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Abstract—Functional electrical stimulation (FES) can be used
as rehabilitative treatment for lost motor neuron function
in people with neurological disorders. This paper considers
a leg extension machine coupled to a participant for FES-
induced closed-loop lower-limb tracking of a desired trajectory.
FES-induced control faces challenges as the muscle dynamics
exhibit nonlinear behaviors and have unstructured uncertainty.
A closed-loop data-driven deep neural network (DNN)-based
adaptive control method for FES-induced lower-limb position
trajectory tracking is developed. A Lyapunov-based stability
analysis is used to develop a closed-loop state-feedback adap-
tation law for the outer-layer weights of the DNN, which
is combined with a feedback controller to yield semi-global
asymptotic tracking.

I. INTRODUCTION

Functional electrical stimulation (FES) is a common reha-

bilitation technique used for individuals with neuromuscular

disorders that yields numerous physiological and psycholog-

ical benefits [1]–[4]. FES-induced rehabilitation is consid-

ered safe (i.e., noninvasive) and accessible. Some technical

challenges that arise in FES-induced rehabilitation include

nonphysiological muscle recruitment, variability in muscle

properties between participants, muscle fatigue, and changing

muscle geometry during exercises [5]. Moreover, the muscle

dynamics exhibit nonlinear behavior and have unstructured

uncertainty [6]. Hence, further development of closed-loop

methods to produce more precise, efficient, and coordinated

movements may greatly improve FES-based rehabilitative

treatments [7].

To compensate for unknown nonlinear models, results such

as [8]–[13] developed nonlinear robust control techniques;

however, such methods rely on high-gain or high-frequency

feedback to overcome the model uncertainty, which can

lead to over stimulation. Motivated to remove the high-

gain feedback components in FES controllers, results such

as [6], [14]–[20] use neural networks (NNs) to improve

performance. Rather than relying on feedback to dominate

the uncertain dynamics based on worst-case results, NN-

based adaptive controllers include a feedforward that adjusts

to model uncertainty. However, results in [6], [14]–[20]
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consider shallow NNs (i.e. NNs containing a single hidden-

layer).

Evidence indicates that deep neural networks (DNNs) can

potentially improve function approximation because of the

more complex connections and dependencies of the nonlinear

activation functions [21] and [22]. Although some empirical

evidence indicates improved performance over traditional

shallow NNs, the complex nonlinear functionals associated

with DNNs inhibit the ability to develop stability analysis

driven adaptation laws and derive stability results, which

limits their use in safety-critical applications such as closed-

loop FES control. Recent results in [23]–[26] developed a

data-driven DNN-based control architecture to compensate

for model uncertainty. A gradient descent-based adaptive

update law is used to estimate the DNN’s ideal output-layer

weights continuously in real-time while an iterative data-

driven method is used to adjust the inner-layer DNN weights.

The results in [23]–[25] consider linear systems with known

system matrices, and the extension in [26] guarantees asymp-

totic tracking of a desired trajectory for general control-affine

nonlinear systems with model uncertainty.

This paper leverages the developments in [26] to develop

a data-driven DNN-based adaptive controller for closed-

loop FES-induced lower-limb trajectory tracking. Unlike the

results in [26], a more complex, uncertain Euler-Lagrange

model is considered for the lower-limb model dynamics. The

developed DNN architecture updates the output-layer DNN

weights online (in real-time) while integrating data-driven

methods to adjust the inner-layer DNN weights for improved

controller performance. Upon initialization, the inner-layer

weights may be randomly selected or obtained a priori from

DNN training algorithms. Moreover, data may be collected

and DNN training algorithms may be used to selectively

tune the inner-layer DNN weights concurrent to real-time

execution. This enables the controller to compensate for each

participant’s unique dynamic model and physical attributes

(e.g., muscular response to FES varies between participants).

To account for switching from iterative updates of the DNN

weights, a nonsmooth Lyapunov-based stability analysis is

used to guarantee semi-global asymptotic tracking of a

desired trajectory.

