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Model-Based Switched Approximate Dynamic
Programming for Functional Electrical Stimulation
Cycling

Wanjiku A. Makumi, Max L. Greene, Kimberly J. Stubbs, Warren E. Dixon

Abstract—This paper applies a reinforcement learning-based
approximately optimal controller to a motorized functional
electrical stimulation-induced cycling system to track a desired
cadence. Sufficient torque to achieve the cycling objective is
achieved by switching between the quadriceps muscle and elec-
tric motor. Uniformly ultimately bounded (UUB) convergence
of the actual cadence to a neighborhood of the desired cadence
and of the approximate control policy to a neighborhood of the
optimal control policy are proven for both motor control and
muscle control via a Lyapunov-based stability analysis provided
developed dwell-time conditions that determine when to switch
between the motor or the muscle are satisfied. Lyapunov-
based techniques are also used to derive a minimum dwell-time
condition to prove UUB stability of the overall switched system.

I. INTRODUCTION

Rehabilitation through functional electrical stimulation
(FES) is a treatment for people with neurological conditions
(NCs), such as stroke and spinal cord injury [1] and [2].
FES induces involuntary muscle contractions to perform
a functional movement by applying an electric potential
across the motor neurons of a muscle. To improve motor
function and overall quality of life, multiple efforts in the
rehabilitation field use FES with rehabilitation robots to
facilitate human-robot therapy [3]. Stationary FES cycling is
a common human-robot rehabilitative therapy for people with
movement impairments resulting from NCs [4]. FES cycling
has the benefits of both FES and rehabilitation robotics; it is
a preferred therapy because there is minimal risk of a fall,
and the repetition of coordinated limb movements improves
motor skills and nervous system reorganization [5].

Optimal controllers can be established by assigning a user-
defined cost to the states and control inputs, which penalizes
the state and the magnitude of the control input. Through
the cost function, a balance can be obtained between the
accuracy of the limb motion versus the level of control effort,
allowing potential tradeoffs between comfort, performance,
duration of exercise, and muscle fatigue. The only results
that apply optimal control methods to FES applications are

Wanjiku A. Makumi, Max L. Greene, Kimberly J. Stubbs, and Warren
E. Dixon are with the Department of Mechanical and Aerospace Engi-
neering, University of Florida, Gainesville, FL, USA. Email: {makumiw,
maxgreenel2, kimberlyjstubbs, wdixon} @ufl.edu.

This research is supported in part by NSF Award number 1762829,
Office of Naval Research Grant N0O0014-13-1-0151, AFOSR award number
FA9550-18-1-0109, and AFOSR award number FA9550-19-1-0169. Any
opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the sponsoring agency.
978-1-6654-5196-3/$31.00 ©2022 AACC

[6] and [7]. These results use extremum seeking, a model-
free online optimization tool, to adjust a closed-loop PID
controller to minimize the cost function for upper limb
electrical stimulation.

Optimal control problems can be solved via the Hamilton-
Jacobi-Bellman (HJB) equation [8]. By solving the HJB
equation to determine the optimal value function, an optimal
control policy can be developed [8]. Generally, the HJB
equation does not have a closed-form analytic solution for
nonlinear systems. Motivated by the challenges of solving
the HJB, especially in real-time, approximate dynamic pro-
gramming (ADP) has emerged as a method to yield an
approximate solution. Specficially, ADP uses a reinforcement
learning (RL)-based actor-critic framework to approximate
the value function in real-time [9]. Neural networks (NNs)
are generally used within ADP to approximate the unknown
optimal value function, but other function approximation
methods could also be used [10].

In traditional adaptive control, the uncertain parameter
estimates are updated using an error feedback as a perfor-
mance metric; in ADP, the Bellman error (BE) is used as
feedback on the level of suboptimality. Specifically, the BE
is used to update the NN parameters to improve the value
function approximation online. BE extrapolation yields faster
policy learning over a domain by evaluating the BE over
user-defined, off-trajectory regions of the state space [11].
Sufficient off-trajectory data must be selected to achieve
adequate exploration. The value function approximation is
updated according to the on- and off-trajectory BE.

