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Abstract
Diverse Natural Language Processing tasks employ con-
stituency parsing to understand the syntactic structure of a
sentence according to a phrase structure grammar. Many state-
of-the-art constituency parsers are proposed, but they may
provide different results for the same sentences, especially
for corpora outside their training domains. This paper adopts
the truth discovery idea to aggregate constituency parse trees
from different parsers by estimating their reliability in the
absence of ground truth. Our goal is to consistently obtain
high-quality aggregated constituency parse trees. We formu-
late the constituency parse tree aggregation problem in two
steps, structure aggregation and constituent label aggregation.
Specifically, we propose the first truth discovery solution for
tree structures by minimizing the weighted sum of Robinson-
Foulds (RF ) distances, a classic symmetric distance metric
between two trees. Extensive experiments are conducted
on benchmark datasets in different languages and domains.
The experimental results show that our method, CPTAM,
outperforms the state-of-the-art aggregation baselines. We
also demonstrate that the weights estimated by CPTAM can
adequately evaluate constituency parsers in the absence of
ground truth.

Keywords- Constituency parse tree, Truth discovery,
Optimization

1 Introduction
The constituency parse trees (CPTs) display the syntactic
structure of a sentence using context-free grammar. CPTs
divide the input sentence into phrase structures that belong
to a specific grammar category. The available state-of-the-art
constituency parsers use different parsing techniques. They
are leveraged in various NLP applications like Question
Answering, Information Extraction, and word-processing
systems. However, due to multiple limitations, the state-
of-the-art constituency parsers may make errors, and different
constituency parsers may give different results for the same
sentence. The conflicts among parsers can confuse users on
the parser to use for the downstream tasks, as the performance
of different parsers can vary significantly on different domains

*The first two authors contributed equally to this work.

and languages. No parser can consistently achieve the best
results on all datasets, and it is costly and impractical for
users to obtain ground truth parsing results. Table 1 shows the
percentage of agreement among the structure of the parsers’
outputs on six benchmark datasets, including Penn Treebank-
3 [46], OntoNotes (English and Chinese) [32], Genia [31],
French Treebank [1], and TIGER Corpus [6]. We execute four
parsers including Berkeley [19], CoreNLP [27], AllenNLP
[14], and Hanlp [17], for the English datasets, and three
parsers, namely Berkeley, CoreNLP, and Hanlp, for the non-
English datasets. On the Penn Treebank-3 dataset, it can
be observed that all the parsers agree only on 1.32% of
the sentences. A similar observation can be made for other
datasets.

To overcome these challenges, we aim to construct a CPT
that performs consistently well to represent the constituency
grammar of the sentence in the absence of ground truth.
Intuitively, such CPTs can be constructed by aggregating
the parsing results from the state-of-the-art parsers to keep
the common structure among the parsers’ output and resolve
their conflicts. Therefore, we propose to aggregate CPTs
through the truth discovery idea.

Truth discovery has been proposed to conduct weighted
aggregation for various applications, where the weights reflect
the source reliabilities and are inferred from the data itself
without the knowledge of the ground truth [23]. Truth
discovery algorithms [22, 36, 37, 48] witness successful
applications on the aggregation of categorical and numerical
data types. However, the aggregation of the tree data type has
never been investigated in this domain.

There are tree aggregation methods proposed in the
phylogenetic domain [2, 28, 43, 15] and ensemble methods
for parsers [44]. The issue with studies in the phylogenetic
domain is that many assumptions are not applicable for CPTs,
and none of them consider the constituent label aggregation.
The ensemble methods use ground truth to evaluate the quality
of the weak learners, whereas, for our task, the aggregation
needs to be conducted in the absence of ground truth.

In this paper, we adopt the truth discovery framework to
aggregate CPTs from different input parsers by estimating
the parsers’ reliability without ground truth. We formulate
the constituency parse tree aggregation problem in two steps,
structure aggregation and constituent label aggregation. In the
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Penn
Treebank-3

OntoNotes
(English)

OntoNotes
(Chinese)

French
Treebank

TIGER
Corpus

Genia

Agreement of all parsers 1.32 6.65 23.45 0.91 3.23 0.21
Agreement of two parsers 45.33 55.14 31.73 7.69 2.94 16.25
No agreement 53.35 38.21 44.82 91.40 93.83 83.54

Table 1: Percentage of the sentences that different parsers agree on the tree structure

structure aggregation step, the key challenges are measuring
the distance between trees and constructing the aggregated
tree that can minimize that distance. We adopt the Robinson-
Foulds (RF ) distance, a symmetric difference metric for trees
[35], to measure the distance between the aggregated tree and
input CPTs. In practice, we propose an efficient algorithm
that can construct the optimal aggregated tree in near-linear
time and provide theoretical proofs. We adopt the same truth
discovery framework in the constituent label aggregation step.

