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Abstract—This paper applies a reinforcement learning-based
approximately optimal controller to a motorized functional
electrical stimulation-induced cycling system to track a desired
cadence. Sufficient torque to achieve the cycling objective is
achieved by switching between the quadriceps muscle and elec-
tric motor. Uniformly ultimately bounded (UUB) convergence
of the actual cadence to a neighborhood of the desired cadence
and of the approximate control policy to a neighborhood of the
optimal control policy are proven for both motor control and
muscle control via a Lyapunov-based stability analysis provided
developed dwell-time conditions that determine when to switch
between the motor or the muscle are satisfied. Lyapunov-
based techniques are also used to derive a minimum dwell-time
condition to prove UUB stability of the overall switched system.

I. INTRODUCTION

Rehabilitation through functional electrical stimulation
(FES) is a treatment for people with neurological conditions
(NCs), such as stroke and spinal cord injury [1] and [2].
FES induces involuntary muscle contractions to perform
a functional movement by applying an electric potential
across the motor neurons of a muscle. To improve motor
function and overall quality of life, multiple efforts in the
rehabilitation field use FES with rehabilitation robots to
facilitate human-robot therapy [3]. Stationary FES cycling is
a common human-robot rehabilitative therapy for people with
movement impairments resulting from NCs [4]. FES cycling
has the benefits of both FES and rehabilitation robotics; it is
a preferred therapy because there is minimal risk of a fall,
and the repetition of coordinated limb movements improves
motor skills and nervous system reorganization [5].

Optimal controllers can be established by assigning a user-
defined cost to the states and control inputs, which penalizes
the state and the magnitude of the control input. Through
the cost function, a balance can be obtained between the
accuracy of the limb motion versus the level of control effort,
allowing potential tradeoffs between comfort, performance,
duration of exercise, and muscle fatigue. The only results
that apply optimal control methods to FES applications are
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[6] and [7]. These results use extremum seeking, a model-
free online optimization tool, to adjust a closed-loop PID
controller to minimize the cost function for upper limb
electrical stimulation.

Optimal control problems can be solved via the Hamilton-
Jacobi-Bellman (HJB) equation [8]. By solving the HJB
equation to determine the optimal value function, an optimal
control policy can be developed [8]. Generally, the HJB
equation does not have a closed-form analytic solution for
nonlinear systems. Motivated by the challenges of solving
the HJB, especially in real-time, approximate dynamic pro-
gramming (ADP) has emerged as a method to yield an
approximate solution. Specficially, ADP uses a reinforcement
learning (RL)-based actor-critic framework to approximate
the value function in real-time [9]. Neural networks (NNs)
are generally used within ADP to approximate the unknown
optimal value function, but other function approximation
methods could also be used [10].

In traditional adaptive control, the uncertain parameter
estimates are updated using an error feedback as a perfor-
mance metric; in ADP, the Bellman error (BE) is used as
feedback on the level of suboptimality. Specifically, the BE
is used to update the NN parameters to improve the value
function approximation online. BE extrapolation yields faster
policy learning over a domain by evaluating the BE over
user-defined, off-trajectory regions of the state space [11].
Sufficient off-trajectory data must be selected to achieve
adequate exploration. The value function approximation is
updated according to the on- and off-trajectory BE.

Due to the potential benefits of using an optimal controller,
it is advantageous to apply ADP to the cycling system. How-
ever, the system switches between two actuation methods:
the rider’s muscles and the cycle’s electric motor. Therefore,
FES-cycling is a switched (also called hybrid) system, which
requires switched (hybrid) system analysis and design meth-
ods [12]. Until recently, switching has not been investigated
in the context of ADP. The result in [13] develops a frame-
work to estimate the optimal feedback control policy online
while switching between multiple dynamic system models.
When analyzing switched systems, a common problem is the
growth and discontinuity of Lyapunov functions at switching
instances [14]. This growth and discontinuity problem is
overcome in [13] in which a dwell-time analysis is developed
to determine the minimum time necessary before the system
can switch to a different subsystem (i.e., a minimum dwell-
time). This provides a framework to switch between the
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two different modes of the FES-cycling controller and show
stability of the overall switched system.