Due to the potential benefits of using an optimal controller,
it is advantageous to apply ADP to the cycling system. How-
ever, the system switches between two actuation methods:
the rider’s muscles and the cycle’s electric motor. Therefore,
FES-cycling is a switched (also called hybrid) system, which
requires switched (hybrid) system analysis and design meth-
ods [12]. Until recently, switching has not been investigated
in the context of ADP. The result in [13] develops a frame-
work to estimate the optimal feedback control policy online
while switching between multiple dynamic system models.
When analyzing switched systems, a common problem is the
growth and discontinuity of Lyapunov functions at switching
instances [14]. This growth and discontinuity problem is
overcome in [13] in which a dwell-time analysis is developed
to determine the minimum time necessary before the system
can switch to a different subsystem (i.e., a minimum dwell-
time). This provides a framework to switch between the
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two different modes of the FES-cycling controller and show
stability of the overall switched system.

Motivated by our previous results in [13] and [14], this
paper implements a continuous-time ADP-based tracking
controller that allows for switching between mutliple cycle
actuation methods to track a desired cadence. Uniformly
ultimately bounded (UUB) stability of the overall switched
system is proven. Moreover, the developed controller is
also proven to converge to a neighborhood of the optimal
controller.

Notation

For notational brevity, time-dependence is omitted while
denoting trajectories of the dynamic systems. For example,
the trajectory x (t), where = : R>o — R”, is denoted
as * € R"™ and referred to as z instead of x(t). For
example, the equation f + h(y,t) = g(x) should be
interpreted as f (t) + h((y,t),t) = g (z(t)). The gradient

T T
|:8f(ac,y) Ofa(als,/y) } is denoted by V., f (z,y). Unless

e
specified, let V £ V¢. A square diagonal matrix with
elements of vector y on the main diagonal is denoted by
diag(y). Matrices of ones and zeros with n rows and m
columns are denoted by 1,,x,, and 0,,«,, respectively. Both
the Euclidean norm for vectors and the Frobenius norm
for matrices are denoted by ||-||. Let Amin {-} denote the
minimum eigenvalue of the argument. Let 7 = mod (m,p)
denote the modulo operator where, generally, m is the
dividend, p is the divisor, and r is the remainder. In this
paper, the quantity or function belonging to the k" mode of
the switched system is denoted with the subscript k.

II. PROBLEM FORMULATION

Following the development in [15], the dynamics of the
combined one-legged cycle and rider system are

T=MI(q) G+ Ve(q,4) 4+ G (q) + P(q,q) +bcg, (1)

where ¢, ¢, and ¢ € R denote the angle, angular velocity,
and angular acceleration, of the crank arm respectively.
M : R — Ry denotes the inertia matrix, V. : R xR — R
denotes the centripetal-Coriolis matrix, G : R — R denotes
the gravitational effects, P : R x R — R denotes the passive
viscoelastic tissue forces, b, € R.y denotes the cycle’s
viscous damping effect, and 7 denotes the torque applied
by the quadriceps muscle and the cycle motor, which is
subsequently defined.

The torque is applied by two different actuators, corre-
sponding to either the torque due to the FES-induced muscle
contractions or the torque due to the electric motor. Given
the need to use the different actuators at different times,
we define two sets: Q, when the crank angle is in the
kinematically effective quadricep region, and Q¢, when the
crank angle is in the region of poor kinematic efficiency
[16]. Let ©Q C [0°,360°) denote where electrical stimulation
is active and Q¢ denote the complement of Q, where the
electric motor is active.

The torque 7 : R x R — R in (1) is defined as

) {b1<q,q)u1 mod (¢, 360) € Q

mod (¢, 360) € Q¢ o

bous
where b; : R x R — Ry is the assumed known muscle
control effectiveness, u; € R is the muscle control input,
by € R is the known motor control constant, and us € R
is the motor control input. From (2) the dynamics for each
mode are [15]

brur = M (q) G+ Ve (q,4) ¢+ G (q) + P (q,q) + beq, (3)

where k£ represents the active switched subsystem. Let k € S,
where S £ {1,2} is the switching index set.

A. Background Information

Following the development in [17], the dynamics in (3)
can be rewritten in the control-affine form'

&= f(2) + gk () ug, C))

where = £ [q, q']T, and a subsequently defined control input
u, € R represents the control input for the &% system.
The drift dynamics f : R? — R? are defined as f (z) =
q
- Ny . ~ | and
[ M (q)™ (=V (¢,9) 4 — G () = P(g,d) — beq)
the control effectiveness ¢, : R2 — R? is defined as

T

0.M (@) b (0.@)] mod (4,360) € Q

o.M @) 0]

The control objective is to track a time-varying continu-
ously differentiable signal x4 € R2. To quantify the tracking
objective, the tracking error e € R? is defined as e = z — x4.
Using the technique in [17], the control affine dynamics in
(4) can be expressed as

