The Hermes BFT for Blockchains

Mohammad M. Jalalzai, Chen Feng, Member, IEEE, Costas Busch,
Golden G. Richard Ill, Member, IEEE, Jianyu Niu

Abstract—The performance of partially synchronous BFT-based consensus protocols is highly dependent on the primary node. All
participant nodes in the network are blocked until they receive a proposal from the primary node to begin the consensus process.
Therefore, an honest but slack node (with limited bandwidth) can adversely affect the performance when selected as primary. Hermes
decreases protocol dependency on the primary node and minimizes transmission delay induced by the slack primary while keeping low
message complexity and latency with high scalability. Hermes achieves these performance improvements by relaxing strong BFT
agreement (safety) guarantees only for a specific type of Byzantine faults (also called equivocated faults). Interestingly, we show that in
Hermes equivocating by a Byzantine primary is expensive and ineffective. Therefore, the safety of Hermes is comparable to the
general BFT consensus. We deployed and tested Hermes on 190 Amazon EC?2 instances. In these tests, Hermes’s performance was
comparable to the state-of-the-art BFT protocol for blockchains (when the network size is large) in the absence of slack nodes.
Whereas, in the presence of slack nodes Hermes outperforms the state-of-the-art BFT protocol significantly in terms of throughput and

latency.

Index Terms—Blockchains, Byzantine Fault Tolerance, Consensus, Performance, Scalability, Security, Throughput.

1 Introduction

Scaling of a consensus protocol to support a large num-
ber of participants in the network is a desired feature. It
not only allows more participants to join the network but
also improves decentralization [1]. Additionally, reliability
of a consensus protocol also depends on the actual number
of faults it can tolerate [2], [3]. In a BFI-based (Byzantine
Fault Tolerant) protocol if the total number of participating
nodes is n then the number of faults that can be tolerated
is bounded by f < n/3 [4]. Therefore, to improve the fault
tolerance a scalable protocol has to be designed so that it can
operate well with larger values of n. However, the increase
in number of nodes generally results in higher message
complexity which adversely affects the BFT performance [5],
[6], [7]. Recent works have tried to address the scalability
issues in the BFT protocols [8], [9], [10], [11], [12].

In BFT-based protocols the primary node acts as a serial-
izer for requests. The consensus epoch begins as the primary
proposes request batch/block to nodes in the network. The
epoch ends after nodes agree on a block and add it to their
chain. In practice, usually the size of the block proposed
by the primary may range from several Kilobytes to several
Megabytes. Therefore, by increasing the number of partici-
pants/nodes in the network the primary node with limited
bandwidth has to spend most of its time broadcasting the
block to a large number of nodes. Moreover, consensus
nodes are blocked until they receive the proposal from the
primary. Inversely, a primary node will be blocked until it

e M.M. Jalalzai, C. Feng, and]. Niu are with the Blockchain@UBC and the
School of Engineering, The University of British Columbia (Okanagan
Campus), Kelowna, BC V1V 1V7, Canada. C. Busch is with the School
of Computer and Cyber Sciences, Augusta University. G. G Richard
III is with the Computer Science and Engineering Division, Louisiana
State University. E-mail: {m.jalalzai, chen.feng, jianyu.niu}@ubc.ca,
kbusch@augusta.edu, golden@cct.lsu.edu.

receives at least n — f responses from other nodes before
proposing the next block. By designing a protocol that
shortens this blocking time, BFT-based consensus protocol
performance can be improved.

The Hermes protocol design has two new elements.
The first design element includes proposing a block to a
subset of nodes of size ¢ and having a round of message
exchange among this subset to make sure no request
(block) equivocation has taken place by the primary. This
design element helps us to achieve two goals, namely:
(1) Mitigating the impact of slack primary nodes; and (2)
Efficient Optimistic Responsiveness. The second design
element involves removing a round (phase) of message
exchange among all nodes (equivalent to the first phase
of PBFT) from happy case execution (normal mode) and
adding a recovery step to the view change mode. This
design element helps Hermes to achieve design goal (3)
Latency. In addition, we make use of a design element in
[13] in order to achieve design goal (4) Scalability. This
element involves node communication through a subset of
nodes of size c also called the impetus committee.

Although the use of a committee to improve BFT per-
formance has been done previously [13], [14], [15], [16], we
use the impetus committee for completely different design
goals (1 through 3). Moreover, a novel combination of the
above three design elements to improve the overall BFT
performance is something that to our best knowledge has
not been done before.

Below we present key design goals of Hermes BFT that
have pushed the performance to a next level especially for
a blockchain setup.

Mitigating the impact of slack primary nodes. Slack
nodes are honest nodes that have lower upload bandwidth
compared to other nodes in the network. Lower upload
bandwidth increases transmission delay (which is the time
taken to put packets on the wire/link). Therefore, a slack
primary can significantly diminish consensus protocol per-

formance. On the contrary, prompt nodes have higher up-
load bandwidth and have lower transmission delay. In prac-
tice, slackness can be a temporary or permanent condition.
In the case of slackness as a temporary condition, a node
might become slack due to underlying issues in the network
or a bug. Slackness might also be a permanent condition as a
node simply does not have enough bandwidth. Addressing
slackness in both cases is important. First, the temporary
slackness is a real-time problem and thus difficult to ad-
dress instantly due to the dynamic nature of the Internet.
Secondly, if slackness is permanent then it may not be a
good idea to remove slack nodes from the network as it will
make the network more centralized. Indeed, nodes from the
regions where the Internet cost is high (or nodes that cannot
afford high bandwidth) should be able to be selected as
the primary. In blockchain networks, primary nodes might
be rotated after proposing a certain number of blocks (say,
10K) so that all the nodes get the opportunity to propose
blocks. In Section 6, we will discuss how view change is
optimized in Hermes, making it easier to rotate primaries
(view change). Therefore Hermes can be useful in both of the
above mentioned cases. In normal BFT based protocols [17],
[18], [19] the primary has to broadcast a block to all nodes
in the network of size n. Whereas in Hermes the primary
broadcasts a block only to a small subset of nodes of size
c (also called impetus nodes). In Hermes the growth of c is
sub-linear to n, therefore an increase in n will not have a
significant impact on ¢, and hence on performance of Her-
mes. Therefore, Hermes mitigates the negative performance
impact of the slack primary. This leads to another interesting
property that we call Efficient Optimistic Responsiveness.

Efficient Optimistic Responsiveness. Responsiveness is
an important property of BFT state machine replication
(SMR) protocols [20], [21]. In BFT SMR protocols with re-
sponsiveness the primary drives the protocol towards con-
sensus in a time that depends on actual message delay, re-
gardless of any upper bound on message delivery [17], [20].
A protocol is optimistically responsive if it achieves respon-
siveness when additional constrains are met. HotStuff [17] is
optimistically responsive in which the primary has to wait
for n — f responses to send next proposal. In Hermes during
period of synchrony, a correct primary will only wait for
l¢/2]| + 1 responses (lower than n — f responses) to propose
the next block that will make progress with high probability.
After a round of agreement these c nodes (also called impe-
tus committee) if agreed, will forward the proposed block
to all nodes in the network. In case of Hermes, conditions
for optimistic responsiveness include receipt of |¢/2] + 1
responses by the primary. For different values of ¢ chosen
in our experiments in Section 7 the probability of having at
least one prompt node among a subset of size c is approx-
imately 1 — 1072 (when the number of prompt nodes are
at least f + 1). This means that with high probability there
will be at least one prompt node in the impetus committee
that can forward the block to the regular nodes efficiently.
Therefore we call Hermes efficient optimistic responsive as
messages in Hermes propagate to nodes with the wire speed
comparable to the wire speed of prompt nodes.

Shortening Latency (in the first phase). BFT-based
protocols [5], [11], [22] generally operate in two phases
(excluding the Pre — prepare phase). In the first phase each

2

node receives 2 f + 1 responses before moving to the second
phase. The first phase has two objectives. First, it guarantees
that the request is unique. Hermes achieves this objective by
making it difficult and expensive to perform equivocation
through message exchange among a small subset of nodes
of size ¢ in the Pre — Proposal phase shown in Figure
1. Second, it guarantees that if a request is committed in
the second phase by at least one node just before a view
change, all other correct nodes will eventually commit this
request. This means for Hermes the second objective of the
first phase is only necessary when there is a view change.
To save n x n broadcast and processing latency (while
achieving second objective), we remove this phase from
the happy case mode and instead add a phase with ¢ x ¢
broadcast and an additional recovery phase to the view
change subprotocol in Hermes.

Scalability. Hermes is using the impetus committee to
maintain performance in the presence of a slack primary and
achieve efficient optimistic responsiveness. Therefore, the
same impetus committee can be leveraged to improve mes-
sage complexity as done in Proteus [13]. Thus, we extend a
single round of broadcast message where each node receives
n — f responses before committing a block into Proposal,
Confirm and Approval phases (as show in Figure 1). This
reduces the message complexity from O(n?) to O(cn).

The trade-off for improvements in Hermes is a relaxed
safety guarantee (R-safety) in the presence of equivocated
faults in which a Byzantine primary proposes multiple
blocks for the same height just before a view change. In-
formally, R-safety can be defined as a block will never be
revoked if it is committed by at least 2f + 1 nodes, out of
which at least f 4+ 1 are correct (honest) nodes. Whereas
in Strong safety (S-safety) a block will never be revoked
if it is committed by at least one correct node. Strong
safety will not hold in the presence of equivocated faults.
Moreover we also show that the equivocation faults will not
have any affect on clients. That means if a client receives
commit approval for a transaction from the network, then
that transaction will never be revoked. Therefore, the main
purpose of equivocation, which is double spending attacks,
is not possible. The only side affect of the equivocation faults
is the network recovery cost from failure. We also show
that due to the design of Hermes, equivocating faults are
expensive for a Byzantine primary and its acquaintances in
the impetus committee (the primary as well as the Byzantine
nodes in the impetus committee that have signed for two
different blocks at the same height will lose their stake in
the network and can be blacklisted). Therefore, a Byzantine
primary finds equivocation expensive and has no incentive
to perform it.

Paper Outline. The paper is organized as follows. In
Section 2 we give our system model and definitions. In
Section 3 we present the overview of the Hermes protocol.
Section 4 provides a detailed operation of Hermes protocol.
Proof of correctness for Hermes appears in Section 5 and in
Section 6 we describe Efficient Optimistic Responsiveness as
protocol optimization. Section 7 contains the experimental
analysis and in Section 8 we present related work. We
conclude our work in Section 9.