Extensive empirical studies demonstrate that the pro-
posed Constituency Parse Tree Aggregation Model (CPTAM)
can consistently obtain high-quality aggregated CPTs across
different languages and domains. Specifically, we apply the
most widely used constituency parsers as the input parsers on
six corpora from English, Chinese, French and German lan-
guages, and from general domains and bio-medical domains.
Our experimental results validate that there is no single parser
that can achieve the best results across the corpora. CPTAM
can consistently obtain high-quality results and significantly
outperforms the aggregation baselines. We further examine
the estimated weights for the parsers and illustrate that the
weight estimation can correctly reflect the quality of each
parser in the absence of ground truth.

In summary, our main contributions are:

• We identify the pitfalls and challenges in data with tree
structures for the task of truth discovery.

• We adopt Robinson-Foulds (RF ) distance to measure
the differences among data with tree structures.

• We construct the best aggregation trees by solving an
optimization problem and derive the theoretical proofs
for the correctness and the efficiency of the algorithm.

• We test the proposed algorithm on real-world datasets,
and the results clearly demonstrate the advantages of the
approach in finding the accurate tree structures from the
multi-sourced input.

2 Related Works
We summarize the related works in three categories as below.

2.1 Truth Discovery Truth discovery aims to resolve the
conflicts from multiple sources [23]. One line of work applies
probabilistic methods to model the workers’ labeling behavior
in crowdsourcing platforms [12, 26, 21]. Another line of work

formulates optimization frameworks that seek to minimize the
weighted distance between the source and aggregated results
and estimate the source reliability [22, 49]. Recent truth
discovery methods consider different applications such as
aggregation of sequential labels [37, 42, 29] and aggregation
of time series data [47, 24, 41].

Most of the available truth discovery methods mainly
focus on the numerical and categorical data [23], and none
of them consider tree structure. Furthermore, the distance
measurements introduced in previous works do not support
the tree structure. However, the problem of how to aggregate
information from trees into one representative tree has been
of great importance for various applications [34].

2.2 Phylogenetic Tree Aggregation Problem The tree
aggregation problem has been studied in the phylogenetic
domain, where trees are branching diagrams showing the
evolutionary relationships among biological species or other
taxa [13]. The taxa can be described through different types
of data (e.g., morphological or biomolecular). Since the
inference of phylogenetic trees is an immensely complex
problem, practitioners often perform many tree estimation
runs with the same or different phylogenetic inference
methods. The estimated trees are aggregated using consensus
tree techniques [5, 8].

A variety of methods have been developed for phyloge-
netic tree aggregation [2, 8]. Some methods conduct aggrega-
tion through simple heuristics when the aggregated tree only
contains branches with a certain percentage of agreement,
such as the majority rule consensus [28], strict consensus [7],
semi-strict consensus [15], and the greedy consensus [8]. Fur-
ther, supertree and median tree approaches have been exten-
sively explored to compute fully binary aggregated trees [4].
Such methods typically seek an output tree that minimizes
the overall distance to the input trees. Since the mentioned
methods are introduced in phylogenetic domain, they do not
consider the characteristics of parse trees.

2.3 Ensemble Trees Tree ensemble methods such as Ran-
dom Forest [33] or Boosted trees [10] are not suitable for
our needs since these methods ensemble on the classification
decisions instead of constructing an aggregation tree.

There are multiple ensemble models for the parsing of
syntactic dependencies in the literature, aiming to construct
aggregation trees [44, 20]. These parsing tree ensemble
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methods are commonly categorized into two groups. The first
group aggregates the base parsers at training time [30, 3, 44].
The second group aggregates the independently trained
models at the prediction time [38, 16, 20]. One of the
common approaches in these ensemble methods is to find
the maximum spanning tree (MST) for the directed weighted
graph to obtain the optimal dependency structure. Unlike our
proposed task, all these methods rely on the ground truth to
estimate the parsers’ reliability.

3 Preliminaries
This section briefly overviews the optimization-based prob-
lem in truth discovery that we adopt for CPT aggregation.
The basic idea is that the inferred truth is likely to be cor-
rect if a reliable source provides it. Therefore, the goal is
to minimize the overall distance of the aggregated truth to a
reliable source [22]. Based on this principle, the optimization
framework is defined as follows:

min
X∗,W

f(X ∗,W) =

K∑
k=1

wk

N∑
i=1

M∑
m=1

dm(v∗im, v
k
im)

s.t. δ(W) = 1,W ∈ S, (3.1)

where X ∗ and W correspond to the set of truths and the source
weight, respectively, and wk refers to the reliability degree of the
k-th source. The function dm(·, ·) measures the distance between
the sources’ observations vkim and the aggregated truths v∗im. The
regularization function δ(W) is defined to guarantee the weights are
always non-zero and positive.

To optimize the objective function Eq. (3.1), the block co-
ordinate descent algorithm is applied by iteratively updating the
aggregated truths and source weights, conducting the following two
steps.

Source Weight Update. To update the source weight in the
model, the values for the truths are considered fixed, and the
source weights are computed, which jointly minimizes the objective
function as shown in Eq. (3.2).

W ← argmin
W

f(X ∗,W) s.t. δ(W) =

K∑
k=1

exp(−wk). (3.2)

This function regularizes the value of wk by constraining the sum
of exp(−wk).

