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ABSTRACT

We present the first simulations evolving resolved spectra of cosmic rays (CRs) from MeV-TeV energies (including
electrons, positrons, (anti)protons, and heavier nuclei), in live kinetic-MHD galaxy simulations with star formation and
feedback. We utilize new numerical methods including terms often neglected in historical models, comparing Milky Way
analogues with phenomenological scattering coefficients ν to Solar-neighborhood (LISM) observations (spectra, B/C,
e+/e−, p̄/p, 10Be/9Be, ionization, γ-rays). We show it is possible to reproduce observations with simple single-power-
law injection and scattering coefficients (scaling with rigidity R), similar to previous (non-dynamical) calculations. We
also find: (1) The circum-galactic medium in realistic galaxies necessarily imposes a ∼ 10kpc CR scattering halo, influ-
encing the required ν(R). (2) Increasing the normalization of ν(R) re-normalizes CR secondary spectra but also changes
primary spectral slopes, owing to source distribution and loss effects. (3) Diffusive/turbulent reacceleration is unimpor-
tant and generally sub-dominant to gyroresonant/streaming losses, which are sub-dominant to adiabatic/convective terms
dominated by ∼ 0.1− 1kpc turbulent/fountain motions. (4) CR spectra vary considerably across galaxies; certain fea-
tures can arise from local structure rather than transport physics. (5) Systematic variation in CR ionization rates between
LISM and molecular clouds (or Galactic position) arises naturally without invoking alternative sources. (6) Abundances
of CNO nuclei require most CR acceleration occurs around when reverse shocks form in SNe, not in OB wind bubbles
or later Sedov-Taylor stages of SNe remnants.
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1 INTRODUCTION

The propagation and dynamics of cosmic rays (CRs) in the interstel-

lar medium (ISM) and circum/inter-galactic medium (CGM/IGM)

is an unsolved problem of fundamental importance for space plasma

physics as well as star and galaxy formation and evolution (see re-

views in Zweibel 2013, 2017; Amato & Blasi 2018; Kachelrieß &

Semikoz 2019). For decades, the state-of-the-art modeling of Galac-

tic (Milky Way; MW) CR propagation has largely been dominated

by idealized analytic models, where a population of CRs is propa-

gated through a time-static MW model, with simple or freely-fit as-

sumptions about the “halo” or thick disk around the galaxy and no

appreciable circum-galactic medium (CGM)1 with “escape” (as a

leaky box or flat halo-diffusion type model) outside of some radius

(Blasi & Amato 2012a; Strong & Moskalenko 2001; Vladimirov

et al. 2012; Gaggero et al. 2015; Guo et al. 2016; Jóhannesson et al.

2016; Cummings et al. 2016; Korsmeier & Cuoco 2016; Evoli et al.

2017).

These calculations generally ignore phase structure or inho-

mogeneity in the ISM/CGM, magnetic field structure (anisotropic

CR transport), streaming, complicated inflow/outflow/fountain and

turbulent motions within the galaxy, and time-variability of galactic

structure and ISM phases (although see e.g. Blasi & Amato 2012b;

Jóhannesson et al. 2016; Liu et al. 2018; Giacinti et al. 2018), even

though, for example, secondary production rates depend on the lo-

cal gas density which varies by several orders of magnitude in both

1 The term “halo” is used differently in CR and galaxy literature. In most

CR literature, the “halo” is generally taken to have a size ∼ 1−10 kpc, cor-

responding to the “thick disk” or “disk-halo interface” region in galaxy for-

mation/structure terminology. In the galaxy community, the gaseous “halo”

usually refers to the circum-galactic medium (CGM), with scale-lengths

∼ 20−50kpc and extent ∼ 200−500kpc (Tumlinson et al. 2017).

space and time (even at a given galacto-centric radius) as CRs prop-

agate through the ISM. Likewise, the injection itself being propor-

tional to e.g. SNe rates is strongly clustered in both space and time

and specifically related to certain ISM phases (see Evans 1999;

Vázquez-Semadeni et al. 2003; Mac Low & Klessen 2004; Walch

et al. 2015; Fielding et al. 2018), and other key loss terms depend

on e.g. local ionized vs. neutral fractions, magnetic and radiation

energy densities – quantities that can vary by ten orders of mag-

nitude within the MW (Wolfire et al. 1995; Evans 1999; Draine

2011). And these static models cannot, by construction, capture

non-linear effects of CRs actually modifying the galaxy/ISM struc-

ture through which they propagate. This in turn means that most in-

ferred physical quantities such as CR diffusivities. residence times,

re-acceleration efficiencies, and “convective” speeds (let alone their

dependence on CR energy or ISM properties) are potentially sub-

ject to order-of-magnitude systematic uncertainties. That is not to

say these static-Galaxy models are simple, however: their complex-

ity focuses on evolving an enormous range of CR energies from

.MeV to & PeV, including a huge number of different species, and

incorporating state-of-the-art nuclear networks for detailed spalla-

tion, annihilation, and other reaction rates (recently, see Liu et al.

2018; Amato & Blasi 2018).

Meanwhile, simulations of galaxy structure, dynamics, evolu-

tion, and formation have made tremendous progress incorporating

and reproducing detailed observations of the time-dependent, multi-

phase complexity of the ISM and CGM (Hopkins et al. 2012a; Kim

& Ostriker 2017; Grudić et al. 2019; Benincasa et al. 2020; Keating

et al. 2020; Gurvich et al. 2020), galaxy inflows/outflows/fountains

(Narayanan et al. 2006; Hayward & Hopkins 2017; Muratov et al.

2017; Anglés-Alcázar et al. 2017; Hafen et al. 2019b,a; Hop-

kins et al. 2021c; Ji et al. 2020), and turbulent motions (Hopkins

2013a,b; Guszejnov et al. 2017b; Escala et al. 2018; Guszejnov et al.
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2 Hopkins et al.