Request : Pre-Prepare : Pre-Proposal : Proposal : Confirm
1 1

Approval,
Pre-Prepare

| Response,

|
| Pre-Proposal |

\

Primary

Client : !
\‘I‘ |

|

l

1
1 1
1 I 1
1 1 | 1
Impetus : | 1 1 1 !
nodes | U ! | | 1
T I 1 T
1 1 1 1 1 1 1
1 1 1 1 1
| | | 1 | 1 |
I I I \\\ | / I \\\.'/ I
1 1 1 1 1
Regular ! ! BR\VY// ! ¥ !
nodes t t t ¥ t t)r t
I I I I I \‘I/ I
1 1 1 1 1
T T T T I T
Message 1 1 1 1 1 1 1
- 1 1 1 1 1 1 1
complexity o(1) ! o(c) ! o(c? ! o(cn) ! o(cn) ! o(cn) ! o(n) !

e —

—_——
Equivalent phases Pre-Prepare Prepare Commit

of PBFT

Fig. 1: Message pattern in each phase of normal mode in Hermes BFT

2 Definitions and Model

Hermes operates under the Byzantine fault model. Byzan-
tine faults include but are not limited to hardware failures,
software bugs, and other malicious behavior. Our protocol
can tolerate up to f Byzantine nodes where the total number
of nodes in the network is n such that n = 3f + 1. The nodes
that follow the protocol are referred to as correct nodes.
In this model there can be up to f number of slack nodes
(ns < f, where ng is total number of slack nodes).

Hermes is a permissioned blockchain. In a permissioned
blockchain, nodes in the network are known to each other
and have access to each other’s public keys. In permis-
sioned blockchains, nodes can join the network through
an access control list. In this model nodes are not able to
break encryption, signatures and collision-resistant hashes.
We assume that all messages exchanged among nodes are
signed. A message m’ signed by the node i is denoted
by (m’);, a message m’ with aggregated signature from
impetus committee quorum (of size |¢/2] + 1) is denoted
by (m'),,, a message m’ with aggregated signature from
regular node quorum (of size 2f + 1) is denoted by (m’),,
and a message m’ with aggregated signature from view
change quorum (of size f + 1) is denoted by (m’),, .

As a state machine replication service Hermes needs to
satisfy following properties.

Definition 1 (Relaxed Safety). A protocol is R-safe against all
Byzantine faults if the following statement holds: in the presence
of f Byzantine nodes, if 2f + 1 nodes or f + 1 correct (honest)
nodes commit a block at the sequence (blockchain height) s, then
no other block will ever be committed at the sequence s.

Definition 2 (Strong Safety). A protocol is S-safe if the follow-
ing statement holds: in the presence of f Byzantine nodes, if a
single correct node commits a block at the sequence (blockchain
height) s, then no other block will ever be committed at the
sequence s.

Definition 3 (Liveness). A protocol maintains liveness if it
guarantees progress in the presence of at most f Byzantine nodes.

It should be noted that liveness in Hermes protocol
is probabilistic. As discussed in Section 3.2, the largest
probability of total failure (for liveness) is 3.8 - 10722

considering different practical sizes of c and n that we have
used in Section 7.

To circumvent the FLP impossibility result [4], Hermes
assumes partial synchrony [23] model. In this model, there
is a fixed but unknown upper bound on message delay.
An epoch identifies a period of time during which a block
is generated. Each epoch can be associated with a specific
sequence of blocks or height of blockchain. Whenever a
node expects a message from the primary, it starts its timer
and stops it when a decision is reached on the message. In
case a node does not reach any decision after some period
(timeout period), it times out and multicasts its timeout
complaint to the root committee. This will either result
in a view change or the node will download the missing
message/block (if it did not receive the expected message).
The node then doubles its timeout value to make sure that
primaries get enough time to send their messages. This
doubling of timeout value is called exponential backoff in
the literature [5].

For ease of understanding first we describe and prove
correctness of the basic Hermes protocol in which the pri-
mary proposes the next block once the current proposed
block is committed. Then in Section 6 we discuss how Her-
mes can be optimized so that the primary can propose next
block once it collects at least [¢/2| + 1 responses from the
impetus committee (Efficient Optimistic Responsiveness).

3 Protocol Overview

In Hermes, the primary proposes a block to the impetus
committee of size c. The impetus committee is running
an agreement phase based algorithm (Algorithm 1). If
le/2| + 1 impetus committee nodes agree on the block
proposed by the primary and 2f + 1 regular nodes agree
on the proposed block (which they received from the
impetus committee), then the block is committed locally by
a node and will be added to the blockchain. During normal
execution of Hermes we use the same name for a message
and its respective phase.

Normal execution of the protocol is shown in Figure 1
and can be summarized as follows:

1) The primary proposes the block (which contains
transactions sent by clients) to the impetus commit-

tee (Pre-Prepare message).

2) Each impetus committee member verifies the block
and makes sure that there is only one block pro-
posed for the expected height (by collecting signa-
tures from at least |¢/2] 4+ 1 impetus committee
members through Pre-Proposal messages).

3) The block is then proposed using the Proposal
message which includes primary signature along
with |¢/2| + 1 aggregated signatures of impetus
committee members from Pre-Proposal messages.

4) Upon receipt of a block, regular nodes verify the
aggregated signature and the transactions within
the block.

5) If the block is found to be valid, each regular node
responds with the signed Con firm message.

6) Upon receipt of 2f + 1 Confirm messages from
regular nodes, each impetus committee member as
well as the primary commits the block. Each mem-
ber of the impetus committee broadcasts approval of
the majority nodes in the form of 2f + 1 aggregated
signatures from regular nodes in Approval message.

7) Upon receipt of approval, each regular node
commits the block, which is then added to the local
history.

8) After committing locally, each node sends a Reply
message to the client. The client considers its
transaction to be committed upon receipt of 2f + 1
Reply messages (at least f + 1 similar Reply
messages are from correct nodes).

9) Soon after committing a block the primary begins
the next epoch (messages are shown in blue) and
proposes a new block to the impetus committee
using Pre-Prepare message. The impetus
committee members begin the Pre-Proposal
phase and the protocol progresses through each of
its phases as described above.

3.1 Accountability

To discourage a malicious primary as well as impetus
committee nodes from equivocation, Hermes nodes will
have to provide a fixed amount of stake while joining the
network as done in Proof-of-Stake (PoS) protocols [19],
[24]. But this amount will be equal for every participant
in the network. Since every participant has equal stake,
the probability of being selected as the primary node or a
member of the impetus committee is the same for every
node. Alternatively, any node involved in equivocation can
be blacklisted in the network.

3.2 Selecting Impetus Committee Members

Consider a set of n nodes and let N' = {i| 1 <i <n} be
their unique node ids, which for simplicity are assumed to
be taken between 1 and n. Since all nodes are regular, N
also denotes the set of regular nodes. Suppose that out of
the n nodes at most f are faulty such that f < n/3; actually,
we will assume the worst case n = 3f + 1.

Let C C N denote the set of nodes in the impetus
committee, such that |C| = ¢, where ¢ < n is a pre-
determined number that specifies the size of the impetus
committee (from now on C and impetus committee will be
used interchangeably in the paper). The impetus committee

4

C is formed by randomly and uniformly picking a set of
¢ nodes out of n. In addition to the impetus committee
members, there is a primary node picked randomly and
uniformly out of the remaining n — ¢ nodes.

Since f < n/3, therefore on expectation, the impetus
committee will have less than ¢/3 faulty nodes. Hence, C
will likely have less than ¢/2 faulty nodes as well. Never-
theless, as the members of C are randomly picked, having
¢/2 or more faulty nodes in C are at long odds.

Moreover, the primary might be faulty as well. However,
a view change can address primary as well as impetus
committee failure. We carry on with analysis to precisely
determine the likelihood of different scenarios for picking
the members in C. In the formation of C the number of
possible ways to pick any specific set of ¢ nodes out of
n is (7). The probability to pick exactly a correct nodes

]
(c)

Therefore, the probability P; of having at least ¢/2 f;ulty
nodes (b > ¢/2) in C will be:

and b faulty nodes in C, such that a + b = ¢, is

L) o

Py =
b=lc/2] (e)

If C is unable to generate a block by the end of the
timeout period, then C is replaced by another randomly
chosen committee and a new primary through view change.
Keeping the failure probability P; constant, ¢ grows sublin-
early with n. Therefore, ¢ < n for large n.

View Change Probability due to Byzantine Behavior.
View change can be triggered either by the failure of impe-
tus committee C or failure of a primary. More specifically
the two cases that can ultimately result in a view change
are: (1) b > ¢/2, where b is the number of faulty nodes in C
(this comes with probability Py), or (ii) when b < ¢/2 and
the primary node is faulty. For the latter case ii, since we
choose the primary randomly from n — ¢ nodes if the total
number of faulty nodes is f < n/3, then the probability
of primary being faulty is at most (f — b)/(n — ¢) <
n/(3(n — ¢)); hence, the probability that case ii occurs is
less than n(1 — Py)/(3(n — ¢)). Therefore, the probability
P, of having view change due to case i or ii is bounded by
P, < n(l —Py)/(3(n —¢)) + Py. Since Py is approaching
0 and n > ¢, the upper bound of probability P, can be
approximated by 1/3 asymptotically to the limit of n.

Probability of at Least One Correct Node in C. For a
view change to be initiated, it requires at least one correct
node in C. In the worst case, all the nodes in C are faulty,
namely, b = c¢; this is the total failure scenario that does not
allow view changes. We observe that the probability of not
having any correct node in C for different values of n and ¢
in our experiments is at most 3.8 x 10722, Consequently, the
probability of avoiding total failure is extremely high. Since
the total failure probability decreases rapidly as c increases,
one can choose the value of c based on a target total failure
probability.

4 The Protocol

The protocol begins with a client ¢ sending its signed trans-
action (REQUEST, o,t,c). to the primary or broadcasting
it to all the nodes, where o is the operation requested by the

Algorithm 1: Algorithm for primary node

Algorithm 2: Node i € C

1 if There is 5 and 5.s == HighApproval.s + 1 then

2 if ¢ has the payload m for 5 then
3 | Generate block B from 8 with payload m
4 end
5 else
6 Request Proposal for 3 from C
7 upon Receipt of Proposal do
8 Generate block B from payload m in
Proposal
9 end
10 upon Receipt of 2 f + 1 negative response do
1 Generate block B and also attach 2f + 1
negative responses for 3
12 end
13 end
14 end
15 else
16 | Generate block B
17 end

18 Broadcast B to thesetC // Pre-Prepare

19 upon receipt of 2f 4+ 1 valid Con firm messages do
// Commit block and increment height

20 | ;(B,s) « true

21 s=s+1
22 Send Response to clients
23 end

client, ¢ is the timestamp (primary uses ¢ to order requests
from client c). If the primary proposes a block containing
a set of transactions, then clients send their transactions
only to the primary. The primary will collect the transac-
tion into a block and propose it to the network of nodes.
Once the block is committed, nodes send a response (more
information about the response message is provided in the
next subsection) to each client confirming the execution of
the respective transaction. If the client ¢ does not receive a
response within a specified time interval, it will broadcast
its request to all the nodes. Each node relays the transaction
to the primary and will expect the primary to propose
this transaction within some time. If the transaction is not
proposed, the primary will be considered faulty and a view
change will be triggered.

