
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22067  | https://doi.org/10.1038/s41598-021-01384-2

www.nature.com/scientificreports

Proposal for a destructive 
controlled phase gate using linear 
optics
S. U. Shringarpure* & J. D. Franson

Knill, Laflamme, and Milburn showed that linear optics techniques could be used to implement a 
nonlinear sign gate. They also showed that two of their nonlinear sign gates could be combined to 
implement a controlled-phase gate, which has a number of practical applications. Here we describe an 
alternative implementation of a controlled-phase gate for a single-rail target qubit that only requires 
the use of a single nonlinear sign gate. This gives a much higher average probability of success when 
the required ancilla photons are generated using heralding techniques. This implementation of a 
controlled-phase gate destroys the control qubit, which is acceptable in a number of applications 
where the control qubit would have been destroyed in any event, such as in a postselection process.

A controlled-phase gate produces a phase shift φ when the control and target qubits both have a logical value 
of 1. This is a very useful operation since it is a universal gate for quantum computation when combined with 
single-qubit operations1. It can also be used to create Schrodinger cat states2, to perform nonlocal quantum 
interferometry with violations of Bell’s inequality3,4, and to implement complete Bell state measurements in 
quantum teleportation5,6, for example.

Knill, Laflamme, and Milburn (KLM)7 showed that linear optics techniques could be used to implement a 
nonlinear sign gate. They also showed that two of their nonlinear sign gates could be combined to implement 
a controlled-phase gate. In this paper, we propose an alternative implementation of a controlled-phase gate 
for a single-rail target qubit that only requires a single nonlinear sign gate. Since each operation of a nonlinear 
sign gate requires an ancilla photon, our approach requires one less ancilla photon than earlier approaches7,8. 
This gives a higher average probability of success when the required ancilla photons are generated using down-
conversion and heralding techniques. The increased probability of success comes at the expense of destroying 
(erasing) the control qubit.

Logic gates in which the control qubit is destroyed have been used in a number of previous applications. 
For example, a destructive Controlled-NOT (CNOT) gate can be combined with a quantum encoder to imple-
ment a non-destructive CNOT gate9–11. The same devices can be used to implement fusion gates that allow the 
construction of a cluster state12. As another example, Bell’s inequality can be violated in nonlocal interferometer 
experiments in which a controlled-phase shift is combined with homodyne measurements4. The control qubit 
is destroyed in a postselection process in experiments of that kind, which allows the use of the controlled-phase 
gate described here.

There have been several demonstrations of controlled logic operations in the coincidence basis using dual-rail 
qubits or polarization encoding, including controlled-phase gates10,13,14. However, the coincidence basis cannot 
be used for the single-rail target qubits of interest in this paper due to the superposition of the |0 � and |1 � Fock 
states in the input, which causes the total number of photons to be uncertain. The use of a single-rail target 
qubit is required for certain applications, such as in the interferometer of Ref.3. In addition, postselection in the 
coincidence basis often destroys both the control and target qubits, whereas the event-ready approach described 
here only destroys the control qubit. Controlled phase gates for quantum computation applications have also 
been achieved using nonlinear interactions with trapped atoms15–18, for example. In contrast, the controlled 
phase gate described here uses only linear optical elements.

Nonlinear sign gate
The nonlinear sign gate shown in Fig. 1 is the basic building block of the KLM approach to linear optics quantum 
computing1. The input state |ψin � is limited to at most two photons. The operation of the nonlinear sign gate is 
then defined by
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where α, β , and γ are complex constants. The only effect of the nonlinear sign gate is to reverse the sign of the 
two-photon amplitude, which is similar to the effects of a nonlinear Kerr medium19.

The KLM nonlinear sign gate utilizes three beam splitters, one ancilla photon, and postselection based on 
the output of two single-photon detectors, as shown in Fig. 1. The gate applies a nonlinear phase shift of π as in 
Eq. (1) for an appropriate choice of beam splitters and linear phase shifters as shown in Fig. 1. Other choices of the 
parameters can also be used to implement a nonlinear phase shift of π/2, for example7. There have been several 
proposals to enhance the success rate of this gate at the expense of adding more resources20,21 or vice-versa22.

