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Abstract

Traditionally, single-copy orthologs have been the gold standard in phylogenomics. Most phylogenomic studies iden-
tify putative single-copy orthologs using clustering approaches and retain families with a single sequence per species.
This limits the amount of data available by excluding larger families. Recent advances have suggested several ways to
include data from larger families. For instance, tree-based decomposition methods facilitate the extraction of ortho-
logs from large families. Additionally, several methods for species tree inference are robust to the inclusion of para-
logs and could use all of the data from larger families. Here, we explore the effects of using all families for
phylogenetic inference by examining relationships among 26 primate species in detail and by analyzing five addition-
al data sets. We compare single-copy families, orthologs extracted using tree-based decomposition approaches, and
all families with all data. We explore several species tree inference methods, finding that identical trees are returned
across nearly all subsets of the data and methods for primates. The relationships among Platyrrhini remain conten-
tious; however, the species tree inference method matters more than the subset of data used. Using data from larger
gene families drastically increases the number of genes available and leads to consistent estimates of branch lengths,
nodal certainty and concordance, and inferences of introgression in primates. For the other data sets, topological
inferences are consistent whether single-copy families or orthologs extracted using decomposition approaches are
analyzed. Using larger gene families is a promising approach to include more data in phylogenomics without sacri-
ficing accuracy, at least when high-quality genomes are available.
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use clustering approaches to attempt to group many
sets of these genes together (reviewed in Altenhoff et al.
2019). The end-products of graph-based clustering ap-
proaches are clusters of orthologs and paralogs—i.e.,
gene families. Since most phylogenetic methods were de-
signed for use with orthologs (and a single sequence per
taxon), these groups must be further processed for down-
stream phylogenetic inference.

Three primary approaches have been used to process

Introduction

Advances in sequencing technology have led to the avail-
ability of more genomic data than ever before, and the
promise of phylogenomics is the application of these
data to infer species relationships (Scornavacca et al.
2020). Essential to the application of genomic data to
phylogenetic inference is the identification of homologous
genes, or genes that share a common ancestor.

Homologous genes may share a common ancestor due
to speciation (orthologs) or duplication (paralogs). Since
the terms ortholog and paralog were coined (Fitch
1970), orthologs have been considered the appropriate
genes for phylogenetic inference because they are related
only through speciation events, and therefore, are thought
to best reflect species relationships. Thus, identifying
orthologs is a central part of most phylogenomic pipelines.

Nearly all pipelines for extracting putative orthologs
from genomic data begin with a clustering step (fig. 1).
Clustering approaches aim to identify sets of homologous
genes. While the details vary, these approaches generally
begin with pairwise comparisons of all sequences across
genomes, identify putative pairwise homologs, and then,

families for downstream inference (fig. 1; Step 1). The first
and most common is to extract clusters with only a single
copy in each species—these represent putative single-copy
orthologs. Using single-copy families is generally seen as a
conservative approach in phylogenomics, as these genes
are likely to be orthologs; this choice also limits the
amount of further downstream processing needed.
However, the number of genes that are single copy in all
sampled species decreases sharply as additional species
are included in the analyses (Emms and Kelly 2018), limit-
ing the usefulness of this approach in many phylogenetic
contexts.

In lieu of relying only on single-copy clusters, tree-based
decomposition approaches for orthology detection can be
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Fic. 1. Conceptual overview of methods for inferring species trees from genomic data. We begin with All Genes, clustering them into gene fam-
ilies. We can then use single-copy ortholog clusters for inference (Data set 1), use tree-based decomposition approaches to extract orthologs
from all clusters (Data set 2), or infer species trees from all clusters (i.e,, from data sets including orthologs and paralogs; Data set 3).

applied to extract orthologous genes from clusters that
may have more than one copy in one or more species
(fig. 1; Step 2). Tree-based decomposition approaches at-
tempt to infer whether nodes in gene trees represent du-
plication or speciation events, followed by the extraction
of orthologs based on these node labels (reviewed in
Altenhoff et al. 2019). Early tree-based approaches relied
on gene tree reconciliation to a known species tree (e.g,,
Goodman et al. 1979), limiting their utility in cases where
the species tree is unknown or uncertain. However, recent
approaches have relaxed these requirements. For example,
the method LOFT relies on a species overlap approach to
identify duplication nodes in gene trees (van der Heijden
et al. 2007). Similarly, the software package Agalma
(Dunn et al. 2013), the methods of Yang and Smith
(2014), and the new method, DISCO (Willson et al.
2022), all extract subtrees without duplicates to generate
sets of orthologs. While the exact implementations vary,
in general, tree-based decomposition approaches aim to
extract orthologous genes from families of any size.
Tree-based approaches allow researchers to vastly increase
the number of genes retained compared with using only
the single-copy clusters. However, these approaches re-
quire that users construct gene trees and perform ortholog
extraction for each gene family. Since gene trees must be
constructed for all gene families, and some of these gene
families may be rather large, these approaches can be
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substantially more computationally intensive than relying
on single-copy clusters alone (fig. 1).

Finally, families containing both orthologs and paralogs
could be used for phylogenetic inference. Although ortho-
logs have traditionally been considered the appropriate
genes for phylogenetics, methods for estimating phyloge-
nies from data including paralogs were introduced more
than 40 years ago (Goodman et al. 1979; reviewed in
Smith and Hahn 2021). Recently, several popular methods
for species tree estimation have been shown to be robust
to the presence of paralogs (Hill et al. 2020; Legried et al.
2020; Markin and Eulenstein 2020; Yan et al. 2022). Of par-
ticular interest, quartet-based methods, such as ASTRAL
(Zhang et al. 2018), should be robust to the inclusion of
paralogs because the most common quartet is still ex-
pected to match the species tree even in the presence of
gene duplication and loss. Given that all ortholog extrac-
tion methods may erroneously lead to the inclusion of
paralogs, using methods that are robust to their inclusion
is likely a good strategy—no matter the method employed
to process the output of clustering methods.

Though there have been several empirical comparisons
between ortholog-detection methods (e.g, Fernandez
et al. 2018; Kallal et al. 2018; Altenhoff et al. 2019), along
with several simulation-based (e.g., Legried et al. 2020;
Zhang et al. 2020; Morel et al. 2022; Yan et al. 2022) and
empirical (e.g, Yan et al. 2022) studies evaluating the
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effects of paralog inclusion on phylogenetic inference, sev-
eral questions remain. First, a comparison of inference on
single-copy clusters to tree-based decomposition methods
and methods that use all of the data (i.e., use orthologs and
paralogs for phylogenetic inference) would shed light on
the advantages of the three approaches. In addition, joint
effects of data set, missing data requirements, and gene
and species tree inference method on species tree top-
ology will provide information on the importance of
each. Finally, questions remain about the effects of the
data set used on branch length estimates, measures of no-
dal support, and tests for introgression.