(= Fe(¢) + G () s (5)

where ¢ € R* is the concatenated state ( £ [eT,xdT]T,
Wi = up — ugp (z4) is the transient component of the
controller, uq : R? — R is the subsequently-defined tra-
jectory tracking component of the controller, Fj, : R* — R*

is the concatenated drift dynamics defined as F} (¢) £

fle=2a)" = ha(wa)" +uar (2a) gr (e — xa)”
T
hd (xd)
G; : R* — R* is the concatenated control effectiveness
defined as Gy, (¢) = [gk (e—azq)", leg}
hqg : R? — R? is a locally Lipschitz function such that
hq(xq) £ 44. The following properties and assumptions

facilitate the development of the desired approximate optimal
tracking controller.

gr (x) & .
mod (g,360) € Q°

, and

. Furthermore,

Property 1. The drift dynamics f are continuously differ-
entiable [15], which, using [18, Lemma 3.2], means that f
is a locally Lipschitz function and f (0) = 0.

IThe cycle-rider dynamics do not differ between modes. The only
difference between the switching modes is the actuation methods.
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Property 2. The control effectiveness matrix g is contin-
uously differentiable [15] and therefore a locally Lipschitz
function [18, Lemma 3.2]. The matrix g is bounded such
that 0 < ||gx (z)|] < G Vz € R™, where g, € Ry is
the supremum over all z of the maximum singular value of
gr (x), respectively, for all k. It follows that |Gy (¢)|| < G
[19].

Assumption 1. The desired trajectory is upper-bounded by a
known positive constant Z; € R such that sup,cg_, [|74ll <
Tq [17]. B

Assumption 2. g : R? — R!X2 is the left pseudoin-
verse, defined as g (z) £ (g9f (=) gx (zc))_1 gF (x), where

gk (za) g (za) (ha (xa) — f (xa)) = ha (xa) — f (za), Vt €
R, V& € S [17].

Based on the above assumptions, the trajectory track-
ing component of the controller ug (z4) is defined as

ua (za) = g (€a) (ha (wa) — f (2a))-
B. Control Objective

The control objective is to solve the infinite-horizon op-
timal tracking problem i.e. to find a control policy uy that
minimizes the cost function

I (G pw) = ¢ Q¢ + pk Ry dr, (6)

to

where Q, € R*** is a user-defined positive semidefinite
(PSD) symmetric cost matrix, and Ry € Rso is a positive
constant. Let Q,, = diag {Qy, O2x2}, where Q) € R?*? is
a positive definite (PD) cost matrix. Note that @, is PSD
and Q) is PD so that the cost in (6) does not depend on the
desired trajectory.

Property 3. The state cost matrix @y satisfies q, < Qr <
q;, where 40 € R~ are the minimum and maximum
eigenvalues of ()i, respectively.

The infinite horizon value function (i.e. the cost-to-go) for
the k" mode V;* : R* — R is defined as

oo

where U C R is the action space for py.

Assumption 3. The optimal value function V) is continu-
ously differentiable for all k£ € S [17].

The optimal transient control policy uj : R* — R is
defined as

p O = 3 RUGOT RO ®

Each k' optimal value function and optimal control policy
satisfy the HJB equation

0= VV (¢) (Fi (O) + G (O) 1z) + ¢ QyC + " Rip,
©)

which has the boundary condition V,* (0) = 0.

C. Value Function Approximation

The optimal value function V}* is unknown for general
nonlinear systems. Let 2 C R* be a compact set such that
¢ € Q. The value function can be approximated with a NN
in ) by invoking the Stone-Weierstrass Theorem to obtain

Vi =W (Q) +er(C),

where W, € RL is a vector of unknown weights, ¢ : RY —
RZ is a user-defined vector of basis functions, and ¢, : R* —
R is the bounded function reconstruction error.?> Substituting
(10) into (8) yields a NN representation of the optimal control

policy

H(O) = 5 B G (O (Vo () Wi+ Ve (7).
an

Assumption 4. There exists a set of known positive con-

stants W, ¢, V@, € Ve € R such that sup, g ||Wi|| gﬁ,
SuPceq, kes 12 (Ol < @, supeeq, kes VO (Ol < Vo,

supceq, kes llex (O] <€ and supeeq pes [Ver (C)] < Ve
[20, Assumptions 9.1.c-e].

