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A B S T R A C T   

Energy harvesting devices based on triboelectric effect have gained much attention recently due to their sig
nificant potential in low-frequency applications, especially in wearable electronics. To enable these devices, 
flexible materials with relatively high electrical conductivity and large triboelectric output are needed. In this 
study, a PDMS composite is fabricated using embedded ionic liquid (IL) coated single-wall carbon nanotubes 
(SWCNTs). The ratio of IL to SWCNTs is tuned to achieve the desired material properties for wearable tribo
electric nanogenerators. The SWCNT-IL-PDMS (IL: SWCNT= 20:1) composite exhibits a relatively high electrical 
conductivity (0.004 S/m) and an enhanced triboelectric output compared to unmodified PDMS. Specifically, the 
open-circuit voltage (Voc) and the short-circuit current (Isc) are increased by three folds. The relatively high 
electrical conductivity enables the composite to transfer charges without electrodes and reduces the internal 
impedance of triboelectric nanogenerators. The flexibility of the composite is also improved, as demonstrated by 
the decrease in both the tensile and compressive elastic moduli. In addition, the mechanism behind the change in 
electrical properties and triboelectric output is proposed and discussed in this paper. Specifically, the increase in 
the dielectric constant and electrical conductivity of the composites with IL is likely due to the better dispersion 
of SWCNT in the polymer matrix, and the change in the triboelectric output is a result of (1) the trade-off be
tween dielectric constant and electrical conductivity, and (2) the shifting of triboelectric polarity with the 
addition of IL. This study not only provides a facile method to simultaneously increase the flexibility, electrical 
conductivity, and triboelectric output of polydimethylsiloxane (PDMS), but also generalizes the approach and 
paves the way to explore new flexible and electrically conductive materials for wearable triboelectric 
nanogenerators.   

1. Introduction 

Energy harvesting materials and systems capable of powering small- 
scale electronic mobile devices autonomously have emerged as a 
prominent research area with many rapid developments, in particular in 
the context of Internet of Things (IoT) [1–5]. This interest arises from the 
fact that conventional power supply technologies have difficulties in 
powering widely distributed and mobile devices, which are major 
components in IoT. For example, the grid needs hard wires to connect 
with electronic devices which limits the mobility of the device; similarly, 
batteries have limited lifetime, which makes monitoring and replacing 
them challenging, particularly when they are widely distributed and in 
hard-to-access locations. In addition, disposing of depleted batteries is a 
challenge due to their chemical components and the potential for 
environmental pollution [1,6]. Among the different energy harvesting 

systems developed recently, triboelectric nanogenerators have gained 
particular attention since they are flexible, portable, cost effective and 
light weight [5,7–12]. Moreover, triboelectric nanogenerators are 
well-suited for harvesting ambient low-frequency energy (< 5 Hz) that is 
otherwise wasted in our daily lives [13,14]. These characteristics make 
triboelectric nanogenerators not only applicable in harvesting me
chanical energy from human activities, such as human walking [15–18], 
respiration [19–21], motor vibration [22–24], tire rotation [25–27], but 
also suitable for harvesting energy from nature, such as wind [28–31], 
rain drop [32–34] and ocean [14,35,36]. To date, the power density and 
efficiency of triboelectric nanogenerators have reached up to 500 W/m2 

[37] and 85% [38] respectively, which can meet the power demand of 
many small wearable electronics, such as digital watches [39–41], 
human health monitors [21,42,43], pedometers [44–46] and remote 
keyless entry modules [43,47]. 
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There are challenges that currently stand in the way of the wide use 
of triboelectric nanogenerators. For example, the inherent mechanism of 
triboelectricity is still poorly understood, and is described mainly 
through qualitative or empirical relationships; also, the intrinsic 
capacitive behavior of triboelectric nanogenerators results in a high 
impedance and a low current output, which hinders their direct use as 
power supplies. Typically, the impedance of triboelectric nano
generators ranges from tens of mega-ohm to giga-ohm [8,44,48], while 
the impedance of electronic devices or energy storage units is relatively 
low, ranging from several ohms to hundreds of ohm. This mismatch of 
impedance leads to a very low energy transfer efficiency when directly 
connecting triboelectric nanogenerators to electronics or energy storage 
units. Research has focused on designing power management units [8, 
49] and switches [50–52] to reduce the matching impedance and boost 
the energy transfer efficiency, however these electronic components 
increase the complexity and energy consumption of the system [8,53], 
and are not applicable universally[8], which decelerates the speed of 
translating these advances to devices [8,49]. Therefore, in addition to 
developing power management units, there needs to be a focus on 
addressing the challenge from a materials development perspective. One 
of the possible approaches is to increase the electrical conductivity of the 
triboelectric material without sacrificing the triboelectric output, which 
is complex because electrical conductivity tends to reduce the surface 
charges created from triboelectrification through leakage effects [54, 
55]. Previous studies found that adding conductive fillers, such as metal 
nanoparticles [56–58] and graphite particles [59], into a polymer matrix 
can enhance the triboelectric output of polymers. However, due to 
leakage from conductive losses, the amount of the conductive fillers 
added in these studies has to be below the percolation threshold, 
generally under 5 wt%, essentially limiting the potential improvement 
[54,55]. 