To address these questions, we focus our analysis on a
recently published phylogenomic data set that includes
26 species of primates and 3 outgroups (Vanderpool
et al. 2020). The data consist of whole genomes from all
29 species. In the original study, Vanderpool et al. re-
stricted inference to 1,730 single-copy clusters present in
27 of the 29 studied species, a relatively small proportion
of the >20,000 genes available from each species; the spe-
cies tree was inferred using concatenated maximum likeli-
hood (ML), concatenated maximum parsimony (MP), and
quartet-based approaches applied to gene trees inferred
using both ML and MP. The authors found robust relation-
ships among all species except the Platyrrhini (“New World
Monkeys”), for which inferences differed across species-
tree and gene-tree inference methods. In this paper, we
compare inferences from three major subsets of the
data: single-copy families, orthologs extracted from larger
families using tree-based decomposition approaches, and
all families including all data (orthologs+ paralogs).
These data sets are then compared in three different
phylogenetic applications. First, we compare the species
trees inferred from these data sets using several methods,
including concatenation-based and gene-tree based ap-
proaches. Second, we compare several measures of nodal
support and nodal consistency, as well as branch length es-
timates across data sets. Finally, we perform tests of intro-
gression and compare results across different data sets. In
addition to analyzing the primate data set, we assembled
data sets from five different groups (two fungi data sets,
one plant data set, and two vertebrate data sets; Morel
et al. 2022; Rasmussen and Kellis 2012), and compared spe-
cies trees inferred from single-copy families, orthologs ex-
tracted from larger families using decomposition
approaches, and all families for each. Our results suggest
minimal effects of the subset of data used on downstream
phylogenetic inference, while highlighting the fact that
both tree-based decomposition approaches and ap-
proaches using both orthologs and paralogs greatly ex-
pand the amount of data available.

Results

Using All Gene Families Vastly Expands the Data
Available for Phylogenetics in Primates

We compared three types of data sets produced by clus-
tering approaches: single-copy clusters, orthologs

extracted from all clusters using tree-based decomposition
approaches, and all clusters (orthologs + paralogs) (fig. 1).
For all data sets, we considered both a stringent missing
data threshold (only those genes present in at least 27 of
the 29 sampled species; MIN27) and a relaxed missing
data threshold (only those genes present in at least 4 of
the 29 sampled species; MIN4). Gene duplication and
loss appear to have had a substantial impact on these
data. For example, the 11,555 gene families sampled in
27 of 29 species included 428,129 gene copies (an average
of 37 gene copies per gene family), and only a small frac-
tion of these genes (1,820) were present in only a single
copy in all sampled species. This suggests that most gene
families studied here have experienced gene duplication
and loss events during the evolutionary history of the pri-
mates. The first subset of the data considers only those
clusters that included a single gene from each species (sin-
gle-copy clusters; SCCs). While these genes are not guaran-
teed to be orthologs—due to the potential inclusion of
pseudoorthologs (Doolittle and Brown 1994; Koonin
2005)—this is considered a safe approach and is often em-
ployed in phylogenomics. As expected, this data set in-
cluded the fewest genes (table 1).

Tree-based decomposition approaches aim to extract
orthologous genes from any cluster/family. We con-
structed gene trees for all clusters and then used several
tree-based approaches to extract orthologous genes.
First, we considered those clusters in which all duplications
were specific to a single lineage and kept a single gene copy
from this lineage. When duplications are restricted to a sin-
gle lineage, choosing one of the copies as the ortholog can-
not mislead phylogenetic inference regardless of which
sequence is retained (see fig. 1d from Smith and Hahn
2021; supplementary fig. S1a, Supplementary Material on-
line). This data set (“lineage-specific duplicates”; LSDs) in-
cluded more than 4x as many genes as the SCC data set

Table 1. Number of Primate Genes Trees and Gene Copies Included with
Different Filtering Approaches.

Filter MIN4 MIN27

Gene Gene Gene Gene

families  copies  families  copies

Single-copy clusters 5771 94,994 1,820 51,733
Lineage-specific duplicates 13,627 297,831 7,693 219,441
(LSD)
Two-species duplicates (TSD) 14,931 332,718 8,719 248,759
Maximum inclusion 27,880 331,990 4,849 137,733
Maximum inclusion (LSD) 22,360 464,224 11,479 327,434
Maximum inclusion (TSD) 21,793 473,000 12,046 343,652
Monophyletic outgroups 9,724 200,503 4,805 136,749

Monophyletic outgroups (LSD) 16,962 387,915 10,222 291,374
Monophyletic outgroups (TSD) 17,104 390,584 10,254 292,257

Subtree extraction 20,562 470,465 12,198 347,994
All paralogs 18,484 568,342 11,555 454,509
One paralogs 18,484 428,129 11,555 330,115

LSD and TSD indicate when lineage-specific and both lineage-specific and
two-species specific duplicates were trimmed; the SE method trims these auto-
matically. The MIN4 data set required a minimum of 4 taxa (out of 29 total), while
the MIN27 data set required a minimum of 27 taxa.
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(table 1). Next, we further expanded our criteria to include
those clusters with duplications specific to a pair of
lineages (“two-species duplicates”; TSDs; supplementary
fig. S1b, Supplementary Material online). Such duplica-
tions also cannot mislead topological inference, though
picking a nonorthologous pair could lead to longer
branches. It is straightforward to pick the most closely re-
lated pair of genes from the two species, which should not
mislead either topological or branch length inferences; in-
cluding these genes further expanded the data set com-
pared with the LSD data set (table 1).

We considered two tree-based decomposition ap-
proaches from Yang and Smith (2014): maximum inclu-
sion (MI) and monophyletic outgroups (MO). The MI
approach takes a gene tree and iteratively extracts subtrees
with the highest number of taxa without taxon duplica-
tion, until it cannot extract anymore subtrees with the
minimum number of taxa. The MO approach considers
only those gene trees with a monophyletic outgroup, roots
the tree, and infers gene duplications from the root to the
tips, pruning at nodes with duplications. These two ap-
proaches were each applied to three data sets: the original
gene trees, the original gene trees trimmed to remove lin-
eage-specific duplicates, and the original gene trees
trimmed to remove both lineage-specific and two-species
duplicates. We explored the effects of additional filtering
and alternative parameters for the MI approach; as these
changes had minimal effects, the results are presented in
the supplementary Appendix A, Supplementary Material
online. We also considered a new tree-based decompos-
ition approach: subtree extraction (SE). In this approach,
we midpoint-root gene trees, trimming away lineage-
specific and two-species duplicates. We then extract
subtrees that include a single representative from each
taxon (i.e, subtrees with no duplicates) and keep those
trees that meet minimum taxon-sampling thresholds
(supplementary fig. S1c and d, Supplementary Material
online).

All  tree-based approaches further expanded the
amount of data available (table 1). Since the SE and MI ap-
proaches are highly similar (neither requires an outgroup,
and both aim to extract subtrees with no duplication
events), we further examined the genes extracted using
the two approaches. We compared the MI data set with
two-species duplicates trimmed and a minimum of 27
taxa to the SE data set with a minimum of 27 taxa sampled
(this method trims two-species duplicates internally). The
number of trees extracted using the two approaches was
very similar (12,046 vs. 12,198 genes in the MI and SE
data sets, respectively). For the 12,046 trees in the MI
data set, there was no analog in the SE data set for 2.4%,
there was an identical tree in the SE data set for 92.7%,
and there was a similar tree in the SE data set for 4.8% (me-
dian Robinson—Foulds distance of these trees = 2.0). Thus,
the MI and SE approaches extract very similar subsets of
trees from the original clusters.

