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Abstract

Many natural disordered systems such as percolation metal films may
be approximated as fractals. Probing their properties can be difficult
depending on the length scale involved. Often, characterizing the sys-
tem at a convenient length scale and building models for extrapolating
the measured data to other length scales is preferred. In such situations,
a general algorithm for scaling the model network while preserving its
statistical equivalence is required. Here, we provide an algorithm that
draws inspiration from renormalization group theory for scaling disor-
dered fractal networks. This algorithm includes three steps: expand, map,
and reduce resolution, where the mapping is the only computationally
expensive step. We describe a way to minimize the computational bur-
den and accurately scale the model network. We experimentally validate
the algorithm in a percolating electrical network formed by an ultra-thin
gold film on a glass substrate. By measuring the resistance between many
pairs of pads separated by a given length, we accurately predict the mean
and standard deviation of the resistance distribution measured across
pads separated by twice the original distance. The algorithm presented
here is general and may be applied to any disordered fractal system.

Keywords: Disordered system, Electrical conduction, Ultra-thin metal films,
Percolation networks
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1 Introduction

Percolation theory is a simple and powerful statistical model to study phase
transitions and other interesting phenomena in disordered systems around
their critical points [1-8]. This mathematical model appropriately describes
the statistical behavior of many networks and has been applied to a wide
range of fields in nature from biology and sociology, to statistical physics and
computer science [7, 9-17]. Geometrical scaling is an important application of
such model [18]. A physical property of the network measured at some conve-
nient length scale could be extrapolated to the same measured at any other
length scale as required by the application. For example, consider an applica-
tion where the electrical resistance distribution in a percolation metal network
is required at a pad separation of 1 mm. Suppose the experimental setup lim-
its the pad separation to 100 pm at the most. In this case, geometrical scaling
could be applied to the experimental data measured at 100 um pad separation
to generate an equivalent resistance distribution at a pad separation of 1 mm.
Such geometrical scaling methods exist for some special percolation lattices
such as 2D Bethe lattices [19, 20]. However, a general scaling method applica-
ble for any percolation network remains to be developed. Here, we propose and
experimentally validate such a scaling algorithm for a 2D percolation network.
Our approach is inspired by the renormalization group theory.

Renormalization group (RG) theory is a framework typically used to study
the topology of quantum many-body systems at different scales [21-29]. RG
theory based on the self-similarity of the systems near the critical points deals
with the divergence of complex networks at their phase transitions. Inspired
by the RG theory and the similarity of the percolation threshold to critical
points of a quantum many-body system, we demonstrate an algorithm to scale
percolation networks.

Our algorithm considers a 2D percolation network. Fig. 1(a) shows a typical
2D-site percolating network with two different types of occupations. Since the
elements are randomly distributed, the properties of the network depend on
the fill factor p of one of the elements. Assuming that the network is a grid of
n X n sites with each site occupying a x a area, let 6,,,, be the central tendency
of some property of this network measured at a length scale d proportional to
a. An example of such a property is the resistance of a 2D electrical percolation
network measured across a given distance d. 6,., is dependent on the fill
fraction p of the 2D percolation network and the length scale a. Suppose, we
scale or zoom out by a factor s (s > 1) and measure the same property of the
network at a scaled length scale d < s X a, the corresponding central tendency
Onxsq Will be different and depends on s, a, and p as indicated in Fig. 1(b). In
the example of an electrical percolation network, it could be harder to measure
resistances on a larger network at a larger length scale s - a than at a. In such
cases, can we measure the original network and sufficiently model the zoomed-
out network? More conveniently, can we find some other fill factor p’ for the
scaled original network to model the zoomed-out network? Mathematically,
can we find p’ such that 0,4 (p) = Onssa(p’)? The goal of this work is to find
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Fig. 1 Renormalization for 2D percolation networks: (a) A schematic of a 2D-site perco-
lation system with the filling factor p at zoom-out (left, green) and zoom-in (right, red)
scales. The blue dots and yellow circles denote two different filling elements. (b) The central
tendency of a property 6 varies at different scales. Here we use log-normal distributions as
examples. o and p are the log-mean value and standard deviation of the log-normal distri-
bution. p is the probability function. (¢) The generated large network has same number of
discrete elements as the original, has a different fill factor p’, and is statistically equivalent
to the original network.

an equivalent network at the zoomed-out length scale xa using the original
network (Fig. 1(c)). We present an algorithm to construct such equivalent
networks and validate them by measuring electrical resistances in a percolating
network of conductors formed by ultra-thin gold films on glass substrates.