The primary in the protocol may choose to broadcast the
block of hashes of transactions (instead of transactions) to
save bandwidth or increase throughput as done in [25]. In
this case, the client has to broadcast the transaction to all
nodes. The primary will then propose a block containing
hashes of transactions. Since the hash size is often much
smaller than the transaction size, a block will carry more
hashes to increase the throughput. If the primary does not
propose a transaction after the specified time, other nodes
will relay the transaction to the primary similar to the
previous client-node interaction. This is done to prevent
faulty clients to trigger unnecessary view changes. Faulty
clients may not send the transaction to the primary or the
transaction might get delayed or lost. Therefore, other nodes
need to relay the transaction to the primary. In case the
primary still does not propose the transaction relayed to
it by other nodes, it will be considered faulty and will be

1 upon receipt of valid B do
2 ‘ Broadcast Pre-Proposal message to C
3 end
4 upon receipt of | ¢/2| + 1 valid Pre-Proposal
messages for B do
Build the Proposal

6 Broadcast the Proposal message to regular
nodes (except the primary)
Send {3 to the primary

s end

9 check always for receipt of a valid I'; from regular node

j or 'y, from primary then

10 | Execute Algorithm 3
11 end
12 check always for for I';, response then
13 | Forward the response to the primary
14 end
15 if not received B by block timeout then
16 Broadcast I'; to regular nodes
17 | Accept messages from regular nodes to
synchronize local history

a

~

18 end
19 upon receipt of 2 f + 1 valid Con firm messages do
20 | (B,s) « true

21 Broadcast Approval message
22 Send Response to clients
23 end

24 check always for Receipt of first ConfV' before
receiving Proof then

25 | Broadcast ConfV

26 end

27 check always for detecting proof of maliciousness: E
complaint or f + 1T complaints then

28 ‘ Broadcast proof

29 end

30 check always for Receipt of 2f+1 ConfV for the view
change then

31 Do not send Pre-Proposal/Confirm message

anymore for this view

32 Build ApproveV from 2f + 1 ConfV messages

33 Broadcast the ApproveV to regular nodes

34 end

replaced. More discussion of this case is given in Section 7.
The basic operation of our protocol, Hermes, is presented
in Algorithms 1, 2, and 4, which describe the normal execu-
tion between the impetus committee C and regular nodes.
Algorithm 3 is executed by synchronization subprotocol. If
normal execution fails, then our protocol switches to view
change mode executing Algorithms 5, 6 and 7 to recover
from failure. Note that the members of C and the primary
also run themselves the protocols for regular nodes in nor-
mal mode. The protocol evaluation is presented in Section 7.

4.1 Happy Case Execution

The currently designated primary node p proposes
a block by broadcasting a Pre-Prepare message to
C (Algorithm 1, line 18). A Pre-Prepare message
from primary p sends a newly created block B =
((“Pre-Prepare”,v,s, h,d,0'),,m) which contains the

Algorithm 3:
node e

input : T
1 if e € C then

Synchronization sub-protocol for

// 1f primary requests Proposal from
previous view

2 if I', then

3 if have Proposal for I, then

4 | Send Proposal to the Primary

5 end

6 else

// Send negative response

7 Send F' to primary

8 Forward I'), to regular nodes

9 end
10 end
1 ifI'; & j &C then

12 | Update node j by sending requested blocks
13 end
14 end
15 else
16 ifI'; & 7€ C then

17 ‘ Send missing blocks to committee member 7
18 end
19 if '), then

20 if have Proposal then

21 ‘ Send Proposal to C

22 end

23 else

24 | Send F to primary

25 end
26 end
27 end

view number v, block sequence number s, transaction list
m, its hash h, the previous blockhash d and optional field
o' which can be used by the primary to send the proof
2f 4+ 1 of negative responses (F') during first epoch of its
view (new primary in its first epoch might request the latest
Proposal from the previous view. If nodes do not have
the Proposal they will send negative response F’). More
details about this can be found in the subsection 4.3. Let
p = (“Pre-Prepare”, v, s, h,d),.

A node ¢ in C begins Pre-Proposal phase of the
algorithm after receipt of a Pre-Prepare message.
Then, node ¢ broadcasts a Pre-Proposal message
(“Pre-Proposal” v, s, h,i); if it finds the Pre-Prepare
message to be valid. The validity check of the
Pre-Prepare message includes checking the validity
of s, v, d, h and transactions inside m (Algorithm 2,
lines 1-3). If node i receives |c¢/2| + 1 Pre-Proposal
messages from other members of C for block B then
the node ¢ will successfully create a proposal block
((“Proposal” v, s, h,d),,., B). This proposal block can be
compressed into ({“Proposal”,p)s,.,m) and then node 4
will broadcast it to the regular committee members; o,
aggregates the signatures of the | ¢/2] +1 members of C that
contributed to the Proposal. Let § = (“Proposal”, p),.
since the primary already has the payload m (from block B
it already proposed), the impetus committee member 7 will

Algorithm 4: Regular node k

1 upon receipt of valid Proposal (valid (3 if k is also
primary) from C do
// Confirm proposal
n; (B, s) + true
Generate C'on firm message and broadcast it to C
Send Con firm message to primary
end
if timeout for a block or receipt of invalid block then
Broadcast I' || E' complaint to C
if sequence number of block is out of order then
Store the block locally and wait to fill the
history gap

O @ N S U e W N

10 end

11 end

12 upon receipt Approval message do
13 if k € C or k is primary then

14 ‘ ignore
15 end
16 else
17 foreach ordered block do
// Commit the block at height s
18 Vi (B, s) « true
19 end
20 Send Response to clients
21 end
22 end
// If a request for missing msg
received
23 check always for receipt of a valid T'; | Ty, from i € C
then
2 | Execute Algorithm 3
25 end

// Initiate view change actions
26 check always for Receipt of Proof || ConfV then
27 | Broadcast ConfV toC
28 end
29 check always for Receipt of a valid ApproveV for view
change then

// Transition to new view, based on
common random number generation
seed

30 Randomly select members of C from N
31 if k is not primary then

32 | Execute Algorithm 5 || Algorithm 6
33 else

34 | Execute Algorithm 7

35 end

36 end

only forward 3 to the primary instead of sending the whole
Proposal (Algorithm 2 lines 4 — 8).

Upon receipt of a Proposal message from C, the regular
nodes check if it is signed by at least |¢/2] + 1 members of
C. Regular nodes also verify the block by performing format
checks and verification of each transaction against their
history. If verification is successful, a regular node j sends
back a signed Confirm message (“Confirm”,v,s,h,j);
to C and the primary (Algorithm 4, lines 1-5). The confir-
mation of a block B at height s by a node j is denoted by

L4 @® Primary node
l T @ Correct (update)nodes
@ Malicious nodes
Impetus Yy ry
COH]JI]DiittCC (‘; : ... i) @ Node without receiving
< 27

message/block

1: Timeout 2: Timeout
complaint by complaint by
impetus nodes regular nodes

Regular nodes

Fig. 2: Time out complaint

@® Primary node
l T @ Correct (update)nodes

- — @ Malicious nodes
Impetus = ® ">

committee Y<~@

—_———

regular nodes impetus nodes

Regular nodes

1: Sync/update J [2: Sync/update

Fig. 4: Updating regular nodes

n; (B, s) < true.

Each member i of C aggregates 2f + 1 signatures o
for Confirm messages and then commits the block lo-
cally (¢;(B,s) is used to show commit of a block B by
a node 7 at the height s). The node i then broadcasts
Approval message (“Approval”,v, s, h), to regular nodes.
Each member i of C will also send the Response message
((Response, s,v,1,t,1);) to each client confirming the exe-
cution of the respective transaction (with the timestamp ¢
that the client submitted the transaction and its result r) that
it contributed to the block B (Algorithms 1, lines 19-23 and
Algorithm 2 lines 19 —23). Upon receipt of a valid Approval
message from C (for the current block in the sequence), the
regular member k also commits the block (¢ (B, s) < true)
as shown in Algorithm 4, lines 12-22. Each node k (after
committing the block) also sends a Response message as
shown in Algorithm 4 line 20.

4.2 Synchronization Sub-protocol

The impetus committee C might be faulty, when it has [¢/2]
or more faulty nodes (shown in red in Figures 2, 3, 4). In
such a case, the faulty members of C might attempt to not
update (< f regular nodes without triggering view change;
namely, not sending Proposal and other messages to the
¢ nodes. (In the upper bound of ¢, f may include at most
[c¢/2] — 1 failed members of C.) These ¢ nodes (shown in
green in Figure 2) may not be participating in the consensus
process as they have not received messages from members
of C (as majority of C have failed). Therefore, they will need
to sync their history (download messages) with other nodes.

Suppose that node j is a regular node that needs to be
synchronized (j € () (download missing blocks). Let ¢ be a
member of C such that ¢ has received a timeout complaint
I'; = (“Timeout”,v,s', 1/, s",h", 1, j,); mentioning that j
has not received blocks between the sequences s’ and s”
with respective hashes A’ and h”. The fields s, b’ s”, h”

® @ Primary node
l T @ Correct (update)nodes
_____ @ Malicious nodes
Tﬁpitﬁs (" 8-. .. ™) @ Node without receiving
comm ce ~ 00O _T =

message/block

1: Sync/update
impetus nodes

Regular nodes

Fig. 3: Updating C

and 7 are optional. The message type T shows the type of
message missing, e.g. a block or an aggregated view change
message Q (will be discussed along with other message
types in subsection 4.3). The view number v identifies the
primary. If the requested block has not been sent previously,
then the node 7 will forward missing messages for missing
blocks as shown in Figure 4.

If node 7 times-out without receiving a valid expected
message during the consensus process (as shown in the
Figure 2) it will broadcast a complaint I'; to regular
nodes. Consequently, a node 7 in C can recover a block by
receiving it from regular nodes (as shown in the Figure 3).
Thus, members of C and regular nodes synchronize their
history (download missing blocks from each other) while
keeping message complexity low (avoid quadratic message
complexity).

When a new primary is elected it has to make sure
that if a block is committed by at least a single correct
node then it should be committed by at least 2f + 1 nodes
before proposing new blocks. In this case, the success of the
primary is only guaranteed if equivocation is not performed
by the previous primary along with the impetus committee.
In the presence of equivocation by the primary as well
as the impetus committee the protocol will fall back to
R-safety. '), = (“Timeout”,v’, (), is a specific type of
timeout complaint by the new primary to request the latest
uncommitted Proposal (actually the payload m for /) from
previous view. v’ denotes the view of the current primary.
A negative response from 2f 4 1 nodes for I';, request will
prove that this Proposal has not been committed by any
node. If the primary receives a response for I',, it will re-
propose the block. Thus, this additional recovery step after
view change makes sure that safety is held after the view
change. More details about the I, will be discussed in the
subsection 4.3.