Fortunately, some studies have found that specific conductive fillers, 
such as carbon nanotubes [60,61] and MXene [62], showed an increase 
in the triboelectric output even when the filler content reached the 
percolation threshold, which might be attributed to the large increase in 
the triboelectric polarity difference between the fillers and the reference 
material. For example, Rasel et al. [60] found that the triboelectric 
output of multi-wall carbon nanotube/PDMS composite improved as the 
weight percent reached 1.5 wt%, which is above the percolation 
threshold; Wang et al. [62] made a 3D-MXene/ PDMS composite whose 
electrical conductivity reached 5.5 S/cm, and its triboelectric output 
was higher than that of pure PDMS. These findings suggest the possi
bility of increasing electrical conductivity and triboelectric output 
simultaneously. However, there is often a trade-off between high elec
trical conductivity and good flexibility in many conductive-filler 
embedded composites due to the higher volume content of fillers 
needed [63,64]. This is an issue because flexibility and stretchability are 
essential for materials that are employed in triboelectric nanogenerators 
since the major potential applications for triboelectric nanogenerators 
are wearable electronics. Some studies tried to simplify the structure of 
the triboelectric nanogenerator and enhance its flexibility by integrating 
the contacting layer and electrode together. The materials in these 
studies have a polymer-rich part that acts as the contacting layer, and a 
conductive filler-rich part that connects with external circuits. For 
example, Chen et al. [65] fabricated a crumbled-graphene triboelectric 
nanogenerator with a crumbled-graphene film acting as both the elec
trode and contacting layer; Pan et al. [64] fabricated a sedimented liquid 
metal elastomer composite that is ultra-stretchable for triboelectric 
nanogenerators. Though the structure of the device can be simplified, 
the polymer-rich part of these material increases the total impedance of 
the device, which cannot solve the high internal impedance problem of 
triboelectric nanogenerators. Therefore, developing materials that 
possess relatively high electrical conductivity, enhanced triboelectric 
output as well as good mechanical flexibility, although difficult, is 
potentially transformative for the wide adoption of triboelectric nano
generators. Employing these materials into triboelectric nanogenerators 

would address the need for flexibility of electrodes, the impedance 
matching of the system, and simplify the structure of triboelectric 
nanogenerators. In addition, systematically investigating the effect of 
adding fillers on different material properties, such as triboelectric 
output, electrical conductivity, dielectric permittivity and flexibility, is 
important for fabricating suitable materials for triboelectric 
nanogenerators. 

This study provides a facile method to simultaneously enhance the 
flexibility, electrical conductivity, and triboelectric output of poly
dimethylsiloxane (PDMS). The material properties, surface roughness 
and triboelectric output of single wall carbon nanotube (SWCNT)-PDMS 
composites with different SWCNT weight ratios were first investigated 
to determine a suitable SWCNT content. Then, ionic liquid (IL)-coated 
SWCNTs were mixed into PDMS matrix without any additional chemical 
modification. Both the electrical properties and the mechanical prop
erties of the composites were characterized and analyzed. In addition, 
the triboelectric output of the resulting composites was measured, 
where both the open-circuit voltage (Voc) and the short-circuit current 
(Isc) showed an increase compared to pure PDMS. Finally, the mecha
nism responsible for the change in electrical properties and triboelectric 
output are proposed and discussed. 

2. Material and methods 

2.1. Materials 

SWCNTs, purchased from US research nanomaterials Inc, were pre
pared by chemical vapor deposition with a composition of carbon 
greater than 98%. The diameter of the SWCNTs ranges from 1 to 2 nm 
and the length ranges from 5 to 30 µm. The electrical conductivity of the 
SWCNTs is greater than 100 S/cm. The IL, 1-Butyl-3-methylimidazolium 
Bis(trifluoromethanesulfonyl)imide was purchased from TCI Co., Ltd, 
and its chemical structure is shown in Fig. S1. The PDMS (Sylgard 184) 
base and curing agent were purchased from Dow Corning. The solvent 
for mixing the filler and polymer matrix is toluene, which was obtained 
from the Science Company. The reference materials, Teflon and Nylon, 
were purchased from McMaster-Carr Supply Company. 

