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ARTICLE INFO ABSTRACT

Keywords: Motivation: Training domain-specific named entity recognition (NER) models requires high quality hand curated
gold standard datasets which are time-consuming and expensive to create. Furthermore, the storage and memory
required to deploy NLP models can be prohibitive when the number of tasks is large. In this work, we explore
utilizing multi-task learning to reduce the amount of training data needed to train new domain-specific models.
We evaluate our system across 22 distinet biomedical NER datasets and evaluate the extent to which transfer
learning helps task performance using two forms of ablation.

Results: We found that multitasking models generally do not improve performance, but in many cases perform on
par compared to single-task models. However, we show that in some cases, new unseen tasks can be trained as a
single model using less data by starting with weights from a multitask model and improve performance.
Availability: The software underlying this article are available in: https://github.com/NLPatVCU/multitaski
ng bert-1.
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1. Introduction performance of multitasking models [3]. We seek to understand if there

is mutually beneficial information with respect to task performance that

Named entity recognition (NER) is a highly utilized task in Natural
Language Processing (NLP) and involves labelling a sequence of words
or tokens with their appropriate entity labels. For example, given a
sentence (shown in Fig. 1), identify that Streptococcus lividans is a Species
and A21978C is a Gene. It can be used to identify entities of interest
within documents and is often one of the first tasks performed on doc-
uments before downstream text mining tasks are performed [17].
Consequently, errors in NER models can be propagated to downstream
tasks affecting the overall performance of text processing pipelines.

Training domain-specific NER models requires the creation of high
quality gold standard datasets that are hand-curated by domain experts.
This annotation process is time-consuming and expensive. Therefore, in
addition to improving performance of NER models, we are especially
interested in reducing the amount of training data needed to train new
domain-specific models. If two or more tasks’ target entities are similar,
like chemicals, genes, and proteins, then training millions of parameters
per model may be redundant in certain use cases, especially if a multi-
tasking model provides comparable performance. Previous work shows
that pairing similar rasks [2], e.g. by similar topics, can improve
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the base encoder is using to generate contextualized embeddings that
contribure to gains from multitasking learning. Although, that is difficult
to measure directly. In this work, we evaluate the effectiveness of
training multiple neural network-based models on various biomedical
NER tasks using two forms of ablation.

1. Data ablation, which we use to assess how much data is needed to
effectively train each model.

2. Entity ablation, which we use to assess how well these models can be
updated with a new task after they've been multi-task trained.

Our results show:

1. The extent to which multitasking model performances compare to
those of single task models using a fraction of the training data and
only one set of embedding-producing transformer encoders.

2. The extent to which transformer-based multitasking models scale to
over 20 biomedical datasets and tasks.
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 pecies) Gene
Streptomyces lividans recombinant containing the A21978C

Fig. 1. Named entity recognition example.

3. A use-case for this method by showing that new unseen tasks can be
learned by a single model using less data by starting with weights
from a multitask model.

2. Background
2.1. Transformer encoders

Self-attention mechanisms [4] have been shown to outperform pre-
vious state-of-the-art algorithms for sequence learning including bidi-
rectional long short-term memory (biLSTM) units, conditional random
fields (CRFs), and other recurrent neural networks (RNNs). One major
benefit to self-attention-based models is their ability to create contex-
tualized token embeddings and interpretable alignment matrices. Devlin
et al. [5] proposed bi-directional encoder representations from trans-
formers (BERT), which uses twelve sequential transformer layers (base
version) and a simple feed-forward neural nerwork (FFNN) to perform
language modelling tasks on unlabelled data. Those tasks include next-
sentence prediction and masked token prediction. The result of this
language modelling approach is a word/token-encoder that produces
contextualized token embeddings that have the capacity to represent a
range of useful information that would otherwise require extensive
feature engineering and selection (a conrextual embedding for a token
depends on the context in which the token appears in a sentence). More
importantly to our objective here, in addition to providing contextual
embeddings, BERT models can be finetuned such that the resulting
embeddings are also domain-specific. BioBERT leveraged this feature and
Lee et al. [6] adapted the pretraining data to include biomedical texts. In
this work, the transformer encoders are initialized from BioBERT model
weights and vocabulary.

2.2. Named entity recognition

The goal of NER is to extract information from text about the location
of entiries of interest. Here, we define this rask as a sequence labelling
problem, where given an input sequence of tokens, in this case, subword
tokens, a classification model predicts a sequence of corresponding la-
bels. Each classifier predicts an entity type for a single dataset.

Note that a dataset can be annotated with multiple entity types, and
in that case we train a separate classifier for each of the different entity
types. Although it is possible to combine datasets containing annotations
of the same entity type (resulting in fewer models), we chose to train the
models separately to measure the performance of the models on datasets
with different sizes, as well as roken and annotation distriburions.

Subword classification models used here are neural networks and
contain two main components: an embedding layer and a task-specific
classification layer. The classification layer is a fully connected feed-
forward network followed by a sofrmax layer which compurtes the
probability distribution over all possible labels. The embedding layer is a
stack of transformer encoders that outputs a sequence of contextual
embeddings which are then passed to the classification layer one at a
time. For the embedding layer, we use BioBERT-Base v1.1 [6].

