accelerating the simulated physics and/or launching multiple

training instances to overcome the exploration-exploitation

dilemma [1].

Although RL training environments are prevalent in robotics,

they can be improved to increase their adoption in medical

robotics. Recent efforts in automating surgical tasks using

RL are limited to a few tasks such as cutting [25], suction

[26], and suture hand-off [16] which demonstrate a growing

demand for a framework that offers environments tailored

1https://github.com/WPI-AIM/ambf_rl

20
22
�In
te
rn
at
io
na
l�S
ym

po
siu

m
�o
n�
M
ed
ic
al
�R
ob
ot
ic
s�(
IS
M
R)
�|�
97
8­
1­
66
54
­6
92
8­
9/
22
/$
31
.0
0�
©
20
22
�IE

EE
�|�
D
O
I:�
10
.1
10
9/
IS
M
R4

83
47
.2
02
2.
98
07
60
9

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 12,2022 at 14:01:04 UTC from IEEE Xplore.  Restrictions apply.



(a) dVRK PSM (b) Neuro Robot (c) Raven II

Fig. 1: Examples of surgical robots modeled in AMBF.

towards medical robotics. Other works by Tan et al. [27]

and Baek et al. [28] employ RL techniques for residency

training and later automated resection using the V-REP [29]

simulator. Researchers [30] have also demonstrated RL based

surgical planning for cutting of soft tissue by deriving a ten-

sioning policy to improve cutting accuracy. In 2019, Richter

et al. [26] developed the first open-sourced RL environments

for surgical robotics called dVRL and recently Xu et al. [31]

designed a simulation platform for surgical robot learning

that can be utilized for dVRK. To the best of our knowledge,

dVRL and SurRoL are the only source RL environments for

surgical robotics. Therefore, the following text provides an

overview of dVRL and SurRoL and the motivation behind

designing an RL toolkit for medical robotics using AMBF

simulator.

A. Current RL environments available for Surgical Robots

dVRL offers open source environments that extend the

OpenAI Gym framework by interfacing it with V-REP [29].

In their paper, the authors demonstrated debris removal and

suction in simulation and transferred the learnt model onto

a physical dVRK system to validate their environments.

SurRoL was built based on PyBullet [32], which is a Python

wrapper for Bullet physics. The authors utilized the dVRK

meshes available from AMBF to train the dVRK PSM and

ECM to perform tasks such as needle reach, needle pick,

needle regrasp and tracking using ECM. Despite its novelty,

the dVRL and SurROL has shortcomings that include (i)

few environments for surgical tasks, (ii) complexity while

incorporating soft-body dynamics due to the underlying

simulation framework used in dVRL - VREP, and that (iii)

only offers environments for the dVRK PSM and ECM.

AMBF and ARL improve upon these shortcomings by pro-

viding more surgical environments, the capability to simulate

surgical tasks on soft tissue, and a larger variety of medical

robot models. To maintain consistency in validating the ARL

toolkit, we performed the task of debris removal with a

simulated dVRK PSM, and transferred the model onto the

physical system.

B. Asynchronous Multi-Body Framework (AMBF)

AMBF is an open-source dynamic simulator that offers real-

time simulation and haptic interaction of multi-bodies includ-

ing robots, free bodies, and puzzles with support for training

Neural Network for high-level control of robots [11]. The

simulator utilizes and extends CHAI-3D [33] to provide real-

time haptic interaction of multiple Input Interface Devices

(IIDs). Examples of supported devices include the dVRK

Master Tool Manipulator (MTM) and Razer Hydra Game

Controllers in addition commercial haptic devices already

incorporated by CHAI-3D. AMBF also offers support for

simulation and interaction of soft bodies [12]. This capability

is crucial in applications where manipulation and interaction

with soft tissue are required (eg., suturing, cutting, pinching).

AMBF provides a complementary Python client which offers

a low barrier to entry interface with AMBF and a medium

for training using Artificial Intelligence techniques.

AMBF simplifies describing a robot through its own front-

end human-readable format (ADF) [11]. There are no limita-

tions regarding the number of children or parents for a given

joint in ADF in contrast to the more conventional spatial tree

structure formats such as in URDF or SDF. This allows for

a simplified description of parallel mechanisms which is ad-

vantageous for surgical robot simulation applications where

most robots possess some form of closed-loop mechanisms.