2.2. Preparation of the composites 

The material processing steps of the SWCNT-IL-PDMS composites 
were as follows: as received SWCNTs and different ratio of IL (IL: 
SWCNT =0:1, 3:1, 10:1, 20:1) were ground with a pestle in a mortar for 
5 mins, after which gelation was observed. The SWCNT-IL gel was then 
dispersed in toluene at 1 mg/mL for 15 mins using probe sonication. At 
the same time, the PDMS base was magnetic stirred in toluene for 1 hr at 
300 rpm. Subsequently, the SWCNT-IL/toluene solution and the PDMS 
base/toluene solution were mixed by probe sonication for 25 mins. The 
PDMS curing agent (PDMS base: curing agent = 10:1) was then added 
and the solution was probe-sonicated for another 5 mins, after which the 
mixture was poured into a petri dish. The petri dish was placed in the 
fume hood for 2 hrs to evaporate excess toluene, then in an oven at 
100℃ for 35 mins to cure the PDMS composite. Finally, the cured 
composite was vacuumed for 6 hrs at 21℃ to ensure there is no solvent 
left in the sample. SWCNT-PDMS composites at different SWCNT con
tents, 0 wt%, 0.01 wt%, 0.1 wt% and 1 wt% (0 vol%, 0.0045 vol%, 
0.045 vol% and 0.45 vol% in volume), were fabricated using the same 
procedure, except that there was no grinding step in the SWCNT-PDMS 
fabrication process. 

2.3. Fabrication of samples for triboelectric experiment 

The material pair for the triboelectric experiment consists of a 
composite material and a reference material. The composite material 
was cut from the aforementioned composite with a dimension of 
2 cm × 3 cm and was attached to a copper tape which serves as the 
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electrode. The reference material, Teflon or Nylon, was also cut into 
2 cm × 3 cm and was attached to a copper tape. Each of the two elec
trodes was connected to the external circuit with a copper wire. A 
custom designed set-up, shown in Fig. S2, was used to provide the 
contact/separation motion. The reference material was attached to the 
stationary plate of the device and the composite material was attached 
to the moving plate. 

2.4. Experimental characterization 

The capacitance and admittance of the materials were characterized 
with ModuLab XM MTS system from 0.1 Hz to 1 MHz with a 1 V applied 
AC voltage. The dielectric permittivity, dielectric loss and electrical 
conductivity of the materials were calculated based on the measured 
capacitance and admittance. The surface roughness of the samples was 
measured on a Nexview 3D optical profiler, where the scanned area is 
about 836μm by 836μm. The tensile and compression testing were done 
on an MTS testing machine with a 50 N load cell at a crosshead speed of 
0.1 mm/s. Imaging of the cross-section of the composites was done with 
a Verios G4 scanning electron microscope; the cross-section of the 
composites was freeze-fractured in liquid nitrogen and then sputtered 
with a layer of iridium. The output voltage of the triboelectric nano
generator was measured via an electrometer (Keithley 6517 A) and the 
output current was measured by a picoammeter (Keithley 6487). All the 
voltage and current data presented here were the peak-to-peak value 
and were measured at 10 mins after the two triboelectric materials first 
came into contact. 

3. Results and discussion 

3.1. SWCNT-PDMS without IL 

Different volume percent of SWCNT without IL were mixed into 
PDMS matrix first to assess the effect of SWCNT on the electrical prop
erties and triboelectric output of the composite. The electrical conduc
tivity and dielectric constant of the composites were measured as a 
function of frequency and the complete spectra are shared in the sup
porting information (see Figs. S3 and S4 respectively). According to the 
percolation theory, a sudden transition from insulator to conductor is 
observed at the so-called percolation threshold in a mixture of con
ducting and nonconducting components [66]. The percolation threshold 
can be calculated using the power law equation below: 

σc = σ0
(
Vf − Vc

)t  

Where σc is the composite electrical conductivity (S/m); σ0 is the elec
trical conductivity of the conductive filler (S/m); Vf is the volume 
fraction of the filler; Vc is the percolation threshold, and t is the critical 
exponent. The electrical conductivity of different composites at 1 Hz are 

plotted as a function of SWCNT’s volume percent (Fig. 1). The electrical 
conductivity of SWCNT σ0 is set to be around 10,000 S/m according to 
supplier’s datasheet. Using the equation above, the percolation 
threshold is calculated to be around 0.015 vol% (0.033 wt%), the crit
ical exponent t is 1.92, and the accuracy of fitting is confirmed by R2 

= 0.98. Since the percolation threshold of SWCNT/ polymer composites 
is influenced by several factors, including the aspect ratio, dispersion, 
and alignment of SWCNTs, there are different reported percolation 
threshold values. Our calculated value falls in the range of reported 
percolation threshold for SWCNT/ polymer composites which spans 
from 0.005 vol% to several vol% [67]. 