Algorithm 3 is about the synchronization subprotocol.
Lines 1-14 are executed if the node is a member of the
impetus committee. In lines 1-10 node e responds to the
I') request from primary node. After sending the negative
response to the primary, node e forwards I', to regular
nodes (Algorithm 3 line 8). In lines 11-13, the impetus
committee member e responds to the request of a regular
node j by sending the missing blocks to the node j. Lines
15-27 are executed if node e is not a member of the impetus
committee. In lines 16-18, node e responds to an impetus
member request/complaint I';. In lines 19-26, node ¢ re-
sponds to request I', from the primary node.

The primary node might be malicious which can cause
the impetus committee C to fail by not proposing a block.
Another possible cause of failure can be the presence of
majority of malicious nodes in C. As a result, impetus
committee nodes cannot collect at least |¢/2] + 1 signatures
for proposed block. In a rare case, it is also possible that
both the primary and the impetus committee C fail; in such
a case the primary can collude with the C to perform block
equivocation. The failure can be detected if f + 1 nodes
send timeout complaint or a single node sends a complaint
for equivocation by the primary and 2 f 4+ 1 nodes receive it.
Upon detecting failure, Hermes will switch to view change
mode to select new primary and impetus committee.

Algorithm 5: View change for regular node k£

1 Send local history V}, to new primary
2 upon receipt of a valid Q message from a new committee

member ¢ do
3 Extract the most recent valid history from Q
4 if local history is not same as most recent history in
Q then
5 ‘ Synchronize local history according to Q
6 end
7 Broadcast READY message () to new primary
8 end
9 check always for receipt of P from i € C then
10 if P has at least 2 f + 1 distinct READY messages
then
11 ‘ return to Algorithm 4
12 end
13 end

14 check always for I'; where i € C then
15 | Execute Algorithm 3
16 end

4.3 View Change

The view change subprotocol in Hermes is different from
conventional BFIT-based protocols as it has an additional
recovery phase to make sure if a block is committed by
a single correct node just before view change, then it will
be committed eventually by all other correct nodes (In the
absence of equivocation). A view change can be triggered
if there is sufficient proof of maliciousness of the primary
or the impetus committee. The two types of complaint by a
node 7 that can form a proof against the Byzantine primary
are the I complaints (as discussed in subsection 4.2) as well
as E = (“Explicit-complaint” | v,€,i); complaint, where
€ determines the reason for the complaint which can be
either an invalid block Proposal or multiple Proposals by
the primary and/or C with the same sequence number. A
Proof is simply formed by f + 1 valid I' complaints or a
single valid £ complaint. A single valid Proof is required
to trigger a view change.

During each epoch, a regular node waits to receive
a proposed block from C. If a regular node ¢ does not
receive the block after a timeout then it considers that C
has failed and reports this to C (Algorithm 4, lines 6-7).
If f + 1 nodes report a timeout, then there is at least one
correct C member j that will broadcast the aggregated f + 1

Algorithm 6: View change for node i € C

1 if ¢ € C then
2 | check always for (Q || P) from primary then
3 Forward (Q || P) to regular nodes
4 if P has at least 2f + 1 distinct READY
messages then
| return to Algorithm 2
end
end
end
check always for I'; where j ¢ C then
10 ‘ Execute Algorithm 3
11 end

© ® 9 o un

Algorithm 7: View change for new primary

1 upon receipt of V; from node i do

Q< QUYV;

if Q contains at least 2 f + 1 histories then
| Broadcast Q to C

end

end

Extract the most recent valid history

if local history is different from most recent history then

Synchronize local history V; according to the Q
from regular nodes

O W NS Ul e W N

10 end

11 check always for receipt of R; then

12 P+ PU Rz

13 if P has accumulated at least 2 f + 1 distinct

READY messages then

14 | Broadcast P to members of C

15 end

16 end

17 check always for history update request from reqular

node i then

18 if node j has the latest history/block and has not

already sent it to i then

19 Send the blocks up to the latest block to
regular node ¢

20 end

21 end

22 Return to Algorithm 1

timeout complaints (I') to all regular nodes (as Proof in
Algorithm 2, lines 27-29). Upon receipt of f + 1 I' com-
plaints the regular nodes send back a confirm view change
((“ConfV”, (v,j);, (Proof)s,)) message to C, where o, is
the aggregated signature from at least f + 1 complaints
from I' messages (Algorithm 4, line 26-28). If complaint
is of type E then the confirm view will be of the form
((“ConfV?” (v, j);, (Proof);)), where the node i will be the
node that has complained. If an impetus committee member
receives a Con fV message and was not aware of the Proof
(therefore did not broadcast it to the regular nodes), it will
also broadcast the C'on fV to the regular nodes (Algorithm
2 line 24-25). This step is added to prevent a Byzantine
member in C from triggering the view change in a subset
of regular nodes by sending the Proof messages to a few
regular nodes.

Once a member 7 in C receives 2f + 1 Con fV messages,
then i triggers a view change by broadcasting message
((“ApproveV” (v)s, (Proof)s,, (i)i,)) to all regular nodes
(Algorithm 2, lines 30-34), where (v), is the aggregate
signature for 2f + 1 (v,j); from ConfV messages sent
by a regular node j. Upon receipt of the ApproveV mes-
sage each regular node will begin the view change process
(Algorithm 4, lines 29-36). In the view change, members of
the new impetus committee C along with a new primary is
selected by each node using a pre-specified common seed
for pseudo-random number generation [26], which guaran-
tees that every node selects the identical C and primary. In
pseudo-random generator algorithms, a random result can
be reproduced using the same seed. It is very important to
make sure the seed for a random generator is not biased.
In other words, malicious nodes cannot affect the process
of key generation. If Byzantine nodes can influence the
seed generation process, then they can control the pseudo-
random generator. For example, if the hash of the latest
committed block is used as the seed for the next primary
and committee selection, a Byzantine primary will build a
block in such a way that the next primary will also be a
Byzantine primary along with the impetus committee with
a majority of Byzantine nodes. In such a case, liveness
cannot be guaranteed and Byzantine primaries can censor
transactions.

Seed for the Pseudo-random Generation: There has
been research on how multiple parties can agree on single
or multiple random bits, using coin-flipping [27], [28], [29],
[30], [31], to generate an unbiased, random, and unpre-
dictable seed for a pseudo-random generator. More recently,
random-beacons, which make use of (¢, n)-threshold signa-
ture schemes and are closely related to coin tossing have
been used as a source of randomness in consensus protocols
[32], [33]. In a (¢, n)-threshold signature scheme n parties
jointly generate a public key also called the group public
key. Moreover, each party holds an individual secret key
share. It takes ¢ out of m parties to generate the group
signature that can be verified using the group public key.
Each node in the threshold-based random-beacon signs a
common string and broadcasts its signature share. Upon
receiving at least ¢ distinct threshold signature shares for
the common string, each node builds a threshold signa-
ture. The threshold signature is verifiable against the group
public key. The hash of the threshold signature is used as
the seed for the pseudo-random generator. These methods
satisfy liveness, bias-resistance, public verifiability, and un-
predictability. In Hermes, we use the view number v as
the seed for the pseudo-random generator. Since the view
number increments during view change (and nodes agree
on the view number), therefore it is alive and bias-resistance.
The view number used as a seed in a pseudo-random
generator also satisfies public verifiability. Therefore users
can choose among different options for acquiring seeds
for pseudo-random generation, based on their requirements
and assumptions (i.e, if unpredictability is required or not).

The New Primary: After randomly choosing the new
primary as well as the new impetus committee C, each node
sends a ViewChange message Vi, = ((“ViewChange”,v +
1,8 h,h* k), 0,B) to the new primary (Algorithm 5 line
1). The ViewChange message has information about the

9

latest block in the local history of the node k (Approve mes-
sage can be built from V}). It includes the latest committed
block sequence number s’, block hash h, block hash h* in
B, incremented view number v + 1, and signature evidence
of at least 2f + 1 (o) nodes that have confirmed the block
(through Con firm message). The 3 part of this message
includes the latest Proposal (that node k has voted for
during the C'on firm phase) and its respective Pre-Prepare
message from the last primary (without its payload m)
which was received by the node k from C (through a block
Proposal message). The inclusion of 3 in the view change
message is used to recover the block (transactions) if less
than f + 1 correct nodes have committed the block. We will
discuss more about this at the end of the current section. The
information in V}, is used to determine whether nodes have
different local histories, which in turn can allow them to
synchronize their histories by getting the possible missing
blocks from the new members of C. Upon receipt of V
from node k, the new primary extracts the parts h (hash
of the latest committed block), s’, and k and also checks the
validity of o and 3. Out of the 2f + 1 nodes that contribute
to o, it is guaranteed that at least f 4 1 are correct nodes and
at least one out of these f + 1 correct nodes has the latest
block (committed by at least f + 1 nodes). Once the new
primary receives 2f + 1 V}, messages, it aggregates them
into Q, which it broadcasts to members of C (Algorithm 7,
lines 1-6) and then C will broadcast the message Q to all
nodes (Algorithm 6). Upon receipt of Q, node k makes sure
that its history matches the history in Q (agreed upon by at
least f + 1 nodes) and if it does, node k sends back a Ready
message R = (“Ready”,v+1, ', h, k)i to the new primary
(Algorithm 5, lines 2-8). The primary will aggregate 2f + 1
Ready responses into a single P message and broadcast it to
C (Algorithm 7, lines 11-16) which will be forwarded to all
the nodes (Algorithm 6). Upon receipt of P, node k is now
ready to take part in new view (Algorithm 5, lines 9-13). If
node k’s history does not match that of Q it will synchronize
its history (Algorithm 5, lines 4-6).

Recovery During View Change. Recall that we add a
recovery phase to the view change in order to significantly
reduce the latency. During this recovery phase, the Her-
mes protocol makes sure that if there is any block that
has been committed by up to f correct nodes, it will be
committed by all correct nodes eventually (S-safety). As
stated, S-safety may not hold and the protocol may fall
back to R-safety, in case of equivocation by the primary and
impetus committee. But we will also show in subsection
5.2, that once f — 1 Byzantine nodes are blacklisted, then
the protocol will always exhibit S-safety. If there is § in
Vi € Q such that the sequence s of 3 is equal to the
sequence of the highest Approval message ' 2, plus one
(B.s == HighApproval.s + 1) , then the new primary has
to propose the respective block B for the 3. This means there
may be a block at the sequence 3.s that has been committed
by at most f nodes. Therefore, this block (3’s block) needs
to be recovered.

1. As stated, Approval message can be built from each V}, in Q.
2. HighApproval = argmax { Approval.s|Approval € Q}. In other
Approval
words, HighApproval is an Approval message with highest sequence

in Q.