This paper is structured as follows. Section II introduces

the lower-limb model dynamics. Section III details the con-

trol objective, DNN-based feedforward adaptive control laws,

and the developed closed-loop error system. The closed-loop

error system is analyzed with a nonsmooth Lyapunov-like

stability analysis in Section IV.
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II. DYNAMICS

The nonlinear, unknown leg extension dynamics can be

modeled as [27] and [28]

M (q̈) + P (q) +G (q) + V (q̇) + τd (t) = τ (q, q̇, t) , (1)

where q : R≥0 → Q, q̇ : R≥0 → R, and q̈ : R≥0 → R denote

the angular position (see Fig. 1), velocity, and acceleration of

the shank about the knee-joint, respectively; Q ⊆ R denotes

the set of all possible knee-joint angles. The states q and q̇ are

both assumed to be measurable. The inertial, gravitational,

and viscous damping effects are denoted by M : R → R,

G : Q → R, and V : R → R, respectively, and the

participant’s passive viscoelastic tissue effects are denoted by

P : Q → R. Unmodeled bounded disturbances are denoted

by τd : R≥0 → R. The knee-joint torque produced due to

FES stimulation is denoted by τ : Q× R× R≥0 → R. The

effects of inertia and gravity can be modeled as

M (q̈) = Jq̈, (2)

G (q) = mglsin (q) , (3)

respectively, where J ∈ R>0 denotes the unknown moment

of inertia of the shank, m ∈ R>0 denotes the unknown mass

of the lower limb, l ∈ R>0 denotes the unknown length

between the knee-joint and center of mass of the shank, and

g ∈ R>0 denotes the gravitational acceleration constant. The

passive viscoelastic tissue effects are modeled as [29]

P (q) = −k1 (exp (−k2q)) (q − k3) , (4)

where k1, k2, k3 ∈ R>0 are unknown constants. The viscous

damping effects are modeled as [27]

V (q̇) = B1tanh (−B2q̇)−B3q̇, (5)

where B1, B2, B3 ∈ R>0 are unknown constants. The knee

input torque can be modeled using the muscle tendon forces

F : Q × R × R≥0 → R and the moment arm ξ : Q → R.

The torque produced about the knee-joint is modeled as [30]

and [31]

τ (q, q̇, t) = ξ (q)F (q, q̇, t) , (6)

and the muscle tendon forces are modeled as

F (q, q̇, t) = η (q, q̇)u (t) , (7)

where η : Q×R → R denotes an unknown nonlinear function

representing muscle efficiency, and u : R≥0 → R denotes

the FES control input to the quadriceps muscle group. To

facilitate the subsequent control development, an auxiliary

function Ω : Q× R → R>0 is defined as

Ω (q, q̇) , ξ (q) η (q, q̇) . (8)

The following property and assumptions facilitate the

subsequent stability analysis.

Fig. 1. Illustration of the lower-limb dynamic system with (a) an encoder at
the knee-joint, (b) external electrodes placed on the participant’s quadriceps,
and (c) an FES stimulator.

Property 1. The moment of inertia J can be bounded such

that J ≤ J , where J ∈ R>0 is a known constant [6] and

[32].

Assumption 1. The torque disturbance τd (t) can be bounded

such that |τd (t)| ≤ τd for all time t ∈ R≥0, where τd ∈ R>0

is a known constant [6], [28], [32].

Assumption 2. The moment arm ξ (q) can be upper and

lower bounded such that ξ ≤ ξ (q) ≤ ξ for all q ∈ Q, where

ξ, ξ ∈ R>0 are known constants. The time derivative of ξ(q)

is denoted by ξ̇ : Q → R, and is assumed to exist and can be

bounded such that
∣

∣

∣
ξ̇ (q)

∣

∣

∣
≤ ξ̇ for all q ∈ Q, where ξ̇ ∈ R>0

is a known constant [6], [28], [30]–[33].

Assumption 3. The function η (q, q̇) can be upper and lower

bounded such that η ≤ η (q, q̇) ≤ η for all q ∈ Q and

q̇ ∈ R, where η, η ∈ R>0 are known constants. Based on

empirical data, the time derivative of η(q, q̇) is denoted by

η̇ : Q×R → R, and is assumed to exist and can be bounded

such that |η̇ (q)| ≤ η̇ for all q ∈ Q and q̇ ∈ R, where η̇ ∈ R>0

is a known constant [6], [32], [34].

III. CONTROL DESIGN

The control objective is to design an adaptive DNN-based

FES controller that ensures the knee-joint angle tracks a user-

defined desired trajectory. To quantify the tracking objective,

the position tracking error e : R≥0 → R is defined as

e (t) , qd (t)− q (t) , (9)

where qd : R≥0 → R denotes a user-defined desired angular

position and is designed to be sufficiently smooth, i.e., the

desired trajectory and its first two time derivatives can be

bounded as |qd (t)| ≤ qd, |q̇d (t)| ≤ q̇d, and |q̈d (t)| ≤ q̈d for

all t ∈ R≥0, where qd, q̇d, q̈d ∈ R≥0 are known constants.