2018; Rennehan et al. 2019), magnetic field structure and amplifi-

cation (Su et al. 2017, 2018a, 2019; Hopkins et al. 2020c; Gusze-

jnov et al. 2020b; Martin-Alvarez et al. 2018), dynamics of mergers

and spiral arms and other gravitational phenomena (Hopkins et al.

2012c, 2013a,c; Fitts et al. 2018; Ma et al. 2017b; Garrison-Kimmel

et al. 2018; Moreno et al. 2019), star formation (Grudić et al. 2018a;

Orr et al. 2018, 2019; Grudić et al. 2019; Grudić & Hopkins 2019;

Garrison-Kimmel et al. 2019b; Wheeler et al. 2019; Ma et al. 2020a;

Grudić et al. 2020), and stellar “feedback” from supernovae (Mar-

tizzi et al. 2015; Gentry et al. 2017; Rosdahl et al. 2017; Hopkins

et al. 2018a; Smith et al. 2018; Kawakatu et al. 2020), stellar mass-

loss (Wiersma et al. 2009; Conroy et al. 2015; Höfner & Olofs-

son 2018), radiation (Hopkins et al. 2011; Hopkins & Grudić 2019;

Hopkins et al. 2020a; Wise et al. 2012; Rosdahl & Teyssier 2015;

Kim et al. 2018; Emerick et al. 2018), and jets (Bürzle et al. 2011;

Offner et al. 2011; Hansen et al. 2012; Guszejnov et al. 2017a),

resolving the dynamics of those feedback mechanisms interacting

with the ISM. However, these calculations (including our own) treat

the high-energy astro-particle physics in an incredibly simple fash-

ion. Most ignore it entirely. Even though there has been a surge of

work in recent years arguing that CRs could have major dynamical

effects on both the phase (temperature-density) structure and dy-

namics (inflow/outflow rates, strength of turbulence, bulk star for-

mation rates) of galaxies (see Jubelgas et al. 2008; Uhlig et al. 2012;

Booth et al. 2013; Wiener et al. 2013b; Hanasz et al. 2013; Salem

& Bryan 2014; Salem et al. 2014; Chen et al. 2016; Simpson et al.

2016; Girichidis et al. 2016; Pakmor et al. 2016; Salem et al. 2016;

Wiener et al. 2017; Ruszkowski et al. 2017; Butsky & Quinn 2018;

Farber et al. 2018; Jacob et al. 2018; Girichidis et al. 2018), es-

sentially all of these studies have treated CRs with a “single bin”

approximation. evolving a single fluid representing “the CRs” (re-

cently, see Salem et al. 2016; Chan et al. 2019; Butsky & Quinn

2018; Su et al. 2020; Hopkins et al. 2020b; Ji et al. 2020, 2021b;

Bustard & Zweibel 2020; Thomas et al. 2021). Even if one is only

interested in the dynamical effects of CRs on the gas itself, so as-

sumes the CR pressure is strongly dominated by ∼GeV protons,

this could be inaccurate in many circumstances. For example, cer-

tain terms which should “shift” CRs in their individual energies or

Lorentz factors and therefore change their emission/loss/transport

properties instead simply rescale “up” or “down” the CR energy

density in single-bin models, effectively akin to “creating” new

CRs.

More importantly, even if “single-bin” models allow for a rea-

sonable approximate estimation of bulk CR pressure effects on gas,

a “single-bin” CR model precludes comparing to the vast majority

of observational constraints. Essentially, it restricts comparison to

a handful of galaxy-integrated ∼GeV γ-ray detections in nearby

star-forming galaxies (Lacki et al. 2011; Tang et al. 2014; Griffin

et al. 2016; Fu et al. 2017; Wojaczyński & Niedźwiecki 2017; Wang

& Fields 2018; Lopez et al. 2018), which in turn means that the-

oretical CR transport models are fundamentally under-constrained

(see Hopkins et al. 2021e). Because the γ-rays constrain a galactic-

ISM-integrated quantity over a narrow range of CR energies, differ-

ent physically-motivated models which reproduce the same γ-ray

luminosity can predict qualitatively different CR transport in the

ISM/CGM/IGM (depending on how they scale with properties as

noted above), as well as totally different effects of CRs on outflows,

accretion, and galaxy formation (Hopkins et al. 2021d). This also

precludes comparing to the enormous wealth of detailed Solar sys-

tem CR data covering a huge array of species, as well as the tremen-

dous amount of spatially-resolved synchrotron data from large num-

bers of galaxies spanning the densest regions of the ISM through the

diffuse CGM, and all galaxy types. While there have been important

preliminary efforts to model these more detailed datasets with vari-

ations of post-processing or tracer-species calculations (see Pinzke

et al. 2017; Gaches & Offner 2018; Offner et al. 2019; Winner et al.

2019; Vazza et al. 2021; Werhahn et al. 2021a,b,c), these necessarily

neglect the dynamics above, and are more akin to the “time static”

analytic models in some ways.

In this manuscript, we therefore generalize our previous ex-

plicit CR transport models from previous studies to a resolved CR

spectrum of electrons, positrons, protons, anti-protons, and heav-

ier nuclei spanning energies ∼MeV to ∼TeV. This makes it pos-

sible to explicitly forward-model from cosmological initial con-

ditions quantities including the CR electron and proton spectra,

B/C and radioactive isotope ratios, and detailed observables in-

cluding synchrotron spectra, alongside Galactic magnetic field and

halo and ISM structure. We show that for plausible injection as-

sumptions the simulations can reproduce the observed Solar neigh-

borhood values. We explicitly account for and explore the roles

of a wide range of processes including: anisotropic diffusion and

streaming, gyro-resonant plasma instability losses, “adiabatic” CR

acceleration, diffusive/turbulent re-acceleration, Coulomb and ion-

ization losses, catastrophic/hadronic losses (and γ-ray emission),

Bremstrahhlung, inverse Compton (accounting for time-and-space-

varying radiation fields), and synchrotron terms. In § 2, we out-

line the numerical methods and treatment of spectrally-resolved CR

populations, and describe our simulation initial conditions. In § 3

we summarize the qualitative results, and explore the effects of each

of the different pieces of physics in turn. We also compare with ob-

servational constraints and attempt to present some simplified ana-

lytic models that explain the relevant scalings. We conclude in § 4.