Truth Update. At this step, the weight of each source wk

is fixed, and the truth is updated for each entry to minimize the
difference between the truth and the sources’ observations, where
sources are weighted by their reliability degrees.

v
(∗)
im ← argmin

v

K∑
k=1

wk · dm(v, vkim). (3.3)

By deriving the truth using Eq. (3.3) for every instance, the
collection of truths X ∗ which minimizes f(X ∗,W) with fixedW
is obtained.

Notation Definition
n number of sentences indexed by i
p number of parsers indexed by k
Si the i-th sentence in the dataset
W set of input CPTs’ weights
wS

k the weight of the k-th parser w.r.t. the clusters
wl

k the weight of the k-th parser w.r.t. the labels
Tik the k-th input CPT for the i-th sentence
Ci set of all unique clusters from input trees for the i-th sentence
TS∗

i aggregated tree for the i-th sentence w.r.t. the tree structure
T ∗
i aggregated tree for the i-th sentence w.r.t. the labels

LClu(T ) clusters’ labels in tree T

Table 2: Summary of Notations

4 Constituency Parse Tree Aggregation Model
(CPTAM)

In this section, we first formally define the problem. Then, we
propose our solution in two steps. In the first step, we focus on tree
structure aggregation to resolve the conflict between input trees and
obtain the aggregated tree structure TS∗

i of the CPTs. In the second
step, the corresponding POS tags and constituent labels are obtained
through the label aggregation. It is worth mentioning that both
tree structures and tree labels are essential for adequately parsing a
sentence.

4.1 Problem Definition We define the CPT aggregation prob-
lem using the notations summarized in Table 2. Suppose there is a
corpus that consists of n sentences indexed by i (i ∈ [1, n]), and p
different parsers indexed by k (k ∈ [1, p]) produce CPTs for each
sentence in the corpus. We use Tik to denote the k-th input CPT
for the i-th sentence (Si). Each input constituency parser has two
weight parameters wS

k and wl
k to reflect the parser’s reliability with

respect to structure and constituent labels, respectively. We use
different weight parameters for structure and constituent labels to
account for the scenarios where a parser can successfully identify
the phrase structure but assign incorrect labels. A higher weight
implies that the parser is of higher reliability. The CPT aggregation
problem seeks an aggregated tree for a sentence (T ∗i ) given the input
CPTs (Tik), and estimates the qualities of parsers in the absence of
ground truth.

4.2 Tree Structure Aggregation We formulate our frame-
work utilizing the truth discovery framework presented in Eq. (3.1).
In the tree structure aggregation step, our goal is to minimize the
overall weighted distance of the aggregated CPT (TS∗

i ) to the reli-
able input CPT (TS

ik) considering the structure only. Various distance
measurements can be plugged in the optimization function shown in
Eq. (3.1). We adopt RF distance defined in Eq. (4.4).

Robinson-Foulds (RF ) distance is a symmetric difference
metric to calculate the distance between leaf-labeled trees [35] in
terms of clusters, where a cluster refers to a maximal set of leaves
with a common ancestor in a rooted tree (T ) [40]. For any two trees
T1 and T2 that share the same leaf set, the RF distance is defined in
Eq. (4.4):

RF (T1, T2) = |Clu(T1)∆Clu(T2)|, (4.4)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited632

D
ow

nl
oa

de
d 

09
/1

2/
22

 to
 1

29
.1

86
.2

52
.2

3 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



where the operation ∆ computes the symmetric difference between
two sets (i.e., A∆B = (A\B)

⋃
(B\A)), function | · | computes

the cardinality of the set, and Clu(T ) refers to the cluster set
of tree T . Different from Tree Edit Distance (TED) [39], which
takes O(y3) time [11] to calculate, where y refers to the number
of tokens in the sentence, RF distance can be calculated in
O(|Clu(T1)|+ |Clu(T2)|) time [9].

Applying the truth discovery framework (Eq. (3.1)), we
formulate the CPT aggregation problem with respect to the tree
structure as shown in Eq. (4.5). Each parser has a weight parameter
wS

k to reflect the reliability of that parser in terms of the structure,
andWS = {wS

1 , w
S
2 , ..., w

S
p } refers to the set of all parsers’ weights

in terms of the structure. The higher the weight, the more reliable
the parser. The aggregated tree T S∗

is the one that can minimize
the overall weighted RF distances.

min
T S∗

,WS
f(T S∗

,WS) =

p∑
k=1

wS
k

n∑
i=1

RF (TS∗
i , TS

ik). (4.5)

We follow the block coordinate descent method introduced in
Section 3. To update the weights of the input constituency parsers in
the objective function Eq. (4.5), TS∗

i is fixed, and wS
k is updated as

follows:

wS
k = −log(

∑
iRF (TS∗

i , TS
ik)

maxk
∑

iRF (TS∗
i , TS

ik)
). (4.6)

This means that the weight of a parser is inversely proportional
to the maximum sum of the distance between its input trees (we
use TS

ik to refer to the input CPT with respect to the structure) and
the aggregated trees. Next, we update the aggregated parse tree for
each sentence to minimize the difference between the aggregated
parse tree and the input CPTs by treating the weights as fixed. The
aggregated tree is updated following Eq. (3.3) as shown in Eq. (4.7):

TS∗
i ←− argmin

TS∗
i

p∑
k=1

wS
k

n∑
i=1

RF (TS∗
i , TS

ik). (4.7)

We propose an optimal solution for Eq. (4.7).