Finally, we considered two approaches that made no
attempt to remove paralogs from the data set. We
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considered one data set in which all orthologs and paralogs
were included (“All Paralogs”). This data set was the most
complete, as, even though it had fewer gene trees than
some tree-based approaches, the gene trees from these
tree-based approaches are subtrees extracted from this
full data set. Therefore, this data set includes the most
gene copies (table 1). This data set cannot be analyzed
using concatenation methods because these approaches
require an alignment that includes a single sequence for
each species. To address this, and to evaluate the effects
of stochastic sampling of paralogs, we also included a
data set in which a single gene (without regard to whether
it was an ortholog or paralog) was sampled at random
from each species (“One Paralogs”).

In total, we considered 20 subsets of the data each with
MIN4 and MIN27 taxon sampling. The number of gene
families ranged from 1,820 to 27,900, and the number of
gene copies ranged from 51,773 to 568,342 (table 1).
Clearly, considering only SCCs drastically restricts the
amount of data available, in terms of the number of gene
trees (table 1), gene copies (table 1), decisive sites for
each branch of the species tree (fig. 2A), and the gene trees
informative about each branch of the species tree (fig. 2B).
All other data sets are subsets of the All Paralogs data set,
and thus, this data set is necessarily the most informative.
Apart from the All Paralogs data set, including a randomly
sampled paralog (One Paralogs) leads to the most decisive
sites (fig. 2A), though they are not necessarily the most ac-
curate sites (see below and fig. 3). Ml and SE lead to the
most informative gene trees (fig. 2B).

Species tree inference is largely consistent across
primate data sets
We inferred species trees using seven approaches:
ASTRAL-III (Sayyari and Mirarab 2016; Zhang et al. 2018;
Rabiee et al. 2019) on ML gene trees, ASTRAL-IIl on MP
gene trees, ASTRID (Vachaspati and Warnow 2015) on
ML gene trees, ASTRID on MP gene trees, concatenated
ML inference in IQ-Tree (Nguyen et al. 2015), concatenated
MP inference in PAUP* (Swofford 2001), SVDQuartets
(Chifman and Kubatko 2014), ASTRAL-Pro (Zhang et al.
2020) on MP and ML gene trees, and ASTRAL-DISCO
(Willson et al. 2022) on ML gene trees. ML gene trees
were inferred in IQ-Tree, while MP gene trees were inferred
in PAUP*. ASTRAL-IIl, ASTRID, concatenated ML, and con-
catenated MP were all developed with orthologs in mind,
but ASTRAL-IIl has subsequently been demonstrated to
be statistically consistent under models of gene duplication
and loss when multiple copies are treated as multiple indi-
viduals or when a single copy per species is sampled (Hill
et al. 2020; Legried et al. 2020; Markin and Eulenstein
2020). ASTRAL-Pro and ASTRAL-DISCO, on the other
hand, were designed with paralogs in mind and were only
applied to the All Paralogs data sets.

Across all nodes of the primate species tree, except for
the relationships among the Platyrrhini (discussed below),
an identical phylogeny was recovered across all data sets
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Fic. 2. Numbers of informative genes and sites across data sets using the primate MIN27 data sets. (A) Distribution of the number of decisive sites
(across branches) as calculated in IQ-Tree. Decisive sites are defined in Minh et al. (2020). (B) Distribution of the number of decisive gene trees
(across branches) as calculated in IQ-Tree. Decisive gene trees are defined in Minh et al. (2020). SCC, single-copy clusters; LSD, lineage-specific
duplicates; TSD, two-species duplicates; MO, monophyletic outgroup; MI, maximum inclusion; SE, subtree extraction; ONE, one paralogs.

and species tree inference methods (fig. 3), with two ex-
ceptions. When concatenated MP or SVDQuartets was
used to infer a species tree from the One Paralogs data
set (MIN27), Macaca fascicularis was recovered as sister
to Macaca nemestrina rather than Macaca mulatta, as in
all other data sets and previous studies (e.g, Vanderpool
et al. 2020). However, bootstrap support for this relation-
ship was low (55%) in the SVDQuartets analysis.
Additionally, when SVDQuartets was used to infer a spe-
cies tree from the One Paralogs (MIN4) data set,
Mandrillus leucophaeus was recovered as sister to a clade
containing  Cercocebus atys, Papio anubis, and
Theropithecus gelada, rather than sister to Cercocebus
atys as in other analyses and previous studies; bootstrap
support for this relationship was also low (<<50%).

Branch support values were also highly similar across fil-
tering methods. Local posterior probabilities were 1.0 in
ASTRAL-III for all data sets and nodes, except the conten-
tious node in Platyrrhini. All local posterior probabilities
were also 1.0 in ASTRAL-DISCO. All bootstrap support va-
lues in the concatenated ML analyses were 100, and all
bootstrap support values were 100 in the concatenated
MP analyses except for in the One Paralogs (MIN27) data
set, which also had topological issues among macaques as
mentioned above. Similarly, in all the SVDQuartets ana-
lyses, bootstrap values were 99 or 100, except among
the Platyrrhini and in the One Paralogs data sets.

In addition to branch support values, we calculated
measures of genealogical discordance: gene and site

concordance factors (gCFs and sCFs; Minh et al. 2020).
These analyses were carried out for all data sets except
All Paralogs, because it is not possible to calculate these
statistics for this data set in |IQ-Tree, which requires a single
sample per taxon. For all data sets except the One Paralogs
data set, site and gene concordance factors were highly
similar across data sets (fig. 3A-C). Concordance in the
One Paralogs data set was consistently lower, as would
be expected from the random sampling of homologs. In
some cases, gene concordance factors were slightly lower
for the SCC and MO data sets than for the other data
sets (fig. 3B); this seems to be due to more genes that
fall into the “paraphyly” category (i.e., genes for which at
least one of the reference clades for a particular branch
is not monophyletic), rather than for more genes support-
ing either of the two minor topologies. Gene and site con-
cordance factors for the MIN4 data sets are shown in
supplementary figure S2, Supplementary Material online.

Resolution of the Platyrrhini Radiation Varies Across
Species Tree and Gene Tree Inference Methods

As in Vanderpool et al. (2020), we found uncertainty
around  relationships ~ among  the  Platyrrhini.
Concatenated ML analyses and gene-tree based analyses
that relied on gene trees inferred using ML preferred a
symmetric tree, with Saimiri boliviensis and Cebus capuci-
nus imitator as sister species and Callithrix jacchus and
Aotus nancymaae as sister species (topology 1 in fig. 4A).
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Fic. 3. Gene (gCF) and site (sCF) concordance factors among primate data sets using ML gene trees (MIN27). (A) Primate phylogeny from
ASTRAL-IIl using the ML gene trees (all input data sets give the same topology). Nodes show Node ID: gCF values from the SCC data set.
(B) Distribution of gCF values across data sets. (C) Distribution of sCF values across data sets. Node IDs correspond to the numbers displayed
on the tree in A. SCC, single-copy clusters; LSD, lineage-specific duplicates; TSD, two-species duplicates; MO, monophyletic outgroup; MI, max-

imum inclusion; SE, subtree extraction; ONE, one paralogs.

