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Abstract—Post-specific diffusion network elucidates the who-
saw-from-whom paths of a post on social media. A diffusion
network for a specific post can reveal trustworthy and/or incen-
tivized connections among users. Unfortunately, such a network
is not observable from available information from social media
platforms; hence an inference mechanism is needed.

In this paper, we propose an algorithm to infer the diffusion
network of a post, exploiting temporal, textual, and network
modalities. The proposed algorithm identifies the maximum
likely diffusion network using a conditional point process. The
algorithm can scale up to thousands of shares from a single post
and can be implemented as a real-time analytical tool. We analyze
inferred diffusion networks and show discernible differences in
information diffusion within various user groups (i.e. verified vs.
unverified, conservative vs. liberal) and across local communities
(political, entrepreneurial, etc.). We discover differences in in-
ferred networks showing disproportionate presence of automated
bots, a potential way to measure the true impact of a post.

I. INTRODUCTION

A post on social media has become the method of expres-
sion for many. A post travels through the social network from
the author to his/her friends, followers, and beyond. However,
the diffusion path of a post in social media is not readily
observable. We consider the problem of real-time tracking of
a post on social media by inferring the diffusion network of
the post. Such a diffusion network can be useful to identify
trustworthy or incentivized connections among users, which, in
consequence, is helpful to manage misinformation propagation
and understand public sentiment.

In Figure 1, we show an inferred diffusion network of early
two hundred retweeters of one of President Donald Trump’s
tweets on Oct 6, 2020. These retweets were made within two
seconds of the original tweet. We observe bot presence in this
early diffusion network, especially among the accounts that
have successfully influenced other accounts in such short time.
We name a few of these accounts that are already suspended
by Twitter.

Although social media platforms know who-saw-from-whom
information for any diffusion, unfortunately, the information is
not publicly available. In this paper, we show that post-specific
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Fig. 1. The diffusion network of one of President Donald Trump’s tweets.
@realdonaldtrump is at the center. Early two hundred retweeters are
collected via Twitter API. The diffusion network is inferred by DiffuScope.
Seventy accounts receive more than 60% score by Bot-o-meter [4]. The named
accounts are already suspended by Twitter..

diffusion network can identify diffusion patterns demonstrat-
ing differences in information diffusion within and across
local communities. We also discover differences in inferred
networks of political tweets showing disproportionate presence
of automated bots. Therefore, we propose this novel problem
of inferring post-specific diffusion network from publicly
available information on social media.

In this paper, we propose an algorithm to infer the diffusion
network of a post from 1 the shares it receives, 2 the social
network structure of sharing users, and 3 the history and
content of posts in the past. The algorithm uses the temporal
point process to model timing of shares, along with the textual
similarity of past content and follower distribution of users, to
estimate likely diffusion paths on the social network.

We start by motivating the use of temporal, textual, and
network information in the inference process in Section II. We
set context against related work in Section III. We continue
describing the algorithm in Section IV. Section V shows empir-
ical evaluation on synthetic data, and Section VI demonstrates
use cases on real data. We make all the figures available in the
paper website [1] for interactive and high-resolution viewing.

II. MOTIVATION

Consider four users: A, B, C, and D. Consider a post from
A that has been re-posted or shared by B, C, and D. Most
social media platforms do not provide who-saw-from-whom
information. Hence, there can be sixteen different propagation
trees for this specific tweet (figure 2). The shares are associated
with a timestamp that gives us the time order of re-posts by B,
C, and D. In general, on social media, anyone posting earlier
cannot be influenced by someone posting later. There can be
exceptions, because real-world influence can produce out-of-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASONAM ’21, November 8-11, 2021,Virtual Event, Netherlands
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9128-3/21/11
http://dx.doi.org/10.1145/3487351.3490967

2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

407

mailto:permissions@acm.org
http://dx.doi.org/10.1145/3487351.3490967


A

D

B

C

Observed
Information Flow

Possible Diffusion
Networks

1

15

10

5

Fig. 2. (left) Observed information from four users. (right) All possible
diffusion trees (best viewed in color). Trees in red shade are pruned by
temporal information. Trees in blue shade are pruned by textual information.
Tree in green shade is pruned by network information, leaving us with the
most probable diffusion tree.

order shares on virtual media. However, using the timestamps,
one can prune a significant number of possibilities to reduce
the search space to a smaller number of options.

