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ABSTRACT
Since the rise of the COVID-19 pandemic, peer-reviewed biomedi-
cal repositories have experienced a surge in chemical and disease
related queries. These queries have a wide variety of naming con-
ventions and nomenclatures from trademark and generic, to chem-
ical composition mentions. Normalizing or disambiguating these
mentions within texts provides researchers and data-curators with
more relevant articles returned by their search query. Named entity
normalization aims to automate this disambiguation process by
linking entity mentions onto their appropriate candidate concepts
within a biomedical knowledge base or ontology. We explore sev-
eral term embedding aggregation techniques in addition to how the
term’s context affects evaluation performance. We also evaluate our
embedding approaches for normalizing term instances containing
one or many relations within unstructured texts.
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1 INTRODUCTION
Chemical and disease-related search queries are among the most
frequently searched terms within publicly available biomedical
repositories. PubMed is such a repository, housing more than 33
million citations from biomedical articles and 5,600 life science jour-
nals. Despite the recent advancements in computing technology
over the last decade, the expectation of investing significant time
and resources to retrieve relevant query-based articles still remains
with the researcher. Additionally, chemical and disease terms have
multiple naming nomenclatures which exacerbates the laborious
task of retrieving relevant articles based on a specific query. Since
the rise of the COVID-19 pandemic, PubMed has experienced a
surge in chemical and disease-related search queries in addition to
the number of researchers submitting theses queries. This surge
in traffic combined with the rate of accepted peer-reviewed pub-
lications increasing by 4% since last year, further intensifies the
difficulty in retrieving relevant articles. As the rate of accepted or
cited articles and journals is expected to increase, the difficulty,
time and resources utilized to manually retrieve related articles to
a query also increases warranting a viable solution.

Information extraction (IE) is a fundamental Natural Language
Processing (NLP) component which aims to automatically identify
and retrieve specific or structured information within unstructured
texts. This information ranges from identifying entities within text
such as persons, places, chemical, treatments, drugs or diseases, also
known as Named Entity Recognition (NER), to identifying semantic
relationships between entities. This secondary task is known as
relationship extraction (RE).

While NER classifies specific entity mentions within unstruc-
tured texts to one of many pre-defined categories, a closely related
task known as Named Entity Normalization (NEN) aims to link
entity mentions onto an appropriate candidate concept within a
knowledge base or ontology. This task has many names including
Named Entity Linking (NEL), Named Entity Disambiguation (NED),
Entity Linking (EL) and Concept Linking (CL). NEN aids in many
NLP tasks such as information retrieval, content analysis, semantic
search and recommender systems.

Linking entities onto a knowledge base is important for scientific
researchers and data curators. As previously mentioned, entities
such as chemicals have multiple naming nomenclatures which re-
quire significant time and resources to manually identify, determine
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and categorize the minute differences between synonymous or simi-
lar chemicals. While chemicals can be referred to by their trademark
or generic names, utilization of their chemical composition is often
noted within biomedical text. This does not include mis-spellings
and non-standard nomenclatures which can also have detrimental
effects for relevant article retrieval. NEN aims to normalize these
mentions by linking them to related concepts within an ontology.
This has an effect of disambiguating multiple forms of synonymous
terms or naming variations. This simplifies searching criteria and
expedites the laborious task of sorting through irrelevant articles.

In this study, we evaluate several approaches to linking chemical
and disease mentions within abstracts and full-text articles onto on-
tologies within the biomedical domain. We utilize the BioBERT [9]
model as our base term encoder. We extract term representations
as embeddings in one of three ways: 1) averaged sub-word token
representation of a term, 2) first sub-word token representation of
the term and 3) last sub-word token representation of the term. To
generate high quality term embedding representations, we include
term context in one of three ways: 1) we utilize the sequence con-
taining the term, 2) we utilize the sequences before and after in
addition to the sequence containing the term and 3) we maximize
context of the surrounding term by filling the encoder buffer with
all surrounding sequences.

In addition to these approaches, we evaluate model performance
while capturing one-to-one and one-to-many relations, between
terms and their candidate concepts. Our one-to-one approach links a
term to a single concept. Likewise, our one-to-many approach links
a term to multiple candidate concepts. We found minute differences
between the quality of term embeddings with respect to variations
of the term’s context used to generate the embeddings for one-to-
one relations. In comparison, differences in evaluation performance
were noted when classifying one-to-many relations. Each of these
approaches captures different but important aspects of how term
embeddings are represented for mapping to candidate concepts
within biomedical ontologies. We provide a comprehensive listing
of results among our approaches and a detailed analysis of our
findings.