However, concatenated MP and gene-tree based analyses
that relied on gene trees inferred using MP preferred an
asymmetric topology, with S. boliviensis and C. c. imitator
sister and A. nancymaae sister to these two (topology 2
in fig. 4A). Finally, SVDQuartets preferred a third topology
that placed C. jacchus sister to S. boliviensis and
C. c. imitator (topology 3 in fig. 4A).

Gene and site concordance factors clarify these results.
A slight majority of ML gene trees prefer topology 1 (fig.
4B), a majority of MP gene trees prefer topology 2 (fig. 4B),
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while slightly more sites support topology 2 than topology
1 (fig. 4C). While the results from SVDQuartets may seem
counterintuitive at first, SVDQuartets relies on symmetry
between the two minor topologies to infer the third top-
ology as the correct topology. Since there are relatively
equal numbers of sites supporting topologies 1 and 2, it
is expected that SVDQuartets would prefer topology 3,
even though fewer sites support this topology. Results
for the MIN4 data set are similar and are shown in
supplementary fig. S3, Supplementary Material online.
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Fic. 4. Alternative resolutions of Platyrrhini relationships. (A) The three most common tree topologies. Below each resolution, inference methods
and filtering approaches that supported the topology are listed. (B) The percentage of gene trees supporting Tree 1 minus the percentage of gene
trees supporting Tree 2 for ML and MP gene trees across data sets. (C) The percentage of sites supporting Tree 1 minus the percentage of sites
supporting Tree 2 across data sets. SCC, single-copy clusters; LSD, lineage-specific duplicates; TSD, two-species duplicates; MO, monophyletic
outgroup; MI, maximum inclusion; SE, subtree extraction; ONE, one paralogs. Results in B and C from MIN27 data sets.

To further investigate the causes of disagreement among
these taxa, we focused on the SCC data set with MIN27 filter-
ing to compare ML and MP gene trees. For each gene, we re-
corded the ML and MP gene tree topology and the sCF with
respect to the focal node, as well as various summary statistics
about each locus (number of site patterns, number
of parsimony informative sites, tree length, etc.). The percent-
age of sites supporting the best topology was highest when
ML and MP gene trees agreed (supplementary fig. S6A and
C, Supplementary Material online). Additionally, there was
more variance in sCFs within a gene (i.e, the number of sites
supporting each topology differed more) when ML and MP
gene trees agreed (supplementary fig. S6A and B,
Supplementary Material online). This suggests that for genes
with similar numbers of sites supporting multiple topologies,
ML and MP were more likely to infer conflicting gene trees.
Notably, 17.6% of gene trees supported Tree 1 under both
ML and MP inference, while 18.8% of gene trees supported
Tree 2 under both ML and MP inference.

Branch Length Estimates Are Largely Consistent
Across Primate Data sets

We inferred branch lengths using two approaches. In gen-
eral, our results suggest that all methods that extract

orthologs perform similarly and should lead to reliable es-
timates of branch lengths. First, we estimated branch
lengths in units of substitutions per site using concate-
nated ML (i.e, site-based branch lengths). We expect
that the inclusion of paralogs will lead to an overestimation
of the site-based branch lengths, since the divergence
times of paralogs should pre-date the divergence times
of orthologs. As expected, estimated site-based branch
lengths for the One Paralogs data set are longer than those
estimated for the SCC data set (fig. 5A and B). For all
other MIN27 data sets, estimated site-based branch
lengths were highly similar to those from the SCC data
set (fig. 5C and D). However, there are some inconsisten-
cies with the site-based branch lengths for terminal
branches (fig. 5D), and all the site-based branch lengths
are more variable for the MIN4 data sets (supplementary
fig. S4, Supplementary Material online).

We also inferred discordance-based branch lengths in
coalescent units using ASTRAL-IIl for the ML gene tree
data sets. We expect that the inclusion of paralogs will
lead to underestimated discordance-based branch lengths,
because data sets with paralogs should have higher levels
of discordance. As expected, the estimated discordance-
based branch lengths from the All Paralogs and One
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Fic. 5. Branch lengths across primate data sets and species tree inference methods. Site-based branch lengths estimated using concatenated ML
when (A) SCCs and (B) one randomly selected paralog per species are used for inference. Note the different scales in A and B. (C) Difference
between site-based branch lengths for internal branches from the SCC data set and all the other data sets, normalized by SCC branch length.
(D) Same as in G, but for terminal branches. Discordance-based branch lengths calculated on the All Paralogs data set when (E) ASTRAL-Pro and
(F) ASTRAL-III are used for inference. Note that terminal branch lengths are arbitrary in these panels. (G) Difference between discordance-based
branch lengths estimated with ASTRAL-Pro (APro) and all the other methods, normalized by APro branch length. Colors represent different
filtering methods, and each row is a different branch. SCC, single-copy clusters; LSD, lineage-specific duplicates; TSD, two-species duplicates;
MO, monophyletic outgroup; MI, maximum inclusion; SE, subtree extraction; ONE, one paralogs. Results from MIN27 data sets.

Paralogs data sets using ASTRAL-IIl are shorter than those
estimated from the All Paralogs data set using
ASTRAL-Pro, a method that accounts for the extra dis-
cordance caused by the inclusion of paralogs (fig. SE-G).
In general, across all data sets except the two including
paralogs (All and One), discordance-based branch lengths
were highly similar to those estimated in ASTRAL-Pro (fig.
5G). However, there were some surprising results.
Specifically, the SCC and MO data sets led to slightly short-
er discordance-based branch length estimates than
both ASTRAL-Pro and the data sets from other tree-based
decomposition methods (fig. 5G). In addition, all
discordance-based branch length estimates are relatively
short, which could be explained by difficulties in estimat-
ing the lengths of longer branches with very little gene tree
discordance (i.e, for which all [or most] genes support a
single topology) in ASTRAL-III.

Tests for Introgression Are Consistent Across Primate
Data sets

To test for introgression, we looked for a deviation from
the expected number of alternate gene tree topologies
using the statistic A (Huson et al. 2005; Vanderpool et al.
2020). We used only the ML gene trees from each data
set for this analysis. There was evidence of introgression
across several branches of the primate phylogeny
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(iig. 6A), and values of A were similar across data sets
(fig. 6B). Notably, there was evidence of introgression in
a majority of tests at the contentious node in
the Platyrrhini, which may explain difficulties inferring
the species tree topology at this node. There was also evi-
dence of introgression in the macaques, as found by
Vanderpool et al. (2020). Deeper in the tree, results were
more suspect, with tests on some data sets suggesting
introgression while others did not (fig. 6B). The results of
introgression tests were similar with less stringent missing
data filters (supplementary fig. S5, Supplementary Material
online).

Inferred Species Trees Are Largely Consistent Across
Additional Clades

We assembled data sets and inferred species trees for sev-
eral other empirical data sets previously analyzed by Morel
et al. (2022). We analyzed five data sets: a fungi data set in-
cluding 16 species (fungi-16; Rasmussen and Kellis 2012), a
fungi data set including 60 species (fungi-60; Huerta-Cepas
et al. 2014), a vertebrate data set including 22 species
(vertebrates-22; Huerta-Cepas et al. 2014), a vertebrate
data set including 188 species (vertebrates-188; Zerbino
et al. 2018), and a plant data set including 23 species
(plants-23; Huerta-Cepas et al. 2014). These data sets var-
ied widely in the number of gene copies (supplementary
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FiG. 6. Results of introgression tests on primate MIN27 ML gene trees. (A) Pie charts are shown for branches with any significant introgression
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lineage-specific duplicates; TSD, two-species duplicates; MO, monophyletic outgroup; MI, maximum inclusion; SE, subtree extraction; ONE,

one paralogs.