Motivated by our previous results in [13] and [14], this
paper implements a continuous-time ADP-based tracking
controller that allows for switching between mutliple cycle
actuation methods to track a desired cadence. Uniformly
ultimately bounded (UUB) stability of the overall switched
system is proven. Moreover, the developed controller is
also proven to converge to a neighborhood of the optimal
controller.

Notation

For notational brevity, time-dependence is omitted while
denoting trajectories of the dynamic systems. For example,
the trajectory x (t), where x : R≥0 → Rn, is denoted
as x ∈ Rn and referred to as x instead of x (t). For
example, the equation f + h (y, t) = g (x) should be
interpreted as f (t) + h ((y, t) , t) = g (x (t)). The gradient[
∂f(x,y)
∂x1

T
, . . . , ∂f(x,y)

∂xn

T ]T
is denoted by ∇xf (x, y). Unless

specified, let ∇ ≜ ∇ζ . A square diagonal matrix with
elements of vector y on the main diagonal is denoted by
diag(y). Matrices of ones and zeros with n rows and m
columns are denoted by 1n×m and 0n×m, respectively. Both
the Euclidean norm for vectors and the Frobenius norm
for matrices are denoted by ∥·∥. Let λmin {·} denote the
minimum eigenvalue of the argument. Let r = mod (m, p)
denote the modulo operator where, generally, m is the
dividend, p is the divisor, and r is the remainder. In this
paper, the quantity or function belonging to the kth mode of
the switched system is denoted with the subscript k.

II. PROBLEM FORMULATION

Following the development in [15], the dynamics of the
combined one-legged cycle and rider system are

τ = M (q) q̈ + Vc (q, q̇) q̇ +G (q) + P (q, q̇) + bcq̇, (1)

where q, q̇, and q̈ ∈ R denote the angle, angular velocity,
and angular acceleration, of the crank arm respectively.
M : R → R>0 denotes the inertia matrix, Vc : R × R → R
denotes the centripetal-Coriolis matrix, G : R → R denotes
the gravitational effects, P : R×R → R denotes the passive
viscoelastic tissue forces, bc ∈ R>0 denotes the cycle’s
viscous damping effect, and τ denotes the torque applied
by the quadriceps muscle and the cycle motor, which is
subsequently defined.

The torque is applied by two different actuators, corre-
sponding to either the torque due to the FES-induced muscle
contractions or the torque due to the electric motor. Given
the need to use the different actuators at different times,
we define two sets: Q, when the crank angle is in the
kinematically effective quadricep region, and Qc, when the
crank angle is in the region of poor kinematic efficiency
[16]. Let Q ⊂ [0◦, 360◦) denote where electrical stimulation
is active and Qc denote the complement of Q, where the
electric motor is active.

The torque τ : R× R → R in (1) is defined as

τ (q, q̇) ≜

{
b1(q, q̇)u1 mod (q, 360) ∈ Q
b2u2 mod (q, 360) ∈ Qc

, (2)

where b1 : R × R → R>0 is the assumed known muscle
control effectiveness, u1 ∈ R is the muscle control input,
b2 ∈ R is the known motor control constant, and u2 ∈ R
is the motor control input. From (2) the dynamics for each
mode are [15]

bkuk = M (q) q̈ + Vc (q, q̇) q̇ +G (q) + P (q, q̇) + bcq̇, (3)

where k represents the active switched subsystem. Let k ∈ S,
where S ≜ {1, 2} is the switching index set.

A. Background Information

Following the development in [17], the dynamics in (3)
can be rewritten in the control-affine form1

ẋ = f (x) + gk (x)uk, (4)

where x ≜ [q, q̇]
T , and a subsequently defined control input

uk ∈ R represents the control input for the kth system.
The drift dynamics f : R2 → R2 are defined as f (x) ≜[

q̇

M (q)
−1

(−V (q, q̇) q̇ −G (q)− P (q, q̇)− bcq̇)

]
, and

the control effectiveness gk : R2 → R2 is defined as

gk (x) ≜


[
0,M (q)

−1
b1 (q, q̇)

]T
mod (q, 360) ∈ Q[

0,M (q)
−1

b2

]T
mod (q, 360) ∈ Qc

.