2 RELATED WORKS
Typically, NEN can be categorized as four main approaches: rule-
based, learning-based, multilingual-based and joint learning-based.
For the learning-based approaches, they can be further classified as
machine learning versus deep learning methods. This classification
sometimes creates an overlap between deep learning-based and
joint-learning based works. In this section, we describe related
works that are closely associated with our approach.

Early attempts at NEN were all rule-based methods which lever-
aged synonym, acronym, and abbreviation dictionaries to map
terms found in biomedical text to ontologies such as MeSH and
MedDRA [2, 12]. Rule-based methods remain popular for produc-
tion usage because of their configurability and ease of interpre-
tation [21], but they are unable to compete with learning-based
methods in terms of accuracy or F-measure [11]. For this reason,
machine learning and deep learning approaches dominate recent
work in the field. Leaman, et al [8] pioneered the first machine

learning NEN system with DNorm, which utilized a pairwise learn-
ing to rank method to learn mappings from term frequency-inverse
document frequency (TF-IDF) representations of mentions to rep-
resentations of concept names. Unlike the early systems, which
simultaneously extracted and normalized entities as they processed
documents in their entirety, DNorm considered only the mentions
themselves when scoring their vector representations. DNorm (us-
ing BANNER [7] to extract mentions) demonstrated a 20+ point
improvement over MetaMap[2] in terms of F-measure on the NCBI
disease corpus [4].

Later systems improved on the DNorm baseline by represent-
ing mentions with static word embeddings (rather than TF-IDF
vectors) and feeding them through convolutional neural network
(CNN) and recurrent neural network models [19] to perform the
prediction. Tutubalina, et al demonstrated that these higher quality
embeddings coupled with more powerful models could outperform
DNorm by up to 12 points in terms of accuracy on the AskAPatient
dataset [6]. Mondal, et al [14] also used static word embeddings and
a CNN classifier, but split the prediction process into two stages. In
the first stage, they used cosine similarity and Jaccard overlap to
identify a small set of candidate concepts for each mention. Then,
in the latter stage, they used a CNN, which had been trained to
differentiate between correct and incorrect concept mappings, to
predict which candidate concept mapped to each mention. Sung, et
al. [17] employed a similar two step paradigm in their BioSYN sys-
tem, trading static vector representations of mentions for BioBERT
encodings. Liu, et al. [11], built on the prediction stage with their
SAPBERT system and trained BERT models to differentiate correct
mention-concept mappings from incorrect ones where the incorrect
concept was very similar to the mention. Finally, Angell, et al [1]
addressed a key weakness of the BioSYN system, namely that if
the correct concept was not identified in the candidate generation
phase, it was a priori excluded from being correctly identified dur-
ing the final prediction. This is especially problematic for mentions
that are ambiguous on their own, but which are referenced more
explicitly elsewhere in the document. Their system generated can-
didates for each mention and then used a clustering algorithm on
all mentions and candidates in a given document which created
groups of at most one concept mapped to any number of mentions.
Their state of the art performance demonstrated the importance of
locally contextualizing mentions for proper linking.

3 DATA
We utilize the BioCreative V CDR [10], BioCreative VII Track II
CDR [5], Biocreative VII Track II NLMChem [5] and NCBI dis-
ease [4] datasets. These datasets contain PubMed titles (T), abstracts
(A) and full-text articles (F) which map chemical and disease men-
tions to Medical Subject Headings (MeSH) [12] or concept unique
identifiers (CUIs). These CUIs refer to a concept within the UMLS
ontology 1. Each dataset also contains two types of mappings for
NEN: 1) one-to-one relations and 2) one-to-many relations. One-to-
one relations, maps a term to a single concept while one-to-many
maps a term to multiple concepts. One-to-one relations comprises
the majority of NEN instances within each dataset. One-to-many
instances have two types of mentions: 1) individual mention, and 2)

1https://www.nlm.nih.gov/research/umls/index.html
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Name BC5CDR BC7T2-CDR BC7T2-(N) NCBI
Document Type T A T A F A

Number of Documents 1500 1500 150 792
Number of Passages 3000 3000 10252 1586

Number Unique Terms 5196 2151 4397 1977
Number Unique Concepts 2351 1270 1812 755
Average Sentence Length 15.67 15.62 14.69 19.44

Average Sentences Per Passage 6.09 6.09 4.97 4.98
Average Words Per Passage 95.26 95.26 73.15 96.98

Average Sentences Per Document 12.19 12.19 340.19 9.98
Average Words Per Document 190.53 190.53 4999.61 194.21
Number of Mapping Instances 29271 15953 38339 6824

