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Abstract—Functional electrical stimulation (FES) can be used
as rehabilitative treatment for lost motor neuron function
in people with neurological disorders. This paper considers
a leg extension machine coupled to a participant for FES-
induced closed-loop lower-limb tracking of a desired trajectory.
FES-induced control faces challenges as the muscle dynamics
exhibit nonlinear behaviors and have unstructured uncertainty.
A closed-loop data-driven deep neural network (DNN)-based
adaptive control method for FES-induced lower-limb position
trajectory tracking is developed. A Lyapunov-based stability
analysis is used to develop a closed-loop state-feedback adap-
tation law for the outer-layer weights of the DNN, which
is combined with a feedback controller to yield semi-global
asymptotic tracking.

I. INTRODUCTION

Functional electrical stimulation (FES) is a common reha-
bilitation technique used for individuals with neuromuscular
disorders that yields numerous physiological and psycholog-
ical benefits [1]-[4]. FES-induced rehabilitation is consid-
ered safe (i.e., noninvasive) and accessible. Some technical
challenges that arise in FES-induced rehabilitation include
nonphysiological muscle recruitment, variability in muscle
properties between participants, muscle fatigue, and changing
muscle geometry during exercises [5]. Moreover, the muscle
dynamics exhibit nonlinear behavior and have unstructured
uncertainty [6]. Hence, further development of closed-loop
methods to produce more precise, efficient, and coordinated
movements may greatly improve FES-based rehabilitative
treatments [7].

To compensate for unknown nonlinear models, results such
as [8]-[13] developed nonlinear robust control techniques;
however, such methods rely on high-gain or high-frequency
feedback to overcome the model uncertainty, which can
lead to over stimulation. Motivated to remove the high-
gain feedback components in FES controllers, results such
as [6], [14]-[20] use neural networks (NNs) to improve
performance. Rather than relying on feedback to dominate
the uncertain dynamics based on worst-case results, NN-
based adaptive controllers include a feedforward that adjusts
to model uncertainty. However, results in [6], [14]-[20]
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consider shallow NNs (i.e. NNs containing a single hidden-
layer).

Evidence indicates that deep neural networks (DNNs) can
potentially improve function approximation because of the
more complex connections and dependencies of the nonlinear
activation functions [21] and [22]. Although some empirical
evidence indicates improved performance over traditional
shallow NNs, the complex nonlinear functionals associated
with DNNs inhibit the ability to develop stability analysis
driven adaptation laws and derive stability results, which
limits their use in safety-critical applications such as closed-
loop FES control. Recent results in [23]-[26] developed a
data-driven DNN-based control architecture to compensate
for model uncertainty. A gradient descent-based adaptive
update law is used to estimate the DNN’s ideal output-layer
weights continuously in real-time while an iterative data-
driven method is used to adjust the inner-layer DNN weights.
The results in [23]-[25] consider linear systems with known
system matrices, and the extension in [26] guarantees asymp-
totic tracking of a desired trajectory for general control-affine
nonlinear systems with model uncertainty.

This paper leverages the developments in [26] to develop
a data-driven DNN-based adaptive controller for closed-
loop FES-induced lower-limb trajectory tracking. Unlike the
results in [26], a more complex, uncertain Euler-Lagrange
model is considered for the lower-limb model dynamics. The
developed DNN architecture updates the output-layer DNN
weights online (in real-time) while integrating data-driven
methods to adjust the inner-layer DNN weights for improved
controller performance. Upon initialization, the inner-layer
weights may be randomly selected or obtained a priori from
DNN training algorithms. Moreover, data may be collected
and DNN training algorithms may be used to selectively
tune the inner-layer DNN weights concurrent to real-time
execution. This enables the controller to compensate for each
participant’s unique dynamic model and physical attributes
(e.g., muscular response to FES varies between participants).
To account for switching from iterative updates of the DNN
weights, a nonsmooth Lyapunov-based stability analysis is
used to guarantee semi-global asymptotic tracking of a
desired trajectory.