If we have textual and network information from these users,
in addition to the temporal information, we can exploit them
to select the most probable diffusion path from the reduced
search space. For example, if B and C are highly similar in
their topics of interest, they are more likely to have influenced
each other, and hence, we can prune some more examples.

Similarly, if we have network information that B and D
do not follow each other, we can exclude another diffusion
tree, which leaves us with the most likely diffusion tree.
Thus, we infer a post-specific diffusion network by combining
multi-modal (i.e. textual, temporal, and network) information.
Note that such a diffusion network can include out-of-order
influence, and thus, can potentially reveal hidden patterns.

III. RELATED WORK

To the best of our knowledge, inferring post-specific dif-
fusion network is not discussed in the literature. Existing
work [6] [10] [14] infer diffusion network of generic concepts
across the web, and group together many tweets, blog posts,
news articles, etc. to represent the spread of a contagion. In
contrast, we consider specific posts on a social network. Post-
specific inference is challenging because of the need for real-
time application scenarios, while existing work process offline
archives of data collected over a duration [10] [12]. Grouping
concepts help inference by providing more data per group.
Post-specific inference is inherently challenged by sparsity
in the data (i.e. the first tweet of an author will not benefit
from any historical information) and by dynamic change in
influence (based on change in users’ interest and connectivity
in the network).

Post-specific inference can reveal the roles users play in the
diffusion of each post. While contrasting the diffusion network
can reveal discernible patterns [16], our work focuses on posts
and their authors, as opposed to topics [10] [11] or groups of
users [17] or groups of posts [18] [9] .

Information diffusion depends on multiple modalities of
user profiles including temporal patterns in engaging with
the platform, textual patterns in authorship and readership,
and graphical patterns in connecting with other users on the
platform. In this work, we combine all of these modalities in
inferring the diffusion network. Existing work mostly consider
only one mode aggregating the others. For example, [5] models

temporal process and does not consider textual content. [6],
[17] do not use an explicit social network. [19] [18] [3] exploit
textual content and does not consider temporal information.
Online analysis of information diffusion on Twitter is proposed
in [15]. This online method produces cascades for concepts
and suffers from incomplete data. In contrast, we propose to
infer diffusion network for as low as tens of shares/retweets.

Our work is inspired by work that model posting behavior as
temporal point processes [20] [5]. Work on local influence [18]
inference or ego-network inference are user-specific inference
algorithms, that inspired us to look at post-specific algorithm.

A. Novelty of DiffuScope

The similarity of DiffuScope to several existing techniques
can easily obscure the novelty DiffuScope brings to the
literature.

1) DiffuScope infers diffusion of one post. It is a harder
problem than inferring aggregate diffusion of concepts,
hashtags, topics or web domains. Because the available
data for one post is significantly less than the data
available for aggregate diffusion. Note that the diffusion
networks of two posts from the same user, on the same
topic, at different times can be largely different.

2) Most existing work model information diffusion in order
to predict future behavior to be able to manipulate,
control or exploit information diffusion. DiffuScope is
an inference technique to explain how the specific post
is being shared; which is a typical data mining task.

3) Diffusion network of recent post(s) create opportunity for
timely actions from interested parties.

4) DiffuScope exploits a myriad set of information that
includes temporal, textual, posting history and social net-
work of the author and the retweeters. Most existing work
consider only a subset of this information. A detailed
comparison to existing methods in a tabular format is
given in our supporting webpage [1].