3. Method

Two model architectures are used in this work. The first is a single
task learning architecture which contains a transformer-based embed-
ding layer and a linear layer. The other is a multitask learning archi-
tecture with one linear layer per task and one embedding layer that is
shared berween them.
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3.1. Single task learning

Fig. 2 shows the architecture of the single task model, i.e., each
dataset is used to train a separate model. Each single task learning model
contains one transformer-based embedding layer per task-specific layer,
as shown in Fig. 2. Given an input sequence of subword token encodings
s —(51,82,...,5,), the embedding layer, indexed by i, produces a sequence
of continuous representations (embeddings) e; = (&1, €5, ..., €5) from
which the i-th task-specific layer can assign a sequence of labels I; = (I;,
liz, ..., li). The input sequence and output of the embedding layer have
the same dimensions. Since this work focuses on named entity recog-
nition, the output of the task-specific layer will have the same di-
mensions as the input sequence s and each embedding layer output ;.

3.2. Multitask learning

The embedding and task-specific layers of the multitask models are
identical to their single task model counterparts with one exception.
Instead of using one embedding laver per task-specific layer, all of the
task-specific layers receive their input from the same embedding layer.
Fig. 3 shows the architecture of the multitask model, where the encoder
layer is shared between all tasks. There is no weight sharing or repre-
sentation sharing between task-specific layers other than the encoder.
Given s, the single embedding layer produces an embedding sequence
e = (e}, es,....e,) from which the i-th task-specific layer can generate a
sequence of labels I; = (I, Lo, ..., L),

For each epoch and dataset, a batch of examples from the dartaset are
passed to the embedding layer, then to its respective subword classifi-
cation layer. Back-propagation occurs before continuing with the next
dataset. A single epoch is complete when all training examples from all
datasets have passed through the model one time.

We initially used the same round robin procedure used by Mulyar
etal. [7]; that is if different datasets have an unequal number of batches,
then batches from the smaller datasets are resampled until the sampling
of all batches in the largest dataset is complete (this is also called
upsampling). Overfitting can occur as a result of this type of sampling
approach, however, in practice we only found one example of severe
overfitring, and interestingly, other than that one example, upsampling
had no effect on model performance. Ultimately, we chose o eliminate
upsampling in favor of faster training.

4. Evaluation methodology

The performance of all models is evaluated using precision, recall,
and Fy score. As per [8] metrics are calculated at the IOB tag-level or the
entity mention-level. [OB tag evaluation is performed at the word-level
by selecting the label corresponding to the last subword token in a word.

Training NER models using subword embeddings as opposed to
word-level embeddings introduces additional factors affecting loss
calculation and evaluation. There are various strategies for dealing with

Label
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Fig. 2. Overview of our single task architecture.
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Fig. 3. Overview of owr multitask architecture.

subword embeddings, such as computing a word-level embedding from
the average of its subword embeddings, or simply considering only the
first or last subword embedding within a word [9]. These strategies may
be useful when comparing models trained from different algorithms thar
do not use subword rokenization. One advantage to using all subword
embeddings for loss calculation is that models can be flexibly reused for
inference in real-world applications by allowing the whole word or parts
of the word to be labelled. It also allows for different post-processing
methods to be compared without biasing the predictions by the
training strategy. A potential drawback to subword independence,
however, is that when used for IOB tag-level evaluation it can creare
more opportunities for mislabelling and lead to underestimation of
performance compared to word-level evaluation. However, we find that
both I0B tag evaluation at the word and subword token-level tend to
overestimate performance compared to entity mention-level evaluation.

Because training examples are batched, all input sequences have the
same fixed length and may contain padding tokens at the end of the
sequence if the number of subword tokens is less than the fixed input
length. Logits at positions corresponding to padding tokens as well as
other special BERT tokens are removed, and a label is assigned to each
subword.

The output of the classifiers is a vector with its length equal to the
number of labels. For 10B-labelled datasets, the output vector for each
subword has a length of 4, including one for BERT-TOKEN. Applying a
softmax operation to that outpur vector gives the probability distribu-
tion over all labels, and taking the argmax of that vector gives the pre-
dicted label for a subword. If a word has multiple subwords, the word is
assigned the label of the last subword. All predicted word-level labels in
a dataset are concatenated and used to calculated precision, recall, and
F; score. Assuming the contribution of each dataset metric is equal
regardless of size, the class average for each entity type is computed as
the average of the individual dataset scores within that class. Correlation
coefficients, r?, and p-values between F1 scores and dataset features are
computed using linear regression and Pearson’s r.

4.1. Data ablation

Two of the main objectives in this work is to understand how much
training data is needed to effectively train multitasking models for NER
and how much training data is needed to update a multitask-learned
model for a new entity type. This was done using two approaches: (1)
dara ablation and (2) enrity ablarion.

We used data ablation to assess the required amount of training data
needed to train a multitask model. Data ablation in this case means that
a proportion of training examples from each dataset were removed
before training. For example, an ablation amount of 0.9 means that 90%
of the training dara was removed before training the model, and an
ablation amount of 0 means that none of other training data was
removed before training the model. The number of examples in the
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development and test sers remained the same.

We use entity ablation to assess the amount of training data require to
update a multitask for a new entity type. We refer to entity ablation to
mean that during the initial training of a multitask model, all datasets
containing annotations of a given entity type are removed. Then, the
weights from the shared embedding layer are used to initialize a shared
new embedding layer, and the previously ablated datasets are subse-
quently used for training new subword classification layers in a single
task learning model.