This paper is structured as follows. Section II introduces
the lower-limb model dynamics. Section III details the con-
trol objective, DNN-based feedforward adaptive control laws,
and the developed closed-loop error system. The closed-loop
error system is analyzed with a nonsmooth Lyapunov-like
stability analysis in Section IV.
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II. DYNAMICS

The nonlinear, unknown leg extension dynamics can be
modeled as [27] and [28]

M(§)+P(q)+G@)+V(§)+7a(t) =7(g,4,t), (1)

where ¢ : R>9 — @, ¢: R>9 — R, and G : R>o — R denote
the angular position (see Fig. 1), velocity, and acceleration of
the shank about the knee-joint, respectively; Q@ C R denotes
the set of all possible knee-joint angles. The states g and ¢ are
both assumed to be measurable. The inertial, gravitational,
and viscous damping effects are denoted by M : R — R,
G:Q — R, and V : R — R, respectively, and the
participant’s passive viscoelastic tissue effects are denoted by
P : Q@ — R. Unmodeled bounded disturbances are denoted
by 74 : R>g — R. The knee-joint torque produced due to
FES stimulation is denoted by 7 : @ x R x R>9 — R. The
effects of inertia and gravity can be modeled as

M (q) = Jq, 2

G (q) = mglsin (q), 3)

respectively, where J € R<( denotes the unknown moment
of inertia of the shank, m € R denotes the unknown mass
of the lower limb, [ € R+, denotes the unknown length
between the knee-joint and center of mass of the shank, and
g € Ry denotes the gravitational acceleration constant. The
passive viscoelastic tissue effects are modeled as [29]

P(q) = =k (exp (—k2q)) (¢ — k3) , )

where k1, k2, k3 € Rs( are unknown constants. The viscous
damping effects are modeled as [27]

V (¢) = Bitanh (—Bzq) — Bsq, &)

where B1, By, Bs € R+ are unknown constants. The knee
input torque can be modeled using the muscle tendon forces
F: QxR xRy — R and the moment arm & : @ — R.
The torque produced about the knee-joint is modeled as [30]
and [31]

7(¢q,4,t) =& (q) F (g, 4,1), (6)
and the muscle tendon forces are modeled as
F(q,4,t) =n(q,q)u(t), (7

where 7 : QxR — R denotes an unknown nonlinear function
representing muscle efficiency, and u : R>9 — R denotes
the FES control input to the quadriceps muscle group. To
facilitate the subsequent control development, an auxiliary
function Q : @ x R — R is defined as

Q(q,4) £ (@) n(g.4)- (8)

The following property and assumptions facilitate the
subsequent stability analysis.

Fig. 1. Illustration of the lower-limb dynamic system with (a) an encoder at
the knee-joint, (b) external electrodes placed on the participant’s quadriceps,
and (c) an FES stimulator.

Property 1. The moment of inertia J can be bounded such
that J < J, where J € R+ is a known constant [6] and
[32].

Assumption 1. The torque disturbance 7,4 (¢) can be bounded
such that |74 (¢)] < 74 for all time ¢ € R>¢, where 75 € R~¢
is a known constant [6], [28], [32].

Assumption 2. The moment arm & (¢) can be upper and
lower bounded such that £ < £ (g) < & for all ¢ € Q, where
3 ,€ € Ry are known constants. The time derivative of & (q)
is denoted by f : Q@ — R, and is assumed to exist and can be
bounded such that ‘5 (@)] < £ forall ¢ € Q, where £ € Rog

is a known constant [6], [28], [30]-[33].

Assumption 3. The function 7 (¢, ¢) can be upper and lower
bounded such that n < 7(q,¢) < 7 for all ¢ € Q and
g € R, where n,7 = R~ are known constants. Based on
empirical data, the time derivative of 7(q, ) is denoted by
7 : @ xR — R, and is assumed to exist and can be bounded
such that |7 (¢)| < nforallg € Qand ¢ € R, where 7 € R
is a known constant [6], [32], [34].

