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Experimental test of the third quantization of the electromagnetic field
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Each mode j of the electromagnetic field is mathematically equivalent to a harmonic oscillator with a wave
function ψ j (x j ) in the quadrature representation. An approach was recently introduced in which ψ j (x j ) was
further quantized to produce a field operator ψ̂ j (x j ) [J. D. Franson, Phys. Rev. A 104, 063702 (2021)]. This
approach allows a generalization of quantum optics and quantum electrodynamics based on an unknown mixing
angle γ that is somewhat analogous to the Cabibbo angle or the Weinberg angle. The theory is equivalent to
conventional quantum electrodynamics for γ = 0, while it predicts an inelastic photon scattering process for γ �=
0. Here we report the results of an optical scattering experiment that set an upper bound of |γ | � 1.93 × 10−4

rad at the 99% confidence level, provided that the particles created by the operator ψ̂ j (x j ) have negligible mass.
High-energy experiments would be required to test the theory if the mass of these particles is very large.

DOI: 10.1103/PhysRevA.106.013713

I. INTRODUCTION

Each mode j of the electromagnetic field is mathematically
equivalent to a harmonic oscillator [1–5]. It is customary
in quantum optics to introduce operators x̂ j and p̂ j that are
proportional to the electric field of mode j and its time rate of
change. This allows the definition of a wave function ψ j (x j )
in the so-called quadrature representation of mode j [1,2,6–
8], which is used extensively to calculate the nonclassical
properties of the field [9,10]. An approach in which the wave
functionψ j (x j ) is further quantized to produce a field operator
ψ̂ j (x j ) was recently proposed [11]. Since the electromagnetic
field is already second quantized, this corresponds to an ad-
ditional or third quantization. This approach is required for
a complete description of quantum optics in the Heisenberg
picture [11].

The third quantization approach is equivalent to conven-
tional quantum optics and quantum electrodynamics if we
use the standard Hamiltonian. However, an analogy with
symmetry breaking in elementary particle theory suggests a
generalization of quantum electrodynamics [11] based on a
mixing angle γ that is somewhat analogous to the Cabibbo
angle [12] or the Weinberg angle [13]. The generalized theory
predicts effects that could be tested experimentally if γ �= 0.

There are a number of recent elementary particle ex-
periments whose results appear to be inconsistent with the
predictions of the standard model, which has generated con-
siderable interest in theories that go beyond the standard
model (BSM) [14–18]. The third quantization of the electro-
magnetic field is an example of a BSM theory, even though
it was originally developed for use in quantum optics. For
example, the particles created by the field operator ψ̂ j (x j ) may
be candidates for the dark matter inferred from astronomical
observations.

Here we report the results of an optical experiment in
which the generalized theory predicts a new form of inelastic

photon scattering if γ �= 0. The experimental results set an
upper bound of |γ | � 1.93 × 10−4 rad at the 99% confidence
level, provided that the hypothetical particles created by the
field operator ψ̂

†
j (x j ) have negligible mass m. High-energy

experiments would be required to test the theory if the value
of m is very large.

The remainder of the paper is organized as follows. Sec-
tion II provides a brief review of the third quantization
approach and the role of the mixing angle γ . The design of
the experimental apparatus and the experimental approach are
described in Sec. III. The experimental results and the bound
on the value of γ are discussed in Sec. IV. A summary and
conclusions are presented in Sec. V, including a discussion
of the need for high-energy experiments to investigate the
possibility that these particles have a large mass.

II. OVERVIEW OF THE THIRD
QUANTIZATION APPROACH

Each mode j of the electromagnetic field is mathemati-
cally equivalent to a harmonic oscillator [1–5]. We can think
of each of these harmonic oscillators as containing a single
hypothetical particle whose excited states |n j〉 correspond to
the presence of n j photons in mode j of the field. This is il-
lustrated in Fig. 1(a), along with the usual photon annihilation
and creation operators â j and â†j .

