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Abstract—Hafnium-oxide based bipolar RRAM was 
investigated for high-level temporal correlation detection, for in-
memory computing. The experimental analog data of HfO2 
RRAM, both in RESET and SET regimes was evaluated to detect 
10 correlated processes from 25 processes on a 5x5 RRAM array. 
Our method gave 36,000-53,000 times less energy consumption 
than that of a previous implementation with phase change 
memory, and a predicted acceleration of 1600-2100 times the 
execution time than that of 1xPOWER8 CPU (1 thread) for 
detecting correlation between 25 processes.   

Keywords—RRAM, analog switching, in-memory computing, 
temporal correlation detection. 

I. INTRODUCTION  
The challenges faced in complementary metal-oxide 

semiconductor (CMOS) scaling, due to the decline of Moore’s 
law and end of Dennard’s scaling, has inspired the search for 
alternatives to the standard von Neumann architecture [1-3]. The 
rapid increase of ever-growing number of devices with the 
advent of Internet of Things (IoT), gives rise to an explosion of 
data that need to be processed. The bottleneck between memory 
and processor therefore incurs significant power consumption 
and latency, in addition to limited bandwidth. The data transfer 
of operands between memory and processor consumes a few 
hundred times more energy than the computation itself [2]. An 
alternative would be to collocate memory and processor, to 
process data where it is stored. Thus emerging non-volatile 
memory technologies are attractive for such applications.  

Resistive random access memory (RRAM), among other 
non-volatile memories, is good candidate due to its high 
switching speed, high density, good CMOS compatibility, 
simple structure and ease of fabrication [4]. It is a two-terminal 
device whose resistance can be modulated through applied 
electrical pulses. As such, they have been used to accelerate 
vector-matrix multiplications [5-6], and realize classification 
tasks in neuromorphic computing. Array structures of RRAM is 
common, and can be used for in-memory computations In 
addition, logic operations in-memory such as IMPLY and 
FALSE, MAGIC, and flow-based computing have been 
proposed on memory arrays [7-10]. Correlation shows the 
degree of association between two variables [11]. Correlation 

detection may be applicable for IoT, social networks, large 
scientific data, where data may be processed into binary data 
streams [12]. The correlation between these binary data streams 
may be carried out in real-time to identify clusters of correlated 
data in incoming data streams [12]. Correlation was previously 
detected using phase change memory (PCM), where the 
crystallization dynamics of PCM was used to determine 
correlated statistical event-based data streams [12] and in 
another example, a single-neuron computational primitive and a 
level-tuning concept [13]. RRAM has different operating 
principles than PCM, and consumes lower RESET 
programming power, has simple fabrication requirements, is 
CMOS compatible, and has high switching speeds. Thus, 
RRAM warrants investigation for this application; however, this 
high level computation has been simulated with RRAM model 
[14], but has not been investigated with actual RRAM analog 
performance characteristics. In this work the analog switching 
data of actual RRAM devices were investigated with a temporal 
correlation detection algorithm. 

II. RRAM FABRICATION AND CHARACTERIZATION 

A. RRAM Fabrication 
The hafnium oxide based RRAM used in this work consists 

of TiN/Ti/HfO2/TiN stack, where the top and bottom electrodes 
are TiN, HfO2 is the switching layer and the Ti is oxygen 
exchange layer (OEL). The RRAM was integrated with 65nm 
CMOS technology on a 300mm wafer platform. The RRAM 
was implemented between M1/V1 interface, to form 1-
transistor-1-RRAM structures.   