An auxiliary tracking error r : R≥0 → R is defined as

r (t) , ė (t) + αe (t) , (10)
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where α ∈ R≥0 is a user-selected constant control parameter.

A. Open-Loop Error System Development

Using (6)–(8), the dynamics in (1) can be rewritten as1

Jq̈ + P +G+ V + τd = Ωu. (11)

To facilitate the subsequent control development, let JΩ :
Q × R → R>0 be defined as JΩ (q, q̇) , J

Ω . Note that by

Property 1 and Assumptions 2 and 3, the auxiliary function

Ω (q, q̇) and the time derivative of JΩ (q, q̇) are bounded such

that |Ω (q, q̇)| ≥ Ω > 0 and
∣

∣

∣
J̇Ω (q, q̇)

∣

∣

∣
≤ J̇Ω for all q ∈ Q

and q̇ ∈ R, where Ω ∈ R>0 and J̇Ω ∈ R are known constants.

Let the unknown model dynamics f : Q×R → R be defined

as

f (x) ,
1

Ω
(P +G+ V ) , (12)

where x : R≥0 → Q × R denotes a concatenated state and

is defined as x , [q, q̇]T . Taking the time derivative of (10),

pre-multiplying by JΩ, and using (1), (9), and (12) yields

the open-loop error system

JΩṙ = JΩq̈d − u+ f (x) +
1

Ω
τd + αJΩė. (13)

B. Feedforward DNN Estimate

Because the dynamic model in (13) does not adhere to the

typical linear-in-uncertain-parameters assumption, a DNN-

based feedforward estimate is developed in this section. Let

Θ ⊂ Q×R be a compact simply connected set, and let C (Θ)
denote the space where f (x) ∈ C (Θ) is continuous. The

Stone-Weierstrass theorem states there exists ideal weights

and basis functions such that the function f (x) ∈ C (Θ) can

be represented as [35]

f (x) = W ∗Tσ∗ (Φ∗ (x)) + ε (x) , (14)

where W ∗ ∈ R
p denotes the unknown ideal output-layer

weights of the DNN, σ∗ : RL → R
p denotes the unknown

vector of ideal activation functions corresponding to the

output-layer of the DNN, L ∈ Z≥0 denotes the user-defined

number of neurons used on the output-layer, ε : Θ → R

denotes the unknown function reconstruction error, and Φ∗ :
Θ → R

L denotes the inner-layers of the DNN. The inner-

layers of the DNN Φ∗ can be expressed as2

Φ∗ (x) =
(

W ∗T
k φ∗

k ◦W ∗T
k−1φ

∗
k−1 ◦ . . . ◦W

∗T
1 φ∗

1

)

(x) , (15)

where k ∈ Z denotes the user-defined number of inner-layers

of the DNN, and for all j ∈ {1, . . . , k}, W ∗
j ∈ R

Lj×Lj+1

and φ∗
j : RLj → R

Lj denote the jth inner-layer ideal weight

matrix and vector of activation functions, respectively. The

user-defined parameter Lj for all j ∈ {1, . . . , k} denotes the

number of neurons used in each layer. For the dynamics in

1For notational brevity, all functional dependence on system states and
time are hereafter suppressed unless required for clarity of exposition.

2The symbol ◦ denotes function composition.

(13) and (14), L1 = 2 and Lk+1 = L. Based on (14), the

DNN feedforward estimate f̂i : R
n → R

n is defined as

f̂i (x) , ŴT (t) σ̂i

(

Φ̂i (x)
)

, (16)

where Ŵ : R≥0 → R
p denotes the estimated output-layer

weights of the DNN, σ̂i : R
L → R

p denotes the user-

selected vector of activation functions, and Φ̂i : Q×R → R
L

denotes the estimated inner-layer of the DNN. The output-

layer weight estimate Ŵ is continuously updated in real-

time, and is subsequently designed. The estimated inner-layer

of the DNN Φ̂i is defined as

Φ̂i (x) ,
(

ŴT
i,kφ̂i,k ◦ ŴT

i,k−1φ̂i,k−1 ◦ . . . ◦ Ŵ
T
i,1φ̂i,1

)

(x) ,

(17)

where k ∈ Z denotes the user-defined number of inner-layers

of the DNN, and for all j ∈ {1, . . . , k}, Ŵi,j : Z≥0 →
R

Lj×Lj+1 and φ̂i,j : RLj → R
Lj denote the jth inner-layer

weight matrix estimate and vector of activation functions,

respectively. The index i for all i ∈ Z≥0 denotes the ith

iteration of training, and the initial index i = 0 corresponds

to the DNN at the initial condition.