Individual Mentions 486 18 0 0
Composite Mentions 235 8 0 159

Composite Mentions (Unlabeled) 38 9 2318 39
Table 1: Dataset Statistics

BC7T2-(N): BC7T2-NLMChem, T: Titles, A: Abstracts, F: Full-text articles

composite mention. Composite mentions map a term to multiple con-
cepts while individual mentions map the distinct term words within
a composite mention to their individual concepts. We show this
difference in the Figure 2 of the appendix section. We list several sta-
tistical categories including document type, number of documents,
number of unique terms and number of unique concept identifiers.
In addition to listing the number of individual and composite men-
tions, we list the number of composite mentions which have not
been labeled within each dataset. We provide these statistics for
each dataset in Table 1 below.

4 METHODS
In the section, we discuss our methods. First, we discuss the base
language model utilized in our approach. Second, how data is rep-
resented and how context is provided to generate our term embed-
dings. Third, how our term embeddings are generated and differing
types of term embeddings. Finally, we discuss our methods to quan-
tify one-to-one versus one-to-many relations found within the data.

4.1 Base Language Model
We use the cased implementation of DMIS Lab’s BioBert [9] lan-
guage model as our base encoder. This is a transformer-based [20]
language model which has been pre-trained on biomedical data
including Pub-Med abstracts and Pub-Med Central full-text arti-
cles. This language model is also fine-tuned using three biomedical
text mining NLP tasks which includes: 1) NER, 2) Question An-
swering, and 3) RE [9]. We propose a single output classification
layer stacked on-top of the BioBERT encoder for the task of NEN.
This classification layer accepts a term representation as input and
provides a prediction in one of two ways: 1) as a probability dis-
tribution over all candidate concepts within the vocabulary; or 2)
a probability score for each candidate concept within the vocabu-
lary i.e. softmax vs sigmoid. The vocabulary of candidate concepts
consists of the unique MeSH or CUI concepts existing within the
training, development and testing sub-sets for each dataset.

4.2 Term Context and Representation
As each dataset is comprised of abstracts and full-text articles, our
data pre-processing steps include identifying the specific sequences
containing chemical or disease mentions. After these sequences
have been identified, we generate contextual sub-word embeddings
by including the chemical or disease term’s context using one of
three approaches: 1) only the sequence containing the chemical
or disease mention is utilized; 2) we utilize the sequence contain-
ing the chemical or disease mention, in addition to the sequences
before and after; and 3) we maximize context by using BioBERT’s
512 token limit, storing the sequence containing the chemical or
disease mention and its surrounding sequences until the token limit
has been reached. We provide an example of these approaches in
Figure 3 of the appendix section.

We tokenize these text sequences using the BioBERT tokenizer,
which splits certain words within the sequence into sub-word to-
kens based on the existing vocabulary within its word-piece tok-
enization strategy. We mask these chemical and disease term sub-
word tokens for use within our term embedding extraction layer,
which identifies and extracts the respective sub-word embeddings
in one of three ways: 1) providing an average embedding represen-
tation of the chemical or disease mention; 2) extracting the first
sub-word embedding of the chemical or disease mention; or 3) ex-
tracting the last sub-word embedding of the chemical or disease
mention. Each embedding type produces a single 768 length repre-
sentation which is fed into the subsequent classification layer for
mapping over the distribution of unique candidate concepts.

4.3 One-to-One vs One-to-Many Relations
Each of the datasets contains two types of term-to-concept map-
pings: 1) one-to-one and 2) one-to-many. These refer to the nature
of the relationship between a term and candidate concept. While
one-to-one maps a term to a single candidate concept, one-to-many
maps a term to multiple candidate concepts. However, one-to-many
instances have two types of mentions: 1) individual mention, and
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Figure 1: Named Entity Normalization (NEN) Model

This depiction demonstrates embedding context as the term’s sequence. We also explore two more context aggregation methods
which are not shown.

2) composite mention. Composite mentions map a term to multiple
concepts while individual mentions map the distinct term words
within a composite mention to their individual concepts. We show
this difference in the Figure 2 of the appendix section. Typical neu-
ral network-based NEN approaches focus on mapping a term to
a single concept, however we compare both one-to-one and one-
to-many mappings using standard categorical cross-entropy and
binary cross-entropy losses.