(10)

The ideal weights W}, are unknown a priori; hence, an
approximation of Wy is desired. The critic weight estimate
vector W, € R is substituted into (10) to obtain the
optimal value function estimate V}, : R* x RLY — R, defined
as

Vi (C, Wc,k) LWl (). 12)
The actor weight estimate vector Wa_yk € RY is substituted
into (11) to obtain the optimal transient control policy
estimate [i;, : R* x R — R, defined as

i (€ W) 2~ B G (O (Vo (T Wai) . (13)

The overall controller u;, € R is defined as uj, =

ud’k (:Z?d)

e +

III. BELLMAN ERROR

To calculate the BE ¢ : R* x RL x RE — R, the optimal
value function V;* (¢) and the optimal control policy x (¢)
in (9) are reslaced by the approximate optimal value function

Vie ¢ ,WCJC and the approximate optimal control policy

ok ¢, Wa7k), respectively, where

Ok (CaWc,lmWa,k) =¢TQx¢
i (W) R (G W)
+ Ve (W) (Bt Gu Qi (6 W) - (19

The value of the BE indicates how close the actor and critic
weight estimates are to their respective ideal weight values.
By subtracting (9) from (14), substituting (10)-(13), and
denoting the difference between the actual and ideal weight

2To focus the scope of this manuscript, each switched system will use the
same dimension vector of basis functions ¢ (¢) i.e., L1 = Lo = ... = Ly,
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values by W, 2 Wy, — W and W, 1, 2 Wy, — W, the
analytical form of the BE in (14) is

A A 1.~ ~
e (6 Wes Wa) = 7 Wi Gioe () Wae
(

— W Wer + 0k (0), (15)

where  wy, R* x R — R* is wy (C,Wa,k) =
V6 (0) (P Q)+ (¢ War) Ge(O) and 01(0)
%WEV¢ (C) GR’]CVG + ZGéyk — Veka.3

Remark 1. Although they are equivalent, (14) is used in
implementation and (15) is used in the stability analysis.

>

Bellman Error Extrapolation

Using the control policy given in (13), the current system
state, the critic weight estimate, and the actor weight esti-
mate, the estimated BE in (14) can be evaluated to calculate
the instantaneous BE denoted by dj (( , VAVCJC, ka) at each
time instance ¢ € R>o. The exploration versus exploitation
problem is well-known for learning-based control methods.
In results such as [21], an exploration signal is required to
successfully explore the operating domain. Results such as
[11] use BE extrapolation, which simultaneously evaluates
the BE along the system trajectory and at user-defined points
in the state space. The BE extrapolation technique eliminates
the need for the exploration signal by providing simulation
of experience, thus yielding a better value function approxi-
mation [11].

The BE is extrapolated from the user-defined off-trajectory
points {(; : ¢; € Q},Z\ch set by the user, where N € N de-
notes a user-specified number of overall extrapolation trajec-
tories in the compact set Q2. The tuple (2. x, Xq &, 21 k) rep-

A N, i
resents the data stacks defined as X, = Nik >k :: i ks
T
A 1 Ny Gm x Wa, sz k A 1 Ni Wi kW, i
Yok = N Ziﬂ 4p; s Yre = Np Zi:l 2.

where 6; 1 = Oy, (C“ Ck,Wa7k>, Wik = wy (Q,Wa,k),

and p;r = 1+ 1w, kf‘kwiyk. v € Ryg is a user-defined
gain, and I'y : REXL is a time-varying least-squares gain
matrix. Each subsystem has its own distinct set of data, gain
values, and update laws.

Assumption 5. On the compact set, €2, a finite set of off-
trajectory points {¢; : ¢; € Q}f\f:kl exists such that 0 < ¢, £
infte&>0 Amin {Zrk} for all k£ € S, where ¢, is a constant
scalar lower bound of the value of each input-output data

pair’s minimum eigenvalues for the k*" subsystem [11].
IV. UPDATE LAWS FOR ACTOR AND CRITIC WEIGHTS

The critic and actor weights are updated according to the
subsequent laws while each mode is active. In the weight
update laws, 7.1k, Me2,k> Nal,ks Ma2,ks Ak € R are positive
constant learning gains, and I';,, I, € Ry are the upper and
lower projection operator bounds for I'y,. The critic update

3GRJ€, Gy, and Gy are defined as Gpgy(Q) =
Ge(OR'GL(OT, Gor(Q) 2 Veo(O)Grr(OVed ()T,
and G (¢) 2 Veer (Q) Gryk () Veer (¢)" respectively.