IV. DIFFUSCOPE

A. Background

On a typical social media, a user follows another user, and
thus, they form a directed edge between them on the social
network. We define Fuv, 1 ≤ u, v ≤ n, as the adjacency matrix
representation of the directed network of n users on a social
network. We consider unweighted edges, hence, Fuv ∈ {0, 1}.
As we are interested in a single post, without losing generality,
we assume that the n users are the ones who shared the
post, and we ignore all other users. Although a popular post
can receive hundreds of thousands of shares, early diffusion
of a post can help forecasting the diffusion of the post in
subsequent time. Hence, a diffusion analyzer would focus on
the first few thousands of shares, limiting n to a reasonably
small number. We require past posts from each of these n
users to estimate model parameters for the conditional point
process.

We differentiate between a celebrity/popular user and a
regular user. We assume that a user can share a post from a
celebrity user without explicitly following him/her. Although
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one can share anyone’s post, it is unlikely to share a post from
a non-celebrity user without explicitly following him/her.

The output of our algorithm is a tree rooted at the author
of the post. A user on social media may see a post from more
than one users, however, we formulate the problem so only
one diffusion path (i.e. as opposed to multiple paths) to a user
exists. This restriction helps maximizing the likelihood func-
tion, and ensures better interpretability of the results. Because
the social network dictates information flow on social media,
the most likely diffusion network should be a subgraph of
the social network. Hence, the problem of inferring diffusion
network is reduced to picking a subgraph of the underlying
social network that maximizes the likelihood of the shares
being made by the observed users at the observed timestamps.

B. DiffuScope Model

Suppose a node u0 posted at time t0. We call u0 the author
node. Let us assume this post is shared by n users in time
order, without any co-occurrence. In other words, ti < tj
whenever 1 ≤ i < j ≤ n.

An external node represents a celebrity account, which
usually follows less number of people than the number of
followers it has. Media personnel, politicians, and sports-
men are good examples of external nodes. We assume di-
rect influence from an external node to individual nodes
because one can easily see posts from an external node
(i.e. @realdonaldtrump) by exploring trends, clicking
sponsored advertisement, and by searching for the node. In
DiffuScope, we assume any user can be influenced by an
external node.

Internal nodes are users that we are interested in the
network. Our goal is to find a diffusion path from the author
node u0 to a sharing node un. Note that, un can be influenced
by any combination of nodes in {u1, u2, ......un−1} because
they all have shared the post before un has shared.

The distribution of time between a share and the original
post follows a heavy tail which suggests us to model time-to-
share with exponential distribution. For any two nodes u and
v, the probability of v saw the post from u is,

puv ∝ exp(−∆uv)

where ∆uv = tv−tu, and puv is the likelihood of a diffusion
from u to v. DiffuScope models puv with three modes of
information: temporal, textual and network.

Temporal Information: In our algorithm, we use the
Hawkes process [7] [8] with exponential decay to model the
time of node v sharing from node u, based on their past sharing
history. The Hawkes process is defined as

γuv =

∫ t

−∞
αue

−βuv(t−u)dN(u)]dt

= αu
∑

all post by u shared by v

exp(−βuv | t− ti |)
(1)

where sharing history is ∀ i, ti < t, αu is the intensity rate by
node u, and βuv is the decay rate of node v given u is the
source. Here, γuv is the rate of the Hawkes process, which we
restrict to γuv ∈ (ε, 1] to directly use as a porbability measure.

Textual Information: We use Jaccard similarity between
the bags of words from a pair of users. Let X be the bag
of words that node u posted or shared, and Y be the bag of
words that node v posted or shared, then Jaccard Similarity is
defined as:

Juv =
length(X ∩ Y )

length(X ∪ Y )
(2)

Network Information: We take into account the popularity
of a user based on his/her number of followers. We use
Rayleigh distribution to model the number of followers. We
estimate the influence of a user on a diffusion path using
the Rayleigh follower distribution. Let zu be the number of
followers of node u, then

ηu =
zu
σ2
exp(−z2u/2σ2), zu ≥ 0 (3)

where σ is scale parameter, and can be estimated by maximum
likelihood estimator, σ̂2 = 1

2N

∑N
u=1 z

2
u ; here N is the total

number of nodes in the network, and zu is the number of
followers of the uth node.