For our one-to-one approach, we use categorical cross-entropy
loss with softmax activation within the classification layer. This pro-
vides a normalized distribution over our candidate concept labels
which sum to ’1’ i.e. multi-class classification. For each term-to-
concept classification instance, we designate the concept identifier
with the highest probability score as the assigned candidate con-
cept to the term. For our one-to-many approach, we use binary
cross-entropy loss with sigmoid activation within the classifica-
tion layer. This provides an independent probability score for each
concept identifier label i.e. multi-label classification. We perform
thresholding using the inflection point of the sigmoid function i.e.
0.5, such that all probability scores 0.5 or greater are set to ’1’ and
scores less than 0.5 are set to ’0’. We use this thresholding method
to assign one or more candidate concepts to a term. For each com-
posite mention, their respective individual mentions are provided
within each dataset. Training on both types of composite mention
instances can produce conflicts during model training and reduce
model generalizability. Both relation approaches train using one-to-
one relations existing within the data. However, we omit composite

mentions for our one-to-one models and individual mentions for
our one-to-many models.

4.4 Evaluation
After each model has been trained, we run inference over all test set
instances and measure the performance of our approaches using
strict and approximate mention-level precision, recall and f1-score
metrics, used by the BioCreative VII Track 2 challenge and de-
scribed by Tsataronis, et. al [18]. Instead of aggregating counts for
all term-to-concept predictions given a passage, this method evalu-
ates the unique set of term-to-concept predictions within a passage
i.e. identical instances of term-to-concept predictions are skipped
within a passage and only the unique term-to-concept pair counts
are aggregated. While the strict method evaluates predicted term
concept identifiers against their ground truth labels, the approxi-
mate method evaluates performance by linking predicted term and
ground truth concept identifiers to their parents concepts within
the ontology and generates precision (P), recall (R) and f1-scores
(F1) using the lowest common ancestor algorithm.

5 EXPERIMENTAL DETAILS
Weutilize the PyTorch [15] implementation of theDMIS Lab BioBERT
v1.2 [9] as our base encoder among all experiments. We chose
this due to the PyTorch implementation’s increased maximum to-
ken length of 512 in comparison to Tensorflow’s 128. Data pre-
processing steps include converting several unicode characters to
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their ASCII equivalents i.e. soft-hyphen, thin white-space, non-
breaking and no-break spaces. We remove other special unicode
characters including trademark, service mark, registered and copy-
right symbols in addition to separating all periods from the final
word within a sentence by inserting a single white-space.

To extract the first, last or mean pooling of sub-word embeddings
for a term, we implement a custom Keras [3] layer which forward
propagates this fixed 768 length term embedding to a classification
layer. This classification layer provides probability scores over the
concept identifier vocabulary as output of the model.

We train our models on NVIDIA Tesla V100 PCIe 32 GB GPUs by
freezing the BERT layer parameters and using the ADAM optimizer
with a learning rate of 2e-4, batch size of 10, standard learning rate
decay values and beta parameters. We train our one-to-one models
for 20 epochs and use early stopping while monitoring loss with a
persistence value of 2. Similarly, we train our one-to-many models
for 50 epochs and use early stopping while monitoring loss with
a persistence value of 2. We perform class weighting by setting
the concept-less class to 0.125 and leave all remaining candidate
concept classes as 1.

6 RESULTS AND DISCUSSION
In this section, we present all our results over all data-sources for
our approaches and discussion of our findings. We present and
discuss our term embedding type approaches. We then present our
results for the various approaches to contextualize term embed-
dings. Finally, we compare our approaches for capturing one-to-one
and one-to-many relations. We also compare our results to previous
work. We list these results in Tables 2, 3 and 5.

6.1 Term Embedding Types
We perform three types of embedding generation approaches for
NEN. Of the three types of approaches: averaging, first and last,
our results show that averaging all sub-word embeddings within a
given term consistently performed the best when compared to using
the term’s first or last sub-word embedding. Using the term’s first
sub-word embedding followed averaging while using the term’s
last sub-word embedding performed the least favorable among the
three approaches. Our results show this trend holds true among
all datasets and embedding context types for both one-to-one and
one-to-many relations experiments.

6.2 Term Context
In addition to the embedding type approaches utilized to provide
the high quality term embeddings, we explore how a term’s context
used to generate these embeddings affects evaluation performance.
The three context type approaches include: 1) only using the term
sequence; 2) using the sequences occurring before and after the
term sequence in addition to the term sequence; and 3) maximizing
term context by including all possible sequences surrounding the
term sequence. We found that only using the term sequence to
generate an averaged term embedding performed the best with
the BC5CDR, BC7T2-CDR and BC7T2-NLMChem datasets for one-
to-one relations. Conversely, including the sequences immediately

before and after the term sequence, and averaging the term’s sub-
word embeddings performed the best with the NCBI dataset for
one-to-one relations.