If the new primary has already received the Proposal
or the block B for 3 it will re-propose it in the first epoch
of its view. On the other hand, if the new primary does not
have the complete Proposal (including its payload m) for 3
it will request it from C using a I',, complaint. If an impetus
committee member e has the Proposal (payload m) it will
send it back to the primary. If not, it will forward the I',
complaint to the regular nodes as well as sending a negative
response F' = (f3, false). to the primary (Algorithm 3,
lines 1-10). Regular nodes will also send back the Proposal
message for [if they have it to the impetus committee
(which will forward it to the primary) or a negative response
F' to the primary. If the primary receives back the Proposal
it will re-propose the block. Else the primary will have to
propose another block with 2 f 41 aggregated signatures for
negative response F' being attached to it. By attaching 2f +1
aggregated signatures for negative response F to the block
the primary proves that Proposal for § was not committed
by any correct node (Algorithm 1, lines 1-14). Therefore, if
thereisa in Vj, € Q during the recent view change, then in
the first epoch after the view change the new primary either
has to propose the relative block for /5 or include 2f + 1
negative responses in the first block B that it proposes in
the new view. If the primary fails to do so, a view change
will occur (through E complaint).

View Change Complexity. The actual performance of
view change mainly depends on the timeout values and
the mechanisms for primary selection [17]. Since view-
change messages are generally way smaller in size than the
blocks, the message complexity during view change does
not have significant effect on performance. For example, the
quadratic message size of @) is about ~ 2% of the block
size. On the other hand, the number of signatures processed
by the nodes in critical-path during view change also has
significant effect on performance. In Hermes (like other clas-
sic BFT variants), the number of signatures (authenticators)
processed by a node during view change is O(n?). On the
other hand, the authenticator verification complexity can
be improved to O(n) by using the technique introduced in
Fast-HotStuff [34].

At least 2f 4+ 1 ViewChange messages Vi =
((“ViewChange’,v + 1,8, h, h*, k)i, 0, 5) are aggregated
by the primary into Q and sent to nodes. Each view change
message has an aggregated signature o from 2f + 1 nodes,
resulting in quadratic signature verification. But as stated, a
verifying node only needs to verify two aggregated signa-
tures (i.e., an aggregated signature of Q and an aggregated
signature of the view change message with the highest view
number). The verification of an aggregated signature for Q
shows that 2f 4 1 nodes have sent their ViewChange mes-
sages, and the verification of ViewChange with the highest
view verifies the validity of the latest committed block in
Q. Byzantine nodes cannot forge the latest committed block
because it requires 2 f 4+ 1 signatures including at least f + 1
signatures from honest nodes. If there is a block B that has
been committed (by at most f honest nodes) but its proof
of commitment is not included in @, then there will be at
least one view change message V' that contains 3 for that
block B. Block B will be recovered in the recovery phase
as previously described (more details in Lemma 5). There
is a possibility that some nodes send invalid ViewChange

10

messages. Those nodes can be blacklisted if they have prop-
erly signed the ViewChange message. Below we describe
a blacklisting mechanism for this equivocation fault. It can
be generalized and used for any other Byzantine behavior
where there is sufficient proof against malicious nodes.

4.4 Blacklisting Nodes that Perform Equivocation

As mentioned in subsection 4.3, a single explicit complaint
by a node i (E = (“Explicit-complaint”, v, €, i);) against
the primary is enough to trigger a view change. This type
of complaint made by only one node can prove that the
primary is Byzantine. As stated previously, ¢ determines
the reason for the complaint. ¢ can be a data structure
with several fields and each field can be represented by
another data structure specifying the proof for the complaint
(i.e., equivocation, invalid block, etc.). Indeed, it is a design
choice to decide which proofs can have their fields included
in € in addition to the equivocation. Currently, € has a field
Eq = (hs,v, Ss) for equivocation, where hs is a slice/array
of equivocated block headers p (also containing primary
signatures for each header) and Ss is the slice/array for
aggregated signatures o, of the impetus committee. The
signatures in hs and S's are proof that the primary and at
least one member of the impetus committee have signed
equivocating blocks. If a node i detects equivocation, it
sends an E complaint to the impetus committee which
will eventually result in a view change as described in
Subsection 4.3. Therefore, if any view change occurs due to
the I/ complaint (no timeout), it proves without any doubt
that the primary is malicious. As a result, the primary that
has been changed due to the E complaint will be blacklisted
by all honest nodes as described below.

After a view change due to equivocation (E complaint),
each node expects the primary to propose a transaction to
blacklist the previous primary (and other collaborators from
the root committee) that performed equivocation. If the new
primary is honest and has received the E complaint message
during the view change process, then it will propose a
block that includes a transaction (transaction also includes
the proof €) to blacklist the Byzantine nodes that were
involved in equivocation. If the primary does not propose
the transaction to blacklist the perpetrators of equivocation
by the timeout period, then honest nodes forward the proof
of equivocation € to the primary and wait again for the
proposal of the blacklisting transaction. If by the timeout
an honest node does not receive a block containing a black-
listing transaction from the primary, it sends a timeout I
complaint to the impetus committee. Since after a view
change at least f+1 honest nodes are aware of ¢, complaints
from f + 1 honest nodes will trigger a view change. After a
view change, honest nodes wait again to receive blacklisting
transactions from the primary, and this process repeats until
the primary proposes blacklisting transactions in a block.
Moreover, if a node is aware of the proof of equivocation
€ against a node ¢ and the node 7 has not been blacklisted
yet but is randomly selected as the primary, then the honest
node can send an F complaint to the impetus committee in
order to trigger a view change.

There is also a possibility that a Byzantine primary of
view v has been replaced through a I' (timeout) complaint
and later on a node j receives two equivocating block

proposals (due to network asynchrony). In this case, even
though primary v is not a primary anymore, it should still be
blacklisted. Therefore, node j will forward the E complaint
with proof of equivocation € to the impetus committee C.
The € will be ignored if the primary has already been
blacklisted. Otherwise, the impetus committee broadcasts
the € to all the nodes including the primary. The primary
in charge receives ¢ and will then include the proofs in a
transaction and add this transaction in the block proposal.
The primary then proposes the block containing blacklisting
transaction in addition to the normal transactions. Once
the block is committed, the Byzantine nodes involved in
equivocation will be blacklisted.

If this transaction regarding blacklisting a Byzantine
primary is not proposed by the primary within some spe-
cific interval, then the honest nodes will issue timeout
complaints, which will result in a view change. This will
continue unless the Byzantine primary and its collaborators
are blacklisted as discussed previously.

5 Analysis and Formal Proofs

In this section we provide proofs for R-safety, S-safety and
liveness properties for Hermes.

5.1 Safety

Hermes has relaxed the agreement (safety) condition in the
presence of equivocation faults. In the presence of equivoca-
tion in Hermes, a block is committed if at least f + 1 correct
nodes commit the block (R-safety). If 2 f + 1 nodes commit
a block it is guaranteed that at least f + 1 of these nodes are
correct. Due to this relaxation in the agreement condition
the client also needs to wait for at least 2f + 1 Response
messages for its transaction to consider it committed (to
make sure at least f + 1 correct nodes have committed the
block).

For simplicity we use H as the set of all correct nodes
such that # C N and |H| > 2f + 1 in the proof of
correctness.

Lemma 1. Hermes is R-safe during normal mode.

Proof. Consider two different blocks B and B’ with
respective heights s and s’ where each block has been
committed by at least 2f + 1 nodes. It suffices to show that
s # §'. Suppose, for the sake of contradiction, that during
happy case execution (normal mode) both B and B’ are
committed at the same height (s = s’). Let £; C N be the
set of nodes that commit B such that [K;| > 2f + 1 and
for each i € Ky, ¢;(B, s) < true (all members of K; have
committed B at height s). Similarly, let Ko C N be the
set of nodes that commit B’ such that |[K2| > 2f + 1 and
for each i € Ky, (B, s") + true. Since n > 3f + 1 and
f < n/3, we get for K1 N Ky = K that || > f + 1. Hence,
K NH # (. Therefore, there is an ¢ € K N H such that
;i (B, 8) + true and ¢;(B’, s’) « true (thatis, ¢ committed
both blocks). However, since i € H, 7 can only commit one
block at any specific sequence, and hence, it is impossible
that ¢ executed both 1;(B, s) + true and ¥;(B’,s") + true
with s = s’ and B # B’. Therefore, s # s’, as needed. O

Lemma 2. Hermes is R-safe during view change.

11

Proof. Consider the latest block B’ at height s’ that was com-
mitted by at least 2f + 1 nodes before the view change. We
will show that B’ will be included in the blockchain history
after the view change. Let H. C H be the set of honest
nodes that have committed B’ (that is, ¢;(B’,s’) + true
for each i € H.). Since the number of Byzantine nodes is f,
we get that |[H.| > f + 1. Atleast a node i € H. must have
reported a view change message V; to the primary, such that
V; is aware of B’ and s'. Since the primary node collects
2f+1 view change messages into Q, we get that Q contains
at least f + 1 view change messages from the nodes in
where at least one node is in H. too. Hence, when a node j
receives Q from the new primary, j will know that B’ has
been committed, a guarantee that B’ is valid. Thus, block
B’ will be inserted into the local history of every node that
receives Q, and becomes part of the blockchain history. O

Therefore, we get the following theorem:

Theorem 3. Under normal operation and a view change, Hermes
provides relaxed safety quarantees (Hermes is R-safe).

Proof. From Lemmas 1 and 2 we see that Hermes provides
relaxed safety guarantees (Hermes is R-safe) during normal
mode as well as view change mode. O

Lemma 4. Hermes is S-safe during normal mode.

Proof. We will prove this lemma by contradiction. Let us
assume that during normal mode at least one correct node
(say, node 7) commits a block B at height s then we have
¥;(B, s) < true. This means there exists a set K; C N such
that |[KC1| > 2f + 1 and for each i € Ky, (n;(B, s) < true)
(all members of K1 have confirmed B at height s). We also
assume that there is another node j that has committed a
block B’ at height s’ such that s’ = s (;(B’, ') < true).
Therefore, there is another set Ko C A such that [Ka| >
2f + 1 and for each i € Ky, (1;(B’,s") < true). Based on
n > 3f+1and f < n/3, we get K1 N Ky = K such that
IK] > f+ 1. Hence, K N'H # . Therefore, there is an ¢ €
K NH such that 1;(B, s) < true and n;(B’, s') <+ true (that
is, ¢ confirmed both blocks). However, since ¢ € H, i can
only confirm one block at any specific level (height) during
normal mode, and hence, it is impossible that ¢ confirmed
both 7;(B, s) < true and n;(B’, s') + true with s = s’ and
B # B'. Therefore, s # s’ O

Lemma 5. Hermes is S-safe during view change if there is no
equivocation fault.

Proof. Let us assume that a single node 7 has committed a
block B at the height s (1;(B,s) < true) just before the
view change occurs. That means there is a set Xy C N such
that |IC;| > 2f + 1 and for each i € Ky, (;(B, s) + true).
Therefore during view change there is another set o C N
such that |[KC3] > 2f + 1 and for each i € Ky, V; € Q.
As n > 3f + 1, therefore we have K1 N Ky = K such that
IK| > f+1.Thus, CNH # (. Therefore, thereisani € KNH
such that 7;(B, s) < true and V; € Q. Since V; contains
for block B, therefore the new primary has to re-propose
block B in the first epoch of the new view in the height s as
show in Algorithm 1 lines 1-18. O

5.2 The Equivocation Case

If the previous primary is malicious it can propose mul-
tiple blocks at the same height/sequence (just before the
view change). Suppose the malicious primary proposes two
blocks B’ and B” before the view change such that one
of these blocks (say, block B’) is committed by at most £
number of nodes where ¢ < f. In such a case it is not
guaranteed that a block committed by £ nodes can remain in
the chain after the view change. Therefore, S-safety cannot
be guaranteed. In this case, the protocol guarantees R-safety
as long as f — 1 Byzantine nodes are not blacklisted.