The control objective is to track a time-varying continu-
ously differentiable signal xd ∈ R2. To quantify the tracking
objective, the tracking error e ∈ R2 is defined as e ≜ x−xd.
Using the technique in [17], the control affine dynamics in
(4) can be expressed as

ζ̇ = Fk (ζ) +Gk (ζ)µk, (5)

where ζ ∈ R4 is the concatenated state ζ ≜
[
eT , xT

d

]T
,

µk ≜ uk − ud,k (xd) is the transient component of the
controller, ud,k : R2 → R is the subsequently-defined tra-
jectory tracking component of the controller, Fk : R4 → R4

is the concatenated drift dynamics defined as Fk (ζ) ≜[
f (e− xd)

T − hd (xd)
T
+ ud,k (xd) gk (e− xd)

T

hd (xd)
T

]
, and

Gk : R4 → R4 is the concatenated control effectiveness

defined as Gk (ζ) ≜
[
gk (e− xd)

T
,01×2

]T
. Furthermore,

hd : R2 → R2 is a locally Lipschitz function such that
hd (xd) ≜ ẋd. The following properties and assumptions
facilitate the development of the desired approximate optimal
tracking controller.

Property 1. The drift dynamics f are continuously differ-
entiable [15], which, using [18, Lemma 3.2], means that f
is a locally Lipschitz function and f (0) = 0.

1The cycle-rider dynamics do not differ between modes. The only
difference between the switching modes is the actuation methods.
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Property 2. The control effectiveness matrix gk is contin-
uously differentiable [15] and therefore a locally Lipschitz
function [18, Lemma 3.2]. The matrix gk is bounded such
that 0 < ∥gk (x)∥ ≤ gk ∀x ∈ Rn, where gk ∈ R>0 is
the supremum over all x of the maximum singular value of
gk (x), respectively, for all k. It follows that ∥Gk (ζ)∥ ≤ G
[19].

Assumption 1. The desired trajectory is upper-bounded by a
known positive constant xd ∈ R such that supt∈R≥0

∥xd∥ ≤
xd [17].

Assumption 2. g+k : R2 → R1×2 is the left pseudoin-
verse, defined as g+k (x) ≜

(
gTk (x) gk (x)

)−1
gTk (x), where

gk (xd) g
+
k (xd) (hd (xd)− f (xd)) = hd (xd)−f (xd) , ∀t ∈

R≥0, ∀k ∈ S [17].

Based on the above assumptions, the trajectory track-
ing component of the controller ud,k (xd) is defined as
ud,k (xd) ≜ g+k (xd) (hd (xd)− f (xd)).

B. Control Objective

The control objective is to solve the infinite-horizon op-
timal tracking problem i.e. to find a control policy µk that
minimizes the cost function

Jk (ζ, µk) ≜
∫ ∞

t0

ζTQkζ + µT
kRkµk dτ, (6)

where Qk ∈ R4×4 is a user-defined positive semidefinite
(PSD) symmetric cost matrix, and Rk ∈ R>0 is a positive
constant. Let Qk ≜ diag {Qk,02×2} , where Qk ∈ R2×2 is
a positive definite (PD) cost matrix. Note that Qk is PSD
and Qk is PD so that the cost in (6) does not depend on the
desired trajectory.

Property 3. The state cost matrix Qk satisfies q
k
≤ Qk ≤

qk where q
k
, qk ∈ R>0 are the minimum and maximum

eigenvalues of Qk, respectively.

The infinite horizon value function (i.e. the cost-to-go) for
the kth mode V ∗

k : R4 → R≥0 is defined as

V ∗
k (ζ) ≜ min

µk∈U

∫ ∞

t

ζTQkζ + µT
kRkµk dτ, (7)

where U ⊂ R is the action space for µk.

Assumption 3. The optimal value function V ∗
k is continu-

ously differentiable for all k ∈ S [17].

The optimal transient control policy µ∗
k : R4 → R is

defined as

µ∗
k (ζ) = −1

2
R−1

k Gk (ζ)
T
(∇V ∗

k (ζ))
T
. (8)

Each kth optimal value function and optimal control policy
satisfy the HJB equation

0 = ∇V ∗
k (ζ) (Fk (ζ) +Gk (ζ)µ

∗
k) + ζTQkζ + µ∗T

k Rkµ
∗
k,
(9)

which has the boundary condition V ∗
k (0) = 0.