III. CONTROL DESIGN

The control objective is to design an adaptive DNN-based
FES controller that ensures the knee-joint angle tracks a user-
defined desired trajectory. To quantify the tracking objective,
the position tracking error e : R>y — R is defined as

e(t) £ qa(t)—q(t), 9)

where gq : R>9 — R denotes a user-defined desired angular
position and is designed to be sufficiently smooth, i.e., the
desired trajectory and its first two time derivatives can be
bounded as |qq (t)| < Ga, [4a (t)] < Ga, and [Ga ()| < Gq for
all ¢ € R>q, where Gg, gq,da € R>o are known constants.
An auxiliary tracking error r : R>¢ — R is defined as

r(t)£et) +ae(t), 10)
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where a € R is a user-selected constant control parameter.

A. Open-Loop Error System Development

Using (6)—(8), the dynamics in (1) can be rewritten as'
(11)

To facilitate the subsequent control development, let Jq :
Q x R = Ry be defined as Jo (¢,¢) = &. Note that by
Property 1 and Assumptions 2 and 3, the auxiliary function
Q (g, ¢) and the time derivative of Jq (g, ¢) are bounded such

that | (¢,4)| > Q > 0 and ‘J'Q (q,q')’ < Jg forall g € Q

Ji+P+G+V+714=u

and ¢ € R, where 2 € R+ and Jo € R are known constants.
Let the unknown model dynamics f : @ xR — R be defined
as

1
f@) =g P+G+V),
where x : R>¢p — Q x R denotes a concatenated state and
is defined as x 2 [q,]”. Taking the time derivative of (10),
pre-multiplying by Jq, and using (1), (9), and (12) yields
the open-loop error system

12)

1
Jaor = JoGa —u+ f (z) + ﬁTd + aJgé. (13)

B. Feedforward DNN Estimate

Because the dynamic model in (13) does not adhere to the
typical linear-in-uncertain-parameters assumption, a DNN-
based feedforward estimate is developed in this section. Let
O C QxR be a compact simply connected set, and let C (O)
denote the space where f () € C(O) is continuous. The
Stone-Weierstrass theorem states there exists ideal weights
and basis functions such that the function f (z) € C(©) can
be represented as [35]

fz) =W To* (" (z)) + ¢ (2), (14)

where W* € RP denotes the unknown ideal output-layer
weights of the DNN, o* : RL — RP denotes the unknown
vector of ideal activation functions corresponding to the
output-layer of the DNN, L € Zx( denotes the user-defined
number of neurons used on the output-layer, € : ® — R
denotes the unknown function reconstruction error, and ®* :
© — RE denotes the inner-layers of the DNN. The inner-
layers of the DNN ®* can be expressed as’

* (z) = (Wi o o Wil ey o... o WiT67) (), (15)

where k € Z denotes the user-defined number of inner-layers
of the DNN, and for all j € {1,...,k}, Wi € REi*Lj+
and ¢% : R% — R% denote the j'" inner-layer ideal weight
matrix and vector of activation functions, respectively. The
user-defined parameter L; for all j € {1,...,k} denotes the
number of neurons used in each layer. For the dynamics in

IFor notational brevity, all functional dependence on system states and
time are hereafter suppressed unless required for clarity of exposition.
2The symbol o denotes function composition.