Finally, several medical robots such as the dVRK (Fig. 1a),

MRI-compatible Neurorobot [15] (Fig. 1b), and Raven II

[14] (Fig. 1c) have already been modeled and provided as

examples in AMBF. The ease of modeling medical robots

in AMBF and the extensibility of the framework to provide

realistic interactions between the robot and the environment

provides an accessible platform for testing and development

of new learning algorithms and control schemes on robots.

III. ARCHITECTURE

This section provides an overview of AMBF’s communi-

cation architecture and its incorporation with ARL. Next,

the design overview of ARL is presented - it emphasizes

on components of AMBF that enhance the functioning of

ARL and provide an overview of its workflow. This section

also expands on features specific to surgical robotics for the

simulator (AMBF).

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 12,2022 at 14:01:04 UTC from IEEE Xplore.  Restrictions apply.



Fig. 2: Design of the AMBF Python Client. The identified afObjects are segregated from each other and any afObject can

be queried by the ARL ENV class which wraps the AMBF Python Clients API and exposes an OpenAI Gym compatible

API.

A. AMBF: Features that enhance ARL

AMBF utilizes Robot Operating Software (ROS) [34] as

the communications middleware. In its implementation, all

objects (bodies, sensors, cameras, lights etc.) (afObjects) own

an exclusive instance of a base class called afObjComm.

Similarly, the World object (afWorld) owns an instance of

afWorldComm. Each communication instance is dispatched

in a separate thread where the publishing (afState) and

subscribing (afCommand) of ROS topics is performed. For

the subscribers, rather than utilizing the default Spinner

implementation, Custom Callback Queue are used. This

provides encapsulation for the flow of data between different

instances. For the afState and afCommand of each type of

afObject, custom message payloads2 are defined.

The distributed and asynchronous communication architec-

ture of AMBF is leveraged by the AMBF Python client,

shown in Fig. 2. The client identifies afObjects and dis-

patches exclusive threads for handling them. By doing so,

the Python client encapsulates the data and the control of

data-flow and thus provides an implementation where low

over-head instances of various afObjects can be queried

in isolation. This provides for an easy integration with RL

frameworks and accomplished using the ARL ENV class

(Fig. 2).

Since the underlying AMBF communication architecture is

asynchronous, the ARL ENV class implements a step con-

trol mechanism to synchronize between actions, states and

rewards. Additionally, the active simulation in AMBF can be

2https://github.com/WPI-AIM/ambf/tree/ambf-1.0/
ambf_ros_modules/ambf_msgs/

dynamically throttled to compensate for the communication

and training-related delays. This is achieved by setting a

throttle flag, the number of jump steps and a clock in the

afCommand payload of afWorld to step the simulation as

shown in Fig. 3. This process is automated by the ARL
ENV.

AMBF also supports speeding up the simulation to increase

training speed and a headless mode (no Graphical User

Interface). These modes are accessible via Command Line

Interface (CLI) arguments at launch. The headless mode

not only reduces the load on system resources (Fig. I), but

also allows for the simulation to be run on window-less

servers - a growing need due to the high resource usage

required for training neural network models. rosbag’s have

been integrated with ARL ENV to allow for a standardized

data storage and replay mechanism.

Fig. 3: Interface for dynamically throttling the simulation in

AMBF using the afWorld’s afCommand message payload.

B. AMBF Reinforcement Learning (ARL) Environments

ARL integrates AMBF with OpenAI Gym by leveraging

its API. ARL currently provides environments for DDPG,

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 12,2022 at 14:01:04 UTC from IEEE Xplore.  Restrictions apply.



Memory Usage (GB) CPU Usage (%)

Average, Maximum, Minimum Average Maximum Minimum
With GUI 0.7 18.08 19.25 16.67

Without GUI 0.5 9.83 8.83 10.91

TABLE I: CPU and Memory usage of ARL with and without

Graphical User Interface (GUI). Both profiles were run on

the same computer with the same background and foreground

processes running. Specifications: AMD Ryzen 5 3600 6-

Core Processor (12 threads) and 32 GB Corsair Vengeance

DDR4 RAM

DDPG+HER and Generative Adversarial Imitation Learning

(GAIL) [35] to train with the dVRK PSM Robot. This API is

presented below and can be implemented to add more robots.

Depending on the RL algorithm, either the main Gym envi-

ronment (list of observation states) or goal Gym environment

can be extended. For the goal Gym environment, the state

of the robot consists of a dictionary containing: observation

(current observations of the state), achieved goal (current

result attained by the robot) and desired goal (final result

to be achieved).