The third quantization approach [11] introduces a new
operator ĉ†jn that creates an additional hypothetical particle of
that kind in state |n j〉 of the harmonic oscillator representing
mode j, as illustrated in Fig. 1(b). For lack of a better term,
these hypothetical particles are referred to as oscillatons. The
field operator ψ̂ j (x j ) for a single mode of the electromagnetic
field can then be defined as

ψ̂ j (x j ) ≡
∑
n

ĉ jnφn(x j ). (1)
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FIG. 1. (a) In conventional quantum optics, each mode of the
electromagnetic field is equivalent to a harmonic oscillator that con-
tains a single hypothetical particle (an oscillaton) represented by
a black dot. The usual photon creation and annihilation operators
â† and â increase or decrease the energy of the particle by h̄ω,
which corresponds to the emission or absorption of a photon. (b)
In the third-quantized theory, the operator ĉ†n creates an additional
hypothetical particle of that kind in state |n〉 (from Ref. [11]).

Here φn(x j ) is the nth energy eigenstate of the harmonic
oscillator potential.

New photon annihilation and creation operators â′ j and â′†j
can be defined as

â′
j ≡

∞∑
n=1

√
nĉ†j,n−1ĉ jn,

â†j ≡
∞∑
n=0

√
n + 1ĉ†j,n+1ĉ jn. (2)

These operators are equivalent to the usual photon creation
and annihilation operators if there is a single oscillaton as in
Fig. 1(a).

The vector potential operator Â(r) can then be defined as
usual by [19]

Â(r) =
∑
j,ε j

√
2π h̄c2

ω jL3
(ε j â′ jeik j ·r + ε∗

j â′†j e−ik j ·r ). (3)

Here ε j are two orthogonal polarization vectors, L is the
length used for periodic boundary conditions, and c is the
speed of light.

The standard Hamiltonian for the interaction of charged
particles with the electromagnetic field can be written in the
Coulomb gauge in the form [20]

Ĥ ′ = −1

c

∫
d3rĵ(r) · Â(r), (4)

where ĵ(r) is the current carried by an electron or other par-
ticle. This Hamiltonian conserves the number of oscillatons
and gives results that are equivalent to conventional quantum
optics and quantum electrodynamics.

More general Hamiltonians need not conserve the number
of oscillatons. An example of such a theory was suggested
in Ref. [11], where it was shown that an interaction between
the oscillatons and another boson B with a large mass would

FIG. 2. Inelastic photon scattering predicted by the generalized
theory of Eq. (5). Photons at frequency ω are incident on a cloud
of two-level atoms. Some of the photons are scattered through a 90◦

angle with final frequencies of ω or ω′ = ω/2. Energy is conserved
in the latter case by the creation of a pair of oscillatons. The predicted
ratio of the two scattering rates can be used to set an upper bound on
the mixing angle γ (from Ref. [11]).

produce a Bogoliubov transformation [21,22] of the form

ĉ jn → ĉ′ jn = β(cos γ ĉ jn + sin γ ĉ†jn),

ĉ†jn → ĉ′†jn = β(sin γ ĉ jn + cos γ ĉ†jn). (5)

The constant β = 1/(cos2γ − sin2γ )
1/2

maintains the com-
mutation relations, while the mixing angle γ is somewhat
analogous to the Cabibbo angle [12] or the Weinberg angle
[13]. As a result of the interaction, the bare oscillatons no
longer correspond to the true eigenstates of the system.

Although the assumed interaction with a massive boson
may seem speculative, it is closely analogous to the symmetry
breaking mechanisms that occur in the standard model of el-
ementary particle theory. For example, the three-dimensional
coupling matrix described in the appendix of Ref. [11] is anal-
ogous to the Cabibbo-Kobayashi-Maskawa matrix for quarks
or the Maki-Nakagawa-Sakata matrix for neutrinos.

It can be shown [11] that the interaction Hamiltonian
of Eq. (4) combined with the Bogoliubov transformation of
Eq. (5) can create or annihilate a pair of oscillatons while
emitting or absorbing a photon. This process can be un-
derstood using second-order perturbation theory [11], where
there are two interactions with the massive boson field. The
first interaction creates a new oscillaton and a virtual B parti-
cle, while the second interaction annihilates the B particle and
creates a second oscillaton, resulting in the creation of a pair
of oscillatons. The Bogoliubov transformation describes this
in a more formal way.

This prediction can be tested using the photon scattering
experiment outlined in Fig. 2. Here an incident photon at fre-
quency ω is scattered by a two-level atom to produce a single
photon at a frequency of ω or ω′ = ω/2. Energy is conserved
in the latter case by the creation of a pair of oscillatons, where
we have assumed for the time being that the mass of the
oscillaton is negligibly small.

