2021 International Conference on Information and Communication Technology Convergence (ICTC) | 978-1-6654-2383-0/21/$31.00 ©2021 IEEE | DOI: 10.1109/ICTC52510.2021.9621124

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 12,2022 at 14:59:06 UTC from IEEE Xplore. Restrictions apply.

978-1-6654-2383-0/21/$31.00 ©2021 IEEE

Root Cause Analysis of Data Integrity Errors in
Networked Systems with Incomplete Information

Yufeng Xin, Shih-Wen Fu,
Anirban Mandal, Ilya Baldin
RENCI, UNC - Chapel Hill
Chapel Hill, NC, USA

Abstract—There are renewed interests recently in data in-
tegrity error detection and localization driven by exponentially
growing data volumes over large-scale networked systems. Most
existing RCA (Root Cause Analysis) systems take an infras-
tructure operator’s view and rely on dedicated and expensive
monitoring capabilities to instrument and facilitate the analysis.
Unfortunately, in our targeted wide area network environment,
complete network information and monitoring capability are
normally lacking.

In this paper, we present a RCA system that leverages the end-
to-end flow monitoring information from the application layer,
augmented by limited network information. We demonstrated
that root cause localization with high accuracy can be obtained
using multi-class classification models. We specifically studied the
impacts of different realistic combinations of features based on
the available yet incomplete information from both application
and network layers.

I. INTRODUCTION

Root cause analysis (RCA) is a critical function in operating
and managing complex networked systems, be it physical,
software, or hybrid [1]. It aims to identify the component(s)
and process(es) responsible for the fault manifested by the
wrong results or system failures in a timely fashion. Tradi-
tional RCA relies on accurate system models to deduce the
potential component failures from the system symptoms and
behaviors. However, it proves impossible to build such models
for efficient fault identification and localization in complex
networked systems. As a result, RCA for those systems
largely remains a guessing art that requires intensive manual
debugging using traditional tools like ping and traceroute and
daunting amount of communication between operators from
different organizations that often takes days or even weeks.

In this paper, we focus on the root cause analysis of one
important failure mode, data integrity errors, in large-scale
networked systems. These systems typically run over the
Internet or dedicated wide area networks that are managed
by multiple middleware and infrastructure service providers
in a distributed fashion. Due to the insufficient capability of
existing reliable protocols (TCP, encrypted transfer and RAID,
et al.), incomplete end-to-end integrity data coverage, and
more possible component bugs, data integrity errors can stay
stealth or be very difficult to be localized for long periods

This work was supported by the US National Science Foundation under
Grant OAC-1839900.

Ryan Tanaka, Mats Rynge,
Karan Vahi, Ewa Deelman
ISI, USC
Marina Del Rey, CA, USA

735

Ishan Abhinit, Von Welch
CACR, Indiana University
Bloomington, IN, USA

of time. Driven by the exponentially growing data volumes
and the sheer scale of the network, detecting and localizing
the data integrity errors have garnered lots of research and
development interests in recent years [2], [3].

Data integrity errors carry the attributes of the so-called
gray failures and silent failure in the networked system. This
is in contrast to the so-called hard failures that cause data loss
or corruption permanently. Recent studies showed that gray
failures of probabilistic nature causing performance degrada-
tion in terms of packet losses and latency could be efficiently
localized using machine learning (ML) approaches [4], [5].
The data integrity errors, on the other hand, may randomly
corrupt bits in a block of data or packets over network transfer,
which can evade the existing checksum mechanisms imple-
mented in TCP and the storage system. Due to its low error
probability and silent nature in which it may result in both
performance degradation and just wrong results, detection and
localization of data integrity error become very challenging.
Modern middleware systems have just started to add end-to-
end integrity check mechanisms, for example, Pegasus [6] and
Globus [7], which efficiently addressed the detection problem.