(13) and (14), L1 = 2 and Lg4q = L. Based on (14), the
DNN feedforward estimate f; : R™ — R" is defined as

Ji@) 2 WT (0)6: (9: (@) (16)
where W : R>o — RP denotes the estimated output-layer
weights of the DNN, &; : RL — RP dAenotes the user-
selected vector of activation functions, and ®; : O xR — RL
denotes the estimated inner-layer of the DNN. The output-
layer weight estimate W is continuously updated in real-

time, and is subsequently designed. The estimated inner-layer
of the DNN &, is defined as

(i)i () £ (V%Tkégzk o Wi,Tk—M%z',k—l 0.0l 7T1<ZA521> (z),

a7
where k € Z denotes the user-defined number of inner-layers
of the DNN, and for all j € {1,...,k}, W” 2 Zso —
RE%Litt and ¢; ; : R% — RE denote the j* inner-layer
weight matrix estimate and vector of activation functions,
respectively. The index ¢ for all ¢ € Zx>( denotes the ith
iteration of training, and the initial index ¢ = O corresponds
to the DNN at the initial condition.

An iterative data-driven approach can be used to update the
inner-layer weights of the DNN estimate in (17). Concurrent
to real-time execution, data is collected and the inner-layer
weight estimates are held constant until updated. DNN train-
ing algorithms such as gradient descent variants (c.f. [23]-
[25], and [36, Ch. 8]) are employed on the collected data
sets to update the inner-layer DNN weights. The developed
DNN-based control architecture in [26] provides flexibility in
the inner-layer DNN weight training process. The initialized
DNN & can be trained a priori from existing data sets
(i.e., data collected on able-bodied or neurologically impaired
participants). Moreover, in the absence of training data sets,
dq can be initialized with random inner-layer DNN weights.

To facilitate the subsequent stability analysis, the following
assumption is made.

Assumption 4. There exists known constants W*, 0%, 5,8 €
R>o such that the ideal output-layer weights /™, the ideal
vector of activation functions o* (-), the user-selected vector
of activation functions® &; (-), and the function reconstruc-
tion error € (-) can be upper bounded as sup.ceo ||[W*| <

W*, supsee 0" ()| < 0%, supseovillo: ()] < o, and
supzeo |le (+)]| <, respectively [37].
C. Control Design

Based on the subsequent stability analysis, the FES control

input is designed as

w2 fi + ke + kgsgn(r) + e, (18)

where sgn () denotes the signum function and k., ks € R<¢
are user-defined constant control parameters. Based on the

3For some common activation functions, e.g., hyperbolic tangent func-
tions, sigmoid functions, radial basis functions, c* = 6 = L.
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subsequent stability analysis, the weight update law W
R>¢ — RP is defined as

W2 Tws, (8 (2)r, (19)
where I'yy € RP*P denotes a user-defined positive definite
control gain matrix. Substituting (14), (16), and (18) into
(13) yields the closed-loop error system

Joi = -W7Ts; (‘i% (x)) —kor — kgsgn(r) +e(x) —e

1
+ W o™ (0% (2)) + Jads + gt adac. (20)

Guidance from the subsequent stability analysis indicates
that the control gains k, and ks have to be selected suffi-
ciently large, and the gain condition « has to be selected
sufficiently small. Specifically, k., ks, and « should be
selected to satisfy the sufficient gain conditions

ko> WE (T +5) + S@a+E+5, @D
T by AN A (22)
r 2 Q aQ 2 Qa
Q
0<a<2§. 23)

IV. STABILITY ANALYSIS
Theorem 1. Consider a system modeled by the dynamics in
(1) with initial condition [q(0),4(0)]" € ©. Let Property
1 and Assumptions 1—4 hold. The FES control input in (18)
and output-layer weight adaptation law in (19) yield semi-
global asymptotic tracking in the sense that tlim le(t)] =0
—00
and lim |r (t)| = 0, provided the sufficient gain conditions
— 00
in (21)—(23) are satisfied.

Proof: Let Vi, : R*™ x Rsy — R be a candidate
Lyapunov function defined as

1 1 1. .
Vi (z,t) 2 —e? + §Jm«2 + 5WTF;VlW, (24)

2

where =z R>y — R2*P jis defined as z =2
= ™ . .