5. Data

In this work, we utilize 22 datasets from the biological domain. Each
dataset was annotated with one or more of the entity classes cell line,
chemical, gene, and species. Table 1 shows the rotal and unique counts of
the menrtions in each dataset; where a mention is an instance of an en-
tity. The Type column of Table 1 indicates the document type, where the
first letter indicates Article or Patent, and the second letter indicates
Abstract or Full-text.

For model training and evaluation, the datasets were divided at the
document level into training, resting, and developmenrt sets with pro-
portions equal to 0.6, 0.3, and 0.1, respectively. We use the same par-
titioning strategy as described by Weber et al. [10].

The data underlying this article was accessed using HUNER at hit
ps://github.com/hu-ner/huner.

6. Experimental details

All datasets were first preprocessed according to Weber et al. [10].
The document text was tokenized using OpenNLP [11]. Entity labels
were tagged using the 10B scheme, which indicares whether a roken is
inside, outside, or at the beginning of an entity mention. WordPiece
tokenization [5] was performed on each roken using a cased vocabulary.
We refer to the resulting atomic elements as subword tokens.

The transformer embedding lavers used here are constrained to a
maximum input sequence length of 512. In order to maximize the
context available to the encoder layers, the input sequence length of
subword tokens were kept as close to 512 as possible, while also pre-
venting a mention from being split at the end of the sequence. In the case
that a mention is locared at the end of an inpur sequence, the sequence is
truncated to exclude the mention, and the mention is moved to the
subsequent input sequence. Supplemental Fig. 1 shows the counts of
input sequences after preprocessing for each training set. The smallest
training set is CLL cell line with 14 input sequences. The largest is
CHEMDNER with 4182 inpur sequences in its training ser.

Supplemental Table 1 shows the average sequence counts (fraining
sets only) for each entity type. Species datasets have an average of 263
sequences, the smallest of the entity types. The largest is chemical, with
an average of 1619 sequences.

Various pre-processing methods can have an impact on model per-
formance. For example, we observed a slight increase in performance
when using cased tokenization, maximizing the context window of inpur
sequences (instead of sentence segmentation), and using pre-tokenized
input to the WordPiece tokenizer.

7. Results and discussion

In this section, we present and discuss our NER results over the 22
datasets, which were annotated with entities cell line, chemical, gene, and
species in IOB format. We compare two types of models: single task and
multitask. Additionally, data ablation and entity ablation were per-
formed. Our objective is to capture mutually beneficial information into
a single jointly-learned model and minimize the amount of training data
required to train new unseen tasks. Here we present the results of single
task, multitask, and ablation experiments.
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Table 1
The mention counts over the development, test and training data for each dataset.
Toral Unique
Entity Dataset Type DEV TEST TRAIN DEV TEST TRAIN
CELL LINE CLL AA 30 77 234 26 67 195
GELLUS AA 75 247 328 32 99 110
JNLPBA AA 429 1117 2284 286 771 1383
CHEMICAL CDR AA 1511 4716 9207 560 1503 2461
CEMP FF 6364 18958 39293 3093 7506 14240
CHEBI PF 1262 6067 8779 594 2077 2627
CHEMDNER AA 8062 24288 48347 3687 9035 16094
SCAI AA 83 375 852 59 252 521
GENE BC2GM AA 2163 6753 14456 1938 5513 10846
BIOINFER AA 455 1383 2658 244 597 987
DECA AA 576 1776 3670 250 772 1457
FSU AA 6606 19383 33505 2539 6429 9378
GPRO PA 1315 3576 7832 900 2004 3958
IEPA AA 104 300 708 46 81 146
JNLPBA AA 3029 8777 18463 1306 3195 6029
MIRNA AA 76 291 541 38 129 234
OSIRIS AA 96 291 535 34 114 234
VARIOME AF 300 1082 3045 65 214 509
SPECIES LINNEAUS AF 85 278 566 26 41 70
MIRNA AA 4 227 385 12 34 31
5800 AA 406 1074 2188 203 518 1044
VARIOME AF 33 56 83 3 7 6

7.1. Single task learning results

In this section, we describe our single task learning baseline results.
Table 2 shows the results of the single task learning experiments. The

datasets are grouped by entity type. The development sets containing
10% of examples were used to calculate F; score, precision, and recall
during model training. After 20 epochs of training, the model with the
highest F; score when evaluated on the development set was selected for