As it is not possible to build a complete system model,
machine learning has become the leading candidate to de-
velop RCA systems for complex networks [8]. In [9], the
authors attempted to identify the hard failures of network
links via the popular multi-class ML models using end-to-end
passive traffic engineering measurements (throughput, latency,
and packet loss). The authors in [5] took an active probe
approach to localize the fault in a virtual disk system to
the finest granularity up to the network switches. In [10],
a necessary condition was derived on the minimal set of
paths that active probes need to be sent over the targeted
network. Another line of work including [11], [12], [13]
adopted statistical learning approach to infer the probabilistic
relationship between the path failure and the link faults. All
these research works made a strong assumption that the RCA
system can instrument probes or obtain measurements from
any pairs of nodes in the network to obtain both packet-
level routing path and measurement information. In an earlier
study, the decision tree model was used to predict if a request
will succeed over a flawed network system [14]. Bayesian
inference was demonstrated to be efficient for fast diagnosis
when the causal relationship model is established in a large

ICTC 2021

Internet system [15]. A recent study focused on a source based
measurement framework to diagnose the issues in the remote
application services and therefore does not directly address the
network components [16].

When developing an efficient RCA system, there are multi-
ple dimensions in the design space. Different from the recent
work in gray or hard failure RCA in a production data center
or single domain network, we target the large scale networked
systems where there are more limitations in obtaining com-
plete wide-area network information. The accurate network
topology and routing information is normally unavailable as
the ping and traceroute are always turned off in many domains
due to security concerns from the service providers [17]. It is
also not realistic to deploy and operate a comprehensive probe
instrumentation and measurement system in this typical multi-
domain environment with continuous network coverage like in
the data center networks [18].

In this work, we take an application-centric view, rather
than the infrastructure-centric view, to develop a machine
learning RCA system to localize the data integrity errors. Our
basic idea is to formulate the targeted RCA problem as a multi-
class classification problem, where the potential root causes
can be classified using flow level measurements provided by
the application layer, augmented by limited network informa-
tion. And we assume only passive measurement of the flows
between the end hosts is possible from the application layer.

We specifically use a workflow management system
(WMS) [6], a popular Internet-scale distributed application,
as the targeted system. WMS facilitates the in-order exe-
cution of jobs in workflows and includes large amounts of
interdependent data transfers, storage functions, and computa-
tion tasks. These tasks are often distributed over distributed
hardware, software, and data resources located in different
facilities nationwide or globally. Inevitably, frequent system
failures and reliability issues caused by errors and faults from
underlying subsystems have been serious concerns for the
WMS community.

The rest of this paper is organized as follows. We first
define the network system integrity error RCA problem with
incomplete system and measurement information in Section II.
We present a machine learning solution approach and the
model selection in Section III. We identified that using the
network-wide aggregated data flow as the input, training data
balancing, and a Top-k accuracy metric can significantly
improve the classification accuracy. A high-fidelity system em-
ulation environment we built in a cloud testbed is introduced in
Section IV. The performance evaluation results are presented
in Section V. The paper is concluded in Section VI.

II. RCA FOR NETWORK INTEGRITY ERRORS

A network system can be represented as a simple graph
G(V,E) where V is the set of nodes that includes H end
hosts and R routers. E is the set of links. Due to scalability
or privacy constraints, deploying monitoring capabilities at
every point of the targeted large-scale network is not possible.
Therefore, the problem can be concisely modeled as a bipartite

mapping graph between the path level flows and its network
components as shown in Fig. 1.

We further observe that one component failure (e.g., L)
will cause multiple paths to be erroneous while one flow
error (e.g., F;) may be caused by multiple component failures.
And because the component error probability is normally low
(1073 —=1079), it would require a large number of file transfers
to catch a few corrupted files. Our ultimate goal is to localize
the possible root causes in node or link errors by inference
from the observed flow level abnormalities only at the end
hosts, which can be translated to learning the mappings in
such a graph.

In general, the funda-
mental network RCA prob-
lem is to use the path-level
measurement to deduce the
faulty components that can
be concisely modeled by
the formula 1. A path P;
that a file transfer (flow) ¢
traverses consists of origin
node HY, a set of links

Links/Interfaces/Nodes

Flows

where each e} € E has two
interfaces e! and el on the
route, and destination node
H¢. As our main concern is
if a file is corrupted rather
than packet losses, the file characteristics, Fj, e.g., the source
and destination nodes, file size, transfer time, retransmission,
etc. all become part of the data features. Some of the features
are continuous variables and some are categorical variables.
As the components (j) of P; that file transfer ¢ traverses is
unknown except for its two end hosts H? and H{, the model
needs to implicitly learn the file routes in order to infer the root
causes. As a result, we can not use the traditional stochastic
learning approach.