If 2f 4+ 1 view change messages received by the new
primary (correct) include a view change message Vi by
the node k that contain the commit certificate (Approve
message with 2f + 1 signatures) for the block B’ then it
is guaranteed that the block B’ will be re-proposed in the
next epoch for the same height (not be revoked). But if
the new primary collects the view change messages from
another 2f + 1 nodes (not the f nodes that committed
the block) then the new primary might either propose B’
or B” (randomly) in the next epoch. Therefore it is not
guaranteed that the block B’ that has been committed by
at most f nodes (at the height h) will be re-proposed at the
same height. This can happen because of the fact that out
of these 2f + 1 nodes included in the Q prepared by the
new primary at most f nodes can be Byzantine whereas at
most another f might have received the block B”. At least
one node can have the block B’. Therefore the new primary
may receive two valid 8 messages, 8’ (for block B’) and 3"
(for block B") from the nodes in the view change message
(such that (8'.s == B”.s == HighApproval.s + 1)). The
primary can re-propose any one of these blocks (B’ or B”
for example) in the first epoch of the new view (if found to
be valid). If block B’ is proposed then it is fine as this block
is committed by at most f nodes. But if B” is proposed
then the nodes that have committed the block B’ will have
to revoke the block B’ and perform agreement on the block
B"" at the same height/sequence. Block B’ can be proposed
in the next epoch if there is no common transaction between
block B” and B”. If there is at least one common transaction
among the blocks B’ and B” or some transactions in
the block B’ are invalid the primary can extract valid
transactions from the block B’ and propose them in another
block. It should be noted that in such case the malicious
primary and its culprits in the C can be punished by
blacklisting and their stake in the network can be slashed.

Lemma 6. After blacklisting f —1 Byzantine nodes, Hermes will
Quarantee S-safety.

Proof. First, note that equivocation may break S-safety and
cause the protocol to fall back to R-safety if there is a single
Byzantine node in C in the presence of a Byzantine primary.
In such a case, a Byzantine primary may propose two
blocks for the same height, and at least one Byzantine node
will vote for both of them. Since this equivocation can be
detected, the primary and the node that has voted twice for
two different blocks at the same height will be blacklisted.
Thus, each time an equivocation breaks S-safety, at least two
Byzantine nodes are blacklisted. There is also a possibility
that a Byzantine primary equivocates but no node from the

12

impetus committee collaborates in the equivocation. In that
case, S-safety does not break. But the primary will be black-
listed. Hence, each time equivocation takes place, it will
result in the blacklisting of perpetrator/s. Once f — 1, nodes
are blacklisted, then S-safety cannot be broken as there is
no additional Byzantine node in the impetus committee to
vote/sign for more than one proposed block at the same
sequence. Hence, S-safety will be guaranteed. O

By proposing two equivocating blocks, at worst case
there is a 50% chance that the S-safety might break (Assum-
ing one of the two proposed blocks has been committed by
at most f honest nodes) when the next primary is honest,
as the next primary will randomly choose to re-propose
one of the two blocks first (as discussed in subsection 5.2).
There is also possibility that the primary does not receive
any valid 3 for the equivocated block that has not been
committed by any node, in that case S-safety will not break.
It is guaranteed that the primary and its collaborator/s in
the impetus committee will be blacklisted. To improve the
probability of S-safety failure, a Byzantine primary and its
collaborators in the impetus committee may try to propose
more than two equivocating blocks. But in that case, more
Byzantine nodes from the impetus committee have to
collaborate. Hence, the number of Byzantine nodes to be
blacklisted also increases (up to a maximum of [¢/2] + 2 in
a single epoch). Once the number of Byzantine nodes gets
l¢/2] 4+ 1 in the impetus committee, then the Byzantine
primary can propose more than |c¢/2| + 1 equivocated
blocks for the same sequence. In that case, [¢/2] + 1
Byzantine nodes from the impetus committee along with
the primary will be blacklisted. But the probability of such
an event is low. As a result, the Hermes design discourages
Byzantine nodes from performing equivocation.

Similarly, blacklisted nodes will lose their stake in the
network (if nodes have a stake in the network). Therefore, it
is expensive for a Byzantine nodes to perform equivocation.
Moreover, there is not enough incentive for a Byzantine
nodes to perform equivocation as it will only cause pro-
cessing delay in the network to recover from faults without
affecting the client (without causing double spending).

As mentioned in subsection 5.2, in case of equivocation
if less than 2f + 1 nodes (out of which at least f + 1
are honest) have committed a block then this block might
get revoked. But it should also be noted that unlike other
forking protocols (Bitcoin, Ethereum, etc.) where a client has
to wait for the confirmation time to make sure the block it
has accepted will not be revoked, the revoking of block b has
no affect on the client because a client will only consider a
transaction in a specific block to be committed if and only if
at least 2 f +1 nodes in the network commit that block. Thus,
if a client considers a transaction to be committed then it has
been committed by 2f + 1 nodes and it will not be revoked
(as shown in Lemma 2). Therefore a Byzantine primary has
no strong incentive to perform equivocation as a revoked
transaction is not considered committed by the client.

5.3 Liveness

Hermes uses different means to provide liveness while
keeping message complexity low (at O(cn) messages). As
the main communication among the nodes occur through

the C, it is important that there must be at least one correct
node in the C to guarantee liveness.

Another case that could potentially prevent liveness is
when repeatedly selecting a bad C or malicious primary
after a view change, which in turn triggers another view
change, and this perpetuates without termination. However,
as we show next, this extreme scenario may only occur with
extremely low probability that quickly approaches 0. If the
primary is malicious or the number of malicious nodes in
the impetus committee C is at least |¢/2] + 1, then based
on Algorithm 2 (lines 30-34), and Algorithm 4 (lines 29-36),
a view change may occur. The probability P, of such a bad
event causing a view change is approximately a constant
1/3 (Section 3). Treating each such bad event as a Bernoulli
trial, we have that the bad events trigger consecutively x
view changes with probability at most P}, which quickly
approaches 0 with exponential rate as x increases linearly.
Therefore, the probability of this scenario is negligible and
does not affect liveness.

Additionally, a view change in Hermes also employ
three techniques applied by the PBFT [5]. These techniques
include: (1) exponential backoff timer for view change; (2)
at least f + 1 complaints will cause a view change. These
f + 1 complaints may be against the current view or higher
views than the current view of a node. But the node will
move with the changing the view of the smallest view of
f + 1 complaints. This technique has been customized in
Hermes with additional phases as described in 4.3. The first
phase that has been added to Hermes include broadcasting
ConfV messages to regular nodes by impetus committee.
The second phase include aggregation of at least 2f + 1
ConfV messages by the members of C into ApproveV mes-
sage and broadcasting it to regular nodes. These additional
steps are added to make sure that at least 2f + 1 nodes
are aware of view change. And (3) faulty nodes (f < n/3)
cannot trigger a view change.

It should be noted that even during a view change the
performance of Hermes will not be affected by the slack
primary. This is because the primary will send its message
to the impetus committee and the impetus committee will
forward the primary’s message to regular nodes. Therefore
view change messages from the primary will propagate
proportional to the wire speed of prompt nodes.

6 Efficient Optimistic Responsiveness

Pipelining is an optimization technique that involves
sending requests/messages back to back without waiting
for their confirmation. This technique has been previously
used in networking [35] as well as in consensus [17], [36]
to improve performance. Therefore, as an optimization,
the primary can propose a new block B’ with sequence s
after the Pre — Proposal phase for block B with sequence
s — 1 without waiting for the block B to get committed.
The primary can wait only for majority of votes from the
impetus committee to propose a new block. This technique
decreases the wait time for the primary to propose the next
block while making sure that with high probability the
protocol will make progress.

In pipelined Hermes, we need to replace S with Ag,
where Ag is an array of 8 in ViewChange message V. As
in basic Hermes the primary proposes the next block after

13

it commits its parent block, therefore, there will be only one
valid pending block in the network with . But in case of
pipelined Hermes, since the primary proposes a block after
the Pre — Proposal phase of its parent, by the end of a
timeout a node might receive multiple uncommitted blocks.
Therefore, the information about latest uncommitted blocks
has to be included in Ag during the view change.

For state machine replication (SMR) in blockchains
sending Pre — proposal message, C'on firm message and
committing a block during Approval phase has to be done
in order (serially) for each block. This means a node ¢ will
not confirm block B at the sequence s (1;(B,s) < true)
before block B” with the sequence s’ such that s > s’. Out
of order messages can be cached and other operations,
including signature verification and format checking, can
be done concurrently. We leave more details on this to
programmers who will be implementing this protocol.

7 Evaluations

We have implemented a prototype of optimized Hermes as
well as chained HotStuff [17] (pipelined) using the Golang
programming language. We chose pipelined HotStuff as it is
a state-of-the-art consensus protocol. A variant of HotStuff
called Libra-BFT [37] is also used by Facebook. We imple-
mented HotStuff to have a similar code architecture with
Hermes so that we can fairly compare both algorithms.

Experiments were conducted in the Amazon Web Ser-
vices (AWS) cloud. Each node in the network was repre-
sented by an instance of type t2.large in AWS. Each t2.large
instance has 2 virtual CPU (cores) and 8GB of memory. We
recorded performance of Hermes as well as Hotsuff with
network sizes of 40, 70, 100, 130, 160 and 190 nodes. The
impetus committee size c for each network size n are 18, 27,
30, 33, 34 and 36 respectively. We adjusted values of n and ¢
so that we can obtain the maximum total failure probability
< 3.8x10722 using Equation (1), when b = ¢ or all members
of committee c is Byzantine. As mentioned previously, ¢
grows sublinearly with n. For instance, as n grows from
40 to 190, ¢ grows from 18 to 36 with the maximum failure
probability less than 3.8 x 10722, Therefore, it still won't
throttle the primary bandwidth for relatively large n.

Randomly generated transactions were used during ex-
periments to transfer funds among different accounts. Trans-
actions were included in a block (batch). We used different
block sizes of 1MB and 2MB.

During our first evaluation all nodes had similar upload
and download bandwidth of 1Gbps (128MBps). During our
tests as shown in Figure 5 HotStuff performs better with
small network size (40 and 70). This is due to the reason
that when n is small, ¢ (¢ < n) has to be larger to maintain
a safe failure probability. Therefore, as the network size
n grows larger the growth of ¢ remains sub linear to the
growth n while keeping safe failure probability. As a result,
with larger n Hermes performs better and its performance
is comparable to the performance of HotStuff. Whereas, in
terms of latency as shown in Figure 6, Hermes outperforms
HotStuff. Hermes has lower latency than HotStuff and vari-
ation in the latency of Hermes and HotStuff with different
block sizes of 1M B and 2M B grow larger when n > 70.