2 Scaling algorithm

The central idea of our algorithm is illustrated in Fig. 2. Consider a finite-
sized original network consisting of n X n sites with the size of each site a x a.
Two types of elements randomly occupy the network with a fill fraction p for
one of the elements. The statistical parameter set of this percolation network
is represented as 0,.,(p) as shown in Fig. 2(a). In a single iteration, we first
multiply the number of sites in each dimension by a scaling factor s to generate
a new expanded network. Figure 2(b) shows this procedure for s = 2. The
new network consists of sn x sn sites. The size of each site is still the same as
the original (axa) and the total length scale of the network becomes s times
larger (s-a). Then, the statistical parameter set of the expanded network is
represented as 0g,.4(p). Since the two networks share the same fill factor p
but are different in the length scale, the statistics exhibit different behavior,
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Fig. 2 The scaling algorithm for a 2D-site percolation network: (a) The original network
consisting n x n (n = 8 here) sites of size a X a with a fill fraction p for one of the elements.
The desired statistical parameter of the network is represented as 6y.4(p). (b) First step
is to expand the network by scaling the number of sites in both the dimensions from n to
s-n (s=2 here). The size of each site is still @ X a in the expanded network. The desired
parameter of the new network is represented as 6sn.o(p). (¢) The average of the desired
property of the network calculated from Monte Carlo simulations for the original and the
expanded networks. Dotted lines show how to find the new fill factor p’ for the equivalent
network. (d) The equivalent network generated by reducing the resolution of the expanded
network. The equivalent network has n X n sites of sa X sa area. The statistical parameter
of the equivalent network is the same as the enlarged network, 0y.5q(p') = Osn-a(p)-

0n.a(p) # Osn.a(p). To generate an equivalent network, we renormalize the
expanded percolation network by reducing it back to n x n. We carry out this
reduction in such a way that the average of the desired property of the network
is kept unchanged. This transformation is carried out with the help of Monte
Carlo simulations and is the only computationally expensive step. We generate
two curves corresponding to the mean value of the desired property u(p) on
n x n and sn x sn networks as shown in Fig. 2(c). We use these curves to
find a p’ for the reduced network that keeps the average property unchanged.
The procedure for finding this p’ is shown by the dotted lines in Fig. 2(c).
In the first step of the algorithm, we expanded the network from n X n to
sn X sn at constant p which is represented by the vertical arrow from the n xn
curve to sn x sn curve. Then, the reduction step is represented by a horizontal
move where the average property is held constant. After the reducing step, we
generate an equivalent n x n network with a different fill factor p’. This new
network is the equivalent of the scaled original one: 0,450 (p’) = Osnwa(p)-

The reduction is the key step in the algorithm that differs from the tradi-
tional RG theory used in solid-state physics. For example, in renormalization
applied to the Ising model, the renormalized spin occupancy in the new lattice
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Fig. 3 Electric resistance simulation of an ultra-thin metallic film on insulating substrate:
(a) SEM image of 7.5 nm gold on SiO2 substrate. The inset is the binarized image. The
dark dots denote the contact pads. The diameter of pads is $=40 pixels and separated by
d=400 pixels. (b) The normalized resistance distribution of the digitized device in (a). The
solid line is the fitted log-normal distribution function.

is determined by the majority spin in the corresponding original lattice [30—
32]. Such a renormalization relationship is not unique and leads the system
to shift toward phase divergence. Comparatively, our algorithm constrains the
network to keep the same statistical properties at each renormalization step
and solve the renormalization relationship accordingly. As a result, the phase
of the system fixes at a certain point. In other words, our algorithm maintains
all the statistical properties of the network.

Our reduction step also implements the necessary generalization of geo-
metrical scaling of percolation Bethe lattices. The two curves of Fig. 2(c) are
generated from simulations rather than from analytical models. Analytical
models are easy on special lattices such as 2D Bethe lattice. However, for a
general percolation lattice, simulations allow generalization. Simulations may
be carried out using any available technique. Monte Carlo method is used here
only because of its relative ease of implementation. However, powerful deep
learning techniques could be beneficial for more complex problems such as 3D
networks [33-35].

Since reduction is the only computationally intensive step here, using the
smallest possible value of s, i.e., s = 2, is computationally advantageous. If the
desired final scaling factor s = 2", then m iterations of this scaling algorithm
lead to the equivalent network. Note that the Monte Carlo simulations in
this iterative application of the algorithm need to be carried out only once to
generate the curves for n x n and 2n x 2n networks. Also, it is clear from Fig.
2(c) that equivalent networks are not guaranteed to exist for all values of s.
However, when they exist, our algorithm precisely generates them.