We consider the follow-follower network of internal users
to formulate the probability of diffusion from u to v, which is
puv . In the absence of any other information, the most likely
diffusion path between u and v follows the underlying social
network. We define the social network by Fuv = 1, if v is a
follower of u, 0 otherwise. We incorporate the three kinds of
information together to calculate the probability of a potential
edge between nodes u and v in the diffusion network.

puv =

 ηu Juv exp(−∆uv) γuv, if Fuv = 1
ηu Juv exp(−∆uv) if Fuv = 0 and u is extenral
0, otherwise

(4)

C. DiffuScope Algorithm
To compute puv , we need to estimate the parameters γuv ,

Juv , and ηu, representing temporal, textual and network infor-
mation respectively.
Estimating γuv: We formulate the log-likelihood function,
described in Equation 7, in order to optimize the Hawkes
process described in Equation 1. The derivation of the log-
likelihood function is given in the Appendix of this paper.

L =
n∑
i=1

[
αu
βuv

(e−βuv(tn−ti)−1)]+
n∑
i=1

log[αu
∑
ti<tj

e−βuv(ti−tj)]

(5)
To find the best values for αu and βuv that maximize

the log-likelihood, we perform a grid search over Uniform
distributions with the restriction of γuv ∈ (ε, 1], where ε > 0 is
a small numerical value. Algorithm 1 shows the maximization
process. The algorithm draws ten U(0,0.1) random numbers
as αu and ten U(0,0.1) random numbers as βuv to form a
grid structure in Line 3-4. At each corner of this grid, the
likelihood function L is evaluated (Line 5). The algorithm
sorts the likelihood values (Line 6) and considers the (αu,βuv)
pairs in descending order of their likelihood (Line 8-9). The
algorithm calculates γuv for each pair of (αu,βuv) (Line 10)
and returns the first γuv ≤ 1. If the corners of the grid fail
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Fig. 3. Three example follow-follower network of different density. Each network consists of roughly 300 nodes. Nodes of same community are colored similar
(Modularity based community [13]) (left) A real-world follow-follower network collected from Twitter having density=11.3%, number of communities=4;
(mid) A synthetically generated network with density=8%, number of communities=3; (right) Another synthetically generated community with density=1%,
number of communities=17.

Algorithm 1 Estimate Gamma1
Require: ti: all shares by node v of a post from node u
Ensure: γuv

1: if v does not share a post from u then
2: return γuv ← ε
3: end if
4: for ten α in U(0, .1) do
5: for ten β in U(0, .1) do
6: Lαuβuv

=
∑n
i=1[ αu

βuv
(e−βuv(tn−ti) − 1)] +∑n

i=1 log[αu
∑
ti<tj

e−βuv(ti−tj)]
7: end for
8: end for
9: Sort Lαβ in descending order

10: γuv ← 1 + ε
11: while γuv > 1 do
12: Pick the next likely αu and βuv
13: γuv = αu

∑
all retweet i exp(−βvu | t− ti |)

14: end while
15: if γuv > 1 then
16: Go to line 3 up to ten times
17: end if
18: return γuv

to produce a γuv ≤ 1, the algorithm generates more grids
for up to ten attempts (Line 12). One might worry about non-
convergence in ten attempts. In practice, on thousands of posts,
Algorithm 1 never tried more than one random grid.

Estimating Juv: We take out stopwords, URLs, emojis from
all of the posts, and convert hashtags to words. After cleaning
the textual content (including posts, shares, likes, etc.) from
both users u and v, we produce the bag of words for each
user. We then count the words in both of the bag of words,
and calculate the Jaccard similarity by taking the ratio between
the number of similar words and the total number of words
between two users. If they don’t share any similar word, we
put a smaller value, ε, in order to avoid multiplying by zero
probability.

Estimating ηu: We collect the number of followers from
the poster and each of the sharing users. We then find the

Algorithm 2 Calculate puv1
Require: u, v : two nodes, tu and tv : (re)tweets of u and v,

X: bag of words from posts of u,Y : bag of words from
posts of v, z: number of followers, N : total number of
retweeters, and Fuv = 1 if v is a follower of u, 0 otherwise

Ensure: Calculate puv: Probability of a potential edge from
node u to v.