While using the term sequence generally performs best with
averaging for one-to-one relations, including the sequences before
and after the term sequence, and averaging performed the best
with the BC5CDR, BC7T2-NLMChem and NCBI datasets for one-
to-many relations. For the BC7T2-CDR, we found maximizing the
context to generate an average term representation provided the
best performance for one-to-many relations.

6.3 One-to-One vs. One-to-Many Relations
We have shown that averaging performs best between embedding
types and the context utilized to provide the highest quality term
embeddings are dependent on the dataset. When examining our
approaches to quantify one-to-one and one-to-many relations, we
found that our one-to-many approach provides greater evaluation
performance than capturing one-to-one relations for all embed-
ding types over the BC5CDR, BC7T2-CDR and BC7T2-NLMChem
datasets. When examining our model’s ability to differentiate be-
tween one-to-one and one-to-many relations within the NCBI
dataset, our results did not show a noticeable change in F1 per-
formance.

6.4 Strict vs. Approximate Comparison
Given our best approach of generating high quality embeddings
over each dataset, we compare strict versus approximate evaluation
methods for both one-to-one and one-to-many relations. The ap-
proximate evaluation method measures model performance using
the lowest common ancestor algorithm. This method links pre-
dicted and gold child candidate concepts to their parent concepts
within the UMLS ontology. In comparison, the strict evaluation
method computes evaluation metrics based on the exact matching
of candidate concepts between the predicted and gold data.

Results show that the approximate evaluation method improves
one-to-one relation evaluation performance across all reported
datasets. For our one-to-many relation approaches, we found the ap-
proximate evaluation method improves performance for the BC7T2-
CDR and NCBI datasets. Interestingly, this method decreased per-
formance for one-to-many relations across the BC5CDR and NCBI
datasets when compared to their strict counterparts. We provide
these results in Table 4.

6.5 Indirect Comparison with Previous Works
Given our best approach of generating high quality embeddings to
classify one-to-one relations for the BC5CDR dataset (i.e. averaged
embedding type only using the term sequence to generate context)
we perform an indirect comparison of our approach to previous
work. Of all recent NEN publications, we foundWiatrack, et. al [22]
utilizes similar term context aggregation and embedding generation
approaches in addition to evaluating similar candidate concept
types and reporting metrics. Their approaches include both joint-
learning and hierarchical BERT-based models for the tasks of NER,
entity typing and NEN for one-to-one relations. They evaluate
performance for classifying both chemical and disease mentions
within the BC5CDR dataset using mention-level precision (P), recall
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One-To-One Relations
Term Sequence

Type BC5CDR BC7T2-CDR BC7T2-NLMChem NCBI
P R F1 P R F1 P R F1 P R F1

Average 0.6005 0.6728 0.6346 0.5067 0.6534 0.5707 0.5030 0.6673 0.5736 0.6190 0.5741 0.5957
First 0.5368 0.6299 0.5796 0.4742 0.6232 0.5386 0.4734 0.6341 0.5421 0.5463 0.5394 0.5429
Last 0.4787 0.5748 0.5223 0.4589 0.5896 0.5161 0.4441 0.6172 0.5165 0.5046 0.5174 0.5109

Restricted Context
Type BC5CDR BC7T2-CDR BC7T2-NLMChem NCBI

P R F1 P R F1 P R F1 P R F1
Average 0.5780 0.6677 0.6196 0.4956 0.6507 0.5626 0.4967 0.6721 0.5712 0.6301 0.5804 0.6043
First 0.5319 0.6370 0.5797 0.4786 0.6301 0.5440 0.4607 0.6468 0.5381 0.5538 0.5521 0.5529
Last 0.4874 0.5767 0.6283 0.4545 0.5999 0.5172 0.4538 0.6100 0.5204 0.5311 0.5110 0.5209

Full Context
Type BC5CDR BC7T2-CDR BC7T2-NLMChem NCBI

P R F1 P R F1 P R F1 P R F1
Average 0.5790 0.6711 0.6216 0.4972 0.6465 0.5622 0.4944 0.6612 0.5658 0.6246 0.5773 0.6000
First 0.5231 0.6327 0.5728 0.4764 0.6108 0.5353 0.4528 0.6365 0.5292 0.5363 0.5363 0.5363
Last 0.4866 0.5782 0.5284 0.4352 0.5786 0.4968 0.4433 0.6100 0.5134 0.5300 0.5300 0.5300

Table 2: Strict evaluation metrics for one-to-one relations among all datasets.