Three composites with different SWCNT content, i.e., 0.01 wt%, 
0.1 wt% and 1 wt% (0.0045 vol%, 0.045 vol% and 0.45 vol% in vol
ume), were contacted with reference materials to determine the SWCNT 
ratio that has the highest triboelectric output. This SWCNT content will 
then be used in SWCNT-IL-PDMS composites to investigate the effect of 
IL on the material properties and triboelectric output. Since previous 
studies showed that the triboelectric polarity of composites might 
change with the addition of fillers [61,68], two reference materials, 
Teflon and Nylon, were chosen to contact with the composites, where 
Teflon has a negative triboelectric polarity while Nylon has a positive 
one. The two reference materials will ensure that the possible variance 
in the triboelectric output caused by change in the triboelectric polarity 
can be eliminated. The average value of measured open-circuit voltage 
of the composites with respect to Nylon and Teflon are shown in Fig. 2 
(a), and the data of all four measurements for each material pair are 
shown in Fig. S5. From Fig. 2(a), the triboelectric output increased with 
increasing SWCNT weight percent until the weight ratio reached 0.1 wt 
% for both reference materials. Specifically, the average Voc increased 
from 18 V to 23 V when the composites contacted with Nylon and the 
average Voc increased from 19 V to 42 V when contacted with Teflon. 
This enhancement in triboelectric output is a result of the increase in 
dielectric permittivity, which increased from 4.4 (0.01 wt%) to 58 
(0.1 wt%). The triboelectric output then decreased when the SWCNT 
content was further increased to 1 wt%; the average Voc when the 
reference material was Nylon decreased to 5 V, and when the reference 
material was Teflon to 30 V. This decrease is because adding SWCNTs 
into PDMS matrix increases both the dielectric permittivity and the 
electrical conductivity of the composites, resulting in a competition 
between both. First, the increase in dielectric permittivity dominates the 
triboelectric mechanism, however, at the higher content, the increase in 
electrical conductivity is such that the triboelectric output starts to 
decrease due to leakage of surface charges, indicating that there is an 
optimum SWCNT ratio that yields the highest triboelectric output. 

In addition to the trade-off between dielectric permittivity and 
electrical conductivity, other factors might also affect the triboelectric 
output. From Fig. 2(a), though the general trend for Voc is the same for 
both reference materials, a difference in the relative Voc magnitude of 
the 1 wt% SWCNT-PDMS compared with the Voc magnitude of pure 
PDMS in the two plots is observed. The average Voc of the 1 wt% 
SWCNT-PDMS contacting with Nylon is 5 V, which is lower than the 
average Voc of pure PDMS contacting with Nylon (18 V). When the 
reference material is Teflon, the average Voc of 1 wt% SWCNT-PDMS, 
which is 29 V, is higher than that of pure PDMS (19 V). It is surmised 
that, because SWCNT is more triboelectrically positive than PDMS [61, 
68], the triboelectric polarity of the SWCNT-PDMS composite shifts to 
the more positive side when the weight percent of SWCNT reaches 1 wt 
%. Therefore, the triboelectric polarity difference between 1 wt% 
SWCNT-PDMS and Nylon is smaller than the PDMS and Nylon pair, 
which results in a lower total amount of triboelectric charges generated 
on the contacting surfaces of the 1 wt% SWCNT-PDMS and Nylon pair. 
This argument can be further demonstrated by investigating the surface 
roughness of the SWCNT-PDMS samples. 

The surface roughness of the three SWCNT-PDMS samples and pure 
PDMS were measured to monitor the change in surface roughness with 
the addition of fillers. Since the materials were prepared in petri-dishes, 