Table 2
Single task learning results.
Fy Precision Recall
Entity Dataset Epoch DEV TEST DEV TEST DEV TEST
CELL LINE CLL 19 0.857 0.885 0.818 0.830 0.900 0.948
GELLUS 10 0.943 0.864 0.943 0.971 0.943 0.778
INLPBA a 0.830 0.808 0.802 0.847 0.860 0.772
average 0.877 0.852 0.854 0.883 0.901 0.833
CHEMICAL CDR 11 0.947 0.934 0.932 0.925 0.963 0.944
CEMP 1 0.919 0.913 0.884 0.885 0.957 0.943
CHEBI 15 0.905 0.894 0.886 0.916 0.924 0.874
CHEMDNER & 0.944 0.944 0.932 0.951 0.957 0.936
SCAI 14 0.970 0.939 0.877 0.928 0.964 0.950
average 0.937 0.925 0.922 0.921 0.953 0.929
GENE BC2GM 15 0.903 0.905 0.889 0.904 0.918 0.906
BIOINFER 19 0.945 0.929 0.933 0.929 0.958 0.928
DECA 16 0.698 0.711 0.664 0.702 0.736 0.720
FsU 19 0.937 0.943 0.917 0.927 0.958 0.961
GPRO 6 0.817 0.788 0.739 0.752 0.914 0.828
1EPA 13 0.872 0.907 0.868 0.905 0.875 0.910
INLPBA 7 0.908 0.902 0.889 0.874 0.928 0.931
MIRNA 13 0.857 0.747 0.842 0.708 0.873 0.790
OSIRIS 18 0.878 0.812 0.867 0.897 0.889 0.741
VARIOME 19 0.953 0.924 0.930 0.941 0.978 0.907
average 0.877 0.857 0.854 0.854 0.903 0.862
SPECIES LINNEAUS 16 0.857 0,771 0.853 0.963 0.862 0.643
MIRNA 11 0.985 0.906 0.985 0.990 0.985 0.835
S800 15 0.873 0.831 0.877 0.827 0.869 0.836
VARIOME 19 0.618 0.548 0.773 0.586 0.515 0.515
average 0.833 0.764 0.872 0.842 0.808 0.707
OVERALL AVERAGE 0.883 0.855 0.873 0.871 0.897 0.845
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Fig. 4. Relationships between sequence counts and annotation density on single task learning performance (F; score).

prediction and evaluation on the corresponding test set (30% of exam-
ples). For each task (dataset-entity pair), the enumerated epoch value
corresponding to the highest F; score on the development set is shown in
the Epoch column of Table 2. F; score, Precision, and Recall are shown in
subsequent columns. Summary statistics are given below each entiry
type. Average Fy scores (test ser) are 0.852, 0.925, 0.857, and 0.764 for
cell line, chemicals, gene, and species, respectively. These single rask
learning results serve as a baseline for subsequent multitask learning and
ablation experiments described in the following sections.

Models predicting chemical entities have the highest F; scores with
an average of 0.925 on test sets. Species models seem ro have the lowest
F; scores. The VARIOME species model is the lowest performing model
in this entity group. This may be explained in part by the fact that it
contains six unique mentions (Table 1) in the training set and only B and
O annotations, and thus the model has less context from which to learn
information about complete spans corresponding to mentions contain-
ing more than one token or subword roken.

Similarly, the MIRNA species model has a F; score of 0.906, the
highest F; score of the species models, which is not surprising consid-
ering the lexical diversity of mentions is quite limited. There are 31
unique mentions including patient, rat, human, and other mentions that a
biologist might consider to be common organism names rather than
species given in binomial nomenclature, which is a more difficulr rask
for an NER model because it requires information about a potenrial
mention’s morphology and the meaning of special characters, e.g. a
period to abbreviate genus as in E. coli.

Fig. 4 shows the relationship between the performance of single task
learning (STL) models and the distribution of their sequence count and
annotation density within their respective training sets. Annotarion
density is defined here as ratio of mentions to tokens. We observe a
moderate correlation between F; scores and the annotation density (r =
052, = 0.27.p = 0.01). From this we conclude that there are likely
other factors contributing to the variation in performance besides the
density of mentions within the documents. We found no other signifi-
cant relationships between dataset features such as sequence count,
token count, and document type.

7.2, Multitask learning results

In this section we describe our multitask learning results. Here, we
present the results when training a multitask model on all 22 tasks and
report the Fy score, precision and recall. We used the same hyper-
parameters for the multitasking models as for the single rask models; as
our objective is not to find the best possible models, but rather to provide
a baseline for MTL for comparison to STL and ablation results. Addi-

tionally, we demonstrate the extent to which this approach can be
leveraged to reduce the number of embedding-producing model layers
needed to perform NER tasks on many datasets with different enrity
classes.

Table 3 shows the results of the multitask learning experiment. All 22
NER rasks (daraset-entity pairs) were trained using a single, shared
encoder which provides contextual embeddings to each subword clas-
sification layer. Fy score, precision, and recall scores are reported.
Additionally, these scores are summarized below each entity group.

Two of the five chemical models performed slightly better when
rrained in a multitask setring. Three gene models outperformed their STL
counterparts. MIRNA gene showed the greatest improvement in per-
formance within the gene group (40.048). Of the species group, VARI-
OME was the only model that showed improvement over STL which had
the largest increase in performance of all models +0.141. Multitask
learning hurt the performance of all cell line models. The difference in
STL and MTL F, score averages for cell line is —0.065. However, the
difference between the overall STL and MTL performance for any of the
datasets is not statistically significant.

We conclude that overall, multitasking at this scale with these
datasets does not generally lead to an overall improvement in perfor-
mance over single task learning. The models seem to compete with each
other, as some F; scores are volatile during training compared to STL,
and do not converge before 20 epochs. However, it may be possible to
tune the models such that each classification layers converges more
quickly, such tuning is outside of the scope of this work, and is inves-
tigated in future work.

7.3. Data ablation results

In this section we present the results of the data ablation experi-
ments. We trained the multitasking and single rask models on progres-
sively smaller training sets while keeping the development and test sets
the same as their original size. By removing, or ablating, data training
examples, we can observe the performance of the both types of models
given limited training data.