C. Value Function Approximation

The optimal value function V ∗
k is unknown for general

nonlinear systems. Let Ω ⊂ R4 be a compact set such that
ζ ∈ Ω. The value function can be approximated with a NN
in Ω by invoking the Stone-Weierstrass Theorem to obtain

V ∗
k (ζ) = WT

k ϕ (ζ) + ϵk (ζ) , (10)

where Wk ∈ RL is a vector of unknown weights, ϕ : R4 →
RL is a user-defined vector of basis functions, and ϵk : R4 →
R is the bounded function reconstruction error.2 Substituting
(10) into (8) yields a NN representation of the optimal control
policy

µ∗
k (ζ) = −1

2
R−1

k Gk (ζ)
T
(
∇ϕ (ζ)

T
Wk +∇ϵk (ζ)

T
)
.

(11)

Assumption 4. There exists a set of known positive con-
stants W,ϕ,∇ϕ, ϵ,∇ϵ ∈ R>0 such that supk∈S ∥Wk∥ ≤ W,
supζ∈Ω, k∈S ∥ϕ (ζ)∥ ≤ ϕ, supζ∈Ω, k∈S ∥∇ϕ (ζ)∥ ≤ ∇ϕ,
supζ∈Ω, k∈S ∥ϵk (ζ)∥ ≤ ϵ, and supζ∈Ω, k∈S ∥∇ϵk (ζ)∥ ≤ ∇ϵ
[20, Assumptions 9.1.c-e].

The ideal weights Wk are unknown a priori; hence, an
approximation of Wk is desired. The critic weight estimate
vector Ŵc,k ∈ RL is substituted into (10) to obtain the
optimal value function estimate V̂k : R4 ×RL → R, defined
as

V̂k

(
ζ, Ŵc,k

)
≜ ŴT

c,kϕ (ζ) . (12)

The actor weight estimate vector Ŵa,k ∈ RL is substituted
into (11) to obtain the optimal transient control policy
estimate µ̂k : R4 × RL → R, defined as

µ̂k

(
ζ, Ŵa,k

)
≜ −1

2
R−1

k Gk (ζ)
T
(
∇ϕ (ζ)

T
Ŵa,k

)
. (13)

The overall controller uk ∈ R is defined as uk ≜ µ̂k +
ud,k (xd).

III. BELLMAN ERROR

To calculate the BE δk : R4 ×RL ×RL → R, the optimal
value function V ∗

k (ζ) and the optimal control policy µ∗
k (ζ)

in (9) are replaced by the approximate optimal value function
V̂k

(
ζ, Ŵc,k

)
and the approximate optimal control policy

µ̂k

(
ζ, Ŵa,k

)
, respectively, where

δk

(
ζ, Ŵc,k, Ŵa,k

)
= ζTQkζ

+ µ̂k

(
ζ, Ŵa,k

)T

Rkµ̂k

(
ζ, Ŵa,k

)
+∇V̂k

(
ζ, Ŵc,k

)(
Fk +Gk (ζ) µ̂k

(
ζ, Ŵa,k

))
. (14)

The value of the BE indicates how close the actor and critic
weight estimates are to their respective ideal weight values.
By subtracting (9) from (14), substituting (10)-(13), and
denoting the difference between the actual and ideal weight

2To focus the scope of this manuscript, each switched system will use the
same dimension vector of basis functions ϕ (ζ) i.e., L1 = L2 = ... = Lk

4355

Authorized licensed use limited to: University of Florida. Downloaded on September 12,2022 at 15:09:26 UTC from IEEE Xplore.  Restrictions apply. 



values by W̃c,k ≜ Wk − Ŵc,k and W̃a,k ≜ Wk − Ŵa,k the
analytical form of the BE in (14) is

δk

(
ζ, Ŵc,k, Ŵa,k

)
=

1

4
W̃T

a,kGϕ,k (ζ) W̃a,k

− ωT
k W̃c,k +Θk (ζ) , (15)

where ωk : R4 × RL → R4 is ωk

(
ζ, Ŵa,k

)
≜

∇ϕ (ζ)
(
Fk (ζ) + µ̂

(
ζ, Ŵa,k

)
Gk (ζ)

)
and Θk (ζ) ≜

1
2W

T
k ∇ϕ (ζ)GR,k∇ϵT + 1

4Gϵ,k −∇ϵkFk.3

Remark 1. Although they are equivalent, (14) is used in
implementation and (15) is used in the stability analysis.