Fig. 1. The electrical conductivity of the composites at 1 Hz as a function of the 
volume percent of SWCNT. The insert shows a log-log plot of the electrical 
conductivity as a function of volume fraction – critical volume fraction. 
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the surface roughness of the surface contacting the petri-dish (bottom 
surface) and the surface exposed to air (top surface) are different. 
Therefore, the surface roughness of both the top and bottom surfaces 
were measured and the root mean square (RMS) values are listed in  
Table 1, while the optical profilometry images are shown in Fig. S6. Both 
the top and bottom surface roughness values increase with increasing 
SWCNT content, and the surface roughness begins to experience a large 
increase when the SWCNT weight percent reaches 0.1 wt% (Table 1). In 
particular, for the 1 wt% SWCNT-PDMS composite, the top surface 
roughness is 3.5-folds higher than the 0.1 wt% sample and the bottom 
surface roughness is 2.4-fold higher. This large increase in surface 
roughness supports the argument that the triboelectric polarity might 
change for the 1 wt% SWCNT-PDMS composite; the high surface 
roughness indicates that some of the SWCNTs might be located near the 
surface, which could change the triboelectric polarity of the composite 
from a value closer to the triboelectric polarity of PDMS to one closer to 
the triboelectric polarity of SWCNT. It is worth noting that though the 
addition of fillers increases the average value of surface roughness, it 
cannot produce well-ordered microstructures, which increases the 
standard deviation of the surface roughness, i.e., a less consistent height 
profile, and thus decreases the real contact area and triboelectric output 
[69]. Moreover, for the pure PDMS and 0.01 wt% SWCNT-PDMS com
posite, there is not much difference between the top and bottom surface 
roughness, while the top surface of the 0.1 wt% and 1 wt% 
SWCNT-PDMS composite is much rougher than the bottom surface. In 
order to examine whether the difference in the surface roughness of the 
top and bottom surfaces affects the triboelectric output, the Voc and Isc of 
the 1 wt% SWCNT-PDMS sample were measured with the bottom 

surface and the top surface contacting with Teflon respectively, which 
are shown in Fig. 2(b)-(c). From the figure it can be seen that the change 
in the triboelectric output is small, specifically, the Voc only decreased 
3 V when changing from top surface to bottom surface. Therefore, the 
surface roughness of the top and bottom surfaces has little effect on the 
triboelectric output of the sample, and its influence is on the triboelec
tric polarity as surmised. 

In summary, the 0.1 wt% SWCNT-PDMS has the highest triboelectric 
output, therefore it is used for further investigation on the effect of 
adding ionic liquid on the triboelectric output. Furthermore, this part of 
the study shows that, since the working mechanism of triboelectric 
nanogenerator is a combination of triboelectric effect and electrostatic 
induction [70], the output voltage is enhanced either by increasing the 
triboelectric polarity difference between the two contacting surfaces to 
increase the number of charges generated by triboelectric effect, or by 
increasing the dielectric constant to increase the capacitance. The 
reduction of the output voltage caused by the increased electrical con
ductivity can be compensated by increasing the triboelectric polarity 
difference between the two contacting surfaces. 

3.2. SWCNT-PDMS with IL 

As discussed in the previous section, the triboelectric output and 
electrical conductivity of the SWCNT-PDMS composite can be simulta
neously increased by tuning the SWCNT ratio. Specifically, the 0.1 wt% 
(0.045 vol%) SWCNT-PDMS and Teflon pair has the largest triboelectric 
output, and the electrical conductivity of 0.1 wt% SWCNT-PDMS (above 
the percolation threshold) reaches a value of 0.0013 S/m. Therefore, the 
0.1 wt% SWCNT-PDMS can serve both as the contacting material and 
the electrode of the triboelectric nanogenerator. In order to make the 
composite applicable to wearable devices, having a good flexibility is 
another criterion for the composite. The flexibility of the material can be 
quantified by the elastic modulus, i.e., the material is more flexible when 
the elastic modulus is lower. Ideally, the materials that are designated 
for wearable devices should have a “skin-like” feeling, which means that 
the elastic modulus of the material should be comparable to that of the 
human skin (10–500 kPa) [71,72]. The elastic modulus of the 0.1 wt% 
SWCNT-PDMS was measured to be 1.83 MPa, which is not desirable for 
wearable devices. Therefore, in order to enhance the flexibility of the 

Fig. 2. (a) The average open-circuit voltage of SWCNT-PDMS composite with different weight percent of SWCNT contacting with Nylon and Teflon respectively. 
Error bars represent standard deviation. (b) The open-circuit voltage and (c) the short-circuit current of the 1 wt% SWCNT-PDMS sample with the bottom surface and 
the top surface contacting with Teflon respectively. 

Table 1 
Surface roughness of the top and bottom surface of pure PDMS and SWCNT- 
PDMS samples.  

SWCNT weight percent (%) Surface RMS roughness (μm)  

top bottom 

0  0.011  0.008 
0.01  0.061  0.053 
0.1  1.398  0.15 
1  4.848  0.362  
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composite while maintaining or even increasing the triboelectric output 
and electrical conductivity, different amounts of IL were added to the 
0.1 wt% SWCNT-PDMS. The IL to SWCNT ratio was set to 0:1, 3:1, 10:1 
and 20:1, respectively. 