B. Electrical Charactrerization of Analog Switching of RRAM 
A high frequency electrical measurement setup consisting of 

Berkeley Nucleonics pulse generator, power splitter, and radio 
frequency (RF) probes, was used to generate and apply the ultra-
short pulses to 1T1R devices. The pulse generator input was fed 
into a power splitter, which split 50% of the input and applied to 
the top electrode of 1T1R, and the other 50% was connected to 
oscilloscope to display the applied pulse train.  A 50 Ohm 
termination resistance between the probes and the power splitter 
is used to minimize signal reflection. Due to ultra-short pulse 
widths down to 300ps this measurement setup required extra 



pads to accommodate 1T1R device testing. Thus, this imposed 
a limitation to apply ultra-short pulses to an array of connected  

 

 
Fig. 1. Analog switching data using ultra-short 300ps pulses of 200 RESET 
pulses followed by 200 SET pulses, for four cycles. The four cycles for RESET 
and SET were denoted by R1-R4 and S1-S4, respectively, using different 
colors. The SET and RESET voltages used are 1V and -0.75V, respectively, of 
300ps duration. After each SET/RESET pulse, a read-verify approach was used 
to measure the intermediate resistance states.   

1T1R devices. Therefore, the measurement results were used in 
the simulation of temporal correlation detection in a Python 
environment. 

After forming the RRAM devices at 3V, 200 RESET pulses 
followed by 200 SET pulses, of 300 picosecond pulse widths, 
were applied consecutively to gradually modulate the RRAM 
resistance from LRS to HRS (RESET) and HRS back to LRS 
(SET). The SET and RESET voltages were fixed at 1V and -
0.75V, respectively. The positive voltage was applied in 
succession to decrease RRAM resistance gradually while the 
negative voltage was applied in succession to increase RRAM 
resistance gradually, as shown in Fig. 1. Higher RESET voltage 
amplitudes resulted in higher variability along with higher 
resistance for HRS [15]. Therefore, to reduce resistance 
variability a lower RESET voltage amplitude was used. After 
each SET or RESET pulse, a read pulse of -0.3V of 10 µs 
duration was applied to read the intermediate resistance. 
Multiple devices were measured. The data for four cycles are 
shown in Fig. 1. The application of ultra-short pulses gives the 
monotonic change in device resistance and the accumulative 
behavior that is employed in the temporal correlation detection 
algorithm. The data in the respective four SET and RESET 
cycles in Fig. 1 are denoted by S1-S4 cycles and R1-R4 cycles, 
respectively. These cycles were used to detect temporal 
correlation between binary processes, and the effect of data in 
each cycle on the temporal correlation detection algorithm is 
discussed.  

III. TEMPORAL CORRELATION DETECTION USING RRAM 

A. Generation of Correlated and Uncorrelated Processes 
The discrete-time binary stochastic processes, Xi, are first 

generated and then assigned to a 5x5 array. The correlated 
processes were generated with a binomial distribution with 

P(X=1)=0.1, over a large time instant, and are correlated with a 
correlation coefficient of 0.8. The correlation coefficient, c, 
between two binary processes, Xi(k) and Xj(k), is given in 
equation (1) [11-12,14]. This normalizes the covariance between 
the two random variables, and varies from -1 to 1. If the two 
processes are correlated, the c>0. Otherwise, the processes are 
not correlated.  

               
[ ( ), ( )]

[ ( )] [ ( )]

Cov X k X ki j
c
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=                    () 

 The ten correlated processes were assigned to the first two 
rows of the 5x5 array. The rest of the array were assigned 
uncorrelated processes.  

B. Algorithms for Temporal Correlation Detection using SET 
and RESET Regimes 

 The temporal correlation detection algorithm was adapted 
from [12], but the algorithm was modified to work with the 
RRAM analog data, both in RESET and SET regimes, of fixed 
pulse amplitude and pulse width. The experimental RRAM data 
is used to update RRAM resistance in simulation.  

 As each binary process, Xij, was assigned to each RRAM 
device in the 5x5 array, the row and column of RRAM and its 
assigned process are denoted by i and j, respectively. The value 
of binary process, Xij(k), is either 0 or 1 at time instant k. The 
algorithm of temporal correlation detection with RESET data 
and SET data are shown in Figures 1 and 2 respectively. Firstly, 
the entire array is SET (RESET) to high (low) conductance if 
the RESET (SET) regime of RRAM is used in simulation at k=0. 
This conductance is taken from the last datum of previous SET 
(RESET) cycle. The parameters time instant k, momentum M 
and the number of pulses applied n, are initialized. Then, an 
instantaneous sum of all processes is calculated in the first loop, 
called M(k), at each time instant k. Then, the M(k) determines 
the number of programming pulses to be applied to RRAM 
device if its assigned process Xij(k) holds a non-zero value. The 
M(k) modulates the number of applied pulses instead of pulse 
amplitude, based on the function f(M), shown in Equation 2. 
This eliminates the need of a constant required in previous 
algorithm to keep within switching thresholds.  