An iterative data-driven approach can be used to update the

inner-layer weights of the DNN estimate in (17). Concurrent

to real-time execution, data is collected and the inner-layer

weight estimates are held constant until updated. DNN train-

ing algorithms such as gradient descent variants (c.f. [23]–

[25], and [36, Ch. 8]) are employed on the collected data

sets to update the inner-layer DNN weights. The developed

DNN-based control architecture in [26] provides flexibility in

the inner-layer DNN weight training process. The initialized

DNN Φ̂0 can be trained a priori from existing data sets

(i.e., data collected on able-bodied or neurologically impaired

participants). Moreover, in the absence of training data sets,

Φ̂0 can be initialized with random inner-layer DNN weights.

To facilitate the subsequent stability analysis, the following

assumption is made.

Assumption 4. There exists known constants W ∗, σ∗, σ̂, ε ∈
R≥0 such that the ideal output-layer weights W ∗, the ideal

vector of activation functions σ∗ (·), the user-selected vector

of activation functions3 σ̂i (·), and the function reconstruc-

tion error ε (·) can be upper bounded as supx∈Θ ‖W ∗‖ ≤
W ∗, supx∈Θ ‖σ∗ (·)‖ ≤ σ∗, supx∈Θ,∀i ‖σ̂i (·)‖ ≤ σ̂, and

supx∈Θ ‖ε (·)‖ ≤ ε, respectively [37].

C. Control Design

Based on the subsequent stability analysis, the FES control

input is designed as

u , f̂i + krr + kssgn(r) + e, (18)

where sgn (·) denotes the signum function and kr, ks ∈ R>0

are user-defined constant control parameters. Based on the

3For some common activation functions, e.g., hyperbolic tangent func-
tions, sigmoid functions, radial basis functions, σ∗ = σ̂ = L.
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subsequent stability analysis, the weight update law
˙̂
W :

R≥0 → R
p is defined as

˙̂
W , ΓW σ̂i

(

Φ̂i (x)
)

r, (19)

where ΓW ∈ R
p×p denotes a user-defined positive definite

control gain matrix. Substituting (14), (16), and (18) into

(13) yields the closed-loop error system

JΩṙ = −ŴT σ̂i

(

Φ̂i (x)
)

− krr − kssgn(r) + ε (x)− e

+W ∗Tσ∗ (Φ∗ (x)) + JΩq̈d +
1

Ω
τd + αJΩė. (20)

Guidance from the subsequent stability analysis indicates

that the control gains kr and ks have to be selected suffi-

ciently large, and the gain condition α has to be selected

sufficiently small. Specifically, kr, ks, and α should be

selected to satisfy the sufficient gain conditions

ks > W ∗
(

σ∗ + σ̂
)

+
J

Ω
q̈d + ε+

τd

Ω
, (21)

kr >
1

2
J̇Ω + α

J

Ω
+

α2

2

J

Ω
, (22)

0 < α < 2
Ω

J
. (23)

IV. STABILITY ANALYSIS

Theorem 1. Consider a system modeled by the dynamics in

(1) with initial condition [q (0) , q̇ (0)]
T

∈ Θ. Let Property

1 and Assumptions 1–4 hold. The FES control input in (18)

and output-layer weight adaptation law in (19) yield semi-

global asymptotic tracking in the sense that lim
t→∞

|e (t)| = 0

and lim
t→∞

|r (t)| = 0, provided the sufficient gain conditions

in (21)–(23) are satisfied.

Proof: Let VL : R
2+p × R≥0 → R be a candidate

Lyapunov function defined as

VL (z, t) ,
1

2
e2 +

1

2
JΩr

2 +
1

2
W̃TΓ−1

W W̃ , (24)

where z : R≥0 → R
2+p is defined as z ,

[

e, r, W̃T
]T

, and the mismatch between the ideal

output-layer weights and the output-layer weight estimates

W̃ : R≥0 → R
p are defined as

W̃ (t) , W ∗ − Ŵ (t) . (25)