The average dielectric constant and electrical conductivity of 
SWCNT-IL-PDMS samples with different IL: SWCNT ratio over a range of 
frequencies are illustrated in Fig. 3, and the original data is plotted in 
Fig. S7. From Fig. 3, the 3:1 sample has the highest dielectric constant 
and electrical conductivity while the sample without IL (0:1) has the 
lowest electrical properties. Specifically, the dielectric constant of the 
3:1 sample is about 4 times higher than that of the sample without ionic 
liquid, and the electrical conductivity is 10 times higher than that of the 
sample without ionic liquid at 0.1 MHz. This increase in the dielectric 
constant and electrical conductivity is possibly due to the better 
dispersion of SWCNT in the polymer matrix[73–79]; the interaction 
between ionic liquid and SWCNT after grinding hinders the “π − π” 
stacking between SWCNTs, which can prevent the aggregation of 
SWCNTs and form an interconnected network structure. The decrease of 
the electrical properties with a further addition of IL might because of 
the formation of ion pairs. The ions will be very close to each other after 
the IL reaches a certain value which forms ion clusters and restrains the 
mobility of ions. The SWCNT might be trapped into the ion clusters 
which adds to the decrease of electrical properties. This can be verified 
with the SEM images (Fig. 4). Little to no ion clusters are observed in the 
3:1 sample (Fig. 4(b)), while some ion clusters appeared in the 10:1 
sample (Fig. 4(c)). The ion clusters became larger in the 20:1 sample 
when compared to the 10:1 sample. In addition, SWCNT agglomeration 
is seen in the sample without IL, which is shown in the insert in 4(a), 
while no large SWCNT agglomeration was discovered in the samples 
with IL. Also, some SWCNTs are trapped in the ion clusters in the 20:1 
sample as shown in the insert in 4(d). 

To examine the flexibility of the composite, both compressive stress 
and tensile stress were measured with an increasing strain, where five 
samples were tested for each IL: SWCNT ratio; the data is shown in 
Fig. S8. Selected stress-strain plots for each ratio are shown in Fig. 5 and 
the corresponding elastic modulus up to 2% and 10% strain for 
compressive and tensile testing respectively are summarized in Table 2. 
Both the tensile and compressive elastic modulus decreased with 

increasing IL content. The tensile elastic modulus of the 20:1 sample is 
less than half of that of the sample without IL. The decrease of the 
compressive elastic modulus is not as significant as the tensile elastic 
modulus but the compressive elastic modulus of the 20:1 sample is still 
decreased to 60% of that of the sample without IL. In addition, the 
tensile stress-strain plot until break is shown in Fig. S9, the strain at 
break of the 20:1 sample reached to 158%, which is higher than other 
samples, so the 20:1 sample has the best flexibility and ductility. The 
decrease in elastic modulus is due to the fact that IL can act as plasticizer 
in PDMS matrix, which is consistent with the findings in the literature 
[73,76]. Moreover, the ion clusters in the samples with higher IL to 
SWCNT ratio are stable and can sustain large applied strains by either 
tension or compression. The elastic modulus can be further decreased by 
increasing the IL: SWCNT ratio which can potentially meet the 
requirement for wearable devices. 

The samples with different IL to SWCNT ratio were contacted with 
Teflon several times, and the measured Voc and Isc are shown in Fig. S10. 
The average values of the Voc and Isc are shown in Fig. 6(a). From Fig. 6 
(a), both the average voltage and current of the samples with IL 
increased comparing to 0.1 wt% SWCNT-PDMS. Interestingly, the 
triboelectric output of the 20:1 sample is higher than the 3:1 sample 
while the dielectric constant of the 20:1 sample is lower than the 3:1 
sample. As discussed earlier, this enhancement in the triboelectric 
output of the 20:1 sample is likely due to (1) the trade-off between high 
dielectric constant and high electrical conductivity of the 3:1 sample, 
and (2) the shifting of triboelectric polarity with the addition of IL. The 
shifting of triboelectric polarity of the composites with IL can be verified 
by contacting with Nylon. From Fig. 6(b), the Voc changed from negative 
to positive when there is IL in the composite, which means that the 
composites with IL are even more triboelectrically positive than Nylon. 
The shifting of the triboelectric polarity to the more positive side might 
result from the N+ and N- in the cation and anion of IL, (see Fig. S1 for IL 
structure). A previous study indicated that nitrogen containing polymers 
are most likely to be triboelectrically positive [80], further reinforcing 
that the triboelectric polarity of the SWCNT-IL-PDMS composites 
became more positive compared to the SWCNT-PDMS composite. The 
existence of Nitrogen in the SWCNT-IL-PDMS composite was detected by 
ATR-FTIR spectroscopy, and the spectra of PDMS and SWCNT-IL-PDMS 
are shown in Fig. 7. The SWCNT-IL-PDMS sample can be distinguished 
from the control PDMS by several characteristic peaks of the IL. In 
particular, the peak at 1050 cm−1 represents the S-N-S asymmetric 
stretching and the NCH3 twisting [77,81], which confirms that nitrogen 
exists near the surface of the composite. 