Fig. 1: RCA Bipartite Graph

Probability(File i corrupted) =

f(F, H Probability(device j is faulty)) ey
JjEP;

The majority of recent studies assume flow information
between any pair of nodes in the network is available because
they focus on data center networks where they have full
ownership and their modern routers allow originating and
receiving probing data. This is very important because, as
shown in [10], there exists a minimal set of source-destination
pairs to guarantee successful pinpointing of link errors in the
network. They further assume the routes for all flows are
known, i.e., the mapping represented in Fig. 1. However, both
assumptions do not hold for our targeted Internet environment
due to obvious administrative constraints, complex topology,
and the lack of monitoring coverage. In the Internet-scale
network, traffic routing and forwarding paths are hard to
obtain because of frequent topology and policy changes, the
widely adaptation of multi-path routing, and disabled Ping and

736

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 12,2022 at 14:59:06 UTC from |IEEE Xplore. Restrictions apply.

Traceroute in many places [13]. Furthermore, deployment of
a monitoring infrastructure to conduct system-wide active and
passive monitoring is administratively and costly prohibitive.

What makes the presented RCA problem uniquely challeng-
ing is that the flow routes, i.e., the mapping relationships in (1)
are unknown in our targeted network environment. However,
the file level measurement and characteristics give us extra
data features that could enhance the model accuracy, which is
the case that we’ll show in the evaluation.

In summary we made more restrictive but more realistic
assumptions in this study in that (1) only the data file transfer
information including integrity error states can be obtained
at the end hosts from the application layer; (2) only the
physical nodes (or abstract representation of domains) and
their interfaces are known to us, but the network topology
and traffic routing are unknown.

III. MACHINE LEARNING FOR RCA

We model our problem as a multi-class classification prob-
lem where the labels are defined as all the end host nodes and
network interfaces that may incur integrity errors. The features
are flow level characteristics that include source, destination,
size, transfer time, throughput, whether a flow is corrupted,
missed, or retried, etc. In general, the training process takes
as input two arrays: an array X of size [Ngagmpless M features)
holding the training samples, and an array y of class labels
of size [Nsamples]. The total number of labels L equals to the
number of the link interfaces and the end hosts in the network.

We say a file transfer succeeds when it incurs no integrity
errors. In this study, we focus on RCA analysis with failure
data only, i.e., the data sets used in training only contains those
corrupted files transfers with fault labels that are extracted
from the raw data collected from the experiment that consists
of all data transfers. This non-probabilistic approach not only
bears its own technical merit but also reflects a realistic
situation where only failure events are reported in applications
in order to reduce the measurement overhead and storage cost.
Due to the low probability nature of the integrity errors, it is
not economically viable to save all data transfer monitoring
statistics as the majority of them are successful flows. This
not only means that a large amount of data transfer flows with
good network coverage are indispensable, but also suggests
efficient fault injection mechanism is needed, to generate
sufficient labeled training data.

There are a large number of different supervised ML mod-
els and associated parameter tuning methods. Our data sets
introduce mixed numerical and categorical features as well as
data imbalance. In addition, we want to obtain the class mem-
bership probability estimates, not just the most likely single
class in the result. We evaluated several model variants using
the popular Scikit-learn library [19], and found the random
forest model results in the best performance in terms of RCA
accuracy and training time. Decision tree is a natural choice to
multi-class classification as the multiple leaves represent the
labels. It supports a predict_proba method that gives the class
membership probability estimates. Its main advantages include

fast prediction time and excellent model explainability. In this
study, we tried several ensemble methods based on randomized
decision trees or random forests. By fitting over multiple
randomized decision trees built from randomized samples, the
random forest model with the right hyper parameters achieves
higher accuracy and controls overfitting better.

A. Aggregated flows and inference accuracy

One key observation is that an erratic link may cause
integrity errors on all data transfer paths traversing it. While
the training data is collected in the form of individually labeled
flows, the inference can be done in the unit of all flows that are
corrupted at a time since we only consider the single failure
scenario. The models are trained with the labeled flow data.
For inference, we consider two different methods: Flow that
just uses individual flow as the input and Aggregated Flow
for which we generated a new data set that all corrupted
file transfer flows at a time are aggregated as one input data
sample. In the former case, the accuracy is computed on a per
flow base. In the latter case, if all the flows in a data set are
labeled by L labels, they will be aggregated into L samples to
be tested against the trained model. The total number of correct
label inference divided by L is defined as the accuracy.