law for the k' mode W, ; € R” is defined as

We i 2 proj {®e}, (16)

where @ j, £ —Ne1, kL% ﬁék — N2,k ¢, k- The actor update

law for the k" mode W, , € R is defined as

Wk 2 proj {®.x}, (17)

where @, 1 = *ﬁalk(Wak*ka) — nanWak +

MWC k72, 20,5 We & The operator proj {-}

denotes the smooth projection operator defined in [22, Ap-
L@Q%k" €
[ﬁc,k,WQk} and HWakH S [ﬁmk,wmk} under the as-
sumption ||[Wy]| € {Ek,wk}
update law of the k" mode I'y, € RE*E is

pendix E, Eq. E.4] and is designed such that H

. The least-squares gain matrix

kakwk Fk

(/\krk — Nel,k - UCQ,kaZF,ka)

(18)

k
' 1{£ksurku§fk}v

where 1, denotes the indicator function.* While the kt®

mode is inactive Wc}k = 0rx1, fk = 0«1, and ka =
0r x1 -5

Remark 2. Under Assumptions 1-3, the PD solution of the
HIB equation is the optimal value function for each system.
The approximation of the PD solution to the HIB equation is
guaranteed by the appropriate selection of Lyapunov-based
update laws and initial weight estimates [23].

V. STABILITY ANALYSIS

It is possible for a switched system to become unstable,
even if the individual subsystems of a switched system are
stable [12, Ch. 3]. Hence, the stability of each subsystem
must be investigated along with the switching between the
systems. In the subsequent development, k subsystems, each
with a class of dynamics in (4), are analyzed with the control
policy in (13) and update laws outlined in (16)-(18).

A. Subsystem Stability Analysis

Since the state penalty matrix @, is PSD, the optimal
value function V;’ is PSD and is not a valid Lyapunov
function. However, a nonautonomous form of the optimal
value function denoted as V" : R? x R>o — R is defined
such that Vi, (e, ) = V;* (¢), and is PD and decrescent [17].

To facilitate the stability analysis, let z;, € R?T2% be a con-
T

wrl .
and let V7, ; : R?T2L' xR — R>q be a candidate Lyapunov
function defined as

catenated state vector defined as z; = [eT wr,

~ 1~ ~
VL,k (Zk7t) £ (6 t) + W k;F ng + iwg:kak.

19)

#Using (18) ensures that each T, < ||Tx|| < T, for all t € Rxq.
5The update laws will not update a subsystem k’s weight estimates or
least-squares matrix unless subsystem k is active.
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According to [17] and [18, Lemma 4.3], (19) can generally
be bounded as v; ;. ([|zx|]) < Vix (2x) < ik (||2x]]) using
class X functions Uy ks Uk R>9 — R>q. To facilitate the
subsequent dwell-time analysis, the following more restric-
tive assumption is required.

Assumption 6. The optimal value function V,*, (e, t) can be
bounded by the square of the norm of its argument times a
positive constant, ie.0

Bur llell® < Vit (e,t) < Ba llell,
for all k£ € S, where 51 1, B2,k € R>o.
Using Assumption 6, (19) can be bounded as

o1k ||2k||2 < Vi (zk,t) < 0o ||Zk||2, (20)

where o g, 01 € Ryp.
Wi

The normalized regressors <& Lk

are bounded as
Pi,k

and

1 Wi,k 1
SUP¢eRr+, N and sup;eg_, x| S 2,/vkL,
for all ¢ € Q and (; € , respectively. G j is bounded as

supeeq |Grill < G Amax {R7'}, and Gy, is bounded as
—2
supceo |Gokll < (VOG) Amax {R71}-
Remark 3. Using the projection operator from the critic
update law in (16) and [22, Lemma E.1], —WZ, T ' W
is bounded from above as
_ NEkFI:lVAVc,k = ~3:,€F;1proj { @i}

T p—1
- C,krk @C,k'

Wi
Pk

N

Using the projection operator from the actor update law in
(17) and [22, Lemma E.1], —Wsza,k is bounded from

above as
=7 A =T .
- anWa,k: = —Wq, kProj {éa,k}
T
- a,kq)%k'

A

To facilitate the subsequent analysis, let R € Ry be the
radius of a compact ball Bx C R? x RF x R centered at
the origin.