From previous discussion, the 20:1 sample has a good flexibility and 
an enhanced triboelectric output compared with pure PDMS. However, 
in order to conclude that the composite can serve as both the flexible 
electrode and the contacting layer, the electrical conductivity of the 
composite has to be high enough such that the charges can be directly 
transferred to the external circuit. Therefore, the triboelectric output of 
the 20:1 sample without an electrode was measured to verify the com
posite’s ability to transfer charges. The 20:1 sample was attached to an 
electrode and contacted with a Teflon film at first, immediately after 
which the same 20:1 sample was contacted with the same Teflon 
without an electrode. The Voc and Isc of the 20:1 sample, with and 
without an electrode, contacting with Teflon are plotted in Fig. S11 
respectively. The Voc of the composite without electrode reached to 62 V 
while the same sample with electrode was measured to be 72 V; the Isc of 
the sample with and without electrode were 2.06 μA and 1.92 μA 
respectively. The voltage decreased by 14% and the current decreased 
by 7%. Although both the voltage and current of the composite without 
an electrode were smaller than the composite with an electrode, the 
decrease of the triboelectric output is acceptable. In addition, the 
durability of the 20:1 sample was tested by contacting with Teflon for 
20,000 cycles continuously, which lasted for a total of 4.3 hrs. The 
measured Voc (at every 400 cycles) is shown in Fig. 6(c). The Voc fluc
tuated between 83 V and 86 V, and did not show a significant decrease 

Fig. 3. The average (a) dielectric constant and (b) electrical conductivity of the 
SWCNT-IL-PDMS composite with an IL to SWCNT ratio of 0:1, 3:1, 10:1 and 
20:1, respectively. 
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after the 20,000 cycles, which demonstrates the excellent output dura
bility of the sample. Moreover, the effect of humidity on the triboelectric 
output of the samples was examined at two different humidity ranges, 
and the corresponding Voc is listed in Table S1. From the table, it can be 
seen that all the samples generated a larger Voc in a lower humidity 
environment. Specifically, the Voc of pure PDMS decreased by 27% and 
that of the 20:1 sample decreased by 45% when the humidity increased 
about twofold. Though the decrease for the 20:1 sample is higher than 
that of the pure PDMS, the Voc of the 20:1 sample is still two-times 
higher than that of pure PDMS. 

Another outcome of the increase of the electrical conductivity that 
needs to be examined is the ability to decrease the internal impedance of 
the triboelectric nanogenerator. The internal impedance of the tribo
electric nanogenerator is quantified by measuring the optimum match
ing external resistance, i.e., the external resistance yields the highest 
power, of the composite contacting with Teflon. The voltage and current 
across different external resistances were measured and the corre
sponding power were calculated. The voltage, current and power for 
PDMS and the 20:1 sample contacting with Teflon are plotted as a 
function of resistance and shown in Fig. 8. From the figure, the optimum 
matching resistance of the 20:1 sample is around 180 MΩ which is about 
42% of the pure PDMS (430 MΩ). The corresponding maximum power 
of the 20:1 sample and Teflon is 72μW, which is 7 folds higher than the 

Fig. 4. SEM images of SWCNT-IL-PDMS composites with a (a) 0:1, (b) 3:1, (c) 10:1 and (d) 20:1 IL to SWCNT ratio. The insert in (a) shows the SWCNT agglomeration 
in the 0:1 sample and the insert in (d) indicates that the SWCNTs are trapped in an ion cluster in the 20:1 sample. The scale bar in the inserts is 1 μm. 

Fig. 5. (a) The compressive stress and (b) the tensile stress as a function of 
strain for PDMS, 0.1 wt% SWCNT-IL-PDMS with IL: SWCNT ratio of 0:1, 3:1, 
10:1 and 20:1, respectively. 

Table 2 
The tensile and compressive elastic modulus for PDMS and SWCNT-IL-PDMS 
composites.  