Costanzo et al.19 proposed an alternative implementation of a nonlinear sign gate that is shown in Fig. 2. 
As illustrated in the upper part of the figure, the device produces a coherent superposition of photon subtrac-
tions that occur either before or after a photon addition. The operation of the gate can be intuitively understood 
from the commutation relation [â, â†] = 1 . This gate can be implemented using a down-conversion crystal with 
heralding to produce the photon addition, with photon subtraction occurring either at the first beam splitter B1 
or the second beam splitter B2. Heralding on the output of beam splitter B3 ensures that there is a fixed phase 
relationship between the two ways in which the photon subtraction can occur. The final state in this approach 
undergoes a noiseless amplification19 in addition to the nonlinear sign shift. If necessary, this can be compensated 
using noiseless attenuation23,24.

Our destructive controlled-phase gate could be implemented using either the KLM nonlinear sign gate or the 
alternative implementation shown in Fig. 2. Our goal is to implement a controlled phase shift using only linear 
optical elements, whereas the approach shown in Fig. 2 is based on the use of a nonlinear crystal. As a result, we 
will assume that the KLM approach is used for the nonlinear sign gate throughout the rest of this paper.

(1)|ψin� = α|0� + β|1� + γ |2� → α|0� + β|1� − γ |2� ,
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Figure 1.   KLM nonlinear sign gate7. An input state of the form |ψ � = α|0 � + β|1 � + γ |2 � gives an output 
state α|0 � + β|1 � − γ |2 � for an appropriate choice of the transmission coefficients of the three beam splitters 
B1, B2, and B3, along with a fixed phase shift φ4. The results are heralded on the presence of a single photon in 
one of the two single-photon detectors.
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Figure 2.   Alternative nonlinear sign gate suggested by Costanzo et al19. A superposition of ââ† and â†â 
operations is implemented using photon subtraction that occurs either at the first beam splitter B1 or at the 
second beam splitter B2. These operations cannot be distinguished when a single photon is detected in one of 
the outputs of the third beam splitter B3. Photon addition is implemented in between B1 and B2 with the aid 
of a heralding signal from a down conversion process. A variety of nonlinear phase shifts can be achieved by 
adjusting the reflectivities of the three beam splitters along with an additional phase shift �.
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KLM controlled‑phase gate
The controlled-phase gate suggested by KLM is shown in Fig. 3. Dual-rail encoding is used for both qubits, and 
the two paths corresponding to a logical value of 1 are fed into a 50/50 beam splitter. Both outputs of the first 
beam splitter are passed through a nonlinear sign gate, after which they are recombined on a second beam split-
ter to form the output of the device.

The operation of this device can be understood as being due to Hong-Ou-Mandel interference25 at the first 
beam splitter. If both qubits have a logical value of 0, then no photons pass through the nonlinear sign gates 
and the device has no effect. If only one qubit has a logical value of 1, then a single photon passes through one 
of the nonlinear sign gates, which also has no effect. But if both qubits have a value of 1, then both of them will 
emerge in the same path after the first beam splitter as in the Hong-Ou-Mandel interferometer. In that case, one 
of the nonlinear sign gates will apply a phase shift of π as desired. The second beam splitter can be viewed as 
implementing the inverse of the Hong-Ou-Mandel interferometer with a single photon emerging in each path.

Other nonlinear phase shifts, such as φ = π/2, can be produced by adding fixed phase shifts and varying the 
reflectivities of the beam splitters in the nonlinear sign gate from Fig. 1. E. Knill8 has also described a somewhat 
a different implementation of a controlled-phase gate that also requires two ancilla photons as a resource.