  𝑓(𝑀) =

{
 

 
1      1≤𝑀(𝑘)<3
  2      3≤𝑀(𝑘)<10

  3   10≤𝑀(𝑘)<15
 4   15≤𝑀(𝑘)<20

 5   20≤𝑀(𝑘)<25
0      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (2) 

The parameter n ensures that only 200 pulses are applied 
during resistance modulation, and that the RRAM resistance 
saturates at the 200th applied pulse and maintains this resistance 
for subsequent pulses. After the number of pulses to be applied, 
y, based on f(M), is determined, the RRAM Rij where Xij(k)=1 
is applied y number of RESET pulses in Figure 1 and y number 
of SET pulses in Figure 2. The parameter pulse_no ensures that 
y number of pulses are applied to the RRAM device Rij. As each 
RESET (SET) pulse is applied, the resistance of Rij is updated 
from the RESET (SET) cycle analog data, R1-R4 (S1-S4). This 
is checked for all the 25 processes, then the time instant k is 
incremented and the M(k) is reset to 0. This algorithm iterates 

Research sponsored by National Science Foundation, under award 
number 1823015. 



until the final time instant kfinal. The devices with correlated 
processes are expected to have greater absolute change in 
conductance than devices with uncorrelated processes. To 
compare whether the algorithm worked or not with the RESET  

 

 
Fig. 2. Algorithm of the simulated temporal correlation detection with reset 
cycles R1-R4 of the RRAM analog switching data using 200 RESET pulses of 
300ps pulse width.  

 
Fig. 3. Algorithm of the simulated temporal correlation detection with set 
cycles S1-S4 of the RRAM analog switching data using 200 SET pulses of 
300ps pulse width. 

and SET analog data, the difference between median 
conductance of devices with all correlated and uncorrelated 
processes are determined. The same processes were used for the 
RESET analog data in R1-R4 cycles and SET analog data in 
S1-S4 cycles. Lastly, the devices with correlated processes are 
expected to have greater change to low conductance (high 
conductance) when RESET (SET) data is used. 

IV. RESULTS AND DISCUSSION 
The temporal correlation detection results with analog 

RESET cycles, R1-R4, are shown for time instants k of 500, 
600, 900, 1200 and 1300 in Figures 4-8, respectively. The 
temporal correlation detection results with analog SET cycles, 
S1-S4, are shown for time instants k of 130, 317 and 1200 in 
Figures 9-11 respectively. The algorithm uses the non-volatile 
accumulative behavior of RRAM shown in Figure 1.  

A. Results of R1 RESET Cycle Analog Data 
 In the analog RESET R1 cycle, resistance increases 
gradually from 11 kΩ to 19 kΩ in the initial 130 pulses and hits 
a peak, then decreases till 200th pulse. This resulted in greater  

 
Fig. 4. Conductance of 5x5 RRAM array at time instant k=500 using analog 
a) R1 reset cycle data b) R2 reset cycle data c) R3 reset cycle data and d) R4 
reset cycle data.  

 
Fig. 5. Conductance of 5x5 RRAM array at time instant k=600 using analog 
a) R1 reset cycle data b) R2 reset cycle data c) R3 reset cycle data and d) R4 
reset cycle data.  

absolute change in conductance for devices with correlated 
processes with the initial 130 pulses, and detected the correlated 
processes at time instants k=500, 600 in Figures 4(a) and 5(a) 
respectively. However, due resistance decrease after 130 
pulses, the algorithm fails to detect the correlated processes 
when it iterates to higher time instants k of 900, 1200 and 1300 
in Figures 6(a), 7(a) and 8(a), respectively. This shows that 
gradual monotonic resistance modulation is important for the 
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algorithm to work. The difference in median conductance of 
correlated and uncorrelated processes is 20 µS at k=500, 600 
when all correlated processes were detected. 