1: Juv ← length(X∩Y )
length(X∪Y )

2: Juv ← ε if u and v do not share any similar words.
3: ∆uv = tv − tu
4: γuv = EstimateGamma
5: σ2 = 1

2N

∑N
u=1 z

2
u

6: ηu = zu
σ2 exp(−z2u/2σ2)

7: if u is followed by v then
8: puv ← ηuJuvexp(−∆uv)Fuvγuv
9: else if u is an external node and u is not followed by v

then
10: puv ← ηuJuvexp(−∆uv)
11: return puv
12: else
13: return 0
14: end if

Algorithm 3 DiffuScope1
Require: Posting history of nodes 1 ≤ u ≤ n, Timestamps

of all shares of a specific post made by nodes 1 ≤ u ≤ n
Ensure: Maximum likely post-specific diffusion tree

1: for 1 ≤ k ≤ n do
2: for 1 ≤ i < k do
3: Calculate pik
4: end for
5: weightik ← argmax pik ∀ i < k
6: end for
7: Tree← max(weightik)
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Fig. 4. Examples of synthetic traversals with branching factors B = 0.1, 0.4
and 0.9, respectively from left to right.

probability for each user based on their number of followers
using Equation 3.

Once we have ηu, Juv , and γuv , we combine them into
a puv in Algorithm 2. Recall that puv is the probability of
diffusion from u to v. In Algoirthm 3, we use puv values
to the maximum likely diffusion tree for the given post.
Retweet order plays an important role in this process, because
a newer post cannot influence an older post. Suppose we have
u1, u2, .....un retweeter from a source node u0 in order of
t1, t2, .....tn respectively. Then at time t1, u0 and u1 will have
an edge with p01. But at time t2, there are two possible edges,
either u0 and u2 with p02 or u1 and u2 with p12. In our
algorithm, we take the maximum probability between p02 and
p12 and the that edge in the tree, and so on. Therefore, an
edge to node k would be from

argmax
1≤i<k

pik (6)

After getting all the likely edges, we concatenate them to
obtain the most likely diffusion tree.

V. EXPERIMENTAL EVALUATION

In this section, we perform experimental evaluation of our
proposed method using real and synthetic datasets. We use
synthetic datasets to quantitatively evaluate our method’s per-
formance and perform sensitivity test to validate our model’s
robustness in diverse scenarios. We use real datasets to quali-
tatively evaluate the inferred diffusion networks.

A. Synthetic Datasets

Data on real information diffusion is only collectible, if
users log the true influence behind their retweets. Moreover,
collecting information from all users on a diffusion path is
generally unlikely because of the sampling done at the social
platforms. In order to evaluate performance, we develop a
synthetic data generator to create synthetic social networks
and simulate random post diffusion networks. We generate
random sparse graphs containing community structures. The
density of edges in the graphs range from 0.5% to 8%.

Example graphs are shown in Figure 3. We simulate random
traversals rooted at random nodes of the synthetic network.
Depending on an external parameter, the branching factor (B),
the traversal randomly chooses between breadth- and depth-
first approaches to visit the next set of nodes. The higher the
branching factor, the traversal visits immediate followers more
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Fig. 5. Left column shows accuracy gain of DiffuScope with only temporal
information (Hawkes Process). The right column shows accuracy gain with
both temporal and network information (Hawkes and Rayleigh). (top-row)
We iteratively double the number of nodes for a fixed density factor of 4.
(bottom-row) We iteratively double the density factor for a fixed 4000 nodes
in a network. The larger the density factor, the more density the network is.
The larger the branching factor, the more nodes have high out-degree in the
network.

often than followers of the followers. We choose six branching
factors {0.1, 0.2, 0.4, 0.6, 0.8, 0.9} to simulate diffusion
netowrks. We show three example traversals in Figure 4.