Average: Computes the average among all term sub-word embeddings. First: Extracts the first sub-word embeddings for a
given term. Last: Extracts the last sub-word embedding for a given term. Term Sequence: Term embedding is generated only
using the term’s sequence. Restricted Context: Term embedding is generated using the term sequence in addition to immediate
surrounding sequences. Full Context: Term embedding is generated by maximizes the term’s context.

One-To-Many Relations
Term Sequence

Type BC5CDR BC7T2-CDR BC7T2-NLMChem NCBI
P R F1 P R F1 P R F1 P R F1

Average 0.7570 0.6225 0.6832 0.6894 0.6246 0.6554 0.8525 0.6341 0.7273 0.6929 0.5268 0.5986
First 0.6621 0.6143 0.6373 0.5931 0.6122 0.6025 0.7078 0.6221 0.6622 0.6029 0.5174 0.5569
Last 0.6620 0.5389 0.5775 0.5785 0.5690 0.5737 0.7506 0.5949 0.6638 0.5765 0.4637 0.5140

Restricted Context
Type BC5CDR BC7T2-CDR BC7T2-NLMChem NCBI

P R F1 P R F1 P R F1 P R F1
Average 0.7600 0.6319 0.6901 0.6925 0.6246 0.6568 0.8522 0.6432 0.7331 0.7061 0.5457 0.6157
First 0.6819 0.6143 0.6463 0.6090 0.6115 0.6103 0.7498 0.6160 0.6764 0.6142 0.5174 0.5616
Last 0.6312 0.5327 0.5778 0.5766 0.5683 0.5724 0.7263 0.5919 0.6523 0.5682 0.5913 0.6597

Full Context
Type BC5CDR BC7T2-CDR BC7T2-NLMChem NCBI

P R F1 P R F1 P R F1 P R F1
Average 0.7669 0.6236 0.6879 0.6983 0.6356 0.6655 0.8344 0.6407 0.7249 0.6964 0.5426 0.6009
First 0.6898 0.5972 0.6402 0.6099 0.6019 0.6059 0.7330 0.6172 0.6702 0.5993 0.5142 0.5535
Last 0.6295 0.5347 0.5782 0.5651 0.5573 0.5612 0.7460 0.5913 0.6597 0.5840 0.4826 0.5285

Table 3: Strict evaluation metrics for one-to-many relations among all datasets.

Average: Computes the average among all term sub-word embeddings. First: Extracts the first sub-word embeddings for a
given term. Last: Extracts the last sub-word embedding for a given term. Term Sequence: Term embedding is generated only
using the term’s sequence. Restricted Context: Term embedding is generated using the term sequence in addition to immediate
surrounding sequences. Full Context: Term embedding is generated by maximizes the term’s context.
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Strict vs. Approximate Results
One-to-One

Type BC5CDR BC7T2-CDR BC7T2-NLMChem NCBI
P R F1 P R F1 P R F1 P R F1

Strict 0.6005 0.6728 0.6346 0.5067 0.6534 0.5707 0.5030 0.6673 0.5736 0.6301 0.5804 0.6043
Approx 0.6308 0.6871 0.6502 0.6339 0.7524 0.6678 0.5049 0.7054 0.5792 0.7424 0.6602 0.6782

One-to-Many
Type BC5CDR BC7T2-CDR BC7T2-NLMChem NCBI

P R F1 P R F1 P R F1 P R F1
Strict 0.7600 0.6319 0.6901 0.6983 0.6356 0.6655 0.8522 0.6432 0.7331 0.7061 0.5457 0.6157
Approx 0.7357 0.6447 0.6764 0.7357 0.6682 0.6784 0.8036 0.5924 0.6590 0.7159 0.6353 0.6481

Table 4: Best strict results for each dataset compared against the approximate evaluation method.

(R) and f1-score (F1) metrics as described by Mohan, et. al [13]. We
note their single task model for NEN achieves the best performance
among all approaches. We report these results in Table 5.

Their model utilizes the sequence containing a given NEN term
in addition to its immediate surrounding sequences as context to
generate term embeddings for one-to-one relation linking to candi-
date concepts. In comparison to this approach, our model evaluates
performance using two additional types of context aggregation
techniques: 1) only using the sequence containing the NEN term,
and 2) maximizing the encoder token buffer by including all context
surrounding the NEN term sequence. While both models classify
one-to-one NEN instances for chemicals and diseases, we also incor-
porate classifying one-to-many relations and evaluate performance
between the two types of NEN relation classification approaches.

