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Abstract—Hafnium-oxide based bipolar RRAM was
investigated for high-level temporal correlation detection, for in-
memory computing. The experimental analog data of HfO:
RRAM, both in RESET and SET regimes was evaluated to detect
10 correlated processes from 25 processes on a 5x5 RRAM array.
Our method gave 36,000-53,000 times less energy consumption
than that of a previous implementation with phase change
memory, and a predicted acceleration of 1600-2100 times the
execution time than that of IXPOWERS CPU (1 thread) for
detecting correlation between 25 processes.

Keywords—RRAM, analog switching, in-memory computing,
temporal correlation detection.

I. INTRODUCTION

The challenges faced in complementary metal-oxide
semiconductor (CMOS) scaling, due to the decline of Moore’s
law and end of Dennard’s scaling, has inspired the search for
alternatives to the standard von Neumann architecture [1-3]. The
rapid increase of ever-growing number of devices with the
advent of Internet of Things (IoT), gives rise to an explosion of
data that need to be processed. The bottleneck between memory
and processor therefore incurs significant power consumption
and latency, in addition to limited bandwidth. The data transfer
of operands between memory and processor consumes a few
hundred times more energy than the computation itself [2]. An
alternative would be to collocate memory and processor, to
process data where it is stored. Thus emerging non-volatile
memory technologies are attractive for such applications.

Resistive random access memory (RRAM), among other
non-volatile memories, is good candidate due to its high
switching speed, high density, good CMOS compatibility,
simple structure and ease of fabrication [4]. It is a two-terminal
device whose resistance can be modulated through applied
electrical pulses. As such, they have been used to accelerate
vector-matrix multiplications [5-6], and realize classification
tasks in neuromorphic computing. Array structures of RRAM is
common, and can be used for in-memory computations In
addition, logic operations in-memory such as IMPLY and
FALSE, MAGIC, and flow-based computing have been
proposed on memory arrays [7-10]. Correlation shows the
degree of association between two variables [11]. Correlation
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detection may be applicable for IoT, social networks, large
scientific data, where data may be processed into binary data
streams [12]. The correlation between these binary data streams
may be carried out in real-time to identify clusters of correlated
data in incoming data streams [12]. Correlation was previously
detected using phase change memory (PCM), where the
crystallization dynamics of PCM was used to determine
correlated statistical event-based data streams [12] and in
another example, a single-neuron computational primitive and a
level-tuning concept [13]. RRAM has different operating
principles than PCM, and consumes lower RESET
programming power, has simple fabrication requirements, is
CMOS compatible, and has high switching speeds. Thus,
RRAM warrants investigation for this application; however, this
high level computation has been simulated with RRAM model
[14], but has not been investigated with actual RRAM analog
performance characteristics. In this work the analog switching
data of actual RRAM devices were investigated with a temporal
correlation detection algorithm.

II. RRAM FABRICATION AND CHARACTERIZATION

A. RRAM Fabrication

The hafnium oxide based RRAM used in this work consists
of TiN/Ti/HfO,/TiN stack, where the top and bottom electrodes
are TiN, HfO, is the switching layer and the Ti is oxygen
exchange layer (OEL). The RRAM was integrated with 65nm
CMOS technology on a 300mm wafer platform. The RRAM
was implemented between MI1/V1 interface, to form I-
transistor-1-RRAM structures.

B. Electrical Charactrerization of Analog Switching of RRAM

A high frequency electrical measurement setup consisting of
Berkeley Nucleonics pulse generator, power splitter, and radio
frequency (RF) probes, was used to generate and apply the ultra-
short pulses to 1T1R devices. The pulse generator input was fed
into a power splitter, which split 50% of the input and applied to
the top electrode of 1T1R, and the other 50% was connected to
oscilloscope to display the applied pulse train. A 50 Ohm
termination resistance between the probes and the power splitter
is used to minimize signal reflection. Due to ultra-short pulse
widths down to 300ps this measurement setup required extra



pads to accommodate 1T1R device testing. Thus, this imposed
a limitation to apply ultra-short pulses to an array of connected
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Fig. 1. Analog switching data using ultra-short 300ps pulses of 200 RESET
pulses followed by 200 SET pulses, for four cycles. The four cycles for RESET
and SET were denoted by R1-R4 and S1-S4, respectively, using different
colors. The SET and RESET voltages used are 1V and -0.75V, respectively, of
300ps duration. After each SET/RESET pulse, a read-verify approach was used
to measure the intermediate resistance states.