Appendix B, Supplementary Material online). The propor-
tion of gene families that were single-copy ranged from
~3% in the plants-23 data set to ~67% in the fungi-16
data set. The data sets also varied in the number of gene
families (supplementary Appendix B, Supplementary
Material online), the number of taxa, and the depth of di-
vergence. For each data set, we assembled seven subsets of
gene families: SCCs, LSDs, TSDs, Ml-extracted orthologs
with  two-species  duplicates removed (MI-TSD),
SE-extracted orthologs, All Paralogs, and One Paralogs.
We then inferred species trees using ASTRAL-II,
ASTRAL-Pro, ASTRID, concatenated ML, and concate-
nated MP. For three data sets, ASTRAL-IIl could not

complete using the memory and wall-time available (up
to 500 Gb and 94 h), so for these data sets, we used a
modified version of FASTRAL (Dibaeinia et al. 2021). We
omit results from other analyses that did not complete
within 94 h of wall-time and 500Gb of memory
(supplementary Appendix B, Supplementary Material
online).

In general, across any given inference method (e.g,, all
trees inferred with ASTRAL-III), species tree topologies
were highly similar—whether we used SCCs or orthologs
extracted from larger gene families (fig. 7; supplementary
Appendix B, Supplementary Material online). The largest
differences were between trees inferred using
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Fic. 7. Results from analyzing five additional clades. On the left, we show the normalized Robinson-Foulds distances between trees inferred using
different species tree inference methods (ASTRID, concatenated ML, concatenated MP, ASTRAL-Pro) and the tree inferred using ASTRAL-III for
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concatenated ML and concatenated MP on the one hand,
and those inferred using the gene-tree based methods
ASTRAL-IIl and ASTRID, on the other (Appendix B).
Analyses of the One Paralogs subset using concatenated
approaches resulted in highly different trees for the
vertebrates-22 and plants-23 data sets (supplementary
Appendix B, figs. B4 and B7, Supplementary Material on-
line). In two cases, analyzing All Paralogs in ASTRAL-III re-
sulted in different topologies as well. For the fungi-16 data
set, the tree inferred in ASTRAL-IIl from All Paralogs dif-
fered from other trees at contentious nodes, but agreed
with some previous studies (Rasmussen and Kellis 2012);
nodal support values were also low at these nodes
(supplementary Appendix B, fig. B1, Supplementary
Material online). For the fungi-60 data set, the tree inferred
from All Paralogs using ASTRAL-IIl was substantially
different from other trees; our results suggest that this dif-
ference arose due to an issue when searching tree space in
ASTRAL-II, rather than due to some inherent property of
the data set (supplementary Appendix B, Supplementary
Material online). Overall, our results highlight the robust-
ness of topological inference to extracting genes from lar-
ger gene families, and in most cases, to using all data from
all gene families.

Discussion

Our results demonstrate that no matter the subset of the
data used, the inferred species tree topology is largely
stable; this was especially obvious in our analysis of primate
genomes. Regardless of whether all families, families with
only a single copy per species, or large families from which
orthologs were extracted were used, the only disagree-
ments between trees in the primate analyses were with re-
spect to relationships among the Platyrrhini; in this case,
the species tree inference method was a larger determin-
ant of results than the particular data set (fig. 4). Despite
the overall similarity among results, when a single gene
was randomly sampled per species, results were unstable
in two cases, suggesting—unsurprisingly—that such a
sampling strategy is not ideal. Among additional data
sets sampled from across the eukaryotes, results were
also highly consistent whether SCCs or orthologs extracted
from larger gene families were used for inference. While
using all gene families resulted in consistent estimates of
species tree topologies in most cases, analyzing these
gene families with methods that were not designed for
multicopy gene families (specifically, ASTRAL-III) resulted
in an anomalous result in one case, likely due to issues ap-
propriately searching tree space (supplementary Appendix
B, Supplementary Material online). Based on the results
presented here, when whole-genome sequence data are
available, using all of the families output by clustering
methods followed by the application of gene-tree decom-
position methods can greatly expand the data available
without sacrificing the accuracy of inference.

Several recent simulation studies have evaluated the im-
pacts of gene duplication and loss on inferences of species

tree topologies (Legried et al. 2020; Zhang et al. 2020;
Morel et al. 2022; Yan et al. 2022). In studies considering
the application of ASTRAL-IIl to multicopy gene families
(i.e. using ASTRAL-multi), its performance has been sur-
prisingly good, given that this method was not designed
with duplication and loss in mind (Legried et al. 2020;
Zhang et al. 2020; Yan et al. 2022). However, in some cases,
this approach has been outperformed by methods that ex-
plicitly accommodate duplication and loss (Zhang et al.
2020; Willson et al. 2022), likely because these approaches
use the information contained within gene duplication
events, while limiting the effects of noise. ASTRAL-Pro
(Zhang et al. 2020) includes an internal reconciliation
step that labels speciation and duplication nodes, and is
therefore operating similarly to gene tree decomposition
approaches that try to identify such nodes in order to ex-
tract orthologs (although often not under any explicit
model). In a comparison between ASTRAL-Pro and
ASTRAL-DISCO (an approach that decomposes gene
families prior to analyzing them in ASTRAL-III),
ASTRAL-DISCO performed similarly to ASTRAL-Pro with
lower computation times (Willson et al. 2022). Similarly,
our analyses of six empirical data sets highlight the fact
that tree-decomposition approaches perform similarly to
ASTRAL-Pro when inferring species tree topologies.
Taken together, these results suggest that decomposition
is a promising approach for using a wider array of methods
to infer species trees from large gene families.

Despite the stability of inference across most of the tree
in the primate data set, there remains disagreement about
relationships among the Platyrrhini, a notably contentious
node (Perelman et al. 2011; Springer et al. 2012; Perez et al.
2013; Jameson Kiesling et al. 2015; Schrago and Seuanez
2019; Wang et al. 2019; Vanderpool et al. 2020). As in
Vanderpool et al. (2020), we find that both concatenated
ML and ASTRAL-IIl based on ML gene trees favor a sym-
metrical topology (tree 1in fig. 4A). A bias toward the sym-
metrical 4-taxon tree is expected when using ML in the
presence of recombination and when the time between
speciation events is short (Kubatko and Degnan 2007;
Roch and Steel 2015). Although the bias in ML under these
conditions is often linked to concatenation methods, if the
gene trees themselves are inaccurate due to the concaten-
ation of multiple unique histories (e.g, among exons;
Mendes et al. 2019), then the same bias in inferred trees
can occur. Bias in the gene trees can then lead to bias in
the methods that they are used as input to (eg,
ASTRAL-III). Note that this bias does not affect inferences
under MP (Mendes and Hahn 2018). Furthermore, there
are nearly equal numbers of trees supporting the two best-
supported topologies in the primate data (fig. 4B), which
suggests two things: first, choosing the best topology will
be difficult no matter what method is used, as the evi-
dence in favor of one topology over the other is minimal.
Second, there is likely some introgression, since we would
otherwise expect equal numbers of the two minor topolo-
gies. We do not see equal numbers of the two minor top-
ologies, as confirmed by significant tests for introgression
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in this clade (fig. 6). Finally, a detailed comparison of SCC
gene trees inferred by both ML and MP suggests that genes
whose topologies disagreed across the two approaches did
not support either topology as strongly as genes for which
ML and MP agreed (supplementary fig. S6, Supplementary
Material online). Of the gene trees that agreed across ML
and MP inference, more supported Tree 2 than supported
Tree 1 (fig. 4A). Thus, of the genes for which the methods
agree, more support the asymmetric topology than the
symmetric topology (as in Vanderpool et al. 2020).