The Appendices contain various additional details, showing typical

CR drift velocities and loss timescales (§ A), predicted CR spectra

for additional parameter choices (§ B), detailed numerical methods

and validation tests (§ C), and mock observational diagnostics of

the simulation magnetic fields (§ D).

2 METHODS

2.1 Non-CR Physics

The simulations here extend those in several previous works includ-

ing Chan et al. (2019), Hopkins et al. (2020b) (Paper I), and Hop-

kins et al. (2021e) (Paper II), where additional numerical details

are described. We only briefly summarize these and the non-CR

physics here. The simulations are run with GIZMO
2 (Hopkins 2015),

in its meshless finite-mass MFM mode (a mesh-free finite-volume

Lagrangian Godunov method). All simulations include magneto-

hydrodynamics (MHD), solved as described in (Hopkins & Raives

2016; Hopkins 2016) with fully-anisotropic Spitzer-Braginskii con-

duction and viscosity (implemented as in Paper II; see also Hop-

kins 2017; Su et al. 2017). Gravity is solved with adaptive La-

grangian force softening (matching hydrodynamic and force res-

olution). We treat cooling, star formation, and stellar feedback fol-

lowing the FIRE-2 implementation of the Feedback In Realistic En-

vironments (FIRE) physics (all details in Hopkins et al. 2018b); as

noted in § 3.2 our conclusions are robust to variations in detailed

numerical implementation of FIRE. We explicitly follow the en-

richment, chemistry, and dynamics of 11 abundances (H, He, Z, C,

N, O, Ne, Mg, Si, S, Ca, Fe; Colbrook et al. 2017; Escala et al.

2018); gas cooling chemistry from ∼ 10− 1010 K accounting for a

range of processes including metal-line, molecular, fine-structure,

photo-electric, and photo-ionization, including local sources and

the Faucher-Giguère et al. (2009) meta-galactic background (with

2 A public version of GIZMO is available at http://www.tapir.

caltech.edu/~phopkins/Site/GIZMO.html
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CR Spectra in Galaxies 3

Figure 1. Mock images of the simulations studied here, selected as Milky Way (MW)-like galaxies near z ≈ 0 from the FIRE cosmological simulation project.

The three galaxies are m12i (our “fiducial” galaxy, top), m12f (middle), and m12m (bottom), all broadly MW-like but different in detail with e.g. different

extended outer gas/stellar disks, different bar/spiral arm strengths, and different detailed spatial distribution of gas & star formation within the disk. Left:

Hubble Space Telescope-style ugr composite image ray-tracing starlight (attenuated by dust in the simulations as Hopkins et al. 2004) with a log-stretch

(∼ 4dex surface-brightness range). Middle: Gas portrayed with a 3-band volume render showing “hot” (T ≫ 105 K, red), “warm/cool” (T ∼ 104 − 105 K,

green), and “cold (neutral)” (T ≪ 104 K, magenta) phases. Right: Gas again, but on larger scales, more clearly showing the continuing gas distribution well

into the circum-galactic medium and “halo” up to & 100kpc beyond the galactic disk.

self-shielding) and tracking detailed ionization states; and star for-

mation in gas which is dense (> 1000cm−3), self-shielding, ther-

mally Jeans-unstable, and locally self-gravitating (Hopkins et al.

2013b; Grudić et al. 2018a). Once formed, stars evolve according

to standard stellar evolution models accounting explicitly for the

mass, metal, momentum, and energy injection via individual SNe

(Ia & II) and O/B or AGB-star mass-loss (for details see Hopkins

et al. 2018a), and radiation (including photo-electric and photo-

ionization heating and radiation pressure with a five-band radiation-

hydrodynamic scheme; Hopkins et al. 2020a). Our initial conditions

(see Fig. 1) are fully-cosmological “zoom-in” simulations, evolving

a large box from redshifts z & 100, with resolution concentrated in

a ∼ 1− 10Mpc co-moving volume centered on a “target” halo of

interest. While there are many smaller galaxies in that volume, for

the sake of clarity we focus just on the properties of the “primary”

(i.e. best-resolved) galaxies in each volume.
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4 Hopkins et al.

2.2 CR Physics & Methods

2.2.1 Overview & Equations Solved

Our CR physics implementation essentially follows the combina-

tion of Paper II & Hopkins et al. (2021a) with Girichidis et al.

(2020). We explicitly evolve the CR distribution function (DF):

f = f (x, p, t, s, ...), as a function of position x, CR momentum p,

time t, and CR species s. An extensive summary of the numerical

details and some additional validation tests are presented in Ap-

pendix C, but we summarize the salient physics here.