Destructive controlled‑phase gate
An alternative implementation of a controlled-phase gate that only requires a single nonlinear sign gate is shown 
in Fig. 4. In this case, we assume that a dual-rail encoding is used for the control qubit while a single-rail encoding 
is used for the target qubit. The two paths for the control qubit are incident on beam splitters B1 and B2, whose 
outputs are postselected on the absence of a photon to produce a photon addition at one of the two beam split-
ters. The path representing a logical value of 1 for the control qubit is assumed to be on the left-hand side of the 
figure, where it passes through beam splitter B1. A nonlinear sign gate is placed between the two beam splitters, 
after which beam splitter B3 is used to subtract a photon.

The initial states |ψT � and |ψC � for the target and control qubits, respectively, will be denoted by

where α, β , γ , and δ are complex constants. Here |0T � and |1T � represent the state of the target qubit containing 
zero or 1 photons, while |0C � and |1C � correspond to the dual-rail encoded states of the control qubit.

(2)|ψT � = α|0T � + β|1T � , |ψC� = γ |0C� + δ|1C� ,
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Figure 3.   KLM Controlled-phase gate7. Dual-rail encoding is combined with Hong-Ou-Mandel interference at 
the first beam splitter to apply a phase shift of π if both qubits have a logical value of 1. Two nonlinear sign gates 
labelled NS are required.
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Figure 4.   Destructive controlled-phase gate. Implementation of a destructive controlled-phase gate that only 
requires a single nonlinear sign gate labelled NS. If the control qubit has a logical value of 1, it produces a photon 
addition at beam splitter B1. If the target qubit also has a logical value of 1, two photons will then pass through 
the nonlinear sign gate and produce a phase shift of π . In all other cases, at most a single photon passes through 
the nonlinear sign gate and there is no effect on the state of the system. A photon subtraction at beam splitter 
B3 restores the original number of photons to the target qubit. The events are heralded on the outputs shown 
in three single-photon detectors. The detector in one of the output ports of beam splitter B3 is assumed to be a 
photon-number resolving detector.
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The basic idea behind the operation of the gate is illustrated in the left part of Fig. 4. If the control qubit has 
a logical value of 1, the photon addition occurs first and the state 

∣

∣ψ ′
T � that passes through the nonlinear sign 

gate will contain two photons if the target qubit also has a logical value of 1. In that case, the nonlinear sign gate 
would produce a phase shift of π , after which the photon subtraction at beam splitter B3 would restore the target 
qubit to its original number of photons. In all other cases, the state 

∣

∣ψ ′
T � passing through the nonlinear sign 

gate would contain at most a single photon and no phase shift would be applied.
The transmission coefficients for the three beam splitters will be denoted by t1, t1, t2, and t3, while the corre-

sponding reflection coefficients will be denoted by r1, r2, and r3. If we apply the usual beam splitter transformation 
with a factor of i on reflection, the unnormalized state of the system at the output can be shown to be given by

where |01 �, |02 � and |13 � are the states at the three detectors that herald the target output. This state does not 
contain the states |0C � and |1C � of the control qubit because it is destroyed during the heralding process.

This state can be put into the desired form by choosing the values of the transmission coefficients such that 
2t1t2t3 = 1 and r2 = r1t2. Equation (3) then reduces to

where we have taken the projection onto the heralded state |01 �|02 �|13 �. The probability of success is given by 
�ψ ′|ψ ′�, which will depend on the value of the probability amplitudes in the initial state, as discussed in the next 
section.

Equation (3) gives a controlled phase shift of φ = π using the parameters described above. Other nonlinear 
phase shifts can be produced using different parameters in the nonlinear sign gate. It may be worth noting that 
the same gate can be implemented by interchanging the locations of the output target state and the third herald-
ing detector if the transmission and reflectivity of the final beam splitter are also interchanged. The gate fidelity 
and the success probability will remain the same in that case because the two experimental arrangements are 
equivalent.

Performance comparison
The probability of success for the destructive controlled-phase gate proposed here will be compared to that of 
the original KLM controlled-phase gate in this section. The fidelity of both gates depends on the efficiency of the 
single-photon detectors used in the heralding process, and those efficiencies will also be compared.