• Reset: This method resets the robot to home position

(preset by user) and generates a goal position using

random sampling

• Init: This method creates an instance of the AMBF

Python client which is used to get a handle to the desired

robot. Next the state and action space is initialized based

on the input parameters. Users also need to define which

joints of the robot need to be controlled by the Python

client.

Input: action space limit, joints to control, goal
position range, position error threshold, goal error
margin, joint limits, workspace limits, enable step
throttling

• Step: This method gets the current state of the robot and

takes the action. The next state is found by computing

the forward and inverse kinematics of the robot. Then

the robot is commanded to the desired state and the

resulting reward is computed. While the next state is

computed, users also need to ensure that the Kinematic

and Dynamic constraints of the robot are also defined

in this method.

Input: action
Returns: Observation, Reward, Done, In f o

Stable-Baselines [36] provides an interface that could be used

to define RL model parameters such as the actor learning

rate, number of training steps and number of exploration

steps. Fig. (4) shows the workflow followed to train a model.

The make command creates an object handle to the spawned

robots in AMBF through its Python client and throttles the

simulation when enabled. For training, it is possible to either

load a previously trained model and continue training or

start training a new model. Finally, the model is saved and

evaluated. Users can also provide specific values for roll-

Fig. 4: Workflow for Creating, Training and Evaluating a RL

Model.

out, training and evaluation of their model. In the roll-out

phase, the agent explores and populates the replay buffer with

state transition parameters until the maximum number of roll-

out steps. Then the model gets trained on the data which is

randomly sampled from the replay buffer. Additionally, an

evaluation environment can be used to test the learnt policies

at regular intervals.

C. Creating Expert Data for RL

Continuous space RL algorithms suffer from exploration

inefficiency leading to increased training time or erroneous

results [7], [17]. A possible workaround to tackle this issue

would be using user recorded data to train the RL model

initially. Therefore, a module was developed to bag ros data

from AMBF and process the data in a format that could

be used to train algorithms such as GAIL. The process for

creating expert data is simple - while the expert is using the

dVRK’s MTM, the rostopics of the PSM’s joint trajectories

are bagged. After that a dictionary of Observations, Actions,

Rewards, Episode returns and Episode Starts are generated

by discretizing the collected data. A discretization factor can

be set to change the accuracy when comparing the discretized

data with the collected data. The collection of data using

the provided module could potentially help improve the

training efficiency and perform complex surgical tasks such

as picking a suturing needle etc .

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 12,2022 at 14:01:04 UTC from IEEE Xplore.  Restrictions apply.



D. Containerised templates for high compute training

ARL also offers containerised environments that can be

deployed on workstations or High Performance Clusters

(HPC) using either docker or singularity. The container

launches 4 processes independently - a roscore instance, a

headless AMBF process, a training script which wraps the

ARL Environment, and a tensorboard script to view the status

of training in real-time. The user has the option to bind

local ports to the remote server and/or the container host

to subscribe to ROS topics being published in real-time. By

loading the same robot model in AMBF, ARL allows play-

back of joint states as afCommand messages for afObjects.

This allows local AMBF clients to render and jog robots

that are undergoing training on a cluster. Similarly, another

port can be bound to the server and/or container to view

tensorboard logs in real-time.

IV. EXPERIMENT

A. Description

We validated ARL by performing a reach task that por-

trays debris removal surgical task with a simulated dVRK

PSM in AMBF and transferred the learnt policy to the

physical dVRK PSM. Two models were trained to ob-

tain an optimal policy to perform this task - DDPG, and

DDPG+HER. A simple observation space was selected for

both RL models consisting of the end-effector’s Cartesian po-

sition and velocity. For simplifying the training process, the

workspace limits were set to S = {s|x ∈ [−60mm,55mm], y ∈
[−50mm,60mm], z ∈ [−200mm,−90mm]}.