B. Top-k classification accuracy

Since we assume training data from data transfer flows
only between the end hosts, it doesn’t satisfy the necessary
condition presented in [10]. The conventional classification
on a single label inference from the training models performs
relatively poorly in terms of accuracy and F-score. In practice,
it would be very useful if the model can produce a small set of
highly likely causes for the operators to zoom in. Most of the
ML models, when used to infer a test sample, actually generate
the probability distribution over all the classes. Therefore we
can use a Top-k Accuracy metric in evaluation, for which a
prediction is defined as correct as long as the set of k labels
of highest probability in the classification results contains the
correct label of the sample. Both decisions tree and BN models
natively support the classification probability output.

C. Features

As explained on Equation 1, for a data sample, the feature
set could consist of both path features and file transfer features.
In our model, we only consider the features that are possible
for the application to collect at the end hosts. So only the
end host information is included for the path features because
we assume the other network elements on the file transfer
paths are unknown. The file transfer features include both
numerical characteristics like file size and transfer throughput ,
and categorical features like correctness of integrity checksum
and presence of retransmission.

The impacts of the file transfer features are two-folded. On
one hand, the bigger file size may incur a higher probability
of file corruption and lower throughput may imply more TCP
retransmission caused by corrupted packets, which may help
with the RCA performance. On the other hand, different

737

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 12,2022 at 14:59:06 UTC from IEEE Xplore. Restrictions apply.

machine learning models perform differently when dealing
with a mixture of numerical and categorical features. In reality,
there are always engineering and policy limits on obtaining
certain features for application users in a network. Therefore
it is important to study the model performance when only
a subset of features are available. Therefore we study two
scenarios of different feature sets: No File Features when the
numerical file size and transfer throughput information is not
available and All Features when it is available.

D. Error Asymmetry and Data Imbalance

A leading factor that affects the performance of multi-
class classification models is the data set imbalance. When
data samples from certain classes (called majority classes)
outnumber those from other classes, the trained models will
be highly skewed toward the majority classes, which will
significantly lower the prediction accuracy. By the nature of
integrity error simulation, the file transfer failures caused by
faulty network interfaces are more frequent than those caused
by the faulty end hosts. And between the two interfaces on a
link, the one on the receiving side of a file transfer over TCP
has a much higher chance to corrupt the file than the one on
the transmitting side. Therefore the raw data we collected is
oversampled on a subset of the network interface classes and
significantly undersampled on the end host classes.

E. Classification Granularity

The wide area network system may cover multiple adminis-
trative domains. For example, a subset of core routers or border
routers may belong to one service provider and another subset
of routers and end hosts may belong to a campus site or a data
center. It would be very useful if RCA can localize the failure
to a particular domain accurately so the domain administrators
can further locate the faulty components with more powerful
debugging tools. For the classification model training and
inference, this means to aggregate multiple related labels to
form super labels according to certain criteria. This idea could
lead an efficient multi-granularity classification framework,
which is not difficult to implement on top of the base model,
but could be very appreciated in reality. As pointed out by the
reference, inefficiency of traditional RCA approaches largely
comes from the so called blame game, i.e., back and forth
communication and reasoning between administrators from
different domains to identify who is responsible for the tedious
debugging in her domain.

IV. NETWORK EMULATION AND FAULT INJECTION

In order to obtain sufficient labeled training data and make
experiments efficient and repeatable to study the proposed
RCA system, we created a high-fidelity emulation environment
in the NSF ExoGENI cloud testbed [20] that can automatically
create a virtual network system with virtual machines (VMs),
bootstrap the network routing, initiate data transfers, inject
arbitrary integrity errors into the virtual router interfaces and
end hosts, and collect training data.

To inject controlled errors into any network elements, we
added a new utility in Chaos Jungle [3], [21], which can
corrupt arbitrary file(s) in nodes in addition to packets out
of network interfaces according to a given probability. In
this way, labeled data can be generated to train the machine
learning models.

At the last step, all the raw data will be processed and
stored in the final result database files with predefined feature
columns. Each database entry represents one data transfer with
features of the file name, file size, origin, sink, access router,
integrity error or not, etc. However, the forwarding path is un-
known as it is controlled by the routing control plane process.
The final result is exported to a Jupyter notebook environment
where all the ML-based data analysis is performed.