Theorem 1. While each subsystem is active, if Assumptions
1-6 hold, the control policy in (13) and the weight update
laws in (16)-(18) are implemented, and the conditions

1 _
Nal,k T Na2,k = (Ne1,k + Ne2,) WGy, 21
\V VkEk
—2_ 2
S 3Na1k 3 (e, + 7752,k)2 W Gy 22)
T ook 160c2 kL (Ma1 e + Nazk)
2 l
W2RE R, 23)
a1 A

are satisfied for each individual subsystem, then the tracking
error ey, the critic weight estimate error qu, and the actor
weight estimate error Wa’k are uniformly ultimately bounded
(UUB) . Therefore, the transient tracking control policy iy

6Assumption 6 is a stricter version of [10, Lemma 3.14].

converges to a neighborhood of the optimal control policy
o8
Proof: Using (5) and the fact that V7 (e,t) =

V¥ (€), Ve € R?, t € R>( and taking the time derivative of
the candidate Lyapunov function in (19) yields

VLﬁk (Zk) = VV,C*QL - VT/Z,CF;WC,,C — Wg:kWa7k

1.~ R -
— iwgkr,glrkr,glwc,k, (24)
where the fact that 4T, " = [, ', ! is used. Under the
sufficient gain conditions in (21) and (22), and using (9),
(15), and the update laws in (16)-(18), the expression in (24)
can be bounded as

. A 21
Vik (2) € —5—— Vi (21) V4 = < |zl < R, (25)
20[27k Ak
for all k¥ € S and t € Rso, where A, =

min [ Amin (Qk),  §7Mc2,kCks 5 (Matk + Nazk) |, and I
is a positive constant that depends on the control gains
and NN bounding constants in Assumption 4. Using the
bounds in (20), the time derivative in (24), Ax, and (23),
[18, Thm. 4.18] can be invoked to prove that z; is UUB

2003 1ln )
2.6’k and the transient
ay kA

tracking control policy i converges to a neighborhood of
the optimal control policy ujy. Since 2z € Lo, it follows
that e, We i, Wo 1. € L, and since ji, € Lo and zq < Ty,
it follows that u; € L. Furthermore, every trajectory
zp that is initialized in the ball B is bounded such that
2 € Br, Vt € R>q, Yk € S. Since zj, € Bg, it follows that
the individual elements of zj lie in a compact set, i.e. e, V~VC, ks
and VNVaJC lie in a compact set. Additionally, since x4 < Ty,
then the concatenated state ¢ € 2, Vt € R>q, Yk € S, which
facilitates value function approximation. ]

such that limsup,_,  ||zx| <

Remark 4. See [11] for insight into satisfying the gain
conditions in (21) and (22).

B. Switched Subsystems

Let t9N € [0,] denote a time instant when the k" sub-
system of the switching sequence is activated. Let tkOF Fe
[0,¢] denote a time instant when the &' subsystem in the
switching sequence is deactivated. The dwell-time in any
active mode of a subsystem denoted by 7, € Ry is
defined as 7, = tgF F_ tkON and represents the amount
of time a subsystem must be active before switching to
the next. The minimum dwell time for any active mode
of a system is denoted by 7 € R.(. There are a finite
number of switches, and N, € N, denotes the number
of switching events. The sequence of time instants at which
a switching event occurs is defined as {t%iv }, such that
0=t9N <@V <. <tQN <1QN, ).

C. Dwell-Time Analysis

The stability analysis proves that each subsystem is UUB
while active. However, the Lyapunov function for the overall
switching system may instantaneously increase due to the
change in the optimal value function and set of new weight
parameters. The value function corresponding to mode k+1,
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Vi (¢), may be larger than the value function correspond-
ing to mode k, V;* (¢). Similarly, the magnitude of the
actor and critic weiéht errors could be larger in mode & + 1
than in mode k. Therefore, a dwell time condition must be
designed to account for switching between the subsystems
which ensures that the switched system is stable [12, Ch. 3].

Theorem 2. The system consisting of a family of subsystems
with the dynamics in (4) with a properly designed minimum
dwell-time, 7" € R~ ensures that the tracking error, critic
estimate errors, and actor estimate errors will converge to
a neighborhood of the origin in the sense that ||zx| <
I?gé(q/% for all t > T, where rgggq/% € Ryo
is the maximum ultimate bound for all subsystems, and
T € Ry is the time required to reach the ultimate bound.

The proof follows that of [13, Theorem 2] and is available
upon request.

Remark 5. From Section II, the system switches modes
based on if the crank angle g belongs to Q or Q°, i.e.,
the switching is state-based; furthermore the switches occur
more frequently at higher desired cadence values. The user
cannot directly control the time of the switching instances.
For the system to be stable using the previous analysis,
the dwell-time must be significantly smaller than the time

minimum dwell-time requirements.
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