A desired goal position was randomly selected with the only

constraint that it lies within the dVRK PSM’s reachable

workspace. Since RL is a goal based learning technique,

the reward function was computed as the L2 norm of the

distance between the tip of the end-effector (achieved goal)

and the desired goal. We identified parameters that could

significantly influence the reward and shaped the reward

according to Alg. 1. An episode is successfully completed

when the computed L2 norm between the achieved and

desired goals is within 10mm. We explored 2 separate reward

schemes for this experiment - a sparse reward scheme, and

a continuous reward scheme. In the case of the sparse

reward scheme, a reward of {+1/0} was given for success

and failure respectively for DDPG; Similarly, a reward of

{+1/− 1} was given for DDPG+HER. In contrast, the

continuous reward scheme used a common reward for both

models - the reward received by the agent directly depended

on the L2 norm between current end-effector’s tip position

and the desired goal position. The action space size was

chosen to be 3 (corresponding to the desired Cartesian

position of the end-effector). To ensure stability of RL

algorithms during training, the action space limits for RL

algorithms were set to be symmetric and normalized between

values [−1,1]. These values were then scaled down to a

limit of [−5mm,5mm] with a resolution of 1mm. Therefore,

the action space was set to A = {a|x ∈ [−5mm,5mm], y ∈
[−5mm,5mm], z ∈ [−5mm,−5mm]}.

Since the learnt policy resulted in desired Cartesian positions,

the values were directly applicable to the real dVRK using

the CISST-SAW Libraries [37], [38].

Algorithm 1: Reward Function Definition for ARL

dVRK PSM Environment

function Reward(achievedgoal, desiredgoal,
in f o):

Compute distance between desired and achieved

goal

if Sparse Reward1 then
if Computed Distance <Goal Error Margin

then
Reward = 1

else
Reward = 0 (DDPG) or -1 (DDPG+HER)

end
end
if Continuous Reward then

Reward = 1 - ComputedDistance×0.5
MaximumDistancewithinWorkspace

end
return Reward

Fig. 5: Success Rate of the DDPG and DDPG+HER Models

for dVRK PSM Reach Task with different Maximum Num-

ber of Steps per Episode (Average of 3 Iterations). Each

iteration consisted of 20 trials to reach the goal position.

B. Results

The success rate was defined as the number of times the

dVRK PSM was able to reach the goal state out of 20

trials. Fig. 5 shows the success rate of the two models across

different maximum number of steps allowed per episode. The

models were trained for 4 millions steps and an aggregate

of 3 iterations was used to calculate the success rate. The

following observations were made:

DDPG: Achieved a maximum success rate of 61% when the

maximum of number of steps allowed per episode was

varied between 50-300.

DDPG+HER: Achieved a maximum success rate of 100%

when the maximum number of steps allowed per

episode was greater than or equal to 250.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 12,2022 at 14:01:04 UTC from IEEE Xplore.  Restrictions apply.



The dVRK PSM was successfully able to reach the desired

position with a success rate of 100% for episodes which

allow 250 or greater steps and goal error margin of 10mm
while using DDPG+HER model.

Fig. 6: Time per episode in minutes vs the number of

episodes while comparing training on the cluster3 vs training

on a workstation4

The above experiments were carried out on a workstation.

To validate the performance increase obtained by deploying

ARL on the cluster, we measured the time taken to com-

plete 100 episodes. Fig. 6 shows the increased performance

obtained by running the training phase on the cluster. Both

profiles were run on the same computer with the same

background and foreground processes running.

Fig. 7: Rewards received by dVRK PSM over 4 million

steps during (a) DDPG (orange) and (b) DDPG+HER (blue)

models training.

V. DISCUSSION

From the observations made in the previous section, it

can be noted that the model trained using DDPG+HER

performed better than the DDPG model. Fig. 7 describes

the progression of rewards received by the agent during the

training process for DDPG (Fig. 7a), and DDPG+HER (Fig.

7b) respectively. It can be seen that the rewards received by

the agent increased significantly after few thousands steps for

DDPG+HER, whereas the DDPG model received fluctuating

rewards throughout training resulting in improper training.

We believe that this could be because of the instability

of DDPG due to hyper-parameter sensitivity [39]. We also

experienced difficulties while training new environments due

to deceptive gradients [40], [41]. Other factors that could

have affected training included selection of appropriate noise

which can cause inefficient exploration of states [42]. After

obtaining optimal policies, we observed that the dVRK PSM

performed the desired motion of reaching the goal position

required for debris removal successfully. The seamless trans-

fer of the trained policy from simulation to the physical robot

shows ARL’s flexibility to help researchers test their novel

techniques without needing access to the physical robots.

To conclude, we have presented ARL: a real-time simulation

based RL toolkit that is tailored for medical robots. The

toolkit was validated on the dVRK PSM by performing

a reach task which portrayed debris removal using the

model trained with DDPG+HER technique. ARL’s ability to

leverage HPC by running on containerized versions makes

it suitable for learning techniques. The added benefits of

running a headless instance allows it to be compatible with

a larger variety of servers, including window-less ones.