 
Fig. 6. Conductance of 5x5 RRAM array at time instant k=900 using analog 
a) R1 reset cycle data b) R2 reset cycle data c) R3 reset cycle data and d) R4 
reset cycle data.  

 

Fig. 7. Conductance of 5x5 RRAM array at time instant k=1200 using analog 
a) R1 reset cycle data b) R2 reset cycle data c) R3 reset cycle data and d) R4 
reset cycle data.  

 

Fig. 8. Conductance of 5x5 RRAM array at time instant k=1300 using analog 
a) R1 reset cycle data b) R2 reset cycle data c) R3 reset cycle data and d) R4 
reset cycle data.  

B. Results of R2 RESET Cycle Analog Data 
 In the analog RESET R2 cycle, resistance increases 
gradually from 10.5 kΩ to around 17 kΩ with 200 successive 
RESET pulses, giving a monotonic resistance change despite the 
variability present. This resulted in greater absolute change in 
conductance for devices with correlated processes at time 
instants k of 900 and 1200 shown in Figures 6(b) and 7(b), 
respectively. Similar data trends like R2 RESET cycle data also 
worked well (78%) with the algorithm. For earlier time instants 
k of 500 and 600, the correlated processes were not detected as 
shown in Figures 4(b) and 5(b) respectively. This may be due to 
RRAM resistance variability present. For later time instant k of 
1300, the algorithm could not detect the correlated processes 
because the devices already reached saturated conductance at 
200th pulse as shown in Figure 8(b), and this final datum is not 
the lowest conductance present in the R2 RESET cycle data. For 
k of 500 and 600 where algorithm detected all correlated 
processes, the difference in median conductance of devices with 
correlated and uncorrelated processes is 15µS.  

C. Results of R3 RESET Cycle Analog Data 
 In the analog RESET R3 cycle, resistance increases 
gradually from 10 kΩ to around 16 kΩ with 100 successive 
RESET pulses, then no resistance modulation with mean of 14 
kΩ with standard deviation of 830 Ω for the next 100 successive 
RESET pulses. The temporal correlation detection detected the 
correlated processes with the first 100 pulses at time instant k of 
500 shown in Figure 4(c). The algorithm then failed to detect the 
correlated processes in regions where there is no resistance 
modulation in the R3 RESET data, as shown in Figures 5(c), 
6(c) and 7(c) for time instants 600, 900 and 1200, respectively. 
At the later time instant k of 1300, due to last datum in R3 
RESET data being at lowest conductance, the correlated 
processes were detected when the conductance saturated as 
shown in Figure 8(c). These results show that the gradual 
resistance modulation in increasing resistance in the RESET is 
important for the algorithm to work. The absolute difference in 
median conductance between devices with correlated and 
uncorrelated processes where the correlated devices were 
detected at k of 500 and 1300, is 9.9µS.   

D. Results of R4 RESET Cycle Analog Data 
 In the analog RESET R4 cycle, resistance increases 
gradually from 11.4 kΩ to 15 kΩ with the first 130 successive 
RESET pulses, then the resistance decreases till the 200th pulse. 
The algorithm detected all the correlated processes at time 
instant k of 600 using the initial 130 pulses of RESET R4 data, 
as shown in Figure 5(d). As expected, the resistance decrease 
after the 130 pulses resulted the algorithm to fail for time 
instants k of 900, 1200 and 1300 as shown in Figures 6(d), 7(d) 
and 8(d), respectively. The correlated processes were not 
detected at earlier time instant k of 500 as shown in Figure 4(d), 
and this may be due to resistance variation and the lower 
resistance range in initial RESET R4 cycle data. At k of 600, 
where there is greater absolute change of resistance in devices 
with correlated processes, the absolute median difference 
between the correlated and uncorrelated processes is 9µS. These 
results again show that the gradual resistance modulation in 
increasing resistance in the RESET is important for the 
algorithm to work. 
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E. Results of S1 SET Cycle Analog Data 
 

 
Fig. 9. Conductance of 5x5 RRAM array at time instant k=130 using analog 
a) S1 set cycle data b) S2 set cycle data c) S3 set cycle data and d) S4 set cycle 
data.  