One measure of the probability of success is to assume that the necessary ancilla photons are available with 
100% probability and then calculate the intrinsic probability of success associated with the gate itself. But in 
many applications, the relevant probability of success would combine the intrinsic probability of success with the 
probability of generating the required ancilla photons using down-conversion and heralding techniques. Single 
photons can be generated using down-conversion with a very high fidelity, for example, which is essential in 
meeting the threshold for error correction.

We will first consider the probability of success for a controlled-phase gate with φ = π . As was noted in the 
previous section, Eqs. (3) and (4) will give the desired result if we choose 2t1t2t3 = 1 and r2 = r1t2, but those 
two equations do not completely determine the value of all three transmission coefficients. Figure 5a shows the 
solutions for t1 and t2 as a function of t3; the solutions only exist for t3 > 0.5. It can be shown that the maximum 
probability of success occurs for t1 =

√
2/3, t2 =

√
3/2, and t3 = 1/

√
2. This gives the maximum value of the 

coefficient r2r3 that appears in Eq. (4), as can be seen in Fig. 5b.
From Eq. (4), the intrinsic probability PD of success of the destructive controlled-phase gate is given by

(3)
∣

∣ψ ′� = (γ r2r3[α|0T � + β(2t1t2t3)|1T � ]+ δr1r3t2[α|0T � − β(2t1t2t3)|1T � ])|01� |02� |13� ,

(4)
∣

∣ψ ′� = r2r3[γ (α|0T � + β|1T � )+ δ(α|0T � − β|1T � )],

Figure 5.   Parameters used in the destructive controlled-phase gate. Plots of various parameters, as a function 
of the transmission coefficient t3 , satisfying the conditions 2t1t2t3 = 1 and r2 = r1t2 required for the successful 
operation of the destructive controlled-phase gate. (a) Transmission coefficient t1 (dashed red line) and t2 (solid 
blue line). The plots suggest that t3 cannot be less than 0.5 for a solution to exist. (b) Product r2r3 that appears in 
Eq. (5) for the probability of success. Maxima occurs at t3 = 1/

√
2, which corresponds to using a 50–50 beam 

splitter in the photon subtraction.
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Here PNSG is the probability of success for the nonlinear sign gate shown in Fig. 4. For the time being, we 
will assume that PNSG is calculated based on the assumption that the ancilla photons are produced with 100% 
efficiency.

PD depends on the values of the probability amplitudes α, β , γ , and δ that describe the initial control and 
target qubits. This is illustrated in Fig. 6, which is a plot of the intrinsic probability of success as a function of α 
and γ , where all of the probability amplitudes were assumed to be real with β =

√
1− α2 and δ =

√

1− γ 2, 
for example. It can be seen that there is a significant variation in the probability of success depending on the 
form of the incident qubits.

If the target qubit has a logical value of 1 (α = 0) and γ = δ, then it can be seen from Eq. (4) that the output 
state will have zero amplitude and PD = 0, as can be seen in Fig. 6. This is an inherent feature of a destructive 
controlled-phase gate where the value of the control qubit is erased. This does not occur for other values of the 
controlled phase shift, such as π/2, and it is not an issue in nonlocal interferometer applications, for example3,4.

In order to simplify the comparison of the KLM controlled-phase gate and the gate proposed here, we aver-
aged the intrinsic probability of success PD over all possible values of the coefficients α, β , γ , and δ. This result is 
compared with the corresponding result PKLM for the KLM controlled phase gate in Table 1. It can be seen that 
the intrinsic probability of success is comparable for the two gates for the case of φ = π , which corresponds to 
a Controlled-Z operation.