‘

VI. FUTURE WORK

The added capability of simulating tissue dynamics using

AMBF reduces the complexity of automating tissue-specific

tasks using RL techniques for future applications. Further-

more, a database can be created to store successful hyper-

parameter values for trained models, easing the adoption

of ARL amongst new users. Future experiments can also

leverage the containerization and synchronous training ca-

pabilities of ARL to train multiple instances of the same

task to improve performance by utilizing parameter noise for

exploration [43] and explore newer algorithms like the Twin

Delayed DDPG (TD3) [44]. The expert data collected from

users performing surgical tasks could be used to pre-train

RL algorithms [35] using the learning from demonstration

module present in ARL. ARL also offers the opportunity to

explore new frontiers of RL based techniques to automate

medical tasks such as controlling exoskeletons, ablating

cancerous tissue, etc. through the variety of medical robot

models it has to offer.

VII. ACKNOWLEDGEMENT

This work is supported by the National Science Foundation

(NSF) through National Robotics Initiative (NRI) grant: IIS-

1637759 and NSF AccelNet grant-1927275. The research

work involved using computational resources supported by

the Academic and Research Computing group at Worcester

Polytechnic Institute.

REFERENCES

[1] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“A brief survey of deep reinforcement learning,” IEEE Signal Process-
ing Magazine, vol. 34, no. 6, pp. 26–38, 2017.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 12,2022 at 14:01:04 UTC from IEEE Xplore.  Restrictions apply.



[2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv:1606.01540
[cs], Jun. 2016, arXiv: 1606.01540. [Online]. Available: http:
//arxiv.org/abs/1606.01540

[3] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “Openai baselines,”
2017. [Online]. Available: https://github.com/openai/baselines

[4] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” 2018
IEEE International Conference on Robotics and Automation (ICRA),
May 2018. [Online]. Available: http://dx.doi.org/10.1109/ICRA.2018.
8460528

[5] B. Osiński, A. Jakubowski, P. Ziecina, P. Miłoś, C. Galias, S. Homo-
ceanu, and H. Michalewski, “Simulation-based reinforcement learning
for real-world autonomous driving,” in 2020 IEEE International Con-
ference on Robotics and Automation (ICRA), 2020, pp. 6411–6418.

[6] M. Yip and N. Das, “Robot Autonomy for Surgery,” arXiv:1707.03080
[cs], Jul. 2017, arXiv: 1707.03080. [Online]. Available: http:
//arxiv.org/abs/1707.03080

[7] Y. Kassahun, B. Yu, A. T. Tibebu, S. Giannarou, J. H. Metzen,
and V. Poorten, “Surgical Robotics Beyond Enhanced Dexterity
Instrumentation,” International journal of computer assisted radiology
and surgery, p. 15. [Online]. Available: https://pubmed.ncbi.nlm.nih.
gov/26450107/

[8] M. Selvaggio, A. M. G. E, R. Moccia, F. Ficuciello, and B. Siciliano,
“Haptic-guided shared control for needle grasping optimization in
minimally invasive robotic surgery,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019, pp. 3617–
3623.

[9] S. Speidel, A. Kroehnert, S. Bodenstedt, H. Kenngott, B. Müller-
Stich, and R. Dillmann, “Image-based tracking of the suturing
needle during laparoscopic interventions,” R. J. Webster and
Z. R. Yaniv, Eds., Orlando, Florida, United States, Mar. 2015, p.
94150B. [Online]. Available: http://proceedings.spiedigitallibrary.org/
proceeding.aspx?doi=10.1117/12.2081920

[10] G. Dulan, R. V. Rege, D. C. Hogg, K. M. Gilberg-Fisher, N. A.
Arain, S. T. Tesfay, and D. J. Scott, “Developing a comprehensive,
proficiency-based training program for robotic surgery,” Surgery,
vol. 152, no. 3, pp. 477–488, Sep. 2012. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0039606012003893

[11] A. Munawar, Y. Wang, R. Gondokaryono, and G. S. Fischer, “A real-
time dynamic simulator and an associated front-end representation
format for simulating complex robots and environments,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2019, pp. 1875–1882.

[12] A. Munawar, N. Srishankar, and G. S. Fischer, “An open-source
framework for rapid development of interactive soft-body simulations
for real-time training,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), ser. 2020 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE.