We assume a gyrotropic DF for the phase angle φ and evolve

the first two pitch-angle (µ ≡ p̂ · b̂) moments of the focused CR

transport equation (Isenberg 1997; Le Roux et al. 2001), to lead-

ing order in O(u/c) (where u is the fluid velocity) on macro-

scopic scales much larger than CR gyro-radii,3 for an arbitrary

f = f (p, µ, ...). From Hopkins et al. (2021a), this gives the equa-

tions solved:

Dt f̄0 +∇· (v b̂ f̄1) = j0 +D : ∇u

[

3 f̄0 + p
∂ f̄0

∂p

]

(1)

1

p2

∂

∂p

[

p
2

{

Sℓ f̄0 + D̃pµ f̄1 + D̃pp

∂ f̄0

∂p

}]

Dt f̄1 + v∆( f̄0) =−
[

D̃µµ f̄1 + D̃µp

∂ f̄0

∂p

]

+ j1 (2)

D̃pp = χ
p2 v2

A

v2
ν̄ , D̃pµ =

p v̄A

v
ν̄ , D̃µµ = ν̄ , D̃µp = χ

p v̄A

v
ν̄

where f̄n ≡ 〈µn f 〉µ is the n’th pitch-angle moment (so e.g. f̄0 is

the isotropic part of the DF, and f̄1 = 〈µ〉 f̄0), DtX ≡ ∂tX +∇ ·
(uX)≡ ρdt(X/ρ) is the conservative co-moving derivative, v = β c

is the CR velocity, p = γ βms c the CR momentum, b̂ ≡ B/|B|
the unit magnetic field vector, jn represent injection & catastrophic

losses, Sℓ represents continuous loss processes described below, vA

is Alfvén speed, the coefficients D̄ are defined in terms of the scat-

tering rate ν̄ ≡ ν̄++ ν̄−, the signed v̄A ≡ vA (ν̄+− ν̄−)/(ν̄++ ν̄−),
and the operator ∆(q)≡ b̂ ·∇ (χq)+∇· [(1−3χ)q b̂] and Edding-

ton tensor D≡ χI+(1−3χ) b̂b̂ are defined in terms of χ:

χ≡ 1−〈µ2〉
2

=
1

2

[

1− f̄2

f̄0

]

(3)

where 〈µ〉 ≡ f̄1/ f̄0. The moments hierarchy for f̄2 is closed by the

assumed M1-like relation 〈µ2〉 ≈ (3+4〈µ〉2)/(5+2
√

4−3〈µ〉2),
which is exact for both a near-isotropic DF (the case of greatest

practical relevance, as argued in e.g. Thomas & Pfrommer 2021)

or a maximally-anisotropic DF (〈µ〉 → ±1), or any DF which

can be made approximately isotropic via some Lorentz transfor-

mation (Hopkins et al. 2021a). All of the variables above should

be understood to be functions of x and t, etc. The CRs act on

the gas+radiation field as well: the appropriate collisional/radiative

terms are either thermalized or added to the total radiation or mag-

netic energy, and the CRs exert forces on the gas in the form of the

Lorentz force (proportional to the perpendicular CR pressure gra-

dient) and parallel force from scattering, as detailed in Paper II and

Hopkins et al. (2021a). As defined therein the CR pressure tensor

P=
∫

d3p(pv) f is anisotropic following D.

Note that if the “flux” equation Eq. 2 reaches local steady-state

with |Dt f̄1| ≪ |ν̄ f̄1|, which occurs on a scattering time ∼ ν̄−1 (gen-

erally short compared to other timescales of interest in our simu-

3 Of course, certain kinetic processes and plasma instabilities on gyro scales

can only be resolved and properly treated in particle-in-cell (PIC) or MHD-

PIC simulations of the sort in e.g. Bai et al. (2015, 2019); Mignone et al.

(2018); Holcomb & Spitkovsky (2019); Ji & Hopkins (2021); Ji et al.

(2021a). But recall that CR gyro radii are ∼ 0.1au(R/GV)(|B|/µG)−1,

vastly smaller than our resolution at all rigidities we consider.

lations, so this is often a reasonable approximation), then we have

χ→ 1/3, D → I/3, v f̄1 → −v̄A p∂p f̄0 − (v2/3 ν̄) b̂ · ∇ f̄0. In this

case Eq. 1 for Dt f̄0 reduces to the familiar Fokker-Planck equa-

tion with a streaming speed ∝ v̄A and anisotropic/parallel diffusivity

κ‖ = v2/3ν̄.

The spatial discretization follows the gas mesh: each gas cell

j represents some finite-volume domain Vj, which carries a cell-

averaged f j(p, t, s, ... |x j). Each species s is then treated with its

own explicitly-evolved spectrum p, discretized into a number of in-

tervals or bins n, defined by a range of momenta p−
n, s < p < p+

n, s

(p ≡ |p|) within each cell j. To ensure manifest conservation we

evolve the conserved variables of CR number N j,n, s(t) and kinetic

energy Ekin
j,n, s(t) integrated over each interval in space and momen-

tum:

N j,n, s(t)≡
∫

V j

n j,n, s d
3
x ≡

∫

V j

∫ p+n, s

p
−
n, s

f j,n, s(...)d
3
xd

3
p (4)

E
kin
j,n, s(t)≡

∫

V j

ǫ j,n, s d
3
x ≡

∫

V j

∫ p+n, s

p
−
n, s

Ts(p) f j,n, s(...)d
3
xd

3
p (5)

where d3p ≡ p2 d pdΩ = p2 d pdφdµ and Ts(p) ≡ (p2 c2 +
m2

s c4)1/2 −ms c2 is the CR kinetic energy. Note we could equiva-

lently evolve the total CR energy as by definition E tot
j,n, s ≡ Ekin

j,n, s +
N j,n, s ms c2 (or e j,n, s = ǫ j,n, s +n j,n, s ms c2).

2.2.2 Spatial Evolution & Coupling to Gas

Operator-splitting (1) spatial evolution, (2) momentum-space oper-

ations, and (3) injection, the spatial part of Eqs. 1-2 can be written as

a normal hyperbolic/conservation law for f̄0: Dt f̄0 = −∇· (v b̂ f̄1),
and Eq. 2 for the flux f̄1. That is discretized and integrated on the

spatial mesh defined by the gas cells identically in structure to our

two-moment formulation for the CR number density or energy and

their fluxes from e.g. Paper II and Chan et al. (2019); Hopkins et al.