The results in Tables 4 and & show the performances of STL and MTL
models with data ablarion. We have included the average STL results in
Table 5 for each entity type to aid in the comparison. The Ablation
amount column indicates the proportion of training data removed from
each dataset. For example, the column 0.90 shows the performance of
models when trained on 10% of their training sets, and 0.00 shows the
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Table 3
Multitask learning results.
Fy Precision Recall
Entity Dataset DEV TEST STL DEV TEST DEV TEST
CELL LINE CLL 0.825 0.795 0.885 0.788 0.742 0.867 0.857
GELLUS 0.939 0.824 0.864 0.942 0.941 0.936 0.732
JNLPBA 0.827 0.743 0.808 0.822 0.704 0.833 0.786
average 0.864 0.787 0.852 0.851 0.796 0.878 0.792
CHEMICAL CDR 0.959 0.947 0.934 0.964 0.946 0.954 0.947
CEMP 0.920 0.915 0.913 0.882 0.892 0.962 0.939
CHEBI 0.897 0.888 0.894 0.878 0.908 0.916 0.868
CHEMDNER 0.942 0.941 0.944 0.934 0.946 0.950 0.937
SCAI 0.969 0.826 0.939 0.964 0.763 0.974 0.902
average 0.937 0.903 0.925 0.924 0.891 0.951 0.919
GENE BC2GM 0.885 0.875 0.905 0.879 0.915 0.892 0.838
BIOINFER 0.911 0.920 0.929 0.925 0.925 0.898 0.915
DECA 0.685 0.708 0.711 0.645 0.686 0.730 0.730
Fs5U 0.932 0.926 0.943 0.923 0.922 0.940 0.930
GPRO 0.813 0.800 0.788 0.740 0.733 0.902 0.882
IEPA 0.856 0.809 0.907 0.811 0.863 0.906 0.762
JNLPBA 0.901 0.881 0.902 0.897 0.882 0.906 0.881
MIRNA 0.856 0.795 0.747 0.848 0.740 0.864 0.859
OSIRIS 0.953 0.837 0.812 0,949 0.879 0.957 0.799
VARIOME 0.943 0.918 0.924 0.912 0.906 0.976 0.951
average 0.874 0.847 0.857 0.853 0.845 0.897 0.853
SPECIES LINNEAUS 0.856 0.721 0.771 0.860 0.606 0.851 0.890
MIRNA 0.840 0.825 0.906 0.926 0.902 0.769 0.760
5800 0.852 0.799 0.831 0.825 0.774 0.881 0.825
VARIOME 0.765 0.689 0.548 0.743 0.622 0.788 0.773
average 0.828 0.759 0.764 0.838 0.726 0.822 0.812
OVERALL AVERAGE 0.879 0.836 0.855 0.866 0.827 0.893 0.852

performance of the models when trained on their full training sets .

When comparing average F; scores within entity groups, the MTL
chemical models have a negligible improvement in performance over
STL at ablation amounts 0.50, 0.75, and 0.90. The MTL gene models
averages show a modest improvement at ablation amounts 0.75 and
0.90. However, the cell line and species models vary more compared to
chemical and gene models. At 0.90 ablarion, all species models consid-
erably decrease in average performance regardless of the training type,
but remain on par at lower ablation amounts. The cell line MTL model’s
average performance is lower than its STL counterpart, until 0.90
ablation.

Overall the results indicate that the training data amount is
decreased the performance of the single task learning degrades at a
higher rate than the multitask environment.

7.4. Entity ablation results

A primary goal of this work is to understand how much data is
required to update a multitask model for a new unseen task. This sim-
ulates a real-world scenario where domain experts annotate a collection
of documents with entiries, then iteratively add more useful entities and
features for extraction from the documents. In this section, we explore
interesting features of the multitask models and evaluate a use case for
when a new unseen entity type is trained on limited data using previ-
ously multitask-trained models.

In this experiment, MTL models first underwent a round of finetun-
ing which included all datasets except those from one entity type. Then, a
second round of finetuning was performed on each of the previously

! The scores for 0.0 ablation differ slightly from Tables 2 and 3 because they
come from a separare runs with different random starting weights

excluded darasets independently. By removing one entity group from
MT-training in the first round of finetuning, we should be able to observe
whether there are interactions between classes that can affect perfor-
mance of tasks in the multitasking setting. Using these entity-ablated
MTL models, we continue to finetune them on a single task to deter-
mine if any tasks can benefit from MTL pre-training.

Fig 5 shows the result of the first round of finetuning. The bartrom
axis shows the rask group and the bars show the F; score distribution of
the task group in the absence of a group indicated by color. For example,
the first bar (blue) on the left shows the F; scores of chemical tasks after
multitask training with all tasks except cell line tasks. The results show
that the cell line and species tasks are most dramatically impacted by
entity ablarion. We see the highest variability of F; scores of cell line
tasks in the absence of chemical, and in the F; scores of species in the
absence of cell line. This is contrary to our expectation that similar entity
types would perform consistently worse in each other’s absence. It also
may suggest that the effect of multitask training on task performance in
this serring is not necessarily synergistic and is may be due to the
robustness of the deep transformer model (BioBERT) and its ability to
accommodate multiple tasks.