B. Performance Measure

We propose an edge-based accuracy measure to quantify the
correctness of an inferred diffusion network. If an edge in the
inferred network is present in the true diffusion network, we
count that edge as true-positive (TP). Any spuriously inferred
edge will be a false-positive (FP) and any missed edge in the
true diffusion network will be a false-negative (FN). We define
accuracy as TP

TP+FP for any inferred network, and take the
average over all inferred networks for all posts to calculate
the overall accuracy on a dataset. The default accuracy for
a randomly inferred diffusion network depends on the size
and shape of the follow-follower network of the participating
users. In one extreme, if n users share a post and they are all
connected to each other, there are n−2 ways to be incorrect for
each node, the default accuracy would be 1

n−2%. In the other
end, if the n users are serially connected in the follow-follower
network, the default accuracy is 100% because information can
diffuse exactly in one way. We report accuracy gain which is
the difference between the accuracy of DiffuScope and the
default accuracy.

C. Scalability

We generate synthetic datasets by varying the number of
nodes in the network. We explore upto n = 32, 000 nodes by
iterative doubling, and generate fixed number (2,000) of posts,
each having upto 100 shares. Each post diffuses through a
node to either all of the followers or one of the followers.
The branching factor B determines the ratio of the two
possibilities. We calculate accuracy of inferred network of each
post, and report the accuracy gain. See Figure 5.

We achieve positive gain for all synthetic scenarios. The
gain grows with the size and density of the network. The
larger the network, the larger and more diverse diffusion
trees are. Hence, there are more ways to be wrong for low
default accuracy, while DiffuScope holds up the accuracy for
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a larger gain. Denser networks have more connections between
users, thus, default accuracy suffers on high density networks.
In contrast, DiffuScope demonstrates a larger gain for high
density network. We see that adding network information with
the temporal information increases the gain (from left column
to right column) by around 5%.

We see an increase in accuracy gain for increasing branching
factor, B. When B = 0.1, the diffusion networks have
long chains of nodes favoring the default inference, reducing
the room for improvement for DiffuScope. However, when
B = 0.9, the diffusion networks have shorter chains and larger
influence spheres, reducing the accuracy of default inference
and increasing the gain of DiffuScope.

D. Real Datasets
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Fig. 6. Accuracy gain with respect to de-
fault estimator for various branching factors of
seeded diffusions on real social network.

Although our
synthetic data contain
community structures
and are produced
with variable density,
real world social
networks contain
rich details including
various types of users
(e.g. celebrities, bots,

experts, trolls, etc.) and activity profile (e.g. consumer,
producer, propagator, etc.). In order to evaluate our algorithm
on real social network, we collect a small sub-network of
Twitter’s social network. We focus on the follower-base
of a regional news source, ABQ Journal. ABQ Journal
is a moderately popular regional news media based in
Albuquerque, New Mexico, USA, with roughly 88K
followers at the time of data collection in February 2020.
To form a densely connected user network with a common
interest, we filter 8, 543 users who declared Albuquerque
(or nearby locations in New Mexico). Afterward, we collect
user information (i.e. past tweets and retweets) and follower
information for all these users, termed as ABQ-Journal-
Users. We also collect their most recent posted or retweeted
tweets up to the limit of 3200 as set by Twitter Rules.
Based on the collected follower information, we form a
closed follow-follower network, where each node belongs
to the ABQ-Journal-Users and all edges between any two
ABQ-Journal-Users are collected. This small sub-network of
Twitter is very dense with an average of 47 edges per node.
Seeded-by-Real-Graph: We simulate diffusion networks on
the ABQ-Journal-Users network for various branching fac-
tors. We test DiffuScope blindly on the simulated diffusions
and measure the accuracy gain over the default inference
technique. Since, the ABQ-Journal-Users network is a dense
network, the diffusions for larger branching factors (e.g. 0.9)
are generally broader in reach. DiffuScope achieves more than
30% gain over the default inference for such broader diffusion
(figure 6).
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Fig. 7. (left) One example tweet. (middle) The follow-follower network of
all users that retweeted the tweet. The author of the tweet is a college football
team, UNMLoboFB, shown at the center. (right) The diffusion path inferred
for this specific tweet revealing employees of the authoring institute (green
path) and past athletes who are currently not affiliated.