4.2.1 The Optimal Solution We present an optimal solution
to obtain an aggregated tree by solving the optimization problem in
Eq. (4.7). Our proposed approach constructs the aggregated tree by
adding clusters with weighted support greater than or equal to 50%,
where support refers to the aggregated weight of CPTs containing
that cluster. To establish the solution, we first demonstrate some
properties of an optimal aggregated tree.

LEMMA 4.1. The cluster set (Clu(TS∗
i )) in Eq. (4.7) satisfies the

constraint Clu(TS∗
i ) ⊆ Ci (Ci = ∪p

k=1Clu(TS
ik)).

Proof. We can prove this lemma by contradiction. Suppose
Clu(TS∗

i ) is the optimal solution to Eq. (4.7) and there exists a
cluster c 6= ∅ such that c ∈ Clu(TS∗

i ) but c /∈ Ci. Therefore, c /∈
TS
ik, ∀k. Let Clu(T ′i

S∗
) = Clu(Ti

S∗
)− c. Then based on the def-

inition of RF distance, we have
∑p

k=1 w
S
k

∑n
i=1RF (Ti

S∗
, Tik) >∑p

k=1 w
S
k

∑n
i=1RF (T ′i

S∗
, TS

ik), which contradicts the assumption
that Clu(TS∗

i ) is the optimal solution.

This property suggests that the search space of the solution to
Eq. (4.7) is Ci. That is, all clusters in the aggregated tree must be
present in at least one of the input CPTs.

LEMMA 4.2. For any cluster c, if
∑p

k=1 w
S
k1(c ∈ TS

ik) > 0.5 ∗∑p
k=1 w

S
k , then c ∈ Clu(TS∗

i ), and if
∑p

k=1 w
S
k1(c ∈ TS

ik) <
0.5 ∗

∑p
k=1 w

S
k , then c /∈ Clu(TS∗

i ), where 1(·) is the indicator
function.

Proof. The proof is similar to the proof for Lemma 4.1. We can
prove the two statements by contradiction.

Therefore, for the optimal solution, the clusters that have more than
50% weighted support from all the input CPTs should be included
in the aggregated tree.

LEMMA 4.3. For any cluster c1 and c2, if
∑p

k=1 w
S
k1(c1 ∈

TS
ik) > 0.5 ∗

∑p
k=1 w

S
k and

∑p
k=1 w

S
k1(c2 ∈ TS

ik) > 0.5 ∗∑p
k=1 w

S
k , then c1 and c2 must be compatible.

Proof. Note that for any constituency parse tree TS
ik, its clusters

must be compatible. Therefore, for a cluster c, all its non-
compatible clusters can only occur in trees that c is not occurred. If∑p

k=1 w
S
k1(c ∈ TS

ik) > 0.5 ∗
∑p

k=1 w
S
k , then ∀c′ not compatible

with c,
∑p

k=1 w
S
k1(c′ ∈ TS

ik) < 0.5 ∗
∑p

k=1 w
S
k , and based on

Lemma 4.2, c′ /∈ Clu(TS∗
i ).

There is a special case when
∑p

k=1 w
S
k1(c ∈ TS

ik) = 0.5 ∗∑p
k=1 w

S
k . To consider this situation, we add the compatibility

constraint as follows:

c1 ∩ c2 = ∅, or c1 ⊂ c2, or c2 ⊂ c1, ∀c1, c2 ∈ Clu(TS∗
i ).

(4.8)

This constraint ensures that the aggregated tree follows the syntactic
structure requirement of constituency parsing. Therefore, all the
clusters in the aggregated tree should be compatible, which means
they should either be disjoint or a proper subset.

In the cases where
∑p

k=1 w
S
k1(c ∈ TS

ik) = 0.5 ∗
∑p

k=1 w
S
k ,

we propose to find the maximum number of compatible clusters
to add into the aggregated tree Clu(TS∗

i ). Although adding these
clusters into the constructed aggregation tree does not affect the
resulting total RF distance, we favor the aggregated trees with
more compatible clusters since they contain as many details from
the input trees. We conduct the following steps. First we form a
set C′i that includes all clusters such that

∑p
k=1 w

S
k1(c ∈ TS

ik) =
0.5 ∗

∑p
k=1 w

S
k . Then we construct the incompatibility graph by

treating the clusters as nodes and adding an edge if two clusters
are not compatible. Finding the maximum number of compatible
clusters is then equivalent to the maximum independent set problem
[45]. This strong NP-hard problem can be addressed by the existing
methods [25, 18].