We also compared branch length estimates and tests for
introgression across data sets. Branch length estimates are
largely consistent across data sets, with the exception of
data sets that explicitly include paralogs, which led to
biases in expected directions for both discordance-based
and site-based branch lengths. Site-based branch lengths
are very consistent across all data sets except the One
Paralogs data set when stringent filters for missing data
are applied. When paralogs are included, site-based branch
lengths are overestimated, as expected (e.g, Siu-Ting et al.
2019). Discordance-based branch lengths (i.e., those esti-
mated in ASTRAL) are underestimated for data sets in-
cluding paralogs, because these data sets have higher
levels of discordance. These methods accommodate in-
creased discordance by positing a shorter time between
speciation events. Otherwise, discordance-based branch
lengths are largely similar across data sets, though the
SCC and MO data sets appear to have slightly shorter es-
timated branch lengths than all other methods (fig. 5E).
Given the consistency of results across tree-based decom-
position methods, as well as ASTRAL-Pro, and the vastly
larger number of gene trees used in these cases, we suggest
that discordance-based branch lengths may actually be
underestimated for the SCC and MO data sets. This result
is consistent with lower gCFs in these data sets (fig. 3B) and
suggests that branch lengths estimated from these data
sets may be inaccurate because they include
pseudoorthologs.

To our knowledge, this is the first evaluation of the ef-
fects of including more than just single-copy families on
tests for introgression based on the asymmetry in minor
topology frequencies. We expected that the inclusion of
paralogs would not bias such tests, because under models
that include duplication and loss, the two minor topologies
should occur in equal frequencies (Smith and Hahn 2021,
2022). Our results largely confirm these expectations: al-
though there is variation in whether or not tests are signifi-
cant across data sets, estimates of A are very similar (fig. 6B).
At some nodes, there is consistent evidence for introgres-
sion across data sets, suggesting a strong signal of asym-
metry: for example, in the macaques and among
the Platyrrhini. Deeper in the tree, there may be more
gene tree error (e.g, due to long-branch attraction), since
introgression is detected for some data sets and not for
others (fig. 6B).

Phylogenetics based on whole-genome sequences al-
most always begins by identifying homologous genes via
clustering. The clustering process operationally defines
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gene families, using clustering methods that range from
very simple to very complex. While the single-copy clusters
output by any one of these methods have most often been
used in phylogenetics, there is nothing inherently more
suitable about these clusters. First, SCCs may not be ortho-
logs, due to the presence of pseudoorthologs—paralogs
that are mistaken as orthologs due to differential patterns
of gene duplication and loss (Doolittle and Brown 1994;
Koonin 2005). In other words, having only a single repre-
sentative sequence in each species does not guarantee
that all the sampled genes are orthologs. Second, and
more importantly, the size of clusters identified by cluster-
ing approaches is determined by parameters set by the
user. For example, in OrthoMCL (Li 2003), the inflation
parameter determines the size of output clusters: by chan-
ging this parameter, users can identify larger or smaller
clusters. Because genes are related to all other genes via
along history of duplication and divergence (with a few ex-
ceptions; Knowles and McLysaght 2009; Zhao et al. 2014),
there is no single level of similarity that uniquely identifies
gene families (Demuth and Hahn 2009). However, users
can choose the value of the inflation parameter that iden-
tifies more, smaller clusters, in order to find more single-
copy clusters; this does not mean these genes do not
have paralogs, only that more distant paralogs were not in-
cluded at this clustering threshold. Many clustering meth-
ods aim to form groups of genes that descend from a single
common ancestor in the studied taxa (e.g, Emms and Kelly
2015), though this does not ensure a lack of duplication
events since the common ancestor. While tree-based de-
composition approaches still rely on the clustering step
to initially identify the homologs from which gene trees
are built, their output is directly related to the definitions
of orthologs and paralogs, and is more easily interpreted in
a phylogenetic context. By applying these decomposition
approaches to larger clusters, researchers can avoid arbi-
trary determinants of which clusters are single copy and
can instead attempt to extract as many sets of orthologs
as possible. Not only does this approach increase the
amount of data available, but it also uses criteria more dir-
ectly linked to the evolutionary history of gene families.
Our analyses included genomic data sets across verte-
brates, plants, and fungi. While these data sets varied in
the number of species, the depth of divergence, and the to-
tal number of available gene families, they are all relatively
high-quality genomic data sets. Future works should inves-
tigate the effects of the inclusion of paralogs using data
sets more prone to errors in homology inference and align-
ment. For example, when transcriptomic data are ana-
lyzed, not all homologs will necessarily be sequenced in
all species, complicating the identification of orthologs
and paralogs, even using tree-based decomposition ap-
proaches (Cheon et al. 2020). Target enrichment-based ap-
proaches (e.g, Faircloth et al. 2012; Weitemier et al. 2014)
use probes to target-specific genomic regions and may in-
advertently capture paralogous sequences. These data are
generally limited to a moderate number of targeted ortho-
logous regions, and the incidental inclusion of paralogs
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may have a much more pronounced effect, as there is far
less signal available to overcome the noise associated with
incorrect inferences of homology. Finally, inferences of
homology may be more difficult when deeper phylogenet-
ic problems are considered and in groups with frequent
allo- and auto-polyploidy. These scenarios may challenge
current phylogenomic methods in ways that the genomic
data sets analyzed here do not, and should be carefully
considered in future works.

In conclusion, our results suggest that methods for spe-
cies tree inference are accurate across data sets, whether
single-copy clusters or tree-based decomposition methods
are used. For most subsets of the data and inference meth-
ods, using all clusters (i.e. paralogs and orthologs) also re-
sults in consistent inferences of species tree topologies.
Our results highlight the benefits of using data from all
gene families by showing that the amount of data used
can be increased by an order of magnitude (table 1; fig.
2; supplementary Appendix B, Supplementary Material on-
line). While even the smallest data set was sufficient for ac-
curate species tree inference in the data sets analyzed here,
that is not always the case (e.g, Emms and Kelly 2018;
Thomas et al. 2020). In such cases, using only single-copy
clusters may not be possible, and using data from larger
gene families will be essential. Finally, more data facilitates
inferences beyond species tree topology, including branch
length estimates and the detection of introgression. Our
results suggest that branch lengths estimated from sin-
gle-copy clusters may be less consistent than those esti-
mated using data from larger gene families in the
primate data set (fig. 5), and adding gene families improves
our ability to detect significant deviations from symmetric
minor topology counts in tests for introgression (fig. 6).
Our results are consistent across six empirical data sets
that differ in the number of species, the number of gene
families, the sizes of gene families, and the depth of diver-
gence. While these data sets are not exhaustive, they sug-
gest the potentially broad applicability of our findings,
particularly with respect to the suitability of orthologs ex-
tracted from larger gene families for inferring species tree
topologies.