Table 6 shows the F; scores (evaluated on the test sets) resulting from
the second finetuning, which was performed on the previously excluded
tasks independently using the single task architecture. The Ablation
amount column represents the proportion of sequences in the training set
withheld during model training. For reference, STL and MTL learning
results are shown in subsequent columns. Similarly to the mulritasking
models, hyperparameters used for this experiment are the same as with
the single task models, and no additional hyperparaneter tuning was
performed other than the F; score-based model selection. For example,
only 10% of the GPRO (gene) training dataset was needed to surpass its
STL baseline. Its F; score at this ablarion amount is equal to its F; score
when multitask-trained with the full dataset collection (no ablation) and
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Table 4
Single-task model data ablation results.
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Table 5
Multitask model data ablation results.

Ablation amount

Ablation amount

Entity Dataset 0.00 0.25 0.50 0.75 0.90 Entity Dataset 0.00 0.25 0.50 0.75 0.90
CELL LINE CLL 0.748 0.793 0729 0727 0.726 CELL LINE CLL 0795  0.724 0640 0514 0575
GELLUS 0.927 0.857  0.855 0739  0.210 GELLUS 0.824 0711 0.744 0.222  0.862
JNLPBA 0.807 0.805 0814 0806 0780 JNLPBA 0743 0787 0806  0.801 0.765
average 0.828 0.818 0799  0.757 0.572 average 0787 0741 0730 0513 0734
STL average 0.828 0.818 0.799 0.757 0.572
CHEMICAL  CDR 0.937 0.934 0924 0919  0.908
CEMP 0.914 0.911 0913 0908 0899 CHEMICAL  CDR 0.947 0940 0937 0.936  0.924
CHEBI 0.895 0.890  0.885  0.884  0.871 CEMP 0915 0914 0912 0.918  0.911
CHEMDNER  0.947 0.945  0.941 0.934 0.919 CHEBI 0.888  0.889 0898  0.886  0.890
SCAT 0.941 0.937 0929  0.913 0.899 CHEMDNER 0.941 0.942 0939 0941 0.914
average 0,927 0.923 0.918 0912 0.899 SCAI 0.826 0.937 0917 0.921 0.017
average 0.903  0.924 0920  0.920  0.911
STL average 0,927 0923 0918 0912  0.899
GENE BC2GM 0.901 0.904  0.894  0.882 0.857
BIOINFER 0.930 0.927 0918  0.905 0.892
DECA 0.731 0,715 0716 0710 0631 GENE BC2GM 0.875  0.867  0.887 0.886  0.857
FSU 0.944 0.941 0937 0936 0923 BIOINFER 0.920 0909 0916 0907  0.899
GPRO 0.803 0.804 0798 0781 0.772 DECA 0708 0717 0709  0.681 0.664
1EPA 0,912 0.885 0.840 0.715 0.657 FsU 0.926 0.934 0,933 0.927 0.905
JNLPBA 0.902 0.904  0.899  0.895 0.871 GPRO 0.800  0.805 0798  0.802  0.773
MIRNA 0.760 0.742 0709 0599  0.328 IEPA 0.809 0755 0737 0.745  0.697
OSIRIS 0,800 0.779 0.766 0.748 0.749 JNLPBA 0.881 0.892 0,891 0.887 0.876
VARIOME 0.918 0.915 0.9 0888  0.874 MIRNA 0795 0767 0782 0.749  0.674
average 0.860 0.852  0.837 0806  0.755 OSIRIS 0.837  0.835  0.837 0.829  0.837
VARIOME 0.918 0922 0921 0.904  0.869
average 0.847  0.840  0.841 0.832  0.805
SPECIES LINNEAUS 0.633 0.697 0598 0620  0.088 STL average 0.860 0852  0.837 0.806 0755
MIRNA 0.915 0.915  0.901 0.802 0.000
5800 0.831 0.815 0815 0777 0.751
VARIOME 0.789 0.667 0.000 0,535 0.724 SPECIES LINNEAUS 0.721 0.450 0.471 0.825 0.000
average 0.792 0.773 0578  0.684 0.391 MIRNA 0.825  0.848  0.835 0.630  0.000
5800 0799  0.805  0.823 0.819 0733
VARIOME 0.689  0.606  0.583 0.713  0.000
OVERALL AVERAGE 0.859 0.849  0.804  0.801 0.697 average 0759 0677 0678 0747 0183
STL average 0792 0773 0578  0.684  0.391
remains constant regardless of ablation amount (sd = 0.003). The same
trend can be seen with CEMP and CHEMDNER. These three dataser are OVERALL MTL AVERAGE 0.836 0.816 0814 0.793 0.706
OVERALL STL AVERAGE 0.859  0.849  0.804 0.801 0.697

also the largest.

Tig. 6 shows the performance (F; score) of STL models that have been
pre-trained using entity-ablated multitask learning, as well as MTL and
the STL baseline models. The performances are grouped by entity type
and the Fy scores are averaged over models in thar enrity group. The
bottom axis indicates the amount of training dara removed before
training. When considering these models at the entity class-level, the
performance depends on the entity type. For the cell line class, it seems
that STL is better suited, while species models benefit the most from pre-
training on other biomedical entity types first (50% ablation and lower).
One interesting observation is the S800 daraset. The dataser is abundant
with species mentions in binomial nomenclature form (for example
E. coli), which gives the most useful information when linking to a
taxonomic datasource with a unique identifier. When 50% or more of
the dataset is used for training, the model out-performs both the STL and
MTL models.