Single photon ancilla can be generated using down-conversion and heralding on one of the pair of photons, 
which we will assume to succeed roughly 1% of the time26. Table 1 also includes the effective probabilities of 
success P′

D
 and P′

KLM
 for the two controlled phase gates if we include the probability of generating the required 

ancilla photons using down-conversion. It can be seen that P′
D
>> P

′
KLM

 since the KLM gate requires two ancilla 
photons while the destructive controlled-phase gate only requires a single longer ancilla photon.

As described in the previous section, a destructive controlled-phase shift of φ = π/2 can also be produced 
using a different set of parameters. The KLM gate can be modified to produce a phase shift of φ = π/2 as well7. 
The probability of success for these two gates was calculated in the same way as before and the results are also 
compared in Table 1. It can be seen that the destructive controlled-phase gate has a much higher average prob-
ability of success in this case as well if we include the probability of generating the required ancilla photons using 
down-conversion and heralding.

(5)PD = PNSG�ψ
′|ψ ′� = PNSGr

2
2 r

2
3

[

1+ 2
(

|α|2 − |β|2
)

Re
(

γ ∗δ
)]

.

Figure 6.   Intrinsic probability of success. Intrinsic probability of success PD of the destructive controlled-
phase gate as a function of the probability amplitudes α and γ in the incident control and target qubits. All four 
probability amplitudes in Eq. (3) were assumed to be real in this example. On the other hand, if we select β and δ 
to be imaginary, we get a probability independent of the real valued α and γ .

Table 1.   Comparison of the average probability of success. Here PD and PKLM are the intrinsic success 
probabilities of the destructive controlled-phase gate and the KLM gate respectively, while P′

D
 and P′

KLM
 

include the probability of generating the required ancilla photons using heralded down-conversion. The 
nonlinear phase shift is given by φ.

φ = π φ = π/2

PD 0.03125 0.0226

PKLM 0.0625 0.0327

P
′
D 3.125× 10

−4
2.26× 10

−4

P
′
KLM 6.25× 10

−6
3.27× 10

−6
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In principle, both types of gates can be operated with 100% fidelity if the single-photon detectors are assumed 
to be perfect. The dark counts in an avalanche-diode single-photon detector are typically on the order of 100 
counts/second or less. With a coincidence window of 1 ns, this corresponds to an erroneous output in approxi-
mately 10−7 of the events, which has a negligible effect on the fidelities.

In contrast, heralding on those cases where the output of a single-photon detector indicated that no photons 
were present can have a significant impact on the gate fidelity if the efficiency η of the detectors is limited. Roughly 
speaking, this allows photons to escape unnoticed from the system, leaving an incorrect number of photons in 
the output state. The average fidelity FD of the destructive controlled-phase gate of Fig. 4 and the average fidel-
ity FKLM for the KLM controlled-phase gate are plotted in Fig. 7 as a function of the detector efficiency η. Both 
of these results correspond to a controlled phase shift of φ = π and they assume that the ancilla photons have 
100% fidelity.

It can be seen that the fidelity of the destructive controlled-phase gate is somewhat less than that of the KLM 
gate. This can be understood from the fact that the destructive controlled-phase gate of Fig. 4 relies upon 3 photon 
detectors indicating that no photons were detected, while the KLM gate of Fig. 3 only depends on 2 null detection 
events. This includes the fact that each of the nonlinear sign gates of Fig. 1 relies on a single null detection event.

The KLM gate preserves the control qubit whereas it is destroyed in the controlled-phase gate of Fig. 4. As 
noted previously, a destructive controlled-phase gate can be used in a number of applications, such as nonlocal 
quantum interference experiments, the generation of entangled Schrodinger cat states4, and in fusion operations 
for generating cluster states12. More generally, a quantum encoder gate9,11 could be used in combination with 
a destructive controlled-phase gate to preserve the value of the control qubit, but that would require an addi-
tional ancilla photon. In that case, there would no longer be any advantage in the overall probability of success 
as compared to using the KLM gate.