(2021a), and solved with the same finite-volume method. Because

the detailed form of the scattering rates ν̄ are orders-of-magnitude

uncertain (see review in Paper II), we neglect details such as bin-

boundary flux terms and differences in diffusion coefficients for

number and energy across the finite width of a momentum bin

(i.e. use the “bin centered” ν̄).4 At this level, the spatial equations

for ( f̄0, f̄1) are exactly equivalent to the two-moment equations for

e.g. (n, Fn) or (ǫ, Fǫ) (where Fq is the flux of q) in Hopkins et al.

(2021a), integrated separately for each j, n, s.

Per Paper II and Hopkins et al. (2021a), it is convenient to

write the CR forces on the gas in terms of “bin integrated” variables,

which can then be integrated into the Reimann solver or hydrody-

namic source terms. Performing the relevant integrals within each

bin n for species s, to obtain the total energy en,s =
∫

n
4π p2 d pE(p),

total energy flux Fe,n,s =
∫

n
4π p2 d pE(p)v, and scalar isotropic-

equivalent pressure P0,n,s =
∫

n
4π p2 d p(pv/3), the force on the gas

can then be represented as a sum over all bins:

Dt(ρu)+ ...=
∑

s

∑

n

[

− (I− b̂b̂) ·
[

∇·
(

Dn, s P0,n,s

)]

(6)

+
ν̄n,s

c2

[

Fe,n,s −3χn,s v̄A (en,s +P0,n,s)
]

b̂
]

4 This “bin-centered” approximation (along with simple finite-sampling ef-

fects owing to our finite-size bins) leads to a well-understood numerical ar-

tifact (shown in Girichidis et al. 2020, Ogrodnik et al. 2021, and our § C5)

wherein small “step” features appear between the edges of different spec-

tral “bins” (i.e. the slopes do not join continuously, because the variation

of the effective spatial diffusivity continuously across the bin is neglected,

so it changes discretely bin-to-bin). This is evident in e.g. our Fig. 2 and

essentially all our CR spectra, but we show the effect is small compared to

∼ 1σ variations in the spectra and much smaller than physical variations

from different scattering-rate assumptions or Galactic environments.
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CR Spectra in Galaxies 5

2.2.3 Momentum-Space Evolution

Within each cell and bin j, n, s at each time t, we operator-split

the momentum-space terms in Eq. 1 (those inside p−2 ∂p [p2{...}])

and integrate these following the method in Girichidis et al. (2020),

to which we refer for details and only briefly summarize here. We

evolve the DF as an independent power law in momentum in each

interval, with slope ψ, as f̄0, j,n, s(x, t) = f̄0, j,n, s[p0
n, s](p/p0

n, s)
ψ j, n, s ,

where p0
n, s is the bin-centered momentum. Note there is a strict

one-to-one relationship between e.g. the pair (n j,n, s, ǫ j,n, s) and

( f̄0, j,n, s[p0
n, s], ψ j,n, s), so we work with whichever is convenient.

In a timestep ∆t, processes which modify the momentum

p of CRs (the Sℓ term in Eq. 1) give rise to some ṗ = −Sℓ =
F(p, s, U(x, t), ...) which is some function of the local plasma state

U(x, t) (gas/magnetic/radiation field properties) and CR species

and rigidity. If we operator-split these terms (so U is constant

over ∆t within cell j), and begin from a power-law DF f j,n, s as

specified above, then we can solve exactly for the final momen-

tum p f = p(t +∆t) (and therefore rigidity or energy) of each CR

with some initial pi = p(t) obeying ṗ above. Even if the integrals

cannot be analytically solved, they can be numerically integrated

to arbitrary precision. This allows us to exactly calculate the fi-

nal CR energy E
kin, tot
j,n, s (t+∆t) =

∫

Ω j
d3 x

∫

pi
T (p f [pi]) f i

j,n, s(pi)d pi

and likewise N tot
j,n, s(t +∆t) for the CR population which “began” in

the bin, as well as the final energy and number which remain “in

the bin” (i.e. with momenta in the interval p−
n, s < p

f
s < p+

n, s), e.g.

E
kin,bin
j,n, s (t + ∆t) =

∫

Ω j
d3 x

∫ p f<p+n, s

p
−
n, s<p f

T (p f [pi]) f i
j,n, s(pi)d pi. The

difference (e.g. E
kin, tot
j,n, s −E

kin,bin
j,n, s ) gives the flux of energy or number

which goes to the next bin (representing CRs “moving down” or up

a bin as they lose or gain energy). After each update to E and N,

we re-solve for the corresponding DF slope ψ and normalization.

Because this is purely local, it can be sub-cycled and parallelized

efficiently. For a given ṗ = ..., we calculate the time δt j,n, s which

would be required for a CR to move from one “edge” of the bin

to another (e.g. to cool from p+
n, s to p−

n, s), for each bin, and for the

lowest-energy bin to cool to zero. To integrate stably we require

the subcycle timestep ∆t j ≤ Ccour MIN(δt j,n, s), with Ccour the usual

Courant factor and the minimum over all bins and species.

Catastrophic losses (e.g. fragmentation and decay) eliminate

CRs entirely so appear directly in e.g. j as ∂t f =−... reducing f , n,

ǫ together. We can therefore simply integrate these within each bin

similar to the procedure above, but remove the losses rather than

transferring them to the neighboring bin.

In this paper we consider spectra of protons, nuclei, electrons,

and positrons, with 11 intervals/bins for each leptonic species and 8

intervals for each hadronic. For leptons these intervals span rigidi-

ties (10−3 - 5.62× 10−3, 5.62× 10−3 - 1.78× 10−2, 1.78× 10−2

- 5.62 × 10−2, 5.62 × 10−2 - 0.178, 0.178 - 0.562, 0.562 - 1.78,

1.78 - 5.62, 5.62 - 17.8, 17.8 - 56.2, 56.2 - 178, 178 - 1000) GV.