Let ζ : R≥0 → R
2+p be a Filippov solution to the differential

inclusion ζ̇ ∈ K [h] (ζ, t), where ζ (t) = z (t), the calculus

of K [·] is used to compute Filippov’s differential inclusion

as defined in [38], and h : R
2+p × R≥0 → R

2+p is

defined as h (ζ, t) ,

[

ė, ṙ,
˙̃
WT

]T

. The generalized

time derivative of the candidate Lyapunov function VL along

the Filippov trajectories of ζ̇ = h (ζ, t) is defined as

˙̃
VL (ζ, t) ,

⋂

ζ∈∂VL(ζ,t)

ζT
[

K [h] (ζ, t)
1

]

, (26)

where ∂VL (ζ, t) denotes Clarke’s generalized gradient of

VL (ζ, t) [39, Equation 22]. Since VL (ζ, t) is continuously

differentiable in ζ, then ∂VL (ζ, t) = {∇VL (ζ, t)}, where ∇
denotes the gradient operator. Additionally, the time deriva-

tive of VL exists almost everywhere (a.e.), i.e., V̇L (ζ, t)
a.e.
∈

˙̃
VL (ζ, t) for almost all t ∈ R≥0.

Taking the generalized time derivative of (24) yields

˙̃
VL ⊆

[

e, JΩr, W̃TΓ−1
W , 1

2 J̇Ωr
2
]

K









ė

ṙ

−
˙̂
W

1









.

(27)

Substituting (10), the closed-loop error system in (20), and

the output-layer weight estimate update law in (19) into (27)

yields

˙̃
VL ⊆ r

(

−krr − ksK[sgn (r)]− ŴTK
[

σ̂i

(

Φ̂i (x)
)])

+ r

(

1

Ω
τd + αJΩė+W ∗Tσ∗ (Φ∗ (x)) + ε (x)

)

+ rJΩq̈d − W̃TK
[

σ̂i

(

Φ̂i (x)
)]

r − αe2 +
1

2
J̇Ωr

2.

(28)

By Property 1 and Assumptions 1–4, using Young’s inequal-

ity, and adding and subtracting W ∗TK
[

σ̂i

(

Φ̂i (x)
)]

, the

inequality in (28) can be upper bounded as

V̇L

a.e.

≤ −

(

α−
α2J

2Ω

)

e2 −

(

kr −
J̇Ω

2
−

αJ

Ω
−

α2J

2Ω

)

r2

− |r|

(

ks −W ∗
(

σ∗ + σ̂
)

−
J

Ω
q̈d − ε−

τd

Ω

)

, (29)

where rK [sgn (r)] = |r|. Then, provided the sufficient gain

conditions in (21)–(23) are satisfied, the inequality in (29)

can be upper bounded as

V̇L

a.e.

≤ −λ ‖y‖
2
, (30)

where y , [e, r]
T

denotes a concatenated state, and

λ ∈ R>0 is a known constant defined as λ ,

min
{

α− α2

2
J
Ω , kr −

1
2 J̇Ω − α J

Ω − α2

2
J
Ω

}

.

From (24) and (30), VL is positive semi-definite and non-

increasing, which implies VL ∈ L∞, and hence, z ∈ L∞.

Since z ∈ L∞, this implies e, r, W̃ ∈ L∞. Using (9), (10),

and (25), the fact that e, r, W̃ ∈ L∞ implies q, q̇, ė, Ŵ ∈
L∞. By Assumption 4, σ̂i ∈ L∞. Using (19), the fact that

σ̂i, r ∈ L∞ implies the output-layer weight estimate update

law
˙̂
W ∈ L∞. Since q̈d ∈ L∞ by design, the fact that

e, r, Ŵ , σ̂ ∈ L∞ implies the control input u ∈ L∞. By the

LaSalle-Yoshizawa extension for nonsmooth systems in [40],

λ ‖y‖
2
→ 0 as t → ∞, which implies lim

t→∞
|e (t)| = 0 and

lim
t→∞

|r (t)| = 0.
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V. CONCLUSIONS

This paper uses Lyapunov-based methods to develop a

data-driven DNN-based adaptive control method for FES-

induced leg extension rehabilitation. The developed DNN

architecture updates the output-layer DNN weights online (in

real-time) while integrating data-driven methods to update

the inner-layer DNN weights for improved controller per-

formance. To account for switching from iterative updates

of the inner-layer DNN weights, a nonsmooth Lyapunov-

based stability analysis is used to guarantee semi-global

asymptotic tracking of a desired trajectory. Future research

efforts include experimental studies with neurologically im-

paired participants and extending the developed DNN-based

adaptive control architecture to switched system models,

which will enable more precise coordination and activation

of multiple muscle groups for more complex exercises (e.g.,

FES-induced cycling).
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