[ e, r, WT ] , and the mismatch between the ideal

output-layer weights and the output-layer weight estimates

W :R>o — RP are defined as
W) 2W* =W (). (25)

Let ¢ : R>o — R?*? be a Filippov solution to the differential
inclusion ¢ € K [R] (¢, t), where ¢ (t) = z (), the calculus
of K [-] is used to compute Filippov’s differential inclusion
as defined in [38], and h : R2*P XTRZO — RZtr s
defined as h((,t) = [ é, T, W } . The generalized
time derivative of the candidate Lyapunov function Vj, along
the Filippov trajectories of { = h ((,t) is defined as

n o [ KAl (.0 ] e

CEaVL (C’t)

A

where OV, (¢,t) denotes Clarke’s generalized gradient of
Vi (¢, t) [39, Equation 22]. Since V7, ({,t) is continuously
differentiable in ¢, then OVL, (¢, t) = {V VL ((,t)}, where V
denotes the gradient operator. Additionally, the time deriva-
tive of V7, exists almost everywhere (a.e.), i.e., 1% ¢, 1) =
V1, (¢, t) for almost all ¢ € Rxy.

Taking the generalized time derivative of (24) yields

é
- - . r
VL Cle Jor, WITH', LJor? | K W
1
27
Substituting (10), the closed-loop error system in (20), and
the output-layer weight estimate update law in (19) into (27)

yields
Vi, Cr (_/w — kK[sgn (r)] - WTK {" (‘I’ (“"”))D
+r (éTd + adoé + W™ (@* (2)) +e (33)>

+rJais— WITK [&,; (tfz (a:))} r—ae? + %jQTQ.
(28)

By Property 1 and Assumptions 1-4, using Young’s inequal-
ity, and adding and subtracting W*T K T&i ((fz (x))}, the
inequality in (28) can be upper bounded as

. ae. A Jo o  o%J
< —la- == — k- === )2
Vi < <a 50 ) e > Q 50 r
- T 7
—Ir| (k S W 8) e - g’) . (29)
where 7K [sgn ()] = |r|. Then, provided the sufficient gain
conditions in (21)—(23) are satisfied, the inequality in (29)
can be upper bounded as
. a.e. 2
Vi < =Ayll”, (30)
where y 2 [e,r]7 denotes a concatenated state, and
A € Ryo is a known constant defined as A =
min ¢ o — O‘;é,k,.— %J.Q—aé - O‘;é .

From (24) and (30), V7, is positive semi-definite and non-
increasing, which implies Vi, € L., and hence, z € L.
Since z € Lo, this implies e, 7, W € Loo. Using (9), (10),
and (25), the fact that e,7,W € L., implies ¢,q¢,é,W €
L. By Assumption 4, 6; € L. Using (19), the fact that
Gi,7 € Lo implies the output-layer weight estimate update
law W € L. Since §g € Lo by design, the fact that
e,7,W,o € L, implies the control input u € L. By the
LaSalle-Yoshizawa extension for nonsmooth systems in [40],
Alyl|* = 0 as ¢ — oo, which implies tlim le (t)] = 0 and

—00
lim |r (¢)| = 0. ]
t—o0
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V. CONCLUSIONS

This paper uses Lyapunov-based methods to develop a
data-driven DNN-based adaptive control method for FES-
induced leg extension rehabilitation. The developed DNN
architecture updates the output-layer DNN weights online (in
real-time) while integrating data-driven methods to update
the inner-layer DNN weights for improved controller per-
formance. To account for switching from iterative updates
of the inner-layer DNN weights, a nonsmooth Lyapunov-
based stability analysis is used to guarantee semi-global
asymptotic tracking of a desired trajectory. Future research
efforts include experimental studies with neurologically im-
paired participants and extending the developed DNN-based
adaptive control architecture to switched system models,
which will enable more precise coordination and activation
of multiple muscle groups for more complex exercises (e.g.,
FES-induced cycling).
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