[13] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and
S. P. DiMaio, “An Open-Source Research Kit for the da Vinci R
Surgical System,” 2014 IEEE International Conference on Robotics
and Automation (ICRA), p. 6.

[14] B. Hannaford, J. Rosen, D. W. Friedman, H. King, P. Roan, L. Cheng,
D. Glozman, J. Ma, S. N. Kosari, and L. White, “Raven-ii: An
open platform for surgical robotics research,” IEEE Transactions on
Biomedical Engineering, vol. 60, no. 4, pp. 954–959, 2013.

[15] C. J. Nycz, R. Gondokaryono, P. Carvalho, N. Patel, M. Wartenberg,
J. G. Pilitsis, and G. S. Fischer, “Mechanical validation of an mri
compatible stereotactic neurosurgery robot in preparation for pre-
clinical trials,” in 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2017, pp. 1677–1684.

[16] V. M. Varier, D. K. Rajamani, N. Goldfarb, F. Tavakkolmoghaddam,
A. Munawar, and G. S. Fischer, “Collaborative suturing: A reinforce-
ment learning approach to automate hand-off task in suturing for
surgical robots,” in 2020 29th IEEE International Conference on Robot
and Human Interactive Communication (RO-MAN), 2020, pp. 1380–
1386.

[17] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and
P. Abbeel, “Overcoming Exploration in Reinforcement Learning with
Demonstrations,” 2018 IEEE International Conference on Robotics
and Automation (ICRA), pp. 6292–6299, 2018. [Online]. Available:
http://arxiv.org/abs/1709.10089

[18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. M. O. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep
reinforcement learning,” CoRR, vol. abs/1509.02971, 2016. [Online].
Available: http://arxiv.org/abs/1509.02971

[19] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight Ex-
perience Replay,” Advances in neural information processing systems,
vol. 30, 2017.

[20] N. G. Lopez, Y. L. E. Nuin, E. B. Moral, L. U. S. Juan, A. S.
Rueda, V. M. Vilches, and R. Kojcev, “gym-gazebo2, a toolkit
for reinforcement learning using ROS 2 and gazebo,” CoRR, vol.
abs/1903.06278, 2019. [Online]. Available: http://arxiv.org/abs/1903.
06278

[21] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakr-
ishnan, L. Downs, J. Ibarz, P. Pastor, K. Konolige, S. Levine, and
V. Vanhoucke, “Using simulation and domain adaptation to improve
efficiency of deep robotic grasping,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), 2018, pp. 4243–
4250.

[22] B. Balaji, S. Mallya, S. Genc, S. Gupta, L. Dirac, V. Khare,
G. Roy, T. Sun, Y. Tao, B. Townsend, E. Calleja, S. Muralidhara,
and D. Karuppasamy, “Deepracer: Educational autonomous racing
platform for experimentation with sim2real reinforcement learning,”
CoRR, 2019. [Online]. Available: https://arxiv.org/abs/1911.01562

[23] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, Sep. 2013. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364913495721

[24] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and
Y. Tassa, “Safe exploration in continuous action spaces,” CoRR,
2018. [Online]. Available: https://arxiv.org/abs/1801.08757

[25] T. Nguyen, N. D. Nguyen, F. Bello, and S. Nahavandi, “A new
tensioning method using deep reinforcement learning for surgical
pattern cutting,” in 2019 IEEE International Conference on Industrial
Technology (ICIT), 2019, pp. 1339–1344.

[26] F. Richter, R. K. Orosco, and M. C. Yip, “Open-Sourced
Reinforcement Learning Environments for Surgical Robotics,”
CoRR, Jan. 2020, arXiv: 1903.02090. [Online]. Available: http:
//arxiv.org/abs/1903.02090

[27] X. Tan, C. Chng, Y. Su, K. Lim, and C. Chui, “Robot-assisted training
in laparoscopy using deep reinforcement learning,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 485–492, 2019.

[28] D. Baek, M. Hwang, H. Kim, and D. Kwon, “Path planning for
automation of surgery robot based on probabilistic roadmap and
reinforcement learning,” in 2018 15th International Conference on
Ubiquitous Robots (UR), 2018, pp. 342–347.

[29] E. Rohmer, S. P. N. Singh, and M. Freese, “Coppeliasim (formerly
v-rep): a versatile and scalable robot simulation framework,” in Proc.
of The International Conference on Intelligent Robots and Systems
(IROS), 2013, www.coppeliarobotics.com.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 12,2022 at 14:01:04 UTC from IEEE Xplore.  Restrictions apply.