Materials and Methods

Primate Data set and Alignment

The full sets of protein-encoding genes for 26 primates and
3 non-primates were obtained as in Vanderpool et al.
(2020), and clusters were obtained as in that study.
Briefly, an all-by-all BLASTP search (Altschul et al. 1990;
Camacho et al. 2009) was executed, and the longest iso-
form of each protein-coding gene from each species was
used. Then, the mcl algorithm (Van Dongen 2000) as im-
plemented in FastOrtho (Wattam et al. 2014), with an in-
flation parameter of 5 was used to cluster the BLASTP
output. CDSs for each cluster that included samples
from at least four species were aligned, cleaned, and
trimmed as in Vanderpool et al. (2020). Sequences were
aligned by codon using GUIDANCE2 (Sela et al. 2015)

with MAFFT v7.407 (Katoh and Standley 2013) with 60
bootstrap replicates. Sequence residues with GUIDANCE
scores <<0.93 were converted to gaps and sites with
>50% gaps were removed using Trimalv1.4rev22
(Capella-Gutiérrez et al. 2009). GUIDANCE?2 uses the com-
mand “mafft -localpair —maxiterate 1000 —nuc —quiet”
when running MAFFT. Alignments shorter than 200 bp
and that were invariant or contained no parsimony in-
formative characters were removed from further analyses.
Alignments that could not be aligned by codon were
aligned by nucleotide, and subsequent steps were as
with the codon-aligned data set. In total, 18,484 align-
ments were used in downstream analyses.

Gene Tree Inference

We inferred gene trees from all alignments with at least
four species (18,484 alignments) in IQ-TREE v2.0.6
(Nguyen et al. 2015) with nucleotide substitution models
selected using ModelFinder (Kalyaanamoorthy et al.
2017) as implemented in IQ-TREE. The full IQ-TREE com-
mand used on each alignment was “iqtree2 -s alignment
name -m MFP -c 1 -pre alignment name.” We also inferred
gene trees from all 18,484 alignments using the MP criter-
ion in PAUP* v 4.0a (Swofford 2001). We treated gaps as
missing data, obtained a starting tree via random stepwise
addition, held a single tree at each step, and used the TBR
branch-swapping algorithm with a reconnection limit of
8. We kept a maximum of 1000 trees and did not collapse
zero-length branches.

Filtering
We considered three major groups of filtering methods:

1) Single-copy clusters: We considered a data set that
consisted only of those clusters that included a sin-
gle gene copy from each species.

2) Tree-based decomposition approaches: We consid-
ered several methods that involved trimming the
branches of gene trees to extract orthologs. All cus-
tom branch-cutting operations were written in py-
thon3 and used the python package ete3
(Huerta-Cepas et al. 2016) to read, traverse, trim,
and output gene trees and modified sequence align-
ments. We used postorder node traversal when tra-
versing trees, and prior to custom trimming
operations, we midpoint-rooted gene trees.

i) Lineage-specific duplicates: In this data set, we
identified gene duplications that were specific
to a single species. For such lineage-specific du-
plicates, we selected the sequence copy that
was closest in length to the median length of se-
quences in the alignment, kept that copy, and
trimmed the other copy or copies from both
the alignment and the gene tree.

ii) Two-species duplicates: To expand our data be-
yond LSDs, in addition to trimming lineage-spe-
cific duplicates, we identified gene duplications
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specific to a pair of species. For such duplicates,
we selected the two sequence copies with the
minimum branch distance separating them
and trimmed the remaining copies from the
tree and the alignment.

iii) Maximum Inclusion: We applied the MI
approach described in Yang and Smith (2014)
to trim gene trees. We used the python
script provided by Yang and Smith (2014
prune_paralogs_Ml.py) and used as input one
of three sets of gene trees: the original 18,484
gene trees, the original 18,484 gene trees with
lineage-specific duplicates trimmed, and the ori-
ginal 18,484 gene trees with lineage-specific and
two-species duplicates trimmed. For the Ml ap-
proach, branches longer than a specified thresh-
old are trimmed to remove potential
pseudoorthologs; we used the following branch
length cutoffs: 0.4 substitutions per site for the
ML gene trees and 500 changes for MP trees.
We explored additional cutoffs in the
supplementary Appendix A, Supplementary
Material online.

iv) Monophyletic Outgroups: We also applied the
MO approach described in Yang and Smith
(2014) to trim gene trees. We used the python
script provided by Yang and Smith (2014
prune_paralogs_MO.py) and used as input one
of three sets of gene trees: the original 18,484
gene trees, the original 18,484 gene trees with
lineage-specific duplicates trimmed, and the ori-
ginal 18,484 gene trees with lineage-specific and
two-species duplicates trimmed.

v) Subtree extraction: Finally, we evaluated a new
tree-based decomposition approach introduced
here (SE). In this approach, we start by
midpoint-rooting gene trees, followed by trim-
ming lineage-specific and two-species dupli-
cates. We then extract subtrees with a single
representative from each taxon (i.e, subtrees
with no duplicates) and keep those subtrees
that meet minimum taxon-sampling thresholds.

3) Paralog methods: We considered two approaches
that included paralogs in addition to orthologs.
First, we included all genes (All Paralogs).
Additionally, we randomly sampled a single gene
(without regard to orthology) per species (One
Paralogs).

For all data sets, we considered a stringent (minimum of
27 of 29 taxa) and relaxed (minimum of 4 of 29 taxa) miss-
ing data threshold.

Species Tree Inference

We inferred species trees using seven methods. Three
methods inferred species trees from concatenated data
sets: MP, ML, and SVDQuartets. To infer an MP tree from
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the concatenated data sets, we used PAUP* v4.0a (build
168) (Swofford 2001). We set the criterion to parsimony,
and used 500 bootstrap replicates to assess nodal support.
For all other options, we used PAUP* defaults. To infer an
ML tree from the concatenated data set, we used
IQ-TREE v2.0.6 (Nguyen et al. 2015) with nucleotide
substitution models selected using ModelFinder
(Kalyaanamoorthy et al. 2017) as implemented in
IQ-TREE. We used an edge-linked, proportional partition
model (Chernomor et al. 2016) and 1000 ultrafast boot-
strap replicates (Hoang et al. 2018). The full IQ-TREE com-
mand used on each alignment was “igtree2 -s alignment
name -p partition file name -c 1 -pre alignment name -B
1000.” For three alignments, 1Q-Tree v2.0.6 failed to run,
and, based on a suggestion from the developers, we re-
verted to IQ-Tree v.1.6.12 to infer the species trees for these
alignments. For these three alignments, the full IQ-TREE
command used was “iqtree -s alignment name -spp parti-
tion file name -pre alignment name -bb 1000 -nt 4.
Finally, to infer a species tree from the concatenated align-
ments using SVDQuartets, we used PAUP* v4.0a (build
168) (Swofford 2001). We evaluated all quartets and trea-
ted ambiguous sites as missing to infer the species tree top-
ology using the command “svdq evalq = all bootstrap = no
ambigs = missing loci = allchars;.” To assess nodal support,
we evaluated 10,000 random quartets for each of the 100
bootstrap replicates. We used the multilocus bootstrap-
ping option and again treated ambiguous sites as missing.
The command used for bootstrapping in SVDQuartets
was “svdq evalg=random nquartets=10000 boot-
strap=multilocus loci=allchars nreps=100 nthreads=2
replace=yes treefile=output file name ambigs=missing;.”