CacheUNL.

Lk
CachoUC OrigUNL

origincal o
orginunyuer orgincaiRouter

CacheUNLRouter

X cr

CacheNY

OrigINCSARouter

ansz’:rmy

o OriginFNAL
oronsoscros -

Onginsosc Orginuc

Fig. 2: Fault Injection in an Emulated Network

We use Fig. 2, an annotated screenshot from the ExoGENI
GUI, to illustrate an emulated network system, a simplified
version of the Open Science Grid (OSG) data federation
network, a highly utilized wide area network to distribute data
for high throughput scientific computing [22]. This network
consists of multiple end hosts running the data transfer and
computing jobs controlled by Pegasus WMS [6], and a set
of routers in the middle to represent multiple forwarding
domains. The unit of data transfers is a file of different size
for which we define as a flow from an origin end host to a
destination end host. The two cross signs, one on an end host
and another one on a network link, represent the locations
where we inject the data integrity errors with a probability
setting. When an error is enabled (injected), all the traffic
flows that pass through the faulty element will be subject
to possible data corruption as the error may flip the bits of
packets randomly under a predefined probability. As we have
discussed, most of these corrupted packets will not be caught
by TCP or the storage system. As a result, some corrupted
files will successfully land at the destination end hosts and
will only be detected by Pegasus at the application layer.

This emulation environment can be used to create a sand-
box to generate high-fidelity RCA models for a production
networked system.

738

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 12,2022 at 14:59:06 UTC from |IEEE Xplore. Restrictions apply.

V. EXPERIMENTS AND EVALUATION

We emulated a network following the power law, i.e., 4
routing nodes in the middle to emulate the backbone domains
and the rest emulate the access domains in between the
backbone nodes and the end hosts.

Among the 23 nodes in this topology, we specify 6 data
origins and 6 data sinks as the end hosts to transfer a batch
of data files of different sizes that we randomly acquired from
OSG. This file batch is transferred between every chosen pair
of end hosts. We ran two sets of experiments to collect two
sets of raw training data. In the first one, called Partial, data
transfers only happen between the origins and sinks, where
every origin node sends all the files in the batch to all the
receiving nodes in parallel. In the second one, called Complete,
data transfers happen between all the end host pairs. The file
integrity is being checked at the receiving end host and each
file transfer accounts for one data flow and therefore a data
sample in a training data set. We further parallelized the data
transfer process to reduce the emulation time down to about
twenty-four hours for this particular network.

For each experiment, probabilistic integrity error or network
impairment via the Chaos Jungle tool is injected to the 54
link interfaces and 12 end hosts in sequence with the given
probability setting. For each fault injection scenario, the entire
set of Partial or Complete data transfers are conducted. Each
link interface or node component with fault injected represents
a label. The receiving node checks if a received file is identical
to its original copy via checksum and marks this data transfer
as a failure data sample if checksums do not match. We treat
retransmission as a separate feature for the data samples. A
file could also be missed at the destination due to ultimate
transfer failure which is also treated as a failure. If the
checksum matches, this data transfer becomes a positive data
sample in the training data set. Otherwise, it is labeled by the
corresponding faulty element. The final Complete training data
set consists of 8M data samples.

Each figure shows five different performance metrics under
four scenarios. The five metrics are F1 score with per-flow
inference, the accuracy with per-(Flow) inference, and the
Top — 1, Top — 2, and Top — 3 accuracy with the Aggre-
gated Flow inference. The four scenarios are Partial and the
Complete data sets with All Features or only No File features.

Random Forest
12

1

0.8

0.6

04

‘wh LW
, NN |

F1 Flow Top-1 Top-2 Top3
M Partial-All Features M Partial-No File Features

Complete-All Features Complete-No File Features

Fig. 3: Classification Accuracy with Random Forest Model

Fig. 3 presents the results from training random forest
models with different data sets. Two prominent observations
stand out. First, it clearly shows that the model with Complete
data performs significantly better than the Partial case. This
illustrates the importance of sufficient coverage of the network
path information in the training data set. It also shows that,
even without the full coverage of network paths between the
network routers, the flows between end hosts alone can guar-
antee very high RCA inference accuracy. Secondly, training
with All Features outperforms its No File Features counterpart
by a large margin. This means the file transfer statistics can
boost the inference performance. We also learned that the file
transfer throughput has a bigger impact than the file size,
though the result is not shown here.