Based on the properties of the optimal solution, we construct the
aggregated tree TS∗

i as follows. We compute the weighted support
for each cluster c in Ci. If

∑p
k=1 w

S
k1(c ∈ TS

ik) > 0.5∗
∑p

k=1 w
S
k

then c is added to the aggregated treeClu(TS∗
i ). If

∑p
k=1 w

S
k1(c ∈

TS
ik) = 0.5 ∗

∑p
k=1 w

S
k then we find maximum number of

compatible clusters Cm
i by solving the maximum independent

set problem. We then add these clusters to the aggregated tree
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Algorithm 1 Optimal solution to Eq. (4.7)
Input: The set of unique clusters in all input CPTs for i-th sentence

(Ci), weights (wS
k ).

Aggregated CPT (TS∗
i ).

Clu(TS∗
i ) = ∅ ;

C′i = ∅;
for c in Ci do

if
∑p

k=1 w
S
k1(c ∈ TS

ik) > 0.5 ∗
∑p

k=1 w
S
k then

Clu(TS∗
i ) = Clu(TS∗

i )
⋃
c

if
∑p

k=1 w
S
k1(c ∈ TS

ik) = 0.5 ∗
∑p

k=1 w
S
k then

C′i = C′i
⋃
c;

Construct incompatibility graph g for C′i;
Cm

i = Maximum-Independent-Set(g);
Clu(TS∗

i ) = Clu(TS∗
i )

⋃
Cm

i

return TS∗
i

Clu(TS∗
i ). Finally, we re-order the clusters in Clu(TS∗

i ) to form
TS∗
i . The pseudo-code of our proposed algorithm is given in

Algorithm (1).

THEOREM 4.1. The aggregated tree TS∗
i calculated by Algorithm

(1) is the optimal solution to the following problem:

TS∗
i ←− argmin

TS∗
i

p∑
k=1

wS
k

n∑
i=1

RF (TS∗
i , TS

ik)

such that

c1 ∩ c2 = ∅, or c1 ⊂ c2, or c2 ⊂ c1, ∀c1, c2 ∈ Clu(TS∗
i ).

Proof. In the Algorithm (1), we consider all the clusters with∑p
k=1 w

S
k1(c′ ∈ TS

ik) > 0.5 ∗
∑p

k=1 w
S
k and add them to

TS∗
i . From Lemma (4.3), we show that all of these clusters are

compatible and from Lemma (4.2), we show that adding these
clusters minimizes the RF distance. Adding all these clusters result
in the minimum RF distance implying that the objective function
will be minimized. Applying maximum independent set algorithm
on the incompatibility graph provides us with the maximum number
of compatible clusters for

∑p
k=1 w

S
k1(c′ ∈ TS

ik) = 0.5∗
∑p

k=1 w
S
k .

Adding all these clusters to TS∗
i results in obtaining the maximum

set of compatible clusters. Thus the solution is optimal.

4.2.2 Time Complexity

LEMMA 4.4. The incompatibility graph constructed for clusters
with weighted support equal to 50% is bipartite.

Proof. Let C1, . . . , Ck be the clusters with 50% support from
the input constituency parse trees. The set of all constituency
parse trees with respect to structure is denoted by T S =
{TS

i1, T
S
i2, T

S
i3, ..., T

S
ik}.

Assume that a cluster Ci is supported by trees T S
i ⊂ T S . If

Ci is not compatible with Cj , then it implies that T S
i = T S \ T S

j .
Otherwise, T S

i would have a non-empty intersection with T S
j ,

which would imply that there is a tree T S
s that supports both Ci

and Cj , which contradicts with the assumption that Ci and Cj are
incompatible.

We prove Lemma 4.4 by contradiction. Let’s assume that the
incompatibility graph G for clusters C1, . . . , Ck is not bipartite.
It means that G contains an odd-cycle. Without loss of generality
assume that this cycle is (C1, C2, . . . , C2p+1). That is, C2 is not
compatible with C1, C3 is not compatible with C2, and so on. Then,
by our previous observation, C2 must be supported by T S \ T S

1 , C3

must be supported by T S
1 , and so on. That is, for odd i ≤ 2p + 1,

Ci must be supported by T S
1 . Then C2p+1 and C1 are supported

by the same set of trees, which means that C1 and C2p+1 must be
compatible. This is a contradiction (i.e., (C1, C2, . . . , C2p+1) could
not be a cycle).

The existing methods [18] solve the maximum independent set
problem for a bipartite graph with time complexity of O(z2.5 +
(outputsize)) where z refers to the number of nodes in the
incompatibility graph. As the expected output is the list of
compatible clusters, the output size is in the order of O(z). The for
loop that iterates over cluster set Ci runs inO(|Ci|) time. Therefore,
the overall run time of Algorithm (1) isO(|Ci|+z2.5+z). However,
in practice, z is very small compared to |Ci| because it only contains
clusters with support equal to 50%. Thus, Algorithm (1) has, in
practice, near-linear run time in |Ci|.