 
Fig. 10. Conductance of 5x5 RRAM array at time instant k=317 using analog 
a) S1 set cycle data b) S2 set cycle data c) S3 set cycle data and d) S4 set cycle 
data.

 

Fig. 11. Conductance of 5x5 RRAM array at time instant k=1200 using analog 
a) S1 set cycle data b) S2 set cycle data c) S3 set cycle data and d) S4 set cycle 
data.  

 In the analog SET S1 cycle, the resistance decreases 
gradually from 14 kΩ to 11.5 kΩ with the first 35 successive 
SET pulses, then no resistance modulation for next 55 
successive SET pulses, followed by two dips  in resistance with 

an average resistance of 11 kΩ with standard deviation of 410Ω 
till the 200th pulse, resulted in poor performance with the 
algorithm. At best, the algorithm only detected 90% of all 
correlated processes at time instant  k of 130 using the initial 35 
pulses, as shown in Figure 9(a). The algorithm failed to detect 
correlated processes at later time instants k of 317 and 1200 as 
shown in Figures 10(a) and 11(a) respectively. However, 
similar data trends for incremental SET pulses that decreases 
resistance monotonically with measurable resistance 
differences between initial and later cycles resulted in better 
performance with the algorithm. The absolute difference in 
median conductance of correlated and uncorrelated processes is 
7 µS.   

F. Results of S2 SET Cycle Analog Data 
In the analog SET S2 cycle, the resistance decreases 

gradually from 14 kΩ to 10.5 kΩ with the first 70 successive 
SET pulses, then no resistance modulation due to resistance 
plateau at 10.5 ± 0.5 kΩ, as shown in green in Figure 1. Thus, 
using the initial 70 pulses, the temporal correlation detection 
algorithm detected 50% and 100% of the correlated processes at 
time instants k of 130 and 317, as shown in Figures 9(b) and 
10(b), respectively. Due to no resistance modulation in 
subsequent pulses of S2 SET data, the correlated processes were 
not detected at later time instant k of 1300 as shown in Figure 
11(b). The final datum is also at 10.3 kΩ, so it is close to average 
resistance of the plateau and hence did not give much resistance 
difference. For k of 317, where the temporal correlation 
detection detected all the processes, the absolute difference in 
median conductance of devices with correlated and uncorrelated 
processes is 12 µS.  

G. Results of S3 SET Cycle Analog Data 
In the analog SET S3 cycle, the resistance decreases 

gradually from 14 kΩ to 11.2 kΩ with the first 20 successive 
SET pulses, then the resistance plateaus at 11.2 ± 0.43 kΩ. The 
algorithm failed to detect the correlated processes at time 
instants k of 130 and 317, as shown in Figures 9(c) and 10(c), 
respectively. This is because of negligible resistance modulation 
in the plateau and resistance variation present in this regime. 
Meanwhile, the algorithm detected the correlated processes at 
later time instant k of 1200, as shown in Figure 11(c), due to the 
last datum of S3 SET data being at lower resistance of 10.4 kΩ 
than rest of the data in the plateau. Thus, it gave greater absolute 
change in conductance when the resistance saturated at the 200th 
SET pulse. Data trends similar to this trend worked 77% with 
the correlation detection algorithm. At k of 1200, the absolute 
difference in median conductance of devices with correlated and 
uncorrelated processes is 8.3 µS.  