When we zoom into more details, we can see that the
combined Complete-All Features data set presents satisfactory
performance even with the single flow-based testing data
samples with both F1 score and accuracy reaching above 0.90.
When the aggregated flow data samples are used for inference,
the accuracy scores perfect 1. The next best scenario is when
All Features presented with Partial data transfer, while the
single flow-based inference only achieved under 0.5 accuracy,
the aggregated flow-based inference doubles the accuracy and
quickly narrows down the root cause to the top 2 elements.
However, without more path coverage, it doesn’t achieve
perfect accuracy until T'op — 10. For the next two scenarios,
the aggregated flow inference helps achieve better performance
and Complete path coverage appears more important than the
inclusion of file transfer features. However, the best it can
achieve is a mere 80% Top — 3 accuracy.

In order to gain more insight into the classification accuracy
performance, we observed that the majority of mislabeled data
in the classification inference are those with labels of end host
faults in all the scenarios whose accuracy is less than 1. This
is because the raw training data set is highly imbalanced due
to the different impacts of the injected failures on the data files
being transferred (Section III-D). There are significantly fewer
integrity errors caused by the faulty end hosts, i.e., significantly
less labeled data in these classes.

The main techniques to solve the dataset imbalance problem
are to rebalance the data via oversampling or downsampling
data from different classes. Since the labeled data subsets
from the end host failure classes are rather small, the pure
downsampling techniques will not improve on the model
performance. We focus on two representative oversampling
techniques: random and SMOTE as well as two methods that
combine oversampling and downsampling in SMOTETomek
and SMOTEENN [23].

For the Complete-All Features data set, our analysis in-
dicated that both Random and combined SMOTE methods
resulted in similar perfect T'op — k performance but slightly
reduced flow-based F1 Score and accuracy. SMOTE deterio-
rated all the metrics. The observations on the Complete-No
File Features data set are similar. Since the performance of
the original model is already perfect for the former case, we
only present the results on the two Partial data sets.

739

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 12,2022 at 14:59:06 UTC from |IEEE Xplore. Restrictions apply.

will further explore the multi-granularity classification frame-
work and stochastic approaches that leverage the probability
distribution characteristics of the network failures.

Partial-All Features

0.8
0.6
04
0.2 II I
0
F1

Flow Top-1 Top-2 Top3

mOriginal mRandom SMOTE SMOTEENN m SMOTETomek

Fig. 4: Oversampling with All Features

Partial-No File Features
12

0:...|||H| “H

F1 Flow Top-1 Top-2 Top3

o
o

o
b

o
N

mOriginal ®Random SMOTE SMOTEENN = SMOTETomek

Fig. 5: Oversampling with No File Features

The results in Fig. 4 and 5 show that the three methods
other than the SMOTEENN improve the performance to some
extent, especially on the T'op — k accuracy measurement. The
basic random oversampling demonstrates the best performance
improvement in most cases. The main takeaway is that multi-
ple sampling methods have to be carefully evaluated in order
to find the best one.

We also evaluated the multi-granularity classification
scheme discussed in Section III-E. For the simulated system,
we combine each access router and the end hosts attached to it
into one domain and aggregate the related labels into a super
label. A random forest model can be trained to achieve 100%
accuracy with the basic aggregated flow inference.

VI. CONCLUSIONS AND FUTURE WORK

We developed a machine learning based network integrity
error RCA system that leverages the end-to-end flow mon-
itoring information from the application layer, augmented
by limited network information. The impacts of different
combinations of numerical and categorical data features under
different realistic network and measurement assumptions on
the inference accuracy are quantified via an emulated network
created in an automated high-fidelity emulation environment
we built. The analysis validated that high RCA accuracy to
the device level can be achieved with an efficient supervised
learning model even when only partial network and flow level
measurement information are available.

For our future work, we plan to study networks of larger
scales with different topology characteristics, multiple con-
current faults, more finely tuned ML models and possible
integration with limited network monitoring information. We

REFERENCES

[11 M. Solé, V. Muntés-Mulero, A. I. Rana, and G. Estrada, “Survey on
models and techniques for root-cause analysis,” ArXiv 1701.08546,
2017.

J. Stone and C. Partridge, “When the crc and tcp checksum disagree,”

SIGCOMM Comput. Commun. Rev., vol. 30, no. 4, Aug. 2000.