Next we introduced slack primaries and then compared
the performance of Hermes and HotStuff as shown in Figure

Throughput vs Network Size

25000

e—o HotStuff-1MB
+— Hermes-1MB
+— HotStuff-2MB
»— Hermes-2MB

S

80 100

20000

15000

10000

Throughput in tx/sec

5000

0
8
9
g

120 140 160 180 200
Network Size

Fig. 5: Throughput with different network sizes when all
nodes have higher bandwidth

12000 Throughput vs Network Size

o—o HotStuff-1MB
4— Hermes-1MB
+— HotStuff-2MB
»—+ Hermes-2MB

10000

8000

6000

Throughput in tx/sec

2000

2000

Fig. 7: Throughput when a slack primary is introduced

Throughput vs Network Size

70000

e— HotStuff-1MB
4 Hermes-1MB
+— HotStuff-2MB
~—+ Hermes-2MB

60000

50000 ~—¢ HotStuff-1MB-W
—+ Hermes-1MB-W
—¢ HotStuff-2MB-W
—+ Hermes-2MB-W

40000

30000

Throughput in tx/sec

20000

10000/~ : —

o
a 60 80 100 20 140 160 180 200

Fig. 9: Throughput with a slack primary and hash block

7 and Figure 8.We configured the upload speed of slack
primary to 246Mbps (roughly equivalent to 30MBps). Tests
were rerun with block sizes of 1 MB and 2 MB. As shown
in Figure 7, the throughput lead of Hermes grows from
more than two times (when n = 40) to approximately three
times when block size is IMB and to four times when block
size is 2MB (with n = 190). Similarly, Figure 8 shows that
the latency of HotStuff grows very fast as the network size
increases when the primary is slack. This means that clients
have to wait for a longer time before they receive a response
for their transaction from the network if the primary is slack.

It should be noted that if c is kept too large such that
¢ ~ n, Hermes will lose its performance advantage with
slack primaries. But the probability of total failure will still
be close to zero.

Hash Blocks. It is also possible for a consensus pro-
tocol to use transaction hashes within a block instead of
transactions [25]. This technique improves the performance
as the hash size is often much smaller than the size of a
transaction. Similar to pipelining optimization, this solution
can also be adopted by BFT consensus protocols. Therefore,
we also carried out experiments with blocks containing
transaction hashes for Hermes as well as HotStuff with slack
primary to observe the performance gain and limitations

14

Latency vs Network Size

e—o HotStuff-2MB
+—4 Hermes-2MB
51| ¢— HotStuff-1MB
»— Hermes-1MB

Latency in seconds
w

o H
20 60 80 100 140 160 180 200

120
Network Size

Fig. 6: Latency with different network sizes when all nodes
have higher bandwidth

Latency vs Network Size

e—o HotStuff-1MB
40H »~—a Hermes-1MB
+— HotStuff-2MB
»—> Hermes-2MB

Latency in sec

s

—

20 E 80 100 120 140 160 180 200
Network Size

Fig. 8: Latency when a slack primary is introduced

Latency vs Network Size

> HotStuff-1MB
4 Hermes-1MB S
- -
200l | #— Hotstuff-2mB P
> Hermes-2MB -
- HotStuff-1MB-W A
. - Hermes-1MB-W P
& 150H - Hotstuff-2MB-W e
< — Hermes-2MB-W —~
3 —
< — -
5 —
£ 100 L [
;e —
— —
~ —_
~ -
sol~ = i —
LT == "
——— e S
e — =
4 60 80 100 120 140 160 180 200

Fig. 10: Latency with a slack primary and hash block

of hash blocks. It should be noted that the performance
of this solution depends on the client as well as the net-
work behavior. For example, if due to asynchrony in the
network or maliciousness of a client, nodes do not receive
transactions whose hashes are included in the block, then
each node has to request it from the primary. Since it is
guaranteed that an honest primary will provide missing
transactions and this keeps message complexity and latency
low. Figures 9 and 10 show the best-case performance with
respect to the throughput and latency (shown in solid lines)
and the worst-case performance of HotStuff and Hermes
(shown in dotted lines) when the primary is slack. During
the best case, a primary proposes hash blocks and all nodes
have already received their respective transactions. Whereas
during the worst case, nodes have not received any trans-
action and have to request transactions from the primary.
To maintain the block size limit and avoid the network
being overwhelmed, the primary sends transactions to each
node in 1IMB or 2M B chunks (depending on block size)
until all requested transactions are sent to the requesting
node (Hermes relays through the impetus committee). For
example, when the block size is 1M B (each 1MB block
contains transactions hashes instead of transactions), a node

requests transactions from the primary whose accumulated
size is 3.5MB, then the primary sends transactions in three
1M B chunk (block-like data structure) and one 0.5 MB
chunk.

Figures 9 and 10 show the best-case (presented by the
solid line in different colors) and the worst-case (presented
by the dotted line of the same color as the best case)
throughput and latency values achieved by HotStuff and
Hermes with block sizes of 1IMB and 2MB under different
network sizes (with the slack primary). For example, the
throughput of Hermes with 1MB block size in the case of
hash blocks will oscillate between solid blue curve (Hermes-
1MB) and dotted blue curve (the W in "Hermes-1MB-W”
stands for the worst case) in Figure 9. Similarly, the latency
of Hermes-1MB in Figure 10 will oscillate between solid
and dotted blue curves. Therefore, if we have honest clients
and a stable network, using hash blocks will significantly
improve performance. Whereas, in an unstable network or
in the presence of malicious clients, protocol performance
is adversely affected (especially the latency). Still, Hermes
outperforms HotStuff in the cases when a slack primary is
introduced (with or without hash blocks).

8 Related Work

The most relevant work to our protocol is Proteus [13] in
which the primary proposes a block to a subset of nodes
called the root committee. But after confirmation from
the root committee the primary proposes the block to all
nodes, which we have avoided in Hermes. Proteus has only
focused on improving the message complexity. Moreover,
the probability of view change in Proteus is higher (0.5)
compared to Hermes (0.3) as the primary is chosen from the
impetus committee. Proteus is only R-Safe whereas Hermes
is R-safe and highly likely S-safe. To be S-safe Hermes
has an additional recovery phase during its view change
subprotocol. Proteus is a responsive protocol, whereas
Hermes is efficiently optimistic responsive.

Random selection of subset of nodes in a BFT committee
has also been used in Algorand [14], Consensus Through
Herding [38], [15] and [16]. Algorand is a highly scalable
BFT based protocol, but can tolerate 20 percent of Byzantine
nodes in the network while providing probabilistic safety
(depending on the size of committee and number of Byzan-
tine nodes in the network). Consensus Through Herding
[38] achieve consensus in a poly-logarithmic number of
rounds. In [15], [16] protocols achieve Byzantine Agreement
(BA) with sublinear round complexity under a corrupt
majority. All of these protocols operate in a synchronous
environment under an adaptive adversarial model. On the
contrary, Hermes can operate in asynchronous environ-
ments and does not use the adaptive adversarial model.

HotStuff [17] is another BFT-based protocol linear mes-
sage complexity O(n). Hot-stuff has abolished the quadratic
view change with the cost of an additional round. In
HotStuff there can be multiple forks before the block gets
committed. When a block gets committed, the blocks in its
competitive forks will be revoked. This effectively causes
wasted resources (bandwidth, processing power, etc.) that
were consumed in proposing the revoked blocks. As the
primary is changed with each block proposal, at most there
can be f failed epochs (where no blocks are generated) out

15

of n epochs. The rotating primary mechanism of HotStuff
cannot resolve the problem of slack primary. Because when-
ever a slack primary is selected, there will be a sudden
degradation in performance. Hence, protocol performance
will be inconsistent. Libra-BFT is [37] based on HotStuff, but
its synchronization module that is used to recover missing
blocks has O(n?) message complexity.

There has been another line of work presented in PRIME
[39], Aardvark [40] and RBFT [41]. In these papers the au-
thors have tried to address the performance attack (delaying
proposal) by a Byzantine primary by monitoring primary
performance. When expectations fail, a primary is replaced
by the network. But in their model, they have not considered
the slack but honest nodes. That means slack primaries will
also be treated as Byzantine primaries and will be replaced.
Moreover, even a prompt primary might get replaced due
to a network glitch. This will result in a higher number
of expensive but unnecessary view changes. Moreover, if
Proof-of-Stake (PoS) is used over BFT, then an honest but
slack primary will seldom get a chance to propose a block,
hence will not be able to increase its stake regularly, causing
centralization of stake to prompt nodes. Furthermore, unlike
Hermes, these solutions do not address a combination of
problems which include message complexity, latency, and
the slack primary. Hermes does not consider addressing
the Byzantine primary performance attack. But performance
monitoring module from [39] or [40] can be added to Her-
mes to address performance attacks.

9 Conclusion

In this paper, we proposed a highly efficient BFT-based con-
sensus protocol for blockchains that addresses the problem
of slack primaries. Furthermore, this protocol has lower
latency and avoids all-to-all broadcast. To achieve this, the
protocol relaxes strong safety conditions for equivocation
faults. But, we also show that breaking strong safety in
Hermes is expensive for a Byzantine primary. Breaking
strong safety will result in blacklisting the nodes involved
and their stakes get slashed. On the other hand, Breaking
strong safety will only cause additional processing delay
and will not result in a double-spending attack. Therefore,
a Byzantine primary has no incentive to perform such an
attack. As a result, the safety of Hermes is comparable to
the safety of general BFT-based protocols.

Acknowledgment

This work was supported by Natural Sciences and En-
gineering Research Council of Canada (NSERC) CREATE
528125-2019, Joint NSERC Engage and Mitacs Grant 538022-
19, NSERC Discovery Grant RGPIN-2016-05310 and the
National Science Foundation grant: NSF CNS-2131538.

References

[1] Y. Kwon, J. Liu, M. Kim, D. Song, and Y. Kim, “Impossibility of
full decentralization in permissionless blockchains,” in Proceedings
of the 1st ACM Conference on Advances in Financial Technologies, ser.
AFT "19. New York, NY, USA: ACM, 2019, pp. 110-123.

[2] E C.Giértner, “Byzantine failures and security: Arbitrary is not (al-
ways) random,” in INFORMATIK 2003 - Mit Sicherheit Informatik,
Schwerpunkt ”Sicherheit - Schutz und Zuverlissigkeit”, 29. September
- 2. Oktober 2003 in Frankfurt am Main, 2003, pp. 127-138.

(3]

(4]

(5]

6]

(7]

(8]

(9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

M. M. Jalalzai, G. Richard, and C. Busch, “An experimental eval-
uation of bft protocols for blockchains,” in Blockchain — ICBC 2019,
J. Joshi, S. Nepal, Q. Zhang, and L.-J. Zhang, Eds. Cham: Springer
International Publishing, 2019, pp. 34-48.