BC5CDR
Description P R F1
Wiatrak, et al. 0.6498 0.6291 0.6393
One-to-One 0.6005 0.6728 0.6346
One-to-Many 0.7570 0.6225 0.6832

Table 5: Wiatrak, et al. (2020) - Entity-Level Single Task Re-
sults

Analysis between these two methods demonstrate that their
model makes predictions of slightly higher relevance for one-to-one
relations, but offers a lower rate of correct classification for its pre-
dictions. Our model makes slightly less relevant predictions while
achieving a higher rate of correct prediction classification. We at-
tribute this to ourmodel incorrectly classifying instances as concept-
less. Overall, performance between the two approaches show our
one-to-one approach achieves comparable F1 performance. Given
the approach of embedding generation for the listed one-to-one
relations in Table 5, we list our comparable one-to-many relation
approach to demonstrate the effect of integrating one-to-many
relationships during model training. This resulted in a sizeable in-
crease in precision, exceeding both one-to-one approaches, while
demonstrating similar recall performance to the Wiatrak model.

7 ERROR ANALYSIS
During an analysis of the data, we found many NEN instances con-
taining one-to-many relations which were not labeled as composite
mentions within the BC5CDR, BC7T2-CDR and NCBI datasets. Fur-
thermore, the BC7T2-NLMChem dataset does not label any of its
one-to-many relation instances as composite mentions. (see Ta-
ble 1). We provide an example of an unlabeled composite NEN
instance in Figure 4 of the appendix section.

If we rely on the composite mention labels to be present within
the data while foregoing proper data analysis and data-processing
practices, this will negatively affect model generalizability and eval-
uation performance of one-to-one models. This is due to a term
having multiple linked candidate concepts. During training, the
model will backpropagate the respective error for each candidate
concept linked to a given term independently. This also decreases
evaluation performance as the model is more likely to choose the
linked concept identifier that occurs more frequently with the term
for one-to-one relations. Moreover, if only one candidate concept
is chosen among the set linking to a term, this will also negatively
affect evaluation performance as we cannot be certain which candi-
date concept holds more importance among the set nor which will
be used for strict evaluation.

We also found instances within the NCBI dataset labeled as com-
posite mentions, which only contained a single linked candidate
concept. These instances are omitted from one-to-one model train-
ing since they are assumed to contain multiple linked concepts to
a term. Since these instances do not contain multiple candidate
concepts, they provide no benefit to model generalization utilizing
their composite mention label.

Further analysis of the NCBI data, shows that the individual
mentions for each identified composite mention are not labeled.
This indicates that our one-to-many models are training on both
the unlabeled individual mention and labeled composite mention
for each term containing both types of mentions; if the individual
mention exists within the data. This can also affect model generaliz-
ability and reduce overall evaluation performance. Additionally, if
we combine this with the number of existing unlabeled composite
mentions noted within the dataset and number of single-concept
composite mentions, we believe these factors demonstrate the lack
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of noticeable change in performance while capturing these one-
to-many relations versus their one-to-one counterparts using this
dataset.

While the BC5CDR, BC7T2-CDR and NCBI datasets contain
many unlabeled compositemention instances, the BC7T2-NLMChem
contains no labeled composite mention instances. However, one-to-
many NEN instances exist within the dataset. Despite this finding,
we noted an increase in performance within our one-to-many ap-
proaches for all embedding types when compared to the one-to-one
approaches. Similar to our previous findings, performance when
identifying one-to-one relations will be negatively affected due
to the model treating each linked candidate concept to the same
term as a separate instance. i.e. backpropagation will occur for each
linked candidate concept to a term independently. This prevents
the model from achieving an optimal one-to-one mapping solution,
often assigning the concept identifier with the highest frequency to
the term. We believe the one-to-many model performance increase
relates to fewer unlabeled individual mentions within the dataset
when compared our NCBI findings.

Further analysis our models show that the concept-less label is
incorrectly assigned more frequently than any other class. However,
this depends on the dataset evaluated. We noted this trend holds
true with and without class weighting the concept-less label lower
than all other concept identifier labels.

8 CONCLUSIONS
Within this study, we examine multiple approaches for generating
term embeddings used for NEN and how each term’s context affects
evaluation performance. Additionally, we provide a comparison
of our approaches for mapping one-to-one and one-to-many re-
lations. While we found averaging provides the best evaluation
performance for classifying both one-to-one and one-to-many re-
lations, it is important to note our findings are task dependant
and a comprehensive analysis of all embedding types should be
considered when generating term embeddings for each data-source.