For hadronic species the ranges are identical but we do not explic-

itly evolve the three lowest-R intervals because these contain neg-

ligible energy and are highly non-relativistic. This corresponds to

evolving CRs with kinetic energies over a nearly identical range for

nuclei and leptons from < 1MeV to > 1 TeV. This is summarized

in Table C1, which gives the upper and lower rigidity boundaries

between each of our bins for both leptons and hadrons, with repre-

sentative values of T , γ, and β for species like e−, e+, p, p̄.

2.2.4 Injection & First-Order Acceleration

By definition our treatment of the CRs averages over gyro orbits

(assuming gyro radii are smaller than resolved scales), so first-order

Fermi acceleration cannot be resolved but is instead treated as an

injection term j. Algorithmically, injection is straightforward and

treated as in Paper II, generalized to the spectrally-resolved method

here: sources (e.g. SNe) inject some CR energy and number into

neighbor gas cells alongside radiation, mechanical energy, metals,

etc. We simply assume an injection spectrum (and ratio of leptons-

to-hadrons injected), and use it to calculate exactly the ∆Ekin
j,n, s and

∆N j,n, s injected in a cell given the desired total injected CR energy

∆Ekin
tot, j =

∑

s

∑

n
∆Ekin

j,n, s.

The relative normalization of the injection spectra for heav-

ier species s (relative to p or e−) is set by assuming the test-

particle limit, given the abundance of that species Ns within the

injection shock, e.g. dNs/dβ = (Ns, j/NH, j)dNH/dβ. This is only

important for CNO, as the primary injection of other species we

follow (beyond p and e−) is negligible.5 Because the acceleration

is un-resolved, to calculate the ratio of heavy-element to p nuclei

(Ns/NH), we need to make some assumption about where/when

most of the acceleration occurs: for example, for pure core-collapse

SNe ejecta (averaging over the IMF), NO, ej/NH, ej ∼ 0.015 (e.g.

Nomoto et al. 2013; Pignatari et al. 2016; Limongi & Chieffi 2018,

and references therein), while for the ISM at Solar abundances

NO, ISM/NH, ISM ∼ 0.0005 (Lodders 2019). For initial ejecta mass

Mej, if we assume most of the acceleration occurs at some time

when the swept-up ISM mass passing through the shock (which

increases rapidly in time) is ∼ Mswept, then Ns/NH ≈ (N′
s, ej Mej +

N′
s, ISM Mswept)/(N

′
H, ej Mej +N′

H, ISM Mswept) (where N′
s ≡ dNs/dM is

the number of species s in the ejecta or ISM, per unit mass). Equiv-

alently we could write this in terms of the shock velocity rela-

tive to its initial value, assuming we are somewhere in the energy-

conserving Sedov-Taylor phase. In either case, N′
s, ej and N′

s, ISM are

given by the abundances of the stellar ejecta and the ISM gas cell

into which the CRs are being injected, which follow the detailed

FIRE stellar evolution and yield models and reproduce extensive

metallicity studies of galactic stars and the ISM (Ma et al. 2016,

2017b,a; Muratov et al. 2017; Escala et al. 2018; Bonaca et al. 2017;

Van de Voort et al. 2018; Wheeler et al. 2019).

2.3 CR Loss/Gain Terms Included

Our simulations self-consistently include adia-

batic/turbulent/convective terms, diffusive re-acceleration,

“streaming” or gyro-resonant losses, Coulomb, ionization,

catastrophic/hadronic/fragmentation/pionic and other collisional,

radioactive decay, annihilation, Bremstrahhlung, inverse Compton,

and synchrotron terms, with the scalings below.

2.3.1 Catastrophic & Continuous Losses

For protons and nuclei, we include Coulomb and ionization

losses, catastrophic/collisional/fragmentation/ionization losses, and

radioactive decay. Coulomb and ionization losses scale essen-

tially identically with momentum as ṗ ≡ ṪC (dp/dT ) with ṪC ≈
−3.1 × 10−7 eVs−1 cm3 Z2

crβ
−1 [ne + 0.57nneutral] and dp/dT =

1/v = 1/β c (the difference being whether they operate primarily

in ionized or neutral gas; Gould 1972), where ne is the free (ther-

mal) electron density (the Coulomb term), and nneutral the neutral

number density (ionization term).

For protons, we take the total pion/catastrophic loss rate to

be ḟcr(p) = −nnβ cσeff,p fcr(p) with σeff,p ≈ 21.3β−1 Θ(T [p] −
0.28GeV)mb (Mannheim & Schlickeiser 1994; Guo & Oh 2008),

where nn is the nucleon number density (≈ ρ/mp), Θ(x) = 0 for

x < 0, = 1 for x ≥ 1. For heavier nuclei, we take the total frag-

mentation/catastrophic loss rate to be ḟcr(p) = −nnβ cσs fcr(p)
with σs = 45A0.7 (1 + 0.016 sin [1.3−2.63lnA])mb (with A the

atomic mass number) at ≥ 2GeV and σs = σs(> 2GeV) [1 −

5 At Solar abundances, NB/NH ∼ 3 × 10−10, NBe/NH ∼ 10−11,

Ne+/Ne− ≪ 10−12, and Np̄/NH ≪ 10−12, all many orders-of-magnitude

lower than the ratios observed in CRs.
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6 Hopkins et al.

0.62 exp(−T/0.2GeV) sin(1.57553[T/GeV]0.28)] at < 2GeV

from Mannheim & Schlickeiser (1994), with the cross-sections

for secondary production of various relevant species described be-

low. For antimatter ( p̄), we include annihilation with ḟcr(p) =
−nHβ cσpp̄ fcr(p) where nH is the number density of hydro-

gen nuclei (≈ XH ρ/mp) and σpp̄ ≈ 1.5mb(−107.9 + 29.43x −
1.655x2 + 189.9e−x/3) (with x ≡ ln(R/GV); Evoli et al. 2017).