M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” |. ACM, vol. 32,
no. 2, pp. 374-382, Apr. 1985.

M. Castro and B. Liskov, “Practical Byzantine fault tolerance,”
in Proceedings of the Third Symposium on Operating Systems Design
and Implementation, ser. OSDI '99. Berkeley, CA, USA: USENIX
Association, 1999, pp. 173-186.

M. Vukolic, “The quest for scalable blockchain fabric: Proof-of-
work vs. BFT replication,” in Open Problems in Network Security -
IFIP WG 11.4 International Workshop, iNetSec 2015, Zurich, Switzer-
land, October 29, 2015, Revised Selected Papers, 2015, pp. 112-125.

L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and
P. Saxena, “A secure sharding protocol for open blockchains,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS "16. New York, NY, USA: ACM,
2016, pp. 17-30.

M. M. Jalalzai and C. Busch, “Window based BFT blockchain
consensus,” in iThings, IEEE GreenCom, IEEE (CPSCom) and IEEE
SSmartData 2018, July 2018, pp. 971-979.

J. Liu, W. Li, G. O. Karame, and N. Asokan, “Scalable
Byzantine consensus via hardware-assisted secret sharing,”
CoRR, vol. abs/1612.04997, 2016. [Online]. Available: http:
//arxiv.org/abs/1612.04997

R. Guerraoui, N. Knezevi¢, V. Quéma, and M. Vukoli¢, “The next
700 bft protocols,” in Proceedings of the 5th European Conference on
Computer Systems, ser. EuroSys '10. New York, NY, USA: ACM,
2010, pp. 363-376.

G. Golan Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas,
M. Reiter, D. Seredinschi, O. Tamir, and A. Tomescu, “Sbft: A
scalable and decentralized trust infrastructure,” in 2019 49th An-
nual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2019, pp. 568-580.

I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse, “Bitcoin-ng:
A scalable blockchain protocol,” in 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16). Santa
Clara, CA: USENIX Association, 2016, pp. 45-59.

M. M. Jalalzai, C. Busch, and G. G. Richard, “Proteus: A scalable
BFT consensus protocol for blockchains,” in 2019 IEEE Interna-
tional Conference on Blockchain (Blockchain 2019), Atlanta, USA, Jul.
2019.

Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling Byzantine agreements for cryptocurrencies,”
in Proceedings of the 26th Symposium on Operating Systems Principles,
ser. SOSP "17. New York, NY, USA: ACM, 2017, pp. 51-68.

T-H. Hubert Chan, Rafael Pass, and Elaine Shi, “Sublinear round
Byzantine agreement under corrupt majority.” [Online]. Available:
http://elaineshi.com/docs/ba-cormaj.pdf

I. Abraham, T.-H. H. Chan, D. Dolev, K. Nayak, R. Pass, L. Ren,
and E. Shi, “Communication complexity of Byzantine agreement,
revisited,” 2018.

M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: Bft consensus with linearity and responsiveness,” in
Proceedings of the 2019 ACM PODC, ser. PODC "19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 347-356.
L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382—
401, Jul. 1982.

E. Buchman, “Tendermint: Byzantine fault tolerance in
the age of blockchains,” Jun 2016. [Online]. Avail-
able: http://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/

10214/9769/Buchman_Ethan_201606_MAsc.pdf

H. Attiya, C. Dwork, N. Lynch, and L. Stockmeyer, “Bounds on the
time to reach agreement in the presence of timing uncertainty,” J.
ACM, vol. 41, no. 1, p. 122-152, Jan. 1994.

R. Pass and E. Shi, “Thunderella: Blockchains with optimistic
instant confirmation,” in EUROCRYPT (2). Springer, 2018, pp.
3-33.

A. Bessani, J. Sousa, and E. E. P. Alchieri, “State Machine Repli-
cation for the Masses with BFT-SMART,” in 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works, 2014, pp. 355-362.

C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
presence of partial synchrony,” J. ACM, vol. 35, no. 2, pp.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

(33]

(34]

[35]

(36]

(37]

[38]

[39]

[40]

[41]

16

288-323, Apr. 1988. [Online]. Available: http://doi.acm.org/10.
1145/42282.42283

L. M. Bach, B. Mihaljevic, and M. Zagar, “Comparative analysis
of blockchain consensus algorithms,” in 2018 41st International
Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), May 2018, pp. 1545-1550.

M. Castro and B. Liskov, “Practical byzantine fault tolerance
and proactive recovery,” ACM Trans. Comput. Syst., vol. 20,
no. 4, p. 398461, Nov. 2002. [Online]. Available: https:
//doi.org/10.1145/571637.571640

M. G. Luby and L. Michael, Pseudorandomness and Cryptographic
Applications. Princeton, NJ, USA: Princeton University Press, 1994.

M. Blum, “Coin flipping by telephone a protocol for solving
impossible problems,” SIGACT News, vol. 15, no. 1, p. 23-27,
Jan. 1983. [Online]. Available: https://doi.org/10.1145/1008908.
1008911

M. Ben-Or and N. Linial, “Collective coin flipping, robust voting
schemes and minima of banzhaf values,” in 26th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1985), 1985, pp. 408—
416.

S. Popov, “On a decentralized trustless pseudo-random number
generation algorithm,” Journal of Mathematical Cryptology, vol. 11,
no. 1, pp. 3743, 2017. [Online]. Available: https://doi.org/10.
1515/jmc-2016-0019

C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in con-
stantinople: Practical asynchronous Byzantine agreement using
cryptography,” J. Cryptol., vol. 18, no. 3, pp. 219-246, Jul. 2005.

T. Moran, M. Naor, and G. Segev, “An optimally fair coin toss,”
in Theory of Cryptography, O. Reingold, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 1-18.

A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey
badger of BFT protocols,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS "16.
New York, NY, USA: ACM, 2016, pp. 31-42. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978399

T. Hanke, M. Movahedi, and D. Williams, “Dfinity technology
overview series, consensus system,” 2018.

M. M. Jalalzai, J. Niu, C. Feng, and F. Gai, “Fast-hotstuff: A fast
and resilient hotstuff protocol,” 2020.

V. N. Padmanabhan and J. C. Mogul, “Improving http latency,”
Comput. Netw. ISDN Syst., vol. 28, no. 1-2, p. 25-35, Dec.
1995. [Online]. Available: https://doi.org/10.1016/0169-7552(95)
00106-1

N. Santos and A. Schiper, “Tuning paxos for high-throughput with
batching and pipelining,” in Distributed Computing and Networking,
L. Bononi, A. K. Datta, S. Devismes, and A. Misra, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 153-167.

M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li,
D. Malkhi, O. Naor, D. Perelman, and A. Sonnino, “State machine
replication in the libra blockchain,” 2019.

T.-H. Hubert Chan, R. Pass, and E. Shi, “Consensus through
herding,” in Advances in Cryptology — EUROCRYPT 2019, Y. Ishai
and V. Rijmen, Eds. Springer International Publishing, 2019, pp.
720-749.

Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Prime: Byzantine repli-
cation under attack,” IEEE Transactions on Dependable and Secure
Computing, vol. 8, no. 4, pp. 564-577, 2011.

A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti,
“Making Byzantine Fault tolerant systems tolerate Byzantine
Faults,” in Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation, ser. NSDI'09. Berkeley, CA,
USA: USENIX Association, 2009, pp. 153-168. [Online]. Available:
http://dl.acm.org/ citation.cfm?id=1558977.1558988

P-L. Aublin, S. B. Mokhtar, and V. Quéma, “Rbft: Redundant
Byzantine Fault Tolerance,” in Proceedings of the 2013 IEEE 33rd In-
ternational Conference on Distributed Computing Systems, ser. ICDCS
"13. Washington, DC, USA: IEEE Computer Society, 2013, pp.
297-306.

Mohammad M. Jalalzai is a postdoctoral re-
searcher in Blockchain@UBC Cluster, under su-
pervision of Dr. Chen Feng. He received his
master’s degree in computer science from Tech-
nical University of Berlin in 2010 and his PhD
from Louisiana State University (LSU) in 2019.
His research is mainly focused on Distributed
Systems, more specifically on designing, imple-
menting and testing secure, efficient and scal-
able Byzantine Fault Tolerant (BFT) consensus
algorithms for blockchain networks. He is also
interested in the intersection of machine learning and cyber security.

Chen Feng received the B.Eng. degree from
Shanghai Jiao Tong University, China, in 2006,
and the M.A.Sc. and Ph.D. degrees from The
University of Toronto, Canada, in 2009 and 2014,
respectively. From 2014 to 2015, he was a Post-
doctoral Fellow with Boston University, USA, and
EPFL, Switzerland.

He joined the School of Engineering, Univer-
sity of British Columbia (Okanagan Campus),
Kelowna, Canada, in July 2015, where he is
currently an Assistant Professor. He is a co-
cluster lead of Blockchain@UBC and Principal's Research Chair in
Blockchain-Empowered Digital Technology. He is interested in adapting
new ideas and tools from information theory, coding theory, stochastic
processes, and optimization to design better communication networks,
with a particular emphasis on blockchain technology.

Costas Busch received the BSc degree in 1992

and the MSc degree in 1995 in computer sci-

m ence from the University of Crete, Greece. He

B received the PhD degree in computer science

BN from Brown University in 2000. He is currently

N a Professor in the Division of Computer Science

&1‘ and Engineering at Louisiana State University.

His research interests are in the following areas:

theory of distributed computing, distributed algo-

rithms and data structures, design and analysis

of communication protocols for wireless, sensor,

and optical networks, data directories for wireless sensor networks, data

streaming algorithms, and algorithmic game theory. His research has
been supported by the National Science Foundation.

Golden G. Richard Ill is a cybersecurity re-
searcher and teacher and a Fellow of the Ameri-
can Academy of Forensic Sciences. He has over
40 years of practical experience in computer
systems and computer security and is a devoted
advocate for applied cybersecurity education.
He holds a TS/SCI security clearance and sup-
ports NSA’s CAE-CO internship program, teach-
ing memory forensics, vulnerability analysis, and
other topics to cleared interns. He is currently
Professor of Computer Science and Engineering
and Associate Director for Cybersecurity at the Center for Computa-
tion and Technology (CCT) at LSU. His primary research interests are
memory forensics, digital forensics, malware analysis, reverse engineer-
ing, and operating systems. Dr. Richard earned his B.S. in Computer
Science from the University of New Orleans and M.S. and Ph.D. in
Computer Science from The Ohio State University. His first floppy drive
cost 600 and required financing; despite that, he’s still very much alive.

Jianyu Niu received the B.Eng. and the M.A.Sc.
degrees from the Department of Electronics and
Information, Northwestern Polytechnical Univer-
sity, China, in 2014 and 2017, respectively. He
is currently pursuing the Ph.D. degree from the
School of Engineering, The University of British
Columbia, Kelowna, Canada. His research in-
terests focus on wireless communication and
blockchain systems including consensus and in-
centive design.

17