1TIR devices. Therefore, the measurement results were used in
the simulation of temporal correlation detection in a Python
environment.

After forming the RRAM devices at 3V, 200 RESET pulses
followed by 200 SET pulses, of 300 picosecond pulse widths,
were applied consecutively to gradually modulate the RRAM
resistance from LRS to HRS (RESET) and HRS back to LRS
(SET). The SET and RESET voltages were fixed at 1V and -
0.75V, respectively. The positive voltage was applied in
succession to decrease RRAM resistance gradually while the
negative voltage was applied in succession to increase RRAM
resistance gradually, as shown in Fig. 1. Higher RESET voltage
amplitudes resulted in higher variability along with higher
resistance for HRS [15]. Therefore, to reduce resistance
variability a lower RESET voltage amplitude was used. After
each SET or RESET pulse, a read pulse of -0.3V of 10 us
duration was applied to read the intermediate resistance.
Multiple devices were measured. The data for four cycles are
shown in Fig. 1. The application of ultra-short pulses gives the
monotonic change in device resistance and the accumulative
behavior that is employed in the temporal correlation detection
algorithm. The data in the respective four SET and RESET
cycles in Fig. 1 are denoted by S1-S4 cycles and R1-R4 cycles,
respectively. These cycles were used to detect temporal
correlation between binary processes, and the effect of data in
each cycle on the temporal correlation detection algorithm is
discussed.

III. TEMPORAL CORRELATION DETECTION USING RRAM

A. Generation of Correlated and Uncorrelated Processes

The discrete-time binary stochastic processes, X;, are first
generated and then assigned to a 5x5 array. The correlated
processes were generated with a binomial distribution with
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P(X=1)=0.1, over a large time instant, and are correlated with a
correlation coefficient of 0.8. The correlation coefficient, c,
between two binary processes, Xi(k) and Xj(k), is given in
equation (1) [11-12,14]. This normalizes the covariance between
the two random variables, and varies from -1 to 1. If the two
processes are correlated, the ¢>0. Otherwise, the processes are
not correlated.

Cou X, (), X ; (k)]

(D

- \/Var[Xl- (k)] * Varl X (k)]

The ten correlated processes were assigned to the first two
rows of the 5x5 array. The rest of the array were assigned
uncorrelated processes.

B. Algorithms for Temporal Correlation Detection using SET
and RESET Regimes

The temporal correlation detection algorithm was adapted
from [12], but the algorithm was modified to work with the
RRAM analog data, both in RESET and SET regimes, of fixed
pulse amplitude and pulse width. The experimental RRAM data
is used to update RRAM resistance in simulation.

As each binary process, Xj, was assigned to each RRAM
device in the 5x5 array, the row and column of RRAM and its
assigned process are denoted by i and j, respectively. The value
of binary process, Xij(k), is either 0 or 1 at time instant k. The
algorithm of temporal correlation detection with RESET data
and SET data are shown in Figures 1 and 2 respectively. Firstly,
the entire array is SET (RESET) to high (low) conductance if
the RESET (SET) regime of RRAM is used in simulation at k=0.
This conductance is taken from the last datum of previous SET
(RESET) cycle. The parameters time instant k, momentum M
and the number of pulses applied n, are initialized. Then, an
instantaneous sum of all processes is calculated in the first loop,
called M(k), at each time instant k. Then, the M(k) determines
the number of programming pulses to be applied to RRAM
device if its assigned process Xij(k) holds a non-zero value. The
M(k) modulates the number of applied pulses instead of pulse
amplitude, based on the function f(M), shown in Equation 2.
This eliminates the need of a constant required in previous
algorithm to keep within switching thresholds.

1<M(k)<3

3=M(k)<10
10=sM(k)<15 2)
15sM(k)<20
20=M(k)<25

Otherwise

fM) =
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The parameter n ensures that only 200 pulses are applied
during resistance modulation, and that the RRAM resistance
saturates at the 200th applied pulse and maintains this resistance
for subsequent pulses. After the number of pulses to be applied,
y, based on f(M), is determined, the RRAM Rij where Xij(k)=1
is applied y number of RESET pulses in Figure 1 and y number
of SET pulses in Figure 2. The parameter pulse no ensures that
y number of pulses are applied to the RRAM device Rij. As each
RESET (SET) pulse is applied, the resistance of Rij is updated
from the RESET (SET) cycle analog data, R1-R4 (S1-S4). This
is checked for all the 25 processes, then the time instant k is
incremented and the M(k) is reset to 0. This algorithm iterates



until the final time instant Kgna. The devices with correlated
processes are expected to have greater absolute change in
conductance than devices with uncorrelated processes. To
compare whether the algorithm worked or not with the RESET
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Fig. 2. Algorithm of the simulated temporal correlation detection with reset
cycles R1-R4 of the RRAM analog switching data using 200 RESET pulses of
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Fig. 3. Algorithm of the simulated temporal correlation detection with set
cycles S1-S4 of the RRAM analog switching data using 200 SET pulses of
300ps pulse width.