The ratio R of the inelastic scattering rate at frequency ω′
divided by the usual elastic scattering rate at frequency ω is
predicted by the generalized theory to be given by R = 4γ 2

[11]. Thus an experiment of this kind can set an upper bound
on the value of the mixing angle γ .

013713-2



EXPERIMENTAL TEST OF THE THIRD QUANTIZATION … PHYSICAL REVIEW A 106, 013713 (2022)

FIG. 3. Experimental apparatus used to measure the ratio of the inelastic scattering rate at 1560 nm divided by the usual elastic scattering
rate at 780 nm. One of three diode lasers could be coupled into the experiment using an optical fiber. Two of the lasers were only used for initial
alignment, while a frequency-stabilized laser at 780 nm was used in the actual scattering measurements. Detector D1 was used to correct for
variations in the laser power, detector D2 measured the scattering rates, and detector D3 measured the intensity of the light transmitted through
a rubidium cell. M1 and M2 were alignment mirrors, P1 and P2 were pinholes, F1 through F8 were filters, and L1 through L6 were lenses, as
described in the text.

III. EXPERIMENTAL APPARATUS

The experimental apparatus used to test the generalized
theory is outlined in Fig. 3. Three fiber-coupled diode lasers
with wavelengths of 635, 780, and 1550 nm could be con-
nected one at a time to a fiber port in front of lens L1, which
was mounted in a three-axis micropositioner. A collimated
laser beam with a diameter of 1 mm could be produced by
adjusting the position of L1. Two pinholes P1 and P2 defined
the central optical axis of the experiment, and mirrors M1

and M2 could be used to center the laser beams through the
two pinholes. This ensured that the same optical path would
be followed regardless of which laser was connected to the
collimator.

The visible laser at 635 nm and the 1550 nm laser were
used only for initial alignment and testing, as will be described
below. The 780 nm laser was a frequency-stabilized (New
Focus Velocity) diode laser whose frequency could be scanned
over one of the hyperfine absorption lines of single-isotope
87Rb atoms contained in a fused silica cell. An oven was used
to heat the rubidium cell over a range of temperatures up to
50 °C.

A glass plate was used to couple a small fraction of the
laser power into a precision wave meter (HighFinesse model
WS-U) that could measure the frequency of the laser light
with a precision of approximately 10 MHz. Filter F1 was a
variable neutral density filter that could be used to adjust the
laser power to the desired value. Filter F2 consisted of a pair
of narrow-band interference filers with central wavelengths of
780 nm and bandwidths of 5 nm. Filter F2 and the remainder
of the apparatus were enclosed in a light-tight box, which
prevented any significant amount of light from reaching the
detectors from the outside environment.

Another glass plate coupled a small fraction of the laser
power into detector D1, which was a silicon photodiode used
to measure the power from the laser. This allowed the scat-
tering rates to be corrected for small variations in the laser
power. Filter F3 was a neutral density filter used to prevent
detector D1 from saturating, while filter F4 was a narrow-band
interference filter centered at 780 nm. An additional pair of
mirrors (not shown in the figure) was used to center the laser
beam onto detector D1.

Detector D2 was a low-noise indium gallium arsenide
photodetector (Thorlabs model PDF 10C) that was used to
measure the intensity of the scattered light. This detector
had an internal preamplifier and a noise equivalent power of
7 × 10−15 W/

√
Hz, which allowed power levels as low as

1 × 10−16 W to be measured using time-averaging techniques
described below. This detector was used to measure the usual
elastic scattering at 780 nm as well as the inelastic scattering at
1560 nm, even though the quantum efficiency was much less
at 780 than 1560 nm. This difference in quantum efficiency
was taken into account when calculating the ratio of the two
scattering rates.

Several single-photon avalanche diode (SPAD) detectors
suitable for use at 1560 nm were also available in the lab-
oratory, but their quantum efficiency was lower than that of
detector D2 and their active area was two orders of magnitude
smaller. As a result, D2 was the best choice for this applica-
tion.

Lens L3 formed a collimated beam from the light scattered
by the rubidium atoms, while lens L4 focused the beam onto
detector D2. When measuring the elastic scattering rate at
780 nm, filter F5 was a neutral density filter that reduced the
intensity of the scattered light to avoid saturating detector D2,
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while filter F6 was a narrow-band interference filter with a
central wavelength of 780 nm.