4.3 Constituent Label Aggregation After obtaining the ag-
gregated structures, we aggregate the corresponding labels provided
by the parsers. In constituent label aggregation step, we aim to mini-
mize the objective function Eq. (4.9) with respect to the LClu(TS∗

i )

andW l, where LClu(TS∗
i ) refers to the labels associated to the ag-

gregated structure, andW l = {wl
1, w

l
2, ..., w

l
p} refers to the set of

all parsers’ weights with respect to the constituent labels, as follows:

min
T ∗,Wl

f(T ∗,W l) =

p∑
k=1

wl
k

n∑
i=1

d(LClu(TS∗
i ),LClu(TS

ik
)),

(4.9)

where LClu(TS
ik

) refers to the constituent labels provided by parsers

for the obtained clusters in TS∗
i . Accordingly, we show the weight

update by taking differentiation with respect toW l in Eq. (4.10):

wl
k = −log(

∑
i d(LClu(TS∗

i ),LClu(TS
ik

))

maxk
∑

i d(LClu(TS∗
i ),LClu(TS

ik
))

), (4.10)

where d refers to the zero-one loss function. Similarly, the
constituent label aggregation update is shown in Eq. (4.11):

T ∗i ←− argmin
L

Clu(TS∗
i

)

p∑
k=1

wl
k

n∑
i=1

d(LClu(TS∗
i ),LClu(TS

ik
)). (4.11)

5 Experiments
In this section, we conduct experiments on various datasets with
different languages from different domains1. We start with the
datasets in Section 5.1.The baseline methods and evaluations are
discussed in Sections 5.2 and 5.3, respectively. We demonstrate
the main experimental results in Section 5.4 and ablation studies in
Section 5.5.

1Our implementation code is available at https://github.com/
kulkarniadithya/CPTAM
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Datasets Language Sentence #token/sentence
Penn Treebank-3 English 49208 24.70
OntoNotes English 143709 18.59

Chinese 51230 17.64
Genia English 18541 28.09
TIGER Corpus German 40020 17.06
French Treebank French 21550 24.80

Table 3: Statistics of Datasets

5.1 Datasets We use six benchmark datasets from different
domains and different languages for evaluation.

Penn Treebank-32 selected 2,499 stories from a three-year
Wall Street Journal collection in English for syntactic annotation.

OntoNotes3 consists of a large corpus comprising various
genres of text (e.g., news, weblogs, Usenet newsgroups, broadcast,
and talk shows) with structural information in three languages
(English, Chinese, and Arabic). The Arabic portion of the dataset is
not included in our experiments since the parsers’ tokenization does
not align with the ground truth.

Genia4 is constructed from research abstracts in the molecular
biology domain. Approximately 2500 abstracts are annotated from
the MEDLINE database.

TIGER Corpus5 consists of approximately 40,000 sentences
from the German newspaper "Frankfurter Rundschau". The corpus
was annotated with part-of-speech and syntactic structures in the
project TIGER (DFG).

French Treebank6 consists of approximately 22000 sentences
from the articles of French newspaper "Le Monde".
Table 3 summarizes the statistics of the datasets.

5.2 Baselines We compare CPTAM with two categories of
baselines. The first category of baselines is the individual state-
of-the-art input constituency parsers including CoreNLP [27],
Berkeley7 [19], AllenNLP8 [14], and HanLP [17]. We have chosen
these parsers as they are the most “stars” NLP libraries on GitHub,
demonstrating their wide applications in industry and academia.

The second category of baselines is the tree aggregation
methods9 including

• Majority Rule Consensus (MRC) [28]. It constructs aggre-
gation trees containing clusters with support greater than 50%.

• Greedy Consensus (GC) [8]. The aggregated trees are con-
structed progressively to have all the clusters whose support is

2https://catalog.ldc.upenn.edu/LDC99T42
3https://catalog.ldc.upenn.edu/LDC2013T19
4https://github.com/allenai/

genia-dependency-trees/tree/master/original_data
5https://www.ims.uni-stuttgart.de/documents/

ressourcen/korpora/tiger-corpus/download/start.
html

6http://ftb.llf-paris.fr/telecharger.php?langue=
en

7We use the pretrained model provided by spaCy
8This parser can parse sentences in English only.
9We apply the implementations from https://evolution.

genetics.washington.edu/phylip/getme-new1.html

above a threshold (30% for OntoNotes Chinese,TIGER Cor-
pus, and French Treebank, and 20% for the other datasets) and
compatible with the constructed tree. With these thresholds,
this baseline essentially constructs aggregation trees with all
compatible clusters from input trees.

• Strict Consensus (SC) [8]. It constructs aggregation trees
containing clusters with support of 100%.

These methods only consider the aggregation of tree structures but
not labels. Therefore, we apply Majority Voting (MV) to aggregate
the labels after the tree aggregation step, where the label with the
highest frequency is chosen for each cluster. We also compare with
CPTAM-W, which is CPTAM without weight estimation. CPTAM-
W considers clusters with support greater than or equal to 50%; thus,
it is more aggressive compared to MRC, which considers clusters
with support greater than 50% only, and more conservative compared
to GC, which includes all compatible clusters.

5.3 Evaluation Measurements The performance is evalu-
ated by different standard metrics in the experiments. To evaluate
the performance based on the real-life usage of constituency parsers,
we also include the POS tags of individual tokens as part of the
parsing results. Therefore, the following evaluation metric is stricter
than Evalb, the standard metric for evaluating phrase structure. We
report Precision, Recall, and F1 as follows:

Precision(P ) =
#Correct Constituents

#Constituents in parser output
(5.12)

Recall(R) =
#Correct Constituents

#Constituents in gold standard
(5.13)

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

. (5.14)

Accordingly, the same metrics Precision (PS), Recall (RS), and F1
(F1S) are defined to evaluate the performance considering only the
tree structure.