[30] B. Thananjeyan, A. Garg, S. Krishnan, C. Chen, L. Miller, and
K. Goldberg, “Multilateral surgical pattern cutting in 2D orthotropic
gauze with deep reinforcement learning policies for tensioning,” in
2017 IEEE International Conference on Robotics and Automation
(ICRA). Singapore, Singapore: IEEE, May 2017, pp. 2371–2378.
[Online]. Available: http://ieeexplore.ieee.org/document/7989275/

[31] J. Xu, B. Li, B. Lu, Y.-H. Liu, Q. Dou, and P.-A. Heng, “Surrol:
An open-source reinforcement learning centered and dvrk compatible
platform for surgical robot learning,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2021, pp. 1821–
1828.

[32] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation in robotics, games and machine learning,” 2017. [Online].
Available: http://pybullet.org

[33] F. Conti, F. Barbagli, R. Balaniuk, M. Halg, C. Lu, D. Morris,
L. Sentis, J. Warren, O. Khatib, and K. Salisbury, “The chai libraries,”
in Proceedings of Eurohaptics 2003, Dublin, Ireland, 2003, pp. 496–
500.

[34] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “Ros: an open-source robot operating
system,” ICRA Workshop on Open Source Software, vol. 3, 01
2009. [Online]. Available: https://www.researchgate.net/publication/
233881999 ROS an open-source Robot Operating System

[35] J. Ho and S. Ermon, “Generative Adversarial Imitation Learning,”
Advances in neural information processing systems, vol. 29, 2016.
[Online]. Available: https://proceedings.neurips.cc/paper/2016/hash/
cc7e2b878868cbae992d1fb743995d8f-Abstract.html

[36] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https://github.
com/hill-a/stable-baselines, 2018.

[37] Z. Chen, A. Deguet, R. Taylor, S. DiMaio, G. Fischer, and
P. Kazanzides, “An Open-Source Hardware and Software Platform for
Telesurgical Robotics Research,” The MIDAS Journal, p. 11. [Online].
Available: https://www.midasjournal.org/browse/publication/892

[38] Z. Chen, A. Deguet, R. H. Taylor, and P. Kazanzides, “Software
Architecture of the Da Vinci Research Kit,” in 2017 First IEEE
International Conference on Robotic Computing (IRC). Taichung,
Taiwan: IEEE, Apr. 2017, pp. 180–187. [Online]. Available:
http://ieeexplore.ieee.org/document/7926536/

[39] G. Matheron, N. Perrin, and O. Sigaud, “The problem with ddpg:
understanding failures in deterministic environments with sparse
rewards,” CoRR, vol. abs/1911.11679, 2019. [Online]. Available:
https://openreview.net/forum?id=HyxnH64KwS

[40] C. Colas, O. Sigaud, and P.-Y. Oudeyer, “GEP-PG: Decoupling
Exploration and Exploitation in Deep Reinforcement Learning
Algorithms,” International conference on machine learning, pp.
1039–1048, 2018. [Online]. Available: https://proceedings.mlr.press/
v80/colas18a.html

[41] R. Liessner., J. Schmitt., A. Dietermann., and B. Bäker., “Hyperpa-
rameter optimization for deep reinforcement learning in vehicle energy
management,” in Proceedings of the 11th International Conference on
Agents and Artificial Intelligence - Volume 2: ICAART,, INSTICC.
SciTePress, 2019, pp. 134–144.

[42] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves,
V. Mnih, R. Munos, D. Hassabis, O. Pietquin, C. Blundell, and
S. Legg, “Noisy Networks for Exploration,” CoRR, Jul. 2019, arXiv:
1706.10295. [Online]. Available: http://arxiv.org/abs/1706.10295

[43] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen,
X. Chen, T. Asfour, P. Abbeel, and M. Andrychowicz, “Parameter
Space Noise for Exploration,” CoRR, Jan. 2018, arXiv: 1706.01905.
[Online]. Available: http://arxiv.org/abs/1706.01905

[44] S. Fujimoto, H. v. Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” International conference
on machine learning, pp. 1587–1596, 2018. [Online]. Available:
https://proceedings.mlr.press/v80/fujimoto18a.html

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 12,2022 at 14:01:04 UTC from IEEE Xplore.  Restrictions apply.