When measuring the inelastic scattering rate at 1560 nm,
F5 was replaced with a set of three long-pass filters that atten-
uated the scattered light at 780 nm by approximately 12 orders
of magnitude. Filter F6 was also replaced with a narrow-band
interference filter with a central wavelength of 1560 nm and
a bandwidth of 12 nm. A sequence of narrow-band filters that
covered the range from 1530 through 1580 nm could also be
used to measure the wavelength dependence of any scattered
light.

Lenses L3 and L4 were achromatic doublets optimized
for wavelengths near 780 nm during the measurement of
the elastic scattering rate. These were replaced with lenses
optimized for wavelengths near 1560 nm during the mea-
surement of the inelastic scattering rate. The differences in
the loss or attenuation of all of these elements was taken
into account when calculating the ratio of the two scattering
rates.

Detector D3 was a silicon photodiode that measured the
intensity of the light transmitted through the rubidium cell as
the laser frequency was continuously scanned over a 5 GHz
range centered on one of the hyperfine absorption lines. This
was used to stabilize the frequency of the laser, which would
otherwise drift by approximately 0.1 GHz/h due to changes in
the room temperature. Filters F7 and F8 were neutral density
and narrow-band interference filters used to limit the light
entering detector D3. Another pair of mirrors (not shown) was
used to center the beam onto detector D3.

The use of narrow-band interference filter F6 required that
the light traveling toward detector D2 be well collimated. This
was achieved by initially removing the rubidium cell, lenses
L3 and L4, filters F5 and F6, and detector D2. The visible 635
nm diode laser was then connected to a fiber port behind lens
L5, which was mounted on a three-axis micropositioner and
used to produce a collimated beam. Lens L4 was then put into
position and detector D2 was mounted on a three-axis microp-
ositioner, which allowed it be placed at the focal point of fixed
lens L4. Detector D2 had a small active area (a diameter of
0.5 mm) and was therefore most sensitive to light that was
collimated in the direction determined by lens L5.

The 635 nm laser was then connected to the fiber port
behind lens L1 and a diffuse reflector was placed in the
laser beam where the cell would normally be located. This
produced a wide angle of scattered light that simulated the
subsequent scattering by the rubidium atoms. Lens L3 was
then mounted on a three-axis micropositioner and adjusted
to focus the scattered light onto detector D2. The oven and
rubidium cell were then put back into position. This procedure
ensured that the light scattered by the rubidium atoms would
be properly collimated with the optimal detection efficiency.
The entire process could be repeated using the 780 and 1550
nm lasers instead.

Perhaps the biggest concern in the design of the experiment
was the possibility that scattered 780 nm photons could pro-
duce fluorescence in the walls of the cell, lens L3, or filter F5.
Some of the fluorescence might pass through the subsequent
long-pass and narrow-band filters, giving a spurious signal.
Fluorescence of this kind would be expected to have a large
bandwidth and could be distinguished in that way from any

FIG. 4. Transmission through the rubidium cell as measured by
the output of detector D3 (in volts) for a relatively small laser power
of 0.1 μW. The transmission is plotted as a function of the detuning
of the 780 nm laser from the rubidium resonance frequency.

inelastic scattering at 1560 nm. No fluorescence of that kind
was detected.

IV. EXPERIMENTAL RESULTS

The frequency of the 780 nm diode laser could be con-
trolled by applying a voltage to a piezoelectric element in
the laser head. The output of a signal generator was used
to modulate the laser frequency through a range of 5 GHz
centered on one of the hyperfine transitions with a period
of 10 s. The outputs of all three detectors along with the
voltage from the frequency generator were input to a digital
storage oscilloscope. The output of detector D2 was amplified
by a gain of 10 or 100 before being input to the oscilloscope,
depending on the measurement being made. After digitizing
the signals, the storage oscilloscope averaged them for 30 min
and the results were then transferred to a computer for analysis
and plotting. The results from nine data runs of that kind were
averaged to further reduce the statistical uncertainties.

Figure 4 shows the transmitted intensity at 780 nm as mea-
sured by detector D3, plotted as a function of the detuning of
the laser from the resonant frequency of the rubidium atoms.
The oven containing the rubidium cell was maintained at a
temperature of 37 °C, which was the case for all of the subse-
quent measurements as well. Here the laser power incident on
the rubidium cell had been attenuated to a relatively low level
of 0.1 μW, which is below the atomic saturation intensity. It
can be seen that a substantial fraction of the incident laser
power was scattered out of the original beam under these
conditions.