5.4 Experimental Results The experimental results for CPT
aggregation performance on Penn Treebank-3, OntoNotes (English
and Chinese), and Genia are summarized in Table 4. Our exper-
iments consider the scenario where the users only have access to
the parsers but do not have any prior knowledge about their perfor-
mance. Since there is no prior knowledge about parser performance
on different datasets or languages, we consider the freely available
state-of-the-art parsers to obtain initial parsing results. For French
Treebank and TIGER Corpus datasets, as the ground truth labels are
different from the labels provided by the parsers, we do not consider
them for constituent label aggregation10.

Among the input parsers, it is clear that none of them consis-
tently perform the best on all datasets. Specifically, Hanlp performs
poorly on English but the best on Chinese. This may be caused since
Hanlp targets the Chinese language even though it is software for
multiple languages. Allennlp performs the best on Penn Treebank-
3 and OntoNotes (English) among the four parsers but does not
perform well on the Genia dataset in the biomedical domain.

10Taking CoreNLP output as an example in TIGER corpus, a chunk of the
sentence is tagged as (NUR (S (NOUN Konzernchefs) (VERB lehnen) while
the ground truth for the same span is (NN-SB Konzernchefs) (VVFIN-HD
lehnen)
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Penn Treebank-3 OntoNotes (English) OntoNotes (Chinese) Genia
P R F1 P R F1 P R F1 P R F1

CoreNLP 81.35 83.16 82.25 77.68 77.66 77.67 86.58 86.77 86.67 66.38 72.46 69.29
Berkeley 91.13 93.27 92.19 80.31 79.04 79.67 77.66 69.93 73.59 69.49 72.82 71.12
AllenNLP 93.08 94.96 94.01 80.99 80.47 80.73 - - - 68.00 69.54 68.76
Hanlp 18.42 19.21 18.81 21.61 21.90 21.75 92.56 92.63 92.59 28.65 29.19 28.92
MRC + MV 89.75 89.79 89.77 78.11 73.75 75.87 89.05 89.07 89.06 68.92 69.12 69.02
GC + MV 88.76 90.19 89.47 76.85 75.51 76.17 87.90 89.99 88.93 66.22 70.36 68.22
SC + MV 90.46 85.14 87.72 78.95 66.72 72.32 89.79 87.78 88.77 70.82 59.15 64.46
CPTAM-W 90.79 90.13 90.46 78.87 74.87 76.82 89.19 89.11 89.15 70.02 69.92 69.97
CPTAM 93.58 93.46 93.52 81.94 80.72 81.33 91.55 91.47 91.51 71.43 72.43 71.93

Table 4: CPT aggregation performance comparison on Penn Treebank-3, OntoNotes (English, Chinese), and Genia datasets.

Penn Treebank-3 OntoNotes (English) Genia OntoNotes (Chinese) French Treebank TIGER Corpus
F1S wS Accl wl F1S wS Accl wl F1S wS Accl wl F1S wS Accl wl F1S wS F1S wS

CoreNLP 3 3 3 3 3 3 3 3 3 3 1 1 1 1 2 2 1 1 2 2
Berkeley 2 2 2 2 2 2 2 2 1 1 2 2 3 3 3 3 2 2 1 1
Allennlp 1 1 1 1 1 1 1 1 2 2 3 3 - - - - - - - -
HanLP 4 4 4 4 4 4 4 4 4 4 4 4 2 2 1 1 3 3 3 3

Table 5: The comparison between the rankings of parsers’ performance with the rankings of estimated weights

The proposed CPTAM significantly outperforms all the state-
of-the-art aggregation methods in terms of Precision, Recall, and F1
score, demonstrating the power of the proposed method in resolving
the conflicts between input CPTs. Comparing CPTAM-W and
CPTAM, CPTAM further improves in all metrics, indicating the
necessity and effectiveness of the weight estimation in the truth
discovery process.

Compared with individual parsers, CPTAM performs consis-
tently well to represent the constituency grammar of the sentence in
all datasets. CPTAM performs the best for two out of four datasets
and remains competitive on the other two datasets. In contrast, Al-
lenNLP and Hanlp are the best for one out of four datasets, and
CoreNLP and Berkeley are not the best in any datasets. This shows
that the proposed CPTAM can consistently obtain high-quality ag-
gregated CPTs over different languages and domains.