VI. CASE STUDIES

A. On ABQ Journal Followers
In Figure 7, we show a tweet on Twitter posted by a

verified user, UNMLoboFB, representing a college football
team. The tweet is retweeted by nine users whose follow-
follower relationships are shown in Figure 7(middle). We infer
the most likely diffusion using the retweets and the follow-
follower network, shown in Figure 7(right). The diffusion
network identifies two unique paths: one through employees
of the college (green path), and the other through coaches and
players of the team (blue path). The tweet diffused to the rest
of the users directly from the author, UNMLoboFB.
Diffusion Within Communities. We use ABQ-Journal-Users
dataset to investigate how diffusion happens in a densely
connected network. Specifically, we answer: is diffusion more
likely to occur between users of the same community in
comparison to diffusion between random users? First, to iden-
tify users of similar interests, we utilize the follow-follower
network. We make a reasonable assumption that users with
more common connections belong to the same cohort, as
used in related studies [2]. In this regard, we use the Mod-
ularity based community detection algorithm [13] to identify
communities in the follow-follower network. The Modularity
based approach minimizes connection across communities and
maximizes connection within communities. We recognize a
total of 11 communities; however, 99% of users belong to
five significant communities.

Based on the most popular topics in the community, we
name these communities as (1) Entertainment: users in this
community tweet about video, movie, TV, etc.; (2) Education;
members of this community are focused on discussing regional
school-related topics; (3) Politics: users from this community
talk about policing, legislation, budget, etc.; (4) Media: this
community is largely comprised of media personalities who
share about breaking news; (5) Business: people from this
community share business and entrepreneurial topics that pro-
moting local businesses and start-ups. One commonality across
all communities is the heavy presence of Covid-19 related
issues, which demonstrates the pandemic’s pervasiveness and
its socio-economic impact on diverse groups of people.

We identify 188 tweets that were retweeted by at least
10 users. Afterward, we use DiffuScope to infer diffusion
network for each these retweets that happened within the ABQ-
Journal-Users network. For each of the diffusion network,
we measure how many times a diffusion edge occurs across

2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

412



distinct communities. We identified 261 diffusion edges, where
61 of them were across communities, resulting in an across
community diffusion ratio of 0.24. To contrast this across com-
munity diffusion, we identify the number of follow-following
connection that occurs across our detected communities. We
identify a total of 462, 591 edges in the whole network, where
192, 633 crosses across communities, with a ratio of 0.42.
By comparing the two obtained value for across community
diffusion and across community connection, we identify that
diffusion is more likely to happen within community than
across community than the diffusion that could happen with
existing follow-follower connections.

B. On Political Tweets

Tweet Diffusion: We develop a software tool to run DiffuS-
cope in real-time. The input to the tool is a user id. The tool
repeatedly checks out Twitter API until the user posts a tweet.
As soon as the tweet id is available, the tool starts requesting
for retweets (i.e. shares) of the specific tweet at a regular
interval, until a desired number of retweets are collected or
a duration of time is passed. Depending on the speed of diffu-
sion, collected retweets across API requests may have a large
amount of repetition. The tool deduplicates the retweets and
sorts them in time order before further processing. Attributes
of each retweet include retweeter’s screen name, id, retweet
text, and creation time. The tool is available for download in
our supporting webpage [1].