IL: SWCNT PDMS 0:1 3:1 10:1 20:1 

Tensile E @ 10% strain (MPa)  2.02  1.83  1.27  1.15  0.83 
Compressive E @ 2% strain (MPa)  0.27  0.23  0.19  0.17  0.14  
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pure PDMS and Teflon pair. Though the reduction of the impedance is 
not large enough for practical uses, it showed the feasibility of tuning the 
impedance of triboelectric nanogenerators by changing the material’s 
electrical properties. Therefore, the ionic liquid/single-wall carbon 
nanotube/PDMS composite can be employed in triboelectric 

nanogenerators to potentially solve the flexibility problem of electrodes, 
the impedance matching problem of the system, and simplify the 
structure of triboelectric nanogenerators. 

Recent experimental studies on PDMS composites that reported both 
the change in electrical conductivity or resistance and the change in 
triboelectric output are summarized in Table 3. Since the value of the 
triboelectric output is dependent on the applied force, surface area and 
reference material, and since that information is not readily available 
from the publications, it is more meaningful to compare the percent 
increase. The electrical conductivity of our work increased by 10 orders 
of magnitude, the open-circuit voltage (Voc) and the short-circuit current 
(Isc) increased 200% and 234% respectively. From the table, the 
enhancement in electrical conductivity and triboelectric output of this 
work compares well with other reported PDMS composites. Though the 
increased ratio of the AgNWs-PDMS [82] is slightly higher than our 
work, the areal factor of AgNWs to PDMS has reached to 0.59:0.41 
which means the amount of added AgNWs is large and might decrease 
the flexibility and stretchability of PDMS. In summary, the 
SWCNT-IL-PDMS composite possess relatively high electrical conduc
tivity, enhanced triboelectric output as well as good flexibility, which is 
essential for triboelectric nanogenerators. 

4. Conclusions 

In conclusion, a flexible and electrically conductive SWCNT-IL-PDMS 

Fig. 6. (a) The average open-circuit voltage 
and short-circuit current of PDMS and SWCNT- 
IL-PDMS composite with different IL to SWCNT 
ratio contacting with Teflon. Error bars repre
sent standard deviation. (b) The Voc plot of 
SWCNT-IL-PDMS composite with different IL to 
SWCNT ratio contacting with Nylon. (c) Dura
bility assessment of the 0.1 wt% SWCNT-IL- 
PDMS (IL: SWCNT= 20: 1) sample over 
20,000 cycles. The left and right inserts are the 
Voc plot from the 1st cycle and the 20,000th 
cycle respectively.   

Fig. 7. ATR-FTIR spectra of the 0.1 wt% SWCNT-IL-PDMS (IL: SWCNT= 20: 1) 
sample and the PDMS control sample. The insert shows the characteristic peaks 
of the 0.1 wt% SWCNT-IL-PDMS (IL: SWCNT= 20: 1) sample in the wave
number range between 800 cm−1 and 1600 cm−1. 

Fig. 8. The voltage, current and power across different external resistances for (a) pure PDMS and (b) 0.1 wt% SWCNT-IL-PDMS composite (IL: SWCNT=20:1) 
contacting with Teflon, respectively. 
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composite with enhanced triboelectric performance was fabricated. The 
composite achieved a relatively high electrical conductivity that enables 
the transfer of charges without the need for additional electrodes, which 
is seen as positive since it leads to a reduction of the internal impedance 
of triboelectric nanogenerators. The enhancement of the flexibility was 
demonstrated by the reduction of the tensile and compressive elastic 
moduli. Moreover, the open-circuit voltage (Voc) and the short-circuit 
current (Isc) are 3-fold higher than that of pure PDMS. Therefore, the 
SWCNT-IL-PDMS composite can be potentially employed in triboelectric 
nanogenerators, especially ones for powering wearable electronics, 
since this composite strategy addresses the flexibility issue of electrodes, 
the impedance matching issue of the system, and it results in a simplified 
overall structure of the triboelectric nanogenerators. In addition, the 
approaches to increase the output voltage are experimentally correlated 
to either (a) the increase of the triboelectric polarity difference between 
the two contacting surfaces where the number of charges generated by 
triboelectric effect is enhanced, or (b) increase of the dielectric constant 
to increase the capacitance. Finally, we demonstrate that the reduction 
of the output voltage caused by increased electrical conductivity could 
be compensated by increasing the triboelectric polarity difference be
tween the two contacting surfaces. This study generalizes the approach 
for increasing the triboelectric output and paves the way to explore new 
flexible and electrically conductive materials for wearable triboelectric 
nanogenerators. 
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