For radioactive species (10Be), the loss rate scales as ḟcr(p) =
− fcr(p)/(γ t1/2, s/ ln2), where t1/2, s is the rest-frame half-life of the

species (t1/2 = 1.51Myr for 10Be).

For electrons and positrons, we include Bremstrahh-

lung, ionization, Coulomb, inverse Compton, and syn-

chrotron losses, plus annihilation. At our energies of inter-

est we always assume electrons/positrons are relativistic for

the calculation of loss rates. For Bremstrahhlung we take

ṗ = −(3/2π)αfsσT c [
∑

Z
nZ Z (Z + 1)](ln [2γ] − 1/3) p, where

σT is the Thompson cross-section, αfs the fine-structure constant,

and nZ the number density of ions (determined self-consistently

using the ionization fractions computed in our radiation-chemistry

solver) with charge Z (Blumenthal & Gould 1970). For ion-

ization we adopt ṗ = −(3/4)me c2σT nneutral ln(2γ3/α4
fs)

(Gould & Burbidge 1965),6 while for Coulomb we have

ṗ = −(3/2)me c2σT neβ
−2 {ln[me c2β

√
γ−1/~ωpl] +

ln[2](β2/2 + 1/γ) + 1/2 + (γ − 1)2/16γ2} with the plasma

frequency ω2
pl ≡ 4π e2 ne/me (Gould 1972). Ignoring Klein-Nishina

corrections (unimportant at the energies of interest), for inverse

Compton and synchrotron we have ṗ = −(4/3)σT γ
2 (urad + uB)

(e.g. Rybicki & Lightman 1986), where urad and uB are the local

radiation energy density and magnetic field energy density (given

self-consistently from summing all five [ionizing, FUV, NUV,

optical/NIR, IR] bands followed in our radiation-hydrodynamics

approximation in-code, plus the un-attenuated CMB, and from our

explicitly-evolved magnetic fields).

Positron annihilation is treated as other catastrophic terms

with ḟcr(p) = −neβ cσ(e+e−) fcr(p) with the Dirac σ(e+e−) ≈
π r2

0, e (γ
2
∗ + 1)−1 [(γ2

∗ + 4γ∗ + 1)(γ2
∗ − 1)−1 ln(γ∗+

√

γ2
∗−1)−

(γ∗ + 3)(γ2
∗ − 1)−1/2] where γ∗ is the positron Lorentz factor in

the electron frame and r0, e is the classical electron radius.

Following Paper II and Guo & Oh (2008), the Coulomb losses

and a fraction = 1/6 of the hadronic losses (from thermalized por-

tions of the cascade) are thermalized (added to the gas internal en-

ergy), while a portion of the ionization losses are thermalized corre-

sponding to the energy less ionization potential. Other radiative and

collisional losses are assumed to go primarily into escaping radia-

tion.

2.3.2 Secondary Products: Fragmentation & Decay

Our method allows for an arbitrary set of primary species, each of

which can produce an arbitrary set of secondary species (which can

themselves also produce secondaries, in principle): energy and par-

ticle number are transferred bin-to-bin in secondary-producing re-

actions akin to the bin-to-bin fluxes within a given species described

above. For computational reasons, however, it is impractical to in-

tegrate a detailed extended species network like those in codes such

as GALPROP or DRAGON on-the-fly. We therefore adopt an inten-

tionally highly-simplified network, intended to capture some of the

6 For lepton ionization, using the more extended Bethe-Bloch formula ap-

propriately corrected for light (electron/positron) species from Ginzburg

(1979), ṗ = (3/4)me c2σT β
−2

∑
sgas

nneutral,sgas
Zsgas Φsgas with Φsgas ≡

ln{([γ−1]β2 γ2 m2
e c4)/(2 I2

sgas
)} − (2/γ − 1/γ2) ln2 + 1/γ2 + (1 −

1/γ)2/8; sgas =H, He at Solar abundances with (IH, IHe) = (13.6, 24.6)eV

gives a result which differs by . 4% from the simpler Gould & Burbidge

(1965) expression at all energies we consider.

most important secondary processes: we evolve spectra for e−, e+,

p̄, and nuclei for H (protons), B, CNO, stable Be (7Be + 9Be) and

unstable 10Be.

For collisional secondary production from some “primary”

species s with momentum p = ps (or T = Ts(p)), which pro-

duces a species s′ with momentum p′ = p′
s′ (T ′ = Ts′(p′)) with

an effective production cross-section σs→s′ , we generically have

ḟcr, s′(p′)d3p′ = nnβs(p)cσs→s′(p → p′) fcr, s(p)d3p.

We consider secondary e− and e+ produced by protons via

pion production, with standard branching ratios (∼ 1/3 to each)

and because our spectral bins are relatively coarse-grained assume

the energy distribution of the injected leptons from a given pro-

ton energy T is simply given by the expected mean factor Te± =
αpe± Tp (with the weighted mean αpe± ≈ 0.12 given by integrat-

ing over the spectra of secondary energies at the scales of in-

terest; see Moskalenko & Strong 1998; Di Bernardo et al. 2013;

Reinert & Winkler 2018), so σp→e±(Te± ,final = αpe± Tp,initial) ≈
(1/3)σeff,p. We similarly treat the production rate for p̄ from p

(which overwhelmingly dominates production) with the effective

integrated cross-section σp→ p̄ ≈ 1.4mb
√

s̃p
0.6

exp[−(17/
√

s̃p)
1.4]

with
√

s̃p = 1.87654
√

1+TGeV/1.87654 (which includes produc-

tion of e.g. n̄ which rapidly decay to p̄) with again a weighted-

mean energy T ′ ≈ 0.1T of the primary (Di Mauro et al. 2014; Win-

kler 2017; Korsmeier et al. 2018; Evoli et al. 2018, and references

therein).