Bellman Error Extrapolation

Using the control policy given in (13), the current system
state, the critic weight estimate, and the actor weight esti-
mate, the estimated BE in (14) can be evaluated to calculate
the instantaneous BE denoted by δk

(
ζ, Ŵc,k, Ŵa,k

)
at each

time instance t ∈ R≥0. The exploration versus exploitation
problem is well-known for learning-based control methods.
In results such as [21], an exploration signal is required to
successfully explore the operating domain. Results such as
[11] use BE extrapolation, which simultaneously evaluates
the BE along the system trajectory and at user-defined points
in the state space. The BE extrapolation technique eliminates
the need for the exploration signal by providing simulation
of experience, thus yielding a better value function approxi-
mation [11].

The BE is extrapolated from the user-defined off-trajectory
points {ζi : ζi ∈ Ω}Nk

i=1 set by the user, where Nk ∈ N de-
notes a user-specified number of overall extrapolation trajec-
tories in the compact set Ω. The tuple (Σc,k,Σa,k,ΣΓ,k) rep-
resents the data stacks defined as Σc,k ≜ 1

Nk

∑Nk

i=1
ωi,k

ρi,k
δi,k,

Σa,k ≜ 1
Nk

∑Nk

i=1

GT
σi,kŴa,kω

T
i,k

4ρi,k
, ΣΓ,k ≜ 1

Nk

∑Nk

i=1

ωi,kω
T
i,k

ρ2
i,k

,

where δi,k ≜ δk

(
ζi, Ŵc,k, Ŵa,k

)
, ωi,k ≜ ωk

(
ζi, Ŵa,k

)
,

and ρi,k = 1 + νkω
T
i,kΓkωi,k. νk ∈ R>0 is a user-defined

gain, and Γk : RL×L is a time-varying least-squares gain
matrix. Each subsystem has its own distinct set of data, gain
values, and update laws.

Assumption 5. On the compact set, Ω, a finite set of off-
trajectory points {ζi : ζi ∈ Ω}Nk

i=1 exists such that 0 < ck ≜
inf

t∈R≥0
λmin {ΣΓ,k} for all k ∈ S, where ck is a constant

scalar lower bound of the value of each input-output data
pair’s minimum eigenvalues for the kth subsystem [11].

IV. UPDATE LAWS FOR ACTOR AND CRITIC WEIGHTS

The critic and actor weights are updated according to the
subsequent laws while each mode is active. In the weight
update laws, ηc1,k, ηc2,k, ηa1,k, ηa2,k, λk ∈ R are positive
constant learning gains, and Γk, Γk ∈ R>0 are the upper and
lower projection operator bounds for Γk. The critic update

3GR,k , Gϕ,k , and Gϵ,k are defined as GR,k (ζ) ≜
Gk (ζ)R−1

k Gk (ζ) T , Gϕ,k (ζ) ≜ ∇ζϕ (ζ)GR,k (ζ)∇ζϕ (ζ) T ,
and Gϵ,k (ζ) ≜ ∇ζϵk (ζ)GR,k (ζ)∇ζϵk (ζ)T respectively.

law for the kth mode ˙̂
Wc,k ∈ RL is defined as

˙̂
Wc,k ≜ proj {Φc,k} , (16)

where Φc,k ≜ −ηc1,kΓk
ωk

ρk
δk − ηc2,kΣc,k. The actor update

law for the kth mode ˙̂
Wa,k ∈ RL is defined as

˙̂
Wa,k ≜ proj {Φa,k} , (17)

where Φa,k ≜ −ηa1,k

(
Ŵa,k − Ŵc,k

)
− ηa2,kŴa,k +

ηc1,kG
T
ϕ,kŴa,kω

T
k

4ρk
Ŵc,k+ηc2,kΣa,kŴc,k. The operator proj {·}

denotes the smooth projection operator defined in [22, Ap-
pendix E, Eq. E.4] and is designed such that