Controlled phase shift for large photon numbers
Up to now, we have assumed that the target state that is input to the controlled-phase gate of Fig. 4 contains a 
maximum of one photon. There are potential applications where it would be desirable to produce a controlled 
phase shift on a state containing a larger number of photons, such as a coherent state. This can be useful in pro-
ducing Schrodinger cat states2 or in quantum interference experiments, for example3,4.

The controlled-phase gate can be modified as shown in Fig. 8 to allow a larger number n of photons in the 
input. Here a series of beam splitters is used to divide the incident field into N different paths. For N >> n, each 
of these paths will contain at most a single photon with high probability, which allows a destructive controlled-
phase gate to be applied in each of the paths. The output of each of these controlled-phase gates can then be 
recombined using another series of beamsplitters. This approach is similar to the technique used for noiseless 
amplifiers when the input state has more than one photon27.

Figure 7.   Comparison of the fidelities. Average fidelity FKLM of the KLM controlled-phase gate (solid blue line) 
compared with the average fidelity FD of a destructive controlled-phase gate (dashed red line). Both fidelities are 
plotted as a function of the single-photon detector efficiency η.

Figure 8.   Controlled-phase gate for a coherent state. The incident field is divided into N separate paths, each of 
which contains a destructive controlled-phase gate. The case of N = 5 is shown here. A set of beam splitters then 
recombines the individual beams to form a single output state.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22067  | https://doi.org/10.1038/s41598-021-01384-2

www.nature.com/scientificreports/

The main limitation in this approach is that all of the controlled-phase gates have to succeed simultaneously, 
and the probability of that occurring decreases exponentially with the value of N . In addition, a single control 
qubit would need to control the phase shift in all N paths. This can be accomplished by using a series of quantum 
encoders11, which would further decrease the overall success rate. Nevertheless, an approach of this kind may 
be feasible for relatively weak coherent states.

Summary
We have proposed a destructive controlled-phase gate that produces a phase shift of φ when the control and 
target qubits both have a logical value of 1. The most commonly used values of φ are π or π/2, but other phase 
shifts can be produced as well. The controlled-phase gate proposed here only requires a single nonlinear sign 
gate as a resource, whereas earlier implementations required two nonlinear sign gates7. As a result, the average 
probability of success for this controlled-sign gate is much larger than in earlier implementations if we include 
the need to generate ancilla photons using down-conversion and heralding. No such advantage would exist if the 
ancilla photons are produced on demand using quantum dots, but that typically does not give fidelities as high 
as can be achieved using down-conversion due to charge fluctuations28. Nevertheless, the use of quantum dots 
to produce single photons is an active area of research with continual improvements29–31.

The basic idea behind the proposed controlled-phase gate is the use of a dual-rail control qubit to add a photon 
either before or after the nonlinear sign gate. If the photon is added before the nonlinear sign gate and the target 
qubit has a logical value of 1, then two photons will pass through the nonlinear sign gate and a phase shift of π 
will be produced. No such phase shift will be produced if the photon addition is done after the nonlinear sign 
gate. A photon subtraction is performed at the output of the gate to restore the original number of photons in 
the target qubit.

The increased probability of success comes at the cost of destroying the control qubit. This is acceptable in a 
number of applications where the control qubit would have been destroyed in any event, such as in a postselection 
process. Potential applications of this kind include the generation of Schrodinger cat states2, nonlocal interference 
experiments that violate Bell’s inequality4, and the construction of cluster states using fusion gates12. The control 
qubit can always be preserved if necessary by using a quantum encoder circuit11 before the controlled-phase 
gate, but that would require two ancilla photons and there would be no benefit as compared to the original KLM 
controlled-phase gate. The probability of success vanishes for certain input states for a controlled phase of π , but 
that is not the case for other values of the controlled phase that are required in many applications.

In summary, the controlled-phase gate described here provides an interesting example of the use of photon 
addition and subtraction19, and it may be of practical use in certain applications such as the generation of Schro-
dinger cat states and violations of Bell’s inequality.

Data availability
The Mathematica code used to generate the supporting data is available on request from the corresponding 
author, S.U.S.
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