Further, we study the accuracy of the weight estimations of
CPTAM. We compare the rankings given by the estimated weights
with the rankings of parsers’ real quality, and the results are shown
in Table 5. To evaluate the weights estimated for the structure
aggregation, we compute the rank of parsers’ quality by their
structure F1 scores (F1S) compared with the ground truth and by
the weight estimation wS

k computed in Eq. (4.6), where the numbers
indicate the rank. Similarly, for the label aggregation, we compute
the rank of parsers’ quality by their label accuracy (Accl) and by the
weight estimation wl

k computed in Eq. (4.10).
It is clear that the parsers’ quality varies across different

languages and domains. The ranks of parsers are exactly the
same between their real quality and the estimated weights. It
illustrates that the weight calculated by the proposed CPTAM
properly estimates parsers’ quality in the absence of ground truth.
These experiments also suggest that parser users can first apply
CPTAM on the sampled corpus to estimate the quality of individual

parsers on the given corpus and then use the best parser to achieve
high-quality parsing results and high efficiency.

5.5 Ablation Study To gain insights into our framework, we
investigate the effectiveness of the tree structure aggregation step
as it is the foundation of CPTAM. To evaluate the performance on
the structure, the RF distance (RFdist.) is calculated between the
parser output and ground truth. We also calculate Precision (PS),
Recall (RS), and F1 score (F1S) considering the tree structure only.
The ablation study results are shown in Table 6 and Table 7.

Table 6 and Table 7 illustrate a strong correlation between
the RF distance and F1 score on all datasets. The lower the
RF distance, the higher the F1 score. This correlation indicates
that RF distance is a proper measurement for the quality of
constituency parse trees. CPTAM outperforms all aggregation
baseline approaches on all datasets. It consistently identifies proper
clusters in the tree by correctly estimating the parsers’ quality. As a
result, CPTAM outperforms or stays competitive compared to the
best parser on all datasets as well.

6 Conclusion
This paper adopts the truth discovery idea to aggregate CPTs from
different parsers by estimating the parsers’ reliability in the absence
of ground truth. We aggregate the input CPTs in two steps: tree
structure aggregation and constituent label aggregation. The block
coordinate descent method is applied to obtain solutions through an
iterative process, and an optimal solution is derived to construct
aggregation trees that can minimize the weighted RF distance.
We further provide theoretical analysis to show that the proposed
approach gives the optimal solution. The proposed solution has
near-linear run time in practice for the tree structure aggregation
step. Our experimental results illustrate that the proposed solution
CPTAM outperforms the state-of-the-art aggregation baselines
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Penn Treebank-3 OntoNotes (English) Genia
RFdist. PS RS F1S RFdist. PS RS F1S RFdist. PS RS F1S

CoreNLP 436250 84.76 86.76 85.75 890401 87.58 89.03 88.30 341925 77.75 85.70 81.53
Berkeley 194282 94.40 96.16 95.27 790028 89.66 89.88 89.77 273796 82.84 87.34 85.03
AllenNLP 154795 95.41 97.29 96.34 696054 90.55 91.75 91.15 298548 82.23 83.90 83.06
Hanlp 1709148 59.26 60.69 59.97 3119630 64.71 66.24 65.47 521522 69.26 69.50 69.38
MRC 265967 93.23 92.79 93.01 1170233 87.98 83.18 85.51 307761 83.05 82.78 82.91
GC 266406 91.94 93.98 92.95 1028983 85.77 85.88 85.82 316758 78.93 84.16 81.46
SC 320215 93.77 87.53 90.54 1323468 88.39 75.33 81.34 370522 83.70 67.09 74.48
CPTAM-W 243413 93.12 93.94 93.53 1007384 87.85 84.63 86.21 293364 82.95 84.01 83.47
CPTAM 176187 95.92 95.73 95.82 641058 91.28 91.71 91.49 264153 84.31 85.96 85.13

Table 6: The tree structure aggregation performance comparison on Penn Treebank-3, OntoNotes (English), and Genia
datasets

OntoNotes (Chinese) French Treebank TIGER Corpus
RFdist. PS RS F1S RFdist. PS RS F1S RFdist. PS RS F1S

CoreNLP 108817 96.47 96.72 96.59 212550 91.06 91.56 91.31 740059 65.67 80.02 72.14
Berkeley 406708 92.90 84.16 88.31 344070 85.65 77.07 81.13 220183 93.97 85.36 89.46
HanLP 144618 95.73 95.78 95.75 1196428 44.90 37.82 41.06 818677 66.22 62.36 64.23
MRC 200008 95.41 94.04 94.72 231755 90.06 88.05 89.04 229139 92.95 82.79 87.58
GC 206438 93.93 95.06 94.49 308335 83.80 89.08 86.35 315613 87.66 84.38 85.99
SC 213173 95.83 92.84 94.31 314548 90.97 79.30 84.74 293991 93.07 80.23 86.17
CPTAM-W 198769 95.34 94.20 94.77 229344 90.8 88.35 89.56 228845 92.83 83.97 88.18
CPTAM 114733 96.39 96.49 96.44 212697 91.05 91.54 91.29 220183 93.97 85.36 89.46

Table 7: The tree structure aggregation performance comparison on OntoNotes (Chinese), French Treebank and TIGER
Corpus datasets

and consistently obtains high-quality aggregated CPTs for various
datasets in the absence of ground truth. We further illustrate that
our adopted weight update correctly estimates parsers’ quality.
Empirically, the importance of the tree structure aggregation step
is demonstrated in the ablation study. Overall, we present the
effectiveness of the proposed CPTAM across different languages
and domains.
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