∥∥∥Ŵc,k

∥∥∥ ∈[
Ŵ c,k, Ŵ c,k

]
and

∥∥∥Ŵa,k

∥∥∥ ∈
[
Ŵ a,k, Ŵ a,k

]
under the as-

sumption ∥Wk∥ ∈
[
Ŵ k, Ŵ k

]
. The least-squares gain matrix

update law of the kth mode Γ̇k ∈ RL×L is

Γ̇k ≜

(
λkΓk − ηc1,k

Γkωkω
T
k Γk

ρ2k
− ηc2,kΓkΣΓ,kΓk

)
· 1{Γk≤∥Γk∥≤Γk}, (18)

where 1{·} denotes the indicator function.4 While the kth

mode is inactive ˙̂
Wc,k = 0L×1, Γ̇k = 0L×L, and ˙̂

Wa,k =
0L×1.5

Remark 2. Under Assumptions 1-3, the PD solution of the
HJB equation is the optimal value function for each system.
The approximation of the PD solution to the HJB equation is
guaranteed by the appropriate selection of Lyapunov-based
update laws and initial weight estimates [23].

V. STABILITY ANALYSIS

It is possible for a switched system to become unstable,
even if the individual subsystems of a switched system are
stable [12, Ch. 3]. Hence, the stability of each subsystem
must be investigated along with the switching between the
systems. In the subsequent development, k subsystems, each
with a class of dynamics in (4), are analyzed with the control
policy in (13) and update laws outlined in (16)-(18).

A. Subsystem Stability Analysis

Since the state penalty matrix Qk is PSD, the optimal
value function V ∗

k is PSD and is not a valid Lyapunov
function. However, a nonautonomous form of the optimal
value function denoted as V ∗

t,k : R2 × R≥0 → R is defined
such that V ∗

t,k (e, t) = V ∗
k (ζ), and is PD and decrescent [17].

To facilitate the stability analysis, let zk ∈ R2+2L be a con-

catenated state vector defined as zk ≜
[
eT W̃T

c,k W̃T
a,k

]T
,

and let VL,k : R2+2L×R≥0 → R≥0 be a candidate Lyapunov
function defined as

VL,k (zk, t) ≜ V ∗
t,k (e, t) +

1

2
W̃T

c,kΓ
−1
k W̃c,k +

1

2
W̃T

a,kW̃a,k.

(19)

4Using (18) ensures that each Γk ≤ ∥Γk∥ ≤ Γk for all t ∈ R>0.
5The update laws will not update a subsystem k’s weight estimates or

least-squares matrix unless subsystem k is active.
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According to [17] and [18, Lemma 4.3], (19) can generally
be bounded as vl,k (∥zk∥) ≤ VL,k (zk) ≤ vl,k (∥zk∥) using
class K functions vl,k, vl,k : R≥0 → R≥0. To facilitate the
subsequent dwell-time analysis, the following more restric-
tive assumption is required.

Assumption 6. The optimal value function V ∗
t,k (e, t) can be

bounded by the square of the norm of its argument times a
positive constant, i.e.,6

β1,k ∥e∥2 ≤ V ∗
t,k (e, t) ≤ β2,k ∥e∥2 ,

for all k ∈ S, where β1,k, β2,k ∈ R≥0.

Using Assumption 6, (19) can be bounded as

α1,k ∥zk∥2 ≤ VL,k (zk, t) ≤ α2,k ∥zk∥2 , (20)

where α1,k, α2,k ∈ R>0.
The normalized regressors ωk

ρk
and ωi,k

ρi,k
are bounded as

supt∈R≥0

∥∥∥ωk

ρk

∥∥∥ ≤ 1

2
√

νkΓk

and supt∈R≥0

∥∥∥ωi,k

ρi,k

∥∥∥ ≤ 1

2
√

νkΓk

for all ζ ∈ Ω and ζi ∈ Ω, respectively. GR,k is bounded as
supζ∈Ω ∥GR,k∥ ≤ G

2
λmax

{
R−1

}
, and Gϕ,k is bounded as

supζ∈Ω ∥Gϕ,k∥ ≤
(
∇ϕG

)2
λmax

{
R−1

}
.