7.5. Entity level comparison

In this section, we evaluate the STL and MTL models at the entity-
level to allow for a direct comparison with previous works.

We first conduct a direct comparison with results reported by Weber
etal. [10]. Weber er al. use an LSTM-CRF model for biomedical NER and
compare gold standard pre-training (GSPT), silver standard pre-training
(SSPT), and baseline models with no pre-training (No PT). For this
evaluation, the IOB tags are used to determine the boundaries of an
entity mention, and scores are computed using those boundaries. We
evaluated our models such that a true positive requires that a mention
must begin with a B label and subsequent labels with an I, and overlap
exactly with the ground truth mention boundaries and labels.

Table 7 shows the entity-level evaluation of the MTL and STL base-
line models. The table also includes a comparison to the results from
Weber et al. shown to the right of the STL and MTL scores in each metric
column. 11 of our STL models and 3 of our MTL models outperform the
GSPT, SSPT, and No PT models in F1 scores. 10 of our STL models and 9
of our MTL models outperform all other models in precision. The GSPT,
SSPT, and No PT models outperform our models in recall except 4 STL
and 1 MTL.

Surprisingly, Linnaeus species has much lower F1 scores compared to
the TOB rag/word-level evaluation. This suggests that the models are
correctly identifying parts of the mentions, but not predicting the
boundaries precisely. This may be mitigated by using a CRF on top of the
encoder layers or using a method that does not rely on I0B labels to
identify mention boundaries, as suggested by Sun et al. [12].

Lastly, we conduct a comparison with two previous proposed
multitasking frameworks that evaluate their systems on four over-
lapping datasets, although, the tasks and data sources utilized in the
frameworks vary. No previous work has evaluated multitasking for NER
across biomedical articles at this scale. Table 8 shows the results of our
STL and MTL models and the results reported by Peng, et al. [2] and Zuo,
et al. [13]. The results show our MTL model obtained higher Precision,
Recall and F1 scores except for BC2GM. In this case, Peng, et al. report
higher scores than our MTL results but are on par with our STL results.

8. Related work

In this section, we describe previous works related to multitask
learning and neural nerwork-based approaches to BioNLP tasks.
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Fig. 5. Effect of entity ablation on MTL models. Four MTL models were trained in the absence of one entity type (entity ablation) indicated by bar-color. Bars show
the average performance (F; score) of MTL models, grouped by entity. Error bars indicate within-entity standard error. Cell line models have relatively inconsistent
performance when chemical entities are ablated compared to when gene entities are ablated.

Table 6
Learning new unseen entities using pretrained MTL models.
Ablation amount STL MTL
Entity Dataset 0.00 0.25 0.50 0.75 0.90 0.00 0.00
CELL LINE CLL 0.605 0.548 0.546 0,519 0.500 0.885 0.795
GELLUS 0.810 0.870 0.861 0.858 0.000 0.864 0.824
JNLFBA 0.814 0.819 0.798 0.810 0.807 0.808 0.743
average 0.743 0.746 0.735 0.729 0.436 0.852 0.787
CHEMICAL CDR 0.936 0.935 0.927 0.930 0.912 0.934 0.947
CEMP 0.912 0.912 0.913 0.912 0.909 0.913 0.915
CHEBI 0.892 0.883 0.890 0.885 0.883 0.894 0.888
CHEMDNER 0.947 0.945 0.945 0.945 0.934 0.944 0.941
SCAI 0.947 0.941 0.944 0.931 0.918 0.939 0.826
average 0.927 0.923 0.924 0,921 0.911 0.925 0.503
GENE BC2GM 0.897 0.901 0.898 0.896 0.878 0.905 0.875
BIOINFER 0.918 0.903 0.903 0,850 0.826 0.929 0.920
DECA 0.720 0.719 0.720 0,722 0.704 0.711 0.708
FsSU 0.937 0.938 0.936 0.937 0.929 0.943 0.926
GPRO 0.803 0.806 0.799 0.807 0.800 0.788 0.800
IEPA 0.874 0.883 0.787 0.800 0.739 0.907 0.809
JNLPBA 0.896 0.898 0.896 0.893 0.892 0.902 0.881
MIENA 0.734 0.670 0.718 0.625 0.031 0.747 0.795
OSIRIS 0.774 0.778 0.797 0.612 0.361 0.812 0.837
VARIOME 0.926 0.920 0.925 0.914 0.776 0.924 0.918
average 0.848 0.842 0.838 0,806 0.6594 0.857 0.847
SPECIES LINNEAUS 0.865 0.870 0.854 0.794 0.000 0.771 0.721
MIENA 0.878 0.868 0.877 0.000 0.000 0.906 0.825
5800 0.828 0.823 0.825 0.809 0.778 0.831 0.799
VARIOME 0.768 0.759 0.681 0.615 0.000 0.548 0.689
average 0.835 0.830 0.809 0.554 0.195 0.764 0.759
OVERALL AVERAGE 0.849 0.845 0.838 0.776 0.617 0.855 0.836
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Fig. 6. Effect of MTL pre-training on STL model performance. Performance of STL learning models pretrained using MTL with entity ablation, grouped by entity.
MTL models were first trained in the absence of datasets of one entity type, then finetuned on a single task of the previously ablated entity type.