The next step is to collect the history, follower, and fol-
lowing information of each of the retweeters. The Twitter API
limits the number of tweets and retweets to 3200 recent objects
at each request. On the other hand, there is not any limit on the
number of following and followers’ information. However, the
number of such requests will encounter few waiting periods,
each up to 15 minutes. Therefore, to collect history and
network data of all retweeters, the tool needs on the order of
few hours. Once collected, executing DiffuScope algorithm is
much quicker compared to the time needed for data collection.
The tool automatically handles suspended users and private
users, whose history and network data are unavailable.
Tweets from Competing Campaigns. We use our tweet
tracker to collect the earliest two hundred retweeters of a
tweet and infer the diffusion network of the tweet. At first, we
consider two tweets from two competing political campaigns
and search for differences in the inferred diffusion network. In
Figure 8, we show one of President Trump’s tweets on left,
and one of presidential candidate Joseph Biden’s tweets in the
middle.

The inferred networks from the two tweets show signifi-
cant visual differences emanating from the differences in the
number and size of clusters of users. The first two hundred
retweeters are more likely to be influenced by Trump directly
than by other sources (i.e. no obvious cluster). In contrast, the
first two hundred retweeters of Biden’s tweet show two distinct
clusters influenced by @PalmerReport, a liberal media,
and @davidmweissman, steering committee member of an
anti-Trump organization of conservatives, named The Lincoln
Project.

The above findings can largely be attributed to the differ-
ence in the number of followers the two candidates have on
Twitter (87M vs. 11M). To account for this difference, instead
of the first two hundred retweeters, we extract randomly
selected two hundred retweets of the Trump’s tweet within
one minute of the original tweet, which is the time for
collecting the first two hundred retweets of Biden’s tweet. The
inferred network for the Trump’s tweets is shown in Figure
8(right). The network shows one distinct cluster centered
at @ThatTrumpGuy, who promoted a conservative project
named @Project_Veritas. The account is currently sus-
pended at the time of writing.

C. On (Un)Verified Users
DiffuScope has enabled us to look at tweets of user groups

at a greater detail. Consider verified users whose accounts are
verified by Twitter, who otherwise do not necessarily have any
commonality. We ask if there is any significant difference in
how tweets from verified and unverified users propagate. In
order to evaluate that we create ten diffusion networks of ten
tweets from ten verified users as test set. We collect the same
from ten unverified users as the control set.

In Figure 9, we show examples of networks from both
test and control set. Visual inspection of the first one hun-
dred retweeters of each tweet shows a dramatic difference
in structures of these networks. We evaluate the average
diffusion length from the root to the leaves on twenty diffusion
networks. The average diffusion length for tweets from verified
users is 1.27 with a variance of 0.24 variance. The same from
unverified users is 1.79 with a variance of 0.58. We find the
distributions are statistically different in a two sample t-test
with a p-value of 0.02 at 5% significance level.

VII. CONCLUSION

This paper develops a technique to infer diffusion network
of specific posts on social media. We demonstrate effectiveness
of DiffuScope over a variety of datasets, both synthetic and
real. We show various diffusion networks in political and
news domains along with existence of abusive users on these
networks. However, this work is merely one step towards better
monitored social media, significant effort must be made to
protect human users from inorganic influence.
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APPENDIX

The derivation for log-likelihood of Hawkes process is

logL(t1, t2, ....tn|αu, βuv) = −
∫ T

0

γuv(t|αu, βuv)dt

+

∫ T

0

log γuv(t|αu, βuv)dN(t)

where t1, t2, ....tn are the retweeting history by node v from
node u. Now, From equation 1, we can write

logL(t1, t2, ....tn|αu, βuv) = −
∫ T

0

[

∫ t

−∞
αue

−βuv(t−s)dN(s)]dt

+

∫ T

0

log[

∫ t

−∞
αue

−βuvtdN(s)]dt

= −
∫ T

0

[

∫ tn

s

αue
−βuv(t−s)dN(s)]dt+

∫ T

0

log[

∫ t

−∞
αue

−βuvtdN(s)]dt

=

∫ T

0

[
αu
βuv

(e−βuv(tn−s)−1)]dN(s)+

∫ T

0

log[

∫ t

−∞
αue

−βuvtdN(s)]dt

Finally,

L =
n∑
i=1

[
αu
βuv

(e−βuv(tn−ti)−1)]+
n∑
i=1

log[αu
∑
ti<tj

e−βuv(ti−tj)]

(7)
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