[3] M. Rynge, K. Vahi, E. Deelman, A. Mandal, I. Baldin, O. Bhide,
R. Heiland, V. Welch, R. Hill, W. L. Poehlman, and F. A. Feltus,
“Integrity protection for scientific workflow data: Motivation and initial
experiences,” in Practice and Experience in Advanced Research Com-
puting on Rise of the Machines Learning (PEARC), New York, 2019.

[4] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and
R. Yao, “Gray failure: The achilles’ heel of cloud-scale systems,” in
Proceedings of the 16th Workshop on Hot Topics in Operating Systems.
New York, NY, USA: ACM, 2017.

[5] Q. Zhang, G. Yu, C. Guo, Y. Dang, N. Swanson, X. Yang, R. Yao,

M. Chintalapati, A. Krishnamurthy, and T. Anderson, “Deepview: Vir-

tual disk failure diagnosis and pattern detection for azure,” in 15th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI), Renton, WA, Apr. 2018.

E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,

R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,

“Pegasus: a workflow management system for science automation,”

Future Generation Computer Systems, vol. 46, pp. 17-35, 2015.

[7] E.-S. JUNG, R. KETTIMUTHU, and S. CHUNG, “High-performance
end-to-end integrity verification on big data transfer,” IEICE TRANSAC-
TIONS on Information and Systems, vol. E102-D, no. 8, 2019.

[8] R. Boutaba, M. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. Caicedo, “A comprehensive survey on ma-
chine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, 9(1), 2018.

[91 S.M. Srinivasan, T. Truong-Huu, and M. Gurusamy, “Machine learning-
based link fault identification and localization in complex networks,”
IEEE Internet of Things Journal, 2019.

[10] C. Tan, Z. Jin, C. Guo, T. Zhang, H. Wu, K. Deng, D. Bi, and D. Xiang,
“Netbouncer: Active device and link failure localization in data center
networks,” in 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), Boston, MA, 2019.

[11] H. Herodotou, B. Ding, S. Balakrishnan, G. Outhred, and P. Fitter,
“Scalable near real-time failure localization of data center networks,”
in 20th ACM International Conference on Knowledge Discovery and
Data Mining (KDD), New York, NY, USA, 2014.

[12] Y. Peng,J. Yang, C. Wu, C. Guo, C. Hu, and Z. Li, “detector: a topology-
aware monitoring system for data center networks,” in 2017 USENIX
Annual Technical Conference (USENIX ATC 17). Santa Clara, CA:
USENIX Association, Jul. 2017.

[13] B. Arzani, S. Ciraci, L. Chamon, Y. Zhu, H. Liu, J. Padhye, B. T.
Loo, and G. Outhred, “007: Democratically finding the cause of packet
drops,” in 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), April 2018.

[14] M. Chen, A. X. Zheng, J. Lloyd, M. 1. Jordan, and E. Brewer,
“Failure diagnosis using decision trees,” in International Conference on
Autonomic Computing, 2004., May 2004.

[15] J. C. Platt, E. Kiman, and D. A. Maltz, “Fast variational inference
for large-scale internet diagnosis,” in 20th International Conference on
Neural Information Processing Systems (NIPS), USA, 2007.

[16] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “Microrca: Root cause
localization of performance issues in microservices,” in IEEE/IFIP
Network Operations and Management Symposium (NOMS), 2020.

[17] T. Hou, Z. Qu, T. Wang, Z. Lu, and Y. Liu, “Proto: Proactive topology
obfuscation against adversarial network topology inference,” in IEEE
Conference on Computer Communications (Infocom), 2020.

[18] C. Guo, “Pingmesh: A large-scale system for data center network latency
measurement and analysis,” in SIGCOMM. ACM, August 2015.

[19] “Scikit-learn,” https://scikit-learn.org/stable.

[20] “Exogeni website and wiki,” http://www.exogeni.net.

[21] “Chaos jungle,” https://github.com/RENCI-NRIG/chaos-jungle.

[22] “Open secience grid (0sg),” https://opensciencegrid.org.

[23] “Imbalanced-learn,” https://imbalanced-learn.org/stable/.

—
[\
—

[

=)
—

740

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 12,2022 at 14:59:06 UTC from |IEEE Xplore. Restrictions apply.