and SET analog data, the difference between median
conductance of devices with all correlated and uncorrelated
processes are determined. The same processes were used for the
RESET analog data in R1-R4 cycles and SET analog data in
S1-S4 cycles. Lastly, the devices with correlated processes are
expected to have greater change to low conductance (high
conductance) when RESET (SET) data is used.

IV. RESULTS AND DISCUSSION

The temporal correlation detection results with analog
RESET cycles, R1-R4, are shown for time instants k of 500,
600, 900, 1200 and 1300 in Figures 4-8, respectively. The
temporal correlation detection results with analog SET cycles,
S1-S4, are shown for time instants k of 130, 317 and 1200 in
Figures 9-11 respectively. The algorithm uses the non-volatile
accumulative behavior of RRAM shown in Figure 1.

A. Results of RI RESET Cycle Analog Data

In the analog RESET RI1 cycle, resistance increases
gradually from 11 k€ to 19 kQ in the initial 130 pulses and hits
a peak, then decreases till 200" pulse. This resulted in greater
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Fig. 4. Conductance of 5x5 RRAM array at time instant k=500 using analog
a) R1 reset cycle data b) R2 reset cycle data c¢) R3 reset cycle data and d) R4
reset cycle data.
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Fig. 5. Conductance of 5x5 RRAM array at time instant k=600 using analog
a) R1 reset cycle data b) R2 reset cycle data c) R3 reset cycle data and d) R4
reset cycle data.

absolute change in conductance for devices with correlated
processes with the initial 130 pulses, and detected the correlated
processes at time instants k=500, 600 in Figures 4(a) and 5(a)
respectively. However, due resistance decrease after 130
pulses, the algorithm fails to detect the correlated processes
when it iterates to higher time instants k of 900, 1200 and 1300
in Figures 6(a), 7(a) and 8(a), respectively. This shows that
gradual monotonic resistance modulation is important for the



algorithm to work. The difference in median conductance of
correlated and uncorrelated processes is 20 uS at k=500, 600
when all correlated processes were detected.

(@)

a (b)
Conductance(S)1a—s

Conductance(S)1z_sg

o 2 4

Fig. 6. Conductance of 5x5 RRAM array at time instant k=900 using analog
a) R1 reset cycle data b) R2 reset cycle data ¢) R3 reset cycle data and d) R4
reset cycle data.
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Fig. 7. Conductance of 5x5 RRAM array at time instant k=1200 using analog
a) R1 reset cycle data b) R2 reset cycle data c) R3 reset cycle data and d) R4
reset cycle data.
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Fig. 8. Conductance of 5x5 RRAM array at time instant k=1300 using analog
a) R1 reset cycle data b) R2 reset cycle data c¢) R3 reset cycle data and d) R4
reset cycle data.

B. Results of R2 RESET Cycle Analog Data

In the analog RESET R2 cycle, resistance increases
gradually from 10.5 kQ to around 17 kQ with 200 successive
RESET pulses, giving a monotonic resistance change despite the
variability present. This resulted in greater absolute change in
conductance for devices with correlated processes at time
instants k of 900 and 1200 shown in Figures 6(b) and 7(b),
respectively. Similar data trends like R2 RESET cycle data also
worked well (78%) with the algorithm. For earlier time instants
k of 500 and 600, the correlated processes were not detected as
shown in Figures 4(b) and 5(b) respectively. This may be due to
RRAM resistance variability present. For later time instant k of
1300, the algorithm could not detect the correlated processes
because the devices already reached saturated conductance at
200" pulse as shown in Figure 8(b), and this final datum is not
the lowest conductance present in the R2 RESET cycle data. For
k of 500 and 600 where algorithm detected all correlated
processes, the difference in median conductance of devices with
correlated and uncorrelated processes is 15uS.