Crichton et al. [14] demonstrated that multitask learning can
improve the performance on NER tasks compared to single task learning
in the biomedical domain. They used static word embeddings in a
lookup table fed into a convolution layer, a fully connected layer and
finally into a sofrmax output layer for the final classification. We adopr a
similar architecture as their ‘'multi-output multitask convolution model’.
However, our models replace the static word embeddings and convo-
lution layer with a transformer-based embedding layer [5] which pro-
duces contextualized subword embeddings. For simplicity, we choose to
adopt the same output layer, as opposed to the CRF outpur layer used by
Akdemir and Shibuya [3] who proposed a single rask model using a
BioBERT-CRF architecture. Other architectures, including the BiLSTM-
CRF have also been used for NER [15].

Akdemir and Shibuya [3], and Peng and Chen [2] proposed a pair-
wise mulritask learning design to investigate the effect that tasks have on
each orher’s performance when jointly trained. Our approach instead
considers each enrity type as a task group, and permutes the entiry
ablation across each task individually. Furthermore, we simulate the
real-world scenario of adding new unseen entity types/tasks to the

multitask model, and observe the performance of the new tasks after
removing various proportions of training data.

Multitask models often share representations between their task-
specific layers, as in Crichton et al.[14]. However, we chose not to
share rask-specific representations, bur instead hypothesized thar mul-
titask transformer encoder training would be sufficient to observe
comparable performance compared to single task-trained models.
Although the models evaluated in this work are all performing NER, we
consider them to be separate tasks because the meaning of the labels can
vary between datasets within the same entity type group, as in the case
of cell line entiries whose mentions can include long noun phrases as
opposed to a gene whose mentions often span one or two nouns. Simi-
larly, species tasks vary in the usage of biological nomenclature in their
annotations. For example species mentions in the MIRNA dataser are
often common organism names, as opposed to the more granular bino-
mial nomenclature which may be more useful to researchers in a bio-
logical domain like microbiology.

Methods have been developed with the similar goal of reducing the
required resources for annotarion in text mining, for example, active
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Table 8
Comparison to Peng, et al. [2] and Zuo, et al. [13].
F1 Precision Recall

Dataset MTL STL [13] [2] MTL STL [13] [2] MTL STL 131 2]
CDR 0.933 0.932 0.889 0.931 0.947 0.945 0.894 - 0.919 0.920 0.883 -
CHEMDNER 0.907 0.915 0.886 0.729 0.908 0.919 0.907 - 0.907 0.911 0.886 -
BC2GM 0.776 0.819 0.821 - 0.792 0.821 0.819 - 0.760 0.818 0.822 -
JNLPBA 0.805 0.827 0.742 - 0.846 0.835 0.708 - 0.768 0.819 0.779 -

learning [16]. Although they may compliment the methods proposed
here, they are outside the scope of this work.

9. Conclusions and future work

In this work, we found thar in practice, single task NER modeling
works well when the number of tasks is relatively small. However, as the
number of tasks in an NLP pipeline increase, so does the combined size
of all models. This can be problematic especially when using hardware
with limited resources. Therefore, it may be beneficial to reduce the
number of models used in an NER pipeline with minimal trade-off with
task performance.

Our dara ablarion experiments demonstrate that multitasking models
for biological NER can perform well with only a fraction of the training
data in available gold-standard datasets, but in most cases with some
decrease in performance compared to single-task models trained with
the same hyperparameters. A trade-off to this approach is training rime.
Depending on the sampling method during training, an unbalanced
dartaset collection can result in much longer training time compared to
STL.

Our entity ablation experiments that MTL can be updated with an
unseen entity without a significant reduction in performance compared
to MTL and STL.

Future work includes examining how well MTL models can be
updared over rime. For example, if the initial models are trained using
full gold-standard darasets, and over time they are updated with small
amounts of training data for new task learning, is it necessary to retrain
the models from scratch including all previous training data, or simply
update the model on a single task at a time?

We would also like to examine the efficacy of multitask models for
inference on unlabelled datasets like rescarch articles. In practice, we
observe single rask models to be sensitive to the document types of the
training set and document on which inference is performed. For
example, models trained only on abstracts produce erroneous pre-
dictions that go unnoticed during the model evaluation. Although
evaluating on a different test set or combining training sets could
potentially mirigate this problem during model selection, mulritasking
amy offer an alternarive method for which we can improve inference
performance.

Mulyar and McInnes [7] chose to share information in the task-
specific layers. This approach more directly addresses an objective
addressed here of leveraging information within hidden layers to boost
performance. However, since the current work also addresses the
question of how much data is needed to produce useful representations
for downstream tasks, we chose to isolate the effect of the encoder
layers, which in theory have a greater capacity to represent information
than the task-specific layers given the larger number of trainable pa-
rameters. Furthermore, we will investigate how much different classi-
fication layers and tasks perform, such as CRFs used by Akdemir and
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Shibuya [3], as well as relation extraction tasks in the biological and
clinical domains.

Finally, we would like to investigate the potenrial benefits of opti-
mizing of the multitasking models, including warm-up steps on datasets
we observe to have either strongly fluctuating performance during
training or vary the learning rate on datasets that tend to train more
slowly than others.
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