3 Experimental results and discussions

We validate our RG theory-based scaling algorithm in ultra-thin metal films.
Ultra-thin metallic films are known to behave as 2D electrical percolation sys-
tems [36-38]. We study the electrical resistance of ultra-thin gold film on an
insulating substrate. Our system comprises of electron beam evaporated 7.5
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nm thick gold on a silicon oxide substrate. The thickness numbers here are as
measured by a quartz crystal monitor. Fig. 3(a) shows the SEM image of the
sample. The microstructure of this sample consisting of a random distribution
of gold islands confirms the 2D electrical percolation network. We convert the
grayscale SEM images to black-and-white images using a binarization proce-
dure. The binarized 1600x 1600 pixel matrices are used in all further analyses.
First, we add an array of contact pads to mimic real resistance measurements,
as shown in the inset of Fig. 3(a). Then, we numerically measure the resistance
of the films and generate the statistics using HSPICE, a commercial simulator.
We assume that the electrical resistance of each white pixel (gold) is 1 €2 and
the resistance of each dark pixel is 500 €. The resistance of the dark pixel can
be any large quantity, but too large a number makes the resistance distribu-
tion bimodal. The contact pads are 40 pixels in diameter denoted by ¢ = 40
and separated by d=400 pixels. We calculated the resistance between 500 pairs
of adjacent pads and found the statistical distribution shown in Fig. 3(b). The
distribution can be perfectly fitted by a log-normal function as expected for a
percolation network.

Next, we apply the renormalization algorithm to the resistance distribution
in this 2D percolation system. We first binarize our percolation sample’s SEM
image of area 650 x 650 nm? shown in Fig. 4(a). After binarization, we generate
130x 130 square pixel matrix shown in Fig. 4(b) with p=0.27. The pad diameter
phi and the distance between pads d are indicated on the figure panels. The
resistance distributions for the original sample and the binarized network are
shown in Fig. 4(c). Next, we expand the original network by two in each
dimension to obtain the center network of Fig. 4(b). Compared to the original
network, we found that the log-mean value of the resistance distribution in
this larger network shifts from 3.24 to 3.65, a trend expected from Fig.2(c).

Then, we make use of Fig. 2(c) to find p’ for reducing this expanded net-
work. For Fig. 2(c), we run Monte Carlo simulations to generate a series of 2D
electrical percolation networks with different fill fractions p and calculate the
mean resistance across as a function of p. We carry out these simulations for a
pad separation of 100 pixels on two networks of sizes: 130 x 130 and 260 x 260.
From the curves of Fig. 2(c), we find p'=0.285 for the equivalent network.

Next, we generate a reduced resolution network, 130x 130 where each pixel
now corresponds to twice the physical length of the pixels in the original net-
work. The reduced network shown in the right panel in Fig. 4(b) corresponds
to the fill fraction p’=0.285. The mean and standard deviations of this model
network are compared against those computed on the actual sample in the
right panel of Fig. 4(c). Both the actual sample and the model at double length
scale possess log-normal resistance distributions. The mean value of the resis-
tance in both actual and model networks agrees well. However, the standard
deviations differ here only because the binarized network generated from the
original (left panel of Fig. 4(a)) deviates in its standard deviation. But, the
relative changes in the standard deviations are consistent across the binarized
networks and their corresponding SEM images. For example, the standard
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Fig. 4 Renormalization algorithm applied to a 2D electrical percolation network formed
by ultra-thin film of gold on glass: (a) The SEM image of the original (left) and the zoomed
out (right) regions of the samples considered for the analysis. The physical dimensions of
the SEM images are mentioned at their bottom. The four black dots represent an array of
contact pads for electrical resistance measurements. The distance d between contact pads
and the pad diameter ¢ are indicated inside the panels. (b) The binarized representative
networks corresponding to the real samples in (a). The area of the model networks are
represented above them in squared pixels (px). d and ¢ are in pixel units. The three model
networks correspond to the outocmes of three steps in our renormalization algorithm. (c)
The calculated normalized electrical resistance distributions for the real (blue) and the model
(yellow) networks shown in rows above. The solid curves are the fitted log-normal function.
The log-mean p and standard deviation o values are indicated for both curves in ohm.
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deviation of the binarized original network is 0.09 and it scales down to 0.06
for the model network at the double-length. This corresponds to a scaling
factor of 0.67. Applying the same scaling factor to the standard deviation of
the original SEM image leads to 0=0.35x0.67=0.23. This standard deviation
result agrees well with the computed value for the SEM image on the right
panel of Fig. 4(a). Thus, the model network our algorithm accurately predicts
the resistance distribution at the double-length scale.

4 Conclusion

In conclusion, we outlined an algorithm based on renormalization group theory
to build model networks of a percolation network at any zoom factor or length
scale. The three-step algorithm involved modeling the original network at the
original length scale, expanding the physical size of the model at the same
length resolution, and reducing the resolution to that of the original network
while preserving the average properties. The computationally most expensive
step was the last one where Monte Carlo simulations were employed. Also,
the key difference between our algorithm and the traditional renormalization
group theory is in the last step where we preserve the average properties of
the network to avoid phase divergences. We demonstrated the operation of our
algorithm in an electrical percolation system made of ultra-thin gold films on
an insulating substrate. The resistance distribution predicted by our algorithm
for a zoom factor of two agreed well with that of the actual sample measured
at a double-length scale. Generalizing the result, our algorithm works for any
zoom factor as long as there exists an equivalent network at that zoom factor.
Our algorithm may be applied not only to percolation systems but also to any
other stochastic fractal network. It provides a convenient way to build simple
models of complex disordered networks.
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