C. Results of R3 RESET Cycle Analog Data

In the analog RESET R3 cycle, resistance increases
gradually from 10 kQ to around 16 kQ with 100 successive
RESET pulses, then no resistance modulation with mean of 14
kQ with standard deviation of 830 € for the next 100 successive
RESET pulses. The temporal correlation detection detected the
correlated processes with the first 100 pulses at time instant k of
500 shown in Figure 4(c). The algorithm then failed to detect the
correlated processes in regions where there is no resistance
modulation in the R3 RESET data, as shown in Figures 5(c),
6(c) and 7(c) for time instants 600, 900 and 1200, respectively.
At the later time instant k of 1300, due to last datum in R3
RESET data being at lowest conductance, the correlated
processes were detected when the conductance saturated as
shown in Figure 8(c). These results show that the gradual
resistance modulation in increasing resistance in the RESET is
important for the algorithm to work. The absolute difference in
median conductance between devices with correlated and
uncorrelated processes where the correlated devices were
detected at k of 500 and 1300, is 9.9uS.

D. Results of R4 RESET Cycle Analog Data

In the analog RESET R4 cycle, resistance increases
gradually from 11.4 kQ to 15 kQ with the first 130 successive
RESET pulses, then the resistance decreases till the 200th pulse.
The algorithm detected all the correlated processes at time
instant k of 600 using the initial 130 pulses of RESET R4 data,
as shown in Figure 5(d). As expected, the resistance decrease
after the 130 pulses resulted the algorithm to fail for time
instants k of 900, 1200 and 1300 as shown in Figures 6(d), 7(d)
and 8(d), respectively. The correlated processes were not
detected at earlier time instant k of 500 as shown in Figure 4(d),
and this may be due to resistance variation and the lower
resistance range in initial RESET R4 cycle data. At k of 600,
where there is greater absolute change of resistance in devices
with correlated processes, the absolute median difference
between the correlated and uncorrelated processes is 9uS. These
results again show that the gradual resistance modulation in
increasing resistance in the RESET is important for the
algorithm to work.



E. Results of S1 SET Cycle Analog Data
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Fig. 9. Conductance of 5x5 RRAM array at time instant k=130 using analog
a) S1 set cycle data b) S2 set cycle data ¢) S3 set cycle data and d) S4 set cycle
data.
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Fig. 10. Conductance of 5x5 RRAM array at time instant k=317 using analog
a) S1 set cycle data b) S2 set cycle data c) S3 set cycle data and d) S4 set cycle
data.
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Fig. 11. Conductance of 5x5 RRAM array at time instant k=1200 using analog
a) S1 set cycle data b) S2 set cycle data c¢) S3 set cycle data and d) S4 set cycle
data.

In the analog SET S1 cycle, the resistance decreases
gradually from 14 kQ to 11.5 kQ with the first 35 successive
SET pulses, then no resistance modulation for next 55
successive SET pulses, followed by two dips in resistance with

an average resistance of 11 kQ with standard deviation of 410Q
till the 200th pulse, resulted in poor performance with the
algorithm. At best, the algorithm only detected 90% of all
correlated processes at time instant k of 130 using the initial 35
pulses, as shown in Figure 9(a). The algorithm failed to detect
correlated processes at later time instants k of 317 and 1200 as
shown in Figures 10(a) and 11(a) respectively. However,
similar data trends for incremental SET pulses that decreases
resistance  monotonically with measurable resistance
differences between initial and later cycles resulted in better
performance with the algorithm. The absolute difference in
median conductance of correlated and uncorrelated processes is
7 uS.

F. Results of S2 SET Cycle Analog Data

In the analog SET S2 cycle, the resistance decreases
gradually from 14 kQ to 10.5 kQ with the first 70 successive
SET pulses, then no resistance modulation due to resistance
plateau at 10.5 £ 0.5 k€, as shown in green in Figure 1. Thus,
using the initial 70 pulses, the temporal correlation detection
algorithm detected 50% and 100% of the correlated processes at
time instants k of 130 and 317, as shown in Figures 9(b) and
10(b), respectively. Due to no resistance modulation in
subsequent pulses of S2 SET data, the correlated processes were
not detected at later time instant k of 1300 as shown in Figure
11(b). The final datum is also at 10.3 kQ, so it is close to average
resistance of the plateau and hence did not give much resistance
difference. For k of 317, where the temporal correlation
detection detected all the processes, the absolute difference in
median conductance of devices with correlated and uncorrelated
processes is 12 uS.