The elastic scattering rate at 780 nm increases as the laser
power incident on the rubidium cell is increased, although the
increase is not linear due to saturation and power broadening
at higher intensities. Figure 5 shows the transmission through
the rubidium cell when the maximum available laser power
(10 mW) was incident on the cell. It can be seen that a smaller
fraction of the incident power was scattered, but the total rate
of photon scattering was still much higher than at lower power
levels. This laser intensity was used for all of the subsequent
measurements.
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FIG. 5. Transmission through the rubidium cell as measured by
the output of detector D3 (in volts) for a laser power of 10 mW
incident on the rubidium cell. Neutral density filter F7 was used
to attenuate the signal in order to avoid saturation of the detector.
Although a smaller fraction of the incident power was scattered than
in Fig. 4, the total rate of photon scattering was much higher.

Figure 6 shows the output of detector D2 for elastic scatter-
ing at 780 nm, plotted as a function of the laser detuning. Here
filter F5 was used to attenuate the signal by a factor of 620
in order to avoid saturating the detector, since the scattering
at 780 nm was relatively strong. Filter F6 was a narrow-band
filter centered on 780 nm. The signal from detector D2 was
amplified by an external gain of 10 in this case. It can be
seen that the usual elastic scattering at 780 nm can be readily
observed even after being strongly attenuated.

Figure 7 shows the output of detector D2 when the appara-
tus was configured to measure inelastic scattering at 1560 nm.
Here the incident photons had a wavelength of 780 nm as
before, but filter F5 was replaced by a set of long-pass filters
that strongly absorbed the scattered 780 nm photons. Filter
F6 was also replaced by a narrow-band filter centered on a
wavelength of 1560 nmwith a bandwidth of 12 nm. In contrast
with the data of Fig. 6, no neutral density filters were used
and the output of detector D2 was amplified by a factor of
100 instead of 10. In addition, the quantum efficiency of the

FIG. 6. Elastic scattering from the rubidium cell at a wave length
of 780 nm as measured by the output of detector D2 (in volts). The
laser frequency was scanned over a range of 5 GHz centered on one
of the rubidium hyperfine lines. The signal was attenuated by a factor
of 620 using filter F5 in order to avoid saturating the detector.

FIG. 7. Inelastic scattering results at a wavelength of 1560 nm
as measured by the output of detector D2 (in volts). Here filter F6
had a narrow bandwidth at a central wavelength of 1560 nm. These
measurements did not include the attenuation used in the 780 nm
measurements of Fig 6, and the quantum efficiency and amplifier
gain were also much larger than was the case for the 780 nm mea-
surements. No significant signal was observed at 1560 nm.

detector was a factor of 5 higher at 1560 nm than it was for
780 nm. Nevertheless, it can be seen that there is no appar-
ent peak in the data corresponding to inelastic scattering at
1560 nm.

The 780 nm scattering data of Fig. 6 were fit to a Gaussian
with an adjustable peakV780 in the detector output voltage and
an adjustable width. The 1560 nm data of Fig. 7 were also fit
to a Gaussian using an adjustable peak and the same width
as was obtained from the fit to Fig. 6. The estimated value
of the inelastic scattering “peak” was actually negative and
consistent with zero, given the noise in the detector.

As a result, the upper bound on the scattering ratio R
was based on the uncertainty in the fit to the inelastic scat-
tering data. The ratio was adjusted to take into account the
attenuation from the neutral density filter in the 780 nm mea-
surements, as well as the differences in the transmission losses
of the various optical elements, the quantum efficiencies, and
the amplifier gains. At the 99% confidence level (three stan-
dard deviations), the experimental bound on the value of R is
given by

R � 3
V1560
V780

A1560

A780

L1560
L780

η780

η1560

g780
g1560

fe. (6)

Here V780 is the estimated height of the peak in the ampli-
fied detector output voltage using the 780 nm filters (Fig. 6),
which was proportional to the intensity of the elastic scattering
signal. V1560 was taken to be the uncertainty (one standard
deviation) in the Gaussian fit to the “peak” in the 1560 scat-
tering data (Fig. 7), which was consistent with zero. A780 is
the attenuation of the 780 signal by filter F5, while A1560 = 1
since there was no attenuation of the 1560 signal. L780 and
L1560 are the estimated loss factors (attenuation) due to the
various optical elements, including the narrow-band filters,
long-pass filters, and lens coatings, which were based on the
manufacturer’s test data combined with measurements made
in the lab. g780 and g1560 are the external amplifier gains
applied to the two signals, while η780 and η1560 are the detector
quantum efficiencies at the two different wavelengths. Finally,
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TABLE I. Experimental parameters.