H. Results of S4 SET Cycle Analog Data 
In the analog SET S4 cycle, the resistance decreases 

gradually from 12.3 kΩ to 10.4 kΩ with the first 100 successive 
SET pulses, then resistance starts increasing back to 11.9 kΩ for 
subsequent SET pulses. This resulted in poor performance with 
the algorithm, as the resistance increased to the some of the 
highest resistance points in the regime during the last 100 SET 
pulses, comparable to those at initial points in S4 SET data. This 
did not give much change in absolute conductance, and hence 
algorithm failed to detect all correlated processes at time instants 

 

20 (a) and 2-21 (a), respectively, due to no monotonic change in resistance after the first 35 

SET pulses in the S1 analog data. However, similar data trends for incremental SET pulses that  
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k of 130, 317, 1200 shown in Figures 9(d), 10(d) and 11(d), 
respectively. At best, the algorithm only detected 50% of the 
correlated processes during the first 50 pulses at time instance k 
of 255. At this time instant, the difference in median 
conductance of devices with correlated and uncorrelated 
processes is 3 µs.  

I. Energy Consumption 
The energy consumption of temporal correlation detection 

between 25 processes using analog switching of RRAM RESET 
and SET regimes are 27.7 pJ and 41 pJ, respectively. If 
correlation is detected at the same time instant k, for SET and 
RESET analog data, the energy consumption for SET analog 
data is higher than that of RESET, due to higher power 
consumption of each pulse due to higher pulse amplitude of 1V 
(versus -0.75V for RESET) and higher current because of lower 
programmed resistance. For temporal correlation detection 
using SET regime of PCM devices, the energy consumption for 
25 processes is estimated to be 1.47 µJ [12]. Therefore, RRAM 
being used for temporal correlation detection leads to 36,000-
53,000 less energy consumption than that of PCM. Also, due to 
the 300 ps pulse width, our method provides a speed-up of 
execution time by 1,600-2,100 times than that of 1xPOWER8 
CPU [1 thread], for detecting temporal correlation between 25 
processes [12].  

V. CONCLUSION 
A high-level computational primitive, temporal correlation 

detection, was performed using HfO2 RRAM analog data as an 
in-memory computation. Four RESET and SET cycles, each 
consisting of 200 pulses, of fixed amplitude and pulse width, 
was assessed with modified temporal correlation detection 
algorithm. The abrupt SET and gradual RESET behavior of 
RRAM, due to different conduction mechanisms responsible for 
the SET and RESET operations, has an effect on the 
performance of the algorithm. The RESET cycles of analog data, 
R1, R2, R3, R4, show that the absolute difference in median 
conductance between the devices with correlated and 
uncorrelated processes were 20 µS, 15 µS, 9.9 µS and 9 µS, 
respectively, when 100% of correlated processes were detected. 
However, for SET cycles of analog data, S1, S2, S3, the absolute 
difference in median conductance between the devices with 
correlated and uncorrelated processes were 7 µS, 12 µS, 8.3 µS, 
respectively, when 100% of correlated processes were detected. 
For S4 SET cycle analog data, only 50% of the correlated 
processes were detected and resulted in absolute difference in 
median conductance between the devices with correlated and 
uncorrelated processes of 3 µS. The gradual resistance 
modulation, in a monotonic direction (either increasing or 
decreasing) is crucial for the algorithm to work. If there are 
regions of no resistance modulation, the algorithm fails to detect 
all the correlated processes. Lastly, the RESET regime seemed 
to work better with the algorithm due to the higher absolute 
change of conductance achieved for correlated processes, as 
evident by greater absolute difference in the median 
conductance of correlated and uncorrelated processes. An array 
of RRAM devices can thus be used to determine correlated 
processes from the uncorrelated binary processes, which can 
lead to improvements in energy consumption. Detecting 
temporal correlation between 25 processes using RRAM array 

gave 36,000-53,000 times less energy consumption than that of 
PCM array in [12], and a speed-up of 1,600-2,100 times the 
execution time than that of 1xPOWER8 CPU (1 thread) [12]. 
This demonstrates the low power consumption capability of 
RRAM for high-level computation. 
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