G. Results of S3 SET Cycle Analog Data

In the analog SET S3 cycle, the resistance decreases
gradually from 14 kQ to 11.2 kQ with the first 20 successive
SET pulses, then the resistance plateaus at 11.2 + 0.43 kQ. The
algorithm failed to detect the correlated processes at time
instants k of 130 and 317, as shown in Figures 9(c) and 10(c),
respectively. This is because of negligible resistance modulation
in the plateau and resistance variation present in this regime.
Meanwhile, the algorithm detected the correlated processes at
later time instant k of 1200, as shown in Figure 11(c), due to the
last datum of S3 SET data being at lower resistance of 10.4 kQ
than rest of the data in the plateau. Thus, it gave greater absolute
change in conductance when the resistance saturated at the 200™
SET pulse. Data trends similar to this trend worked 77% with
the correlation detection algorithm. At k of 1200, the absolute
difference in median conductance of devices with correlated and
uncorrelated processes is 8.3 uS.

H. Results of S4 SET Cycle Analog Data

In the analog SET S4 cycle, the resistance decreases
gradually from 12.3 kQ to 10.4 kQ with the first 100 successive
SET pulses, then resistance starts increasing back to 11.9 k€ for
subsequent SET pulses. This resulted in poor performance with
the algorithm, as the resistance increased to the some of the
highest resistance points in the regime during the last 100 SET
pulses, comparable to those at initial points in S4 SET data. This
did not give much change in absolute conductance, and hence
algorithm failed to detect all correlated processes at time instants



k of 130, 317, 1200 shown in Figures 9(d), 10(d) and 11(d),
respectively. At best, the algorithm only detected 50% of the
correlated processes during the first 50 pulses at time instance k
of 255. At this time instant, the difference in median
conductance of devices with correlated and uncorrelated
processes is 3 us.

1. Energy Consumption

The energy consumption of temporal correlation detection
between 25 processes using analog switching of RRAM RESET
and SET regimes are 27.7 pJ and 41 pJ, respectively. If
correlation is detected at the same time instant k, for SET and
RESET analog data, the energy consumption for SET analog
data is higher than that of RESET, due to higher power
consumption of each pulse due to higher pulse amplitude of 1V
(versus -0.75V for RESET) and higher current because of lower
programmed resistance. For temporal correlation detection
using SET regime of PCM devices, the energy consumption for
25 processes is estimated to be 1.47 pJ [12]. Therefore, RRAM
being used for temporal correlation detection leads to 36,000-
53,000 less energy consumption than that of PCM. Also, due to
the 300 ps pulse width, our method provides a speed-up of
execution time by 1,600-2,100 times than that of IxPOWERS
CPU [1 thread], for detecting temporal correlation between 25
processes [12].

V. CONCLUSION

A high-level computational primitive, temporal correlation
detection, was performed using HfO, RRAM analog data as an
in-memory computation. Four RESET and SET cycles, each
consisting of 200 pulses, of fixed amplitude and pulse width,
was assessed with modified temporal correlation detection
algorithm. The abrupt SET and gradual RESET behavior of
RRAM, due to different conduction mechanisms responsible for
the SET and RESET operations, has an effect on the
performance of the algorithm. The RESET cycles of analog data,
R1, R2, R3, R4, show that the absolute difference in median
conductance between the devices with correlated and
uncorrelated processes were 20 uS, 15 uS, 9.9 uS and 9 uS,
respectively, when 100% of correlated processes were detected.
However, for SET cycles of analog data, S1, S2, S3, the absolute
difference in median conductance between the devices with
correlated and uncorrelated processes were 7 uS, 12 uS, 8.3 uS,
respectively, when 100% of correlated processes were detected.
For S4 SET cycle analog data, only 50% of the correlated
processes were detected and resulted in absolute difference in
median conductance between the devices with correlated and
uncorrelated processes of 3 pS. The gradual resistance
modulation, in a monotonic direction (either increasing or
decreasing) is crucial for the algorithm to work. If there are
regions of no resistance modulation, the algorithm fails to detect
all the correlated processes. Lastly, the RESET regime seemed
to work better with the algorithm due to the higher absolute
change of conductance achieved for correlated processes, as
evident by greater absolute difference in the median
conductance of correlated and uncorrelated processes. An array
of RRAM devices can thus be used to determine correlated
processes from the uncorrelated binary processes, which can
lead to improvements in energy consumption. Detecting
temporal correlation between 25 processes using RRAM array

gave 36,000-53,000 times less energy consumption than that of
PCM array in [12], and a speed-up of 1,600-2,100 times the
execution time than that of IXPOWERS CPU (1 thread) [12].
This demonstrates the low power consumption capability of
RRAM for high-level computation.
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