Remark 3. Using the projection operator from the critic
update law in (16) and [22, Lemma E.1], −W̃T

c,kΓ
−1
k

˙̂
Wc,k

is bounded from above as

−W̃T
c,kΓ

−1
k

˙̂
Wc,k = −W̃T

c,kΓ
−1
k proj {Φc,k}

≤ −W̃T
c,kΓ

−1
k Φc,k.

Using the projection operator from the actor update law in
(17) and [22, Lemma E.1], −W̃T

a,k
˙̂
Wa,k is bounded from

above as

−W̃T
a,k

˙̂
Wa,k = −W̃T

a,kproj {Φa,k}
≤ −W̃T

a,kΦa,k.

To facilitate the subsequent analysis, let R ∈ R>0 be the
radius of a compact ball BR ⊂ R2 × RL × RL centered at
the origin.

Theorem 1. While each subsystem is active, if Assumptions
1-6 hold, the control policy in (13) and the weight update
laws in (16)-(18) are implemented, and the conditions

ηa1,k + ηa2,k ≥ 1√
νkΓk

(ηc1,k + ηc2,k)WGϕ, (21)

ck ≥ 3ηa1,k
ηc2,k

+
3 (ηc1,k + ηc2,k)

2
W

2
Gϕ

2

16ηc2,kνkΓk (ηa1,k + ηa2,k)
, (22)

√
2α2,klk
α1,kΛk

< R, (23)

are satisfied for each individual subsystem, then the tracking
error ek, the critic weight estimate error W̃c,k, and the actor
weight estimate error W̃a,k are uniformly ultimately bounded
(UUB) . Therefore, the transient tracking control policy µ̂k

6Assumption 6 is a stricter version of [10, Lemma 3.14].

converges to a neighborhood of the optimal control policy
µ∗
k.

Proof: Using (5) and the fact that V ∗
t,k (e, t) =

V ∗
k (ζ) , ∀e ∈ R2, t ∈ R≥0 and taking the time derivative of

the candidate Lyapunov function in (19) yields

V̇L,k (zk) = ∇V ∗
k ζ̇ − W̃T

c,kΓ
−1
k

˙̂
Wc,k − W̃T

a,k
˙̂
Wa,k

− 1

2
W̃T

c,kΓ
−1
k Γ̇kΓ

−1
k W̃c,k, (24)

where the fact that d
dtΓ

−1
k = Γ−1

k Γ̇kΓ
−1
k is used. Under the

sufficient gain conditions in (21) and (22), and using (9),
(15), and the update laws in (16)-(18), the expression in (24)
can be bounded as

V̇L,k (zk) ≤ − Λk

2α2,k
VL,k (zk)∀

√
2lk
Λk

≤ ∥zk∥ ≤ R, (25)

for all k ∈ S and t ∈ R≥0, where Λk ≜
min

[
λmin (Qk) ,

1
6ηc2,kck,

1
8 (ηa1,k + ηa2,k)

]
, and lk

is a positive constant that depends on the control gains
and NN bounding constants in Assumption 4. Using the
bounds in (20), the time derivative in (24), Λk, and (23),
[18, Thm. 4.18] can be invoked to prove that zk is UUB
such that lim supt→∞ ∥zk∥ ≤

√
2α2,klk
α1,kΛk

, and the transient
tracking control policy µ̂k converges to a neighborhood of
the optimal control policy µ∗

k. Since zk ∈ L∞, it follows
that e, W̃c,k, W̃a,k ∈ L∞, and since µ̂k ∈ L∞ and xd ≤ xd,
it follows that uk ∈ L∞. Furthermore, every trajectory
zk that is initialized in the ball BR is bounded such that
zk ∈ BR, ∀t ∈ R≥0, ∀k ∈ S. Since zk ∈ BR, it follows that
the individual elements of zk lie in a compact set, i.e. e, W̃c,k,
and W̃a,k lie in a compact set. Additionally, since xd ≤ xd,
then the concatenated state ζ ∈ Ω, ∀t ∈ R≥0, ∀k ∈ S, which
facilitates value function approximation.
Remark 4. See [11] for insight into satisfying the gain
conditions in (21) and (22).