Parameter 780 nm 1560 nm

Detector output (V) 1.18 ± 1% 0.0012 ± 15%
Attenuation factor 620 ± 5% 1
Loss factor 1.60 ± 4% 2.05 ± 1.4%
Quantum efficiency 0.15 ± 5% 0.75 ± 2%
External gain 10.0 ± 1% 100.0 ± 1%
Error factor fe 1.17 1.17

fe represents the additional uncertainty in the ratio of the two
scattering rates due to the uncertainties in the experimental
parameters, which are summarized in Table I.

Inserting the experimental parameters of Table I into
Eq. (6) gives an upper bound on the scattering ratio of

R � 1.48 × 10−7 (7)

at the 99% confidence level. The generalized theory of
Ref. [11] predicts a ratio of R = 4γ 2, provided that the mass of
the oscillaton is negligibly small. Combining this with Eq. (7)
gives an upper bound on the mixing angle γ given by

|γ | � 1.93 × 10−4 rad (8)

at the 99% confidence level.

V. SUMMARY AND CONCLUSIONS

A generalization of quantum optics and quantum electro-
dynamics was recently suggested [11], in which the usual
wave function ψ j (x j ) for a single mode j of the electromag-
netic field is further quantized to produce a field operator
ψ̂ j (x j ). The operator ψ̂

†
j (x j ) creates an additional hypothetical

particle (oscillaton) in the harmonic oscillator corresponding
to mode j of the field. The generalized theory includes an un-
known mixing angle γ that couples the oscillaton creation and
annihilation operators, as suggested by a symmetry breaking
mechanism. The theory is equivalent to conventional quantum
optics and quantum electrodynamics for γ = 0, but it predicts
an additional form of inelastic photon scattering for γ �= 0.

Although there was no direct evidence for the existence of
the proposed particles (oscillatons), there were several moti-
vating factors for the theory:

(i) The third quantization technique is required for a com-
plete description of quantum optics in the Heisenberg picture
[11].

(ii) The oscillatons may be candidates for the dark matter
inferred from astronomical observations [23] if they have a
large mass.

(iii) The theory may be relevant to the discrepancies ob-
served in recent QED experiments, such as the fine structure
of positronium [15,16] and the magnetic moment of the muon
[17,18].

In order to investigate the possible existence of these parti-
cles, an optical scattering experiment was performed in which
the ratio of the predicted inelastic scattering rate divided by
the usual elastic scattering rate was measured at an incident
wavelength of 780 nm. No evidence for inelastic photon scat-
tering of that kind was found, and the experiment sets an
upper bound on the mixing angle of |γ | � 1.93 × 10−4 rad
at the 99% confidence level, provided that the mass m of the
oscillaton is negligibly small.

If m �= 0, then energy conservation requires that ω′ =
ω/2−mc2/h̄, and no inelastic scattering of that kind is pos-
sible unless h̄ω > 2mc2. As a result, high-energy photons
from synchrotron radiation or cosmic ray showers may be
required in order to observe the predicted inelastic scattering
if m is very large. It may be worth noting that the theoretical
calculations of Ref. [11] used the nonrelativistic theory of a
harmonic oscillator, which would only be valid in the limit of
large m and therefore low velocities.

It has been suggested that a null-result experiment of this
kind does not merit publication. But Feynman once said
that “Anyone who performs an experiment has an obliga-
tion to publish the results [24].” That applies to null-result
experiments as well, and there are examples of null-result
experiments that played a major role in the development of
physics, such as the Michelson-Morley experiment. The null
result from this experiment suggests that further high-energy
experiments may be required to test the theory.

In summary, the third quantization of the electromagnetic
field is an interesting generalization of quantum electrody-
namics that goes beyond the standard model. The results of
the optical scattering experiment reported here set a relatively
tight bound on the value of the mixing angle γ , provided that
the mass of the oscillaton is negligibly small. High-energy
experiments would be required to test the predictions of the
theory if the mass of the oscillaton is very large.
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