Our approaches for including context while generating high qual-
ity embeddings demonstrates that using the term’s sequence pro-
vides the highest quality embeddings when classifying one-to-one
relations among all datasets. Conversely, we found that term con-
text affects evaluation performance when classifying one-to-many
relations. Results show that including more context when clas-
sifying one-to-many relations improved evaluation performance
in comparison to only utilizing the term’s sequence. This further
emphasizes that all approaches should be considered when gener-
ating high quality term embeddings. Despite our findings, context
should always be provided when generating term representations
as these representations are contextualized given the co-occurring
wordswithin the containing sequence. This provides themodel with
greater semantic information content given the term’s surrounding
context which is further utilized as a means of term disambiguation
for linking onto an ontology.

Between our one-to-one and one-to-many relations, we found
our one-to-many relations consistently performed better than our
one-to-one relation models. While this trend shows promise in
quantifying these relationships, we also noted several concerns
within each dataset which we believe has detrimental effects on

model generalizability thereby evaluation performance. Proper data-
analysis and processing techniques will aid in mitigating concerns
such as these.

9 FUTUREWORK
Further work includes refining the BioBERT encoder for each
dataset while training our attached classification layer. We believe
this will improve model performance while reducing the number
of epochs necessary for model generalization. Other works include
utilizing other BERT-based models such as BioMegatron [16]. This
biomedical BERT-based model which contains up to 1.2 billion
parameters and over 50,000 vocabulary elements. Compare this
to BioBERT base model’s 110 million parameters and 30,522 ele-
ment vocabulary, we believe a notable performance increase can
be achieved. Furthermore, we propose improving performance by
classifying unlabeled one-to-many relationships as composite men-
tions within each dataset. As our one-to-one models omit instances
labeled as composite mentions and our one-to-manymodels include
instances labeled as composite mentions, we theorize an improve-
ment in evaluation performance for both relation types will be
eminent.

Other future works include implementation of an end-to-end
joint-learning system which incorporates related tasks such as
NER and entity typing in addition to architectural design changes.
These additions when combined with incorporating techniques to
mitigate the issues noted within our data analysis and approach-
specific discussion sections, we believe implicit information shared
among these tasks will provide higher quality representations while
achieving higher generalization performance. Additionally, as our
proposed approaches depend on a fixed vocabulary of candidate
concepts to evaluate prediction performance, architectural design
choices such as learning the mappings between term and concept
representations using a similarity loss function can further improve
model performance for NEN while providing a more generalizable
model.
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A COMPOSITE VS. INDIVIDUAL MENTION
DATA

We provide an example of a composite mention instance extracted
from the BC7T2-CDR dataset. This composite instance is shown
with its corresponding individual mentions. Note that each individ-
ual mention instance is a subset of the composite mention. We train
our one-to-one models to include individual mentions while omit-
ting the composite relation. Similarly, we train our one-to-many
models to include the composite relation while omitting individual
mentions.

Figure 2: Composite vs Individual Mention

B TERM CONTEXT EMBEDDING
GENERATION

We provide an example extracted from the BC7T2-CDR dataset to
demonstrate our term context aggregation approaches for gener-
ating term mention embeddings. Shown in Figure 3, this passage
contains three one-to-one NEN instances. To demonstrate our ap-
proach, we consider the second linking instance as the current
classification example. This instance contains the mention acitretin
which links to the concept MESH:D017255. We highlight the term
sequence in green and NEN instance in blue.

Our approaches to generate context considers three context
aggregation methods: 1) using the term sequence containing the
mention, 2) using the term sequence in addition to the immediate
surrounding sequences and 3) maximizing term context by includ-
ing all possible sequences surrounding the term sequence.

Our first approach utilizes the term sequence, highlighted in
green, when linking the term acitretin to its candidate concept.
Our second approach includes the sequences highlighted in yellow,
green and magenta when linking the term to it’s candidate concept.
Lastly, our third approach incorporates all sequences within this
passage when linking the term acitretin to its candidate concept (i.e
MESH:D017255).
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Figure 3: Term Context Aggregation

C MISSING COMPOSITE MENTION LABEL
We provide an example extracted from the BC7T2-CDR dataset
which demonstrates a missing CompositeRole (composite mention)
label. Shown in Figure 4, this typically identifies instances con-
taining composite and individual mentions. We’ve highlighted this
instance in blue. If we compare this to the data shown in Figure 2,

we note the instance containing multiple concepts (separated by the
’|’ character) is designated as a CompositeRole. Identifying composite
roles is important when classifying one-to-one and one-to-many
relations. Excluding them can significantly affect model general-
izability, thus evaluation performance if proper data analysis and
pre-processes steps are not employed.

Figure 4: Missing CompositeRole (Composite Mention)

We’ve removed the one-to-one relations for ease of viewing.
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