B. Switched Subsystems

Let tON
k ∈ [0, t] denote a time instant when the kth sub-

system of the switching sequence is activated. Let tOFF
k ∈

[0, t] denote a time instant when the kth subsystem in the
switching sequence is deactivated. The dwell-time in any
active mode of a subsystem denoted by τk ∈ R>0 is
defined as τk = tOFF

k − tON
k and represents the amount

of time a subsystem must be active before switching to
the next. The minimum dwell time for any active mode
of a system is denoted by τ∗ ∈ R>0. There are a finite
number of switches, and Nσ ∈ N<∞ denotes the number
of switching events. The sequence of time instants at which
a switching event occurs is defined as

{
tON
Nσ

}
, such that

0 = tON
1 < tON

2 < · · · < tON
Nσ

< tON
Nσ+1.

C. Dwell-Time Analysis

The stability analysis proves that each subsystem is UUB
while active. However, the Lyapunov function for the overall
switching system may instantaneously increase due to the
change in the optimal value function and set of new weight
parameters. The value function corresponding to mode k+1,
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V ∗
t,k+1 (ζ), may be larger than the value function correspond-

ing to mode k, V ∗
t,k (ζ). Similarly, the magnitude of the

actor and critic weight errors could be larger in mode k+ 1
than in mode k. Therefore, a dwell time condition must be
designed to account for switching between the subsystems
which ensures that the switched system is stable [12, Ch. 3].

Theorem 2. The system consisting of a family of subsystems
with the dynamics in (4) with a properly designed minimum
dwell-time, τ∗ ∈ R>0 ensures that the tracking error, critic
estimate errors, and actor estimate errors will converge to
a neighborhood of the origin in the sense that ∥zk∥ ≤
max
k∈S

√
2α2,klk
α1,kΛk

for all t ≥ T, where max
k∈S

√
2α2,klk
α1,kΛk

∈ R>0

is the maximum ultimate bound for all subsystems, and
T ∈ R≥0 is the time required to reach the ultimate bound.

The proof follows that of [13, Theorem 2] and is available
upon request.

Remark 5. From Section II, the system switches modes
based on if the crank angle q belongs to Q or Qc, i.e.,
the switching is state-based; furthermore the switches occur
more frequently at higher desired cadence values. The user
cannot directly control the time of the switching instances.
For the system to be stable using the previous analysis,
the dwell-time must be significantly smaller than the time
required to travel through the regions Q and Qc. The dwell-
time τ∗ is composed of many user-selected parameters.
Notably, τ∗ can be decreased by increasing the decay rate γ0,
i.e. stronger convergence parameters result in a shorter dwell-
time. The dwell time τ∗ is inversely proportional to the decay
rate γ0, and γ0 is proportional to Λ. Hence, maximizing Λ
will decrease the dwell time. This is achieved by maximiz-
ing the term min

[
λmin (Qk) ,

1
6ηc2,kck,

1
8 (ηa1,k + ηa2,k)

]
.

While this maximization decreases the dwell-time so that it
is significantly smaller than the time dictated by the desired
trajectory, there are some practical drawbacks. A larger
state cost matrix Qk will increase the penalty on the error;
paired with larger actor and critic learning gains ηa1,k, ηa2,k,
and ηc2,k, this may lead to a more aggressive controller,
which may cause rider discomfort. Furthermore, increasing
ck relies on using more BE extrapolation data pairs, which
may become computationally intensive. Motivated by these
practical considerations, additional analysis methods that can
potentially eliminate the need for a minimum dwell-time are
motivated.

VI. CONCLUSION

This paper develops an ADP-based controller for switched
cycle dynamics while achieving a time-varying tracking ob-
jective. The stability of each individual subsystem is proven
by a Lyapunov-based analysis, and the stability of the overall
switched system is proven via a dwell-time analysis. The
entire switched system is proven to be UUB such that the
control policy is proven to converge to a neighborhood of the
optimal policy and to track the cadence within a neighbor-
hood of its desired value. Future work will investigate the
application of the developed controller to an FES-cycling
testbed and the development of analysis methods free of

minimum dwell-time requirements.
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