In addition to the three concatenation-based methods,
we inferred species trees using four gene-tree based meth-
ods. Prior to inferring species trees or estimating discord-
ance (see below) from filtered gene trees, we collapsed all
zero-length branches. For each gene tree, we did the follow-
ing: first, we midpoint-rooted the gene tree. Then, we cal-
culated sCFs using 1Q-Tree v2.0.6 (Minh et al. 2020) for
the alignment with the rooted gene tree as the reference
tree. We used 100 randomly sampled quartets to compute
the sCF, collapsing any nodes where SN == 0; in other
words, any nodes for which no sites were informative.

We inferred a species tree using ASTRAL-IIl v5.7.3
(Sayyari and Mirarab 2016; Zhang et al. 2018; Rabiee
et al. 2019). ASTRAL-IIl infers a species tree from a set of
gene trees by extracting quartets and finding the species
tree that maximizes the number of shared quartet trees.
It has been demonstrated to be consistent under the mul-
tispecies coalescent (MSC) model (Mirarab et al. 2014) and
under models of gene duplication and loss (Legried et al.
2020). Gene trees obtained using ML and MP, from all
data sets described above, and with zero-length branches
collapsed, were used as input to ASTRAL-III; local posterior
probabilities were used to assess nodal support. In order to
run ASTRAL-IIl on multicopy gene trees (i.e. the All
Paralogs data set), we used the mapping file and treated
each gene copy as a separate individual. Additionally, we
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inferred species trees using ASTRID v2.2.1 (Vachaspati and
Warnow 2015), again using the filtered and zero-length
collapsed ML and MP gene trees as input. ASTRID is a
distance-based approach that estimates species trees using
internode distances and is statistically consistent under
the MSC model (Vachaspati and Warnow 2015). As in
ASTRAL-III, for the All Paralogs data set, we treated gene
copies from the same species as individuals using the map-
ping file. Finally, we inferred species trees from the All
Paralogs data sets using ASTRAL-Pro (Zhang et al. 2020)
and ASTRAL-DISCO (Willson et al. 2022). ASTRAL-Pro
uses an internal rooting-and-tagging algorithm to label
nodes as duplication or speciation nodes, and then infers
quartets using only speciation nodes before finding the
species tree that maximizes the number of shared quartet
trees. ASTRAL-Pro has been shown to be statistically
consistent under a model of gene duplication and loss,
provided that rooting and tagging of nodes as speciation
or duplication nodes is correct (Zhang et al. 2020).
ASTRAL-DISCO decomposes multicopy gene trees into
single-copy trees using the “rooting and tagging” algorithm
from ASTRAL-Pro and then infers a species tree using
ASTRAL-III.

Assessing Discordance

To assess levels of discordance across data sets, we calcu-
lated gene and site concordance factors in 1Q-Tree v2.0.6
(Minh et al. 2020). We used the tree shown in (fig. 3) as
the reference tree, and to estimate sCFs, we used 1000 ran-
domly sampled quartets. gCFs were estimated for filtered
ML and MP gene trees after zero-length branches were col-
lapsed. sCFs were estimated for the alignments that re-
sulted from filtering the ML gene trees.

Testing for Introgression

We used the approach used in Vanderpool et al. (2020) to
test for introgression. Briefly, the introgression test assesses
whether there is a deviation from the expected equal num-
bers of alternative tree topologies (under the MSC model
without gene flow) using the statistic A (Huson et al.
2005), where

_ Number of DF1 trees — Number of DF2 trees
" Number of DF1 trees + Number of DF2 trees

DF1 represents the most common minor topology, and
DF2 represents the least common minor topology. In the
absence of introgression, A is expected to be equal to
zero. To test whether the deviations from zero were signifi-
cant, we followed the procedure of Vanderpool et al.
(2020) and used 2,000 data sets generated by resampling
gene trees with replacement, considering only those nodes
where more than 5% of the trees were discordant. This dis-
tribution was used to calculate Z-scores and P-values for
the observed A statistic, and for each filtered data set,
we corrected for multiple comparisons using the Dunn-
Sidak correction (Dunn 1959; Sidak 1967).

Fungi, Vertebrate, and Plant Data sets

We downloaded the fungi-60, vertebrates-22, vertebrates-
188, and plants-23 data sets from Morel et al. (2022).
The fungi-60, vertebrates-22, and plants-23 data sets
were extracted from the PhlomeDB database
(Huerta-Cepas et al. 2014) by Morel et al. (2022). For these
three data sets, amino acid matrices were used in concate-
nated analyses. We used gene trees from Morel et al.
(2022) inferred from amino acid matrices using ParGenes
(Morel et al. 2019) and RAXML-NG (Kozlov et al. 2019)
for the fungi-60 and plants-23 data sets. For the
vertebrates-22 data set, we followed Morel et al. (2022)
in using the gene trees from the PhylomeDB database,
which were reconstructed in PhyML v3.0 (Guindon and
Gascuel 2003) from amino acid matrices. The
vertebrates-188 data set was extracted from the Ensembl
Compara database (Zerbino et al. 2018) by Morel et al.
(2022). For this data set, nucleic acid matrices were used
for concatenated analyses. We used gene trees from
Morel et al. (2022) inferred from nucleic acid matrices
using ParGenes (Morel et al. 2019) and RAxML-NG
(Kozlov et al. 2019). We downloaded the fungi-16 data
set (Rasmussen and Kellis 2012) from http://compbio.
mit.edu/dlcoal/. For this data set, nucleic acid alignments
were used for concatenated analyses, and we used gene
trees from the original study inferred from nucleic acid
matrices using PhyML (Guindon and Gascuel 2003). We re-
moved two trees that had polytomies.

For each data set, we assembled seven subsets of gene
families: SCCs, LSDs, TSDs, Ml-extracted orthologs with
two-species duplicates removed (MI-TSD), SE-extracted
orthologs, All Paralogs, and One Paralogs. We inferred spe-
cies trees using ASTRAL-IIl (Sayyari and Mirarab 2016;
Zhang et al. 2018; Rabiee et al. 2019), ASTRID
(Vachaspati and Warnow 2015), ASTRAL-Pro (Zhang
et al. 2020), concatenated MP inference in PAUP*
(Swofford 2001), and concatenated ML Inference in
IQ-Tree (Nguyen et al. 2015). When ASTRAL-IIl could
not complete within 94 h and 500 Gb, we ran FASTRAL
(Dibaeinia et al. 2021). In order to run FASTRAL on data
sets with missing data, we made slight changes to the
FASTRAL source code by automating the construction of
a custom map file for each run of ASTRID. We calculated
distances between inferred trees using the python package
ete3 (Huerta-Cepas et al. 2016).

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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Data Availability

Scripts used for filtering gene trees are available
on GitHub (github.com/meganlsmith/Primate_Paralogs).
Primate alignments, gene trees, and species trees are avail-
able from FigShare (doi: 10.6084/m9.figshare.16653025).
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