The vast majority of B and Be stem from fragmentation of C,

N, and O. Rather than follow C, N, and O separately, since their

primary spectra and dynamics are quite similar, we simply follow

a “CNO” bin, which is the sum of C, N, and O individually (so for

processes like fragmentation we simply sum the weighted cross-

sections of each) assuming Solar-like C-to-N-to-O ratios within

each bin and cell. We have also experimented with following C

and O separately, and find our approximation produces negligible

∼ 10%-level errors, much smaller than other physical uncertain-

ties in our models. We then calculate production cross-sections for

B, stable Be (7Be + 9Be), and 10Be appropriately integrated over

species and isotopes, from the fits tabulated in Moskalenko & Mash-

nik (2003); Tomassetti (2015); Korsmeier et al. (2018); Evoli et al.

(2018). Here p′ is calculated assuming constant energy-per-nucleon

in fragmentation (i.e. T (p′, s′) = (Nnuc
s′ /Nnuc

s )T (p, s) with Nnuc the

nucleon number). For completeness we also follow B → Be with

σB→7,9Be ≈ 12T−0.022
GeV mb and σB→10Be ≈ 12.5T 0.018

GeV mb (again as-

suming constant energy-per-nucleon).

For radioactive decay, we consider 10Be →10B with ḟ
decay

cr,B =

− ḟ
decay

cr,10Be
, i.e. each primary produces one secondary, with negligible

energy loss (T ′ ≈ T ), but this is negligible as a source of secondary

B production.

2.3.3 Adiabatic and Streaming/Gyro-Resonant/Re-Acceleration

Terms

From the focused-transport equation and quasi-linear scattering the-

ory, there are three “re-acceleration” and/or second-order Fermi

(Fermi-II) terms, all of which we include: the “adiabatic” or “con-

vective” term D : ∇u, the “gyro-resonant” or “streaming” loss term

∝ Dpµ and the “diffusive” or “micro-turbulent” reacceleration term

∝ Dpp. These immediately follow from the usual focused CR trans-

port equation plus linear scattering terms, and can be written as a

mean evolution in momentum space (see § C3) as:

ṗ

p
=−D : ∇u−〈µ〉 D̄pµ

p
+

D̄pp

p2

p

f̄0

∂ f̄0

∂p
(7)

=−D : ∇u− ν̄
[

f̄1

f̄0

v̄A

v
+χψ

v2
A

v2

]
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CR Spectra in Galaxies 7

where ψ = ψ j,n,s is the local power-law slope of the three-

dimensional CR DF (defined as f̄0 ∝ pψ; see § 2.2.3), so for all

energies and Galactic conditions we consider ψ ∼−4 is < 0.7 The

physical nature and importance of these is discussed below and

in detail in Hopkins et al. (2021a), but briefly, this includes all

“re-acceleration” terms to leading order in O(u/c), and general-

ize the expressions commonly seen for these. The “adiabatic” (non-

intertial frame) term reduces to the familiar −(∇·u)/3 as the DF

becomes isotropic (χ→ 1/3, D→ I/3), but extends to anisotropic

DFs and is valid even in the zero-scattering limit. The Dpp term pro-

duces a positive-definite momentum/energy gain ṗ/p = |ψ|χv2
A/v2

(since ψ < 0 for any physical DF of interest here); for the com-

monly adopted assumptions that give rise to the isotropic strong-

scattering Fokker-Planck equation for CR transport we would have

D̄pp → p2 v2
A/9Dxx and recover the usual “diffusive re-acceleration”

expressions, but again the term here is more general, accounting for

finite β and weak-scattering/anisotropic- f (µ) effects. The Dpµ term

is often ignored in historical MW CR transport models (which im-

plicitly assume ν̄+ = ν̄−) but this gives rise to the “gyro-resonant”

or “streaming” losses (Wiener et al. 2013b,a; Ruszkowski et al.

2017; Thomas & Pfrommer 2019). Specifically, since gyro-resonant

instabilities/perturbations are excited by the CR flux in one direc-

tion (and damped in the other), if these contribute non-negligibly

to the scattering rates then generically ν̄+ ≫ ν̄− or ν̄+ ≪ ν̄−, so

v̄A ≈ ±vA, in which case the D̄µp term is almost always dominant

over the D̄pp term dimensionally. In this regime (i.e. if ν̄+ 6= ν̄−),

then in flux-steady-state (Dt f̄1 → 0) the combined D̄pµ and Dpp term

in Eq. 7 becomes negative-definite with ṗ/p ∼ −vA/3ℓgrad where

ℓgrad ≡ P0/|b̂ ·∇P0|.
Given the CR energies of interest, in our default simulations we

will assume self-confinement contributes non-negligibly (or other

effects prevent exact ν̄+, ν̄− cancellation; see § 3.3) so v̄A f̄1 ≈
vA | f̄1|, self-consistently including all terms in Eq. 7. We run and

discuss alternate tests with v̄A → 0 and different expressions for Dpp

or the “diffusive reacceleration” terms but generically find none of

these change our conclusions.

2.4 Default Input Parameters (Model Assumptions)

We vary the physics and input assumptions in tests below, but for

reference, the default model inputs assumed are as follows.

2.4.1 Injection

By default we assume all SNe (Types Ia & II) and fast (OB/WR)

winds contribute to Fermi-I acceleration with a fixed fraction ǫinj
cr ∼

0.1 of the initial (pre-shock) ejecta kinetic energy going into CRs

(and a fraction ǫe ∼ 0.02 of that into leptons). We adopt a single-

power-law injection spectrum in momentum/rigidity with j(R) ∝
R−ψinj and ψinj ∼ 4.2 (i.e. a “canonical” predicted injection spec-

trum; discussed in detail in § 3.1). We will assume most accel-

eration happens at early stages after a strong shock forms, when

the shocks have their highest velocity/Mach number and the dissi-

pation rates are also highest – this occurs after the reverse shock

forms, roughly when the swept-up ISM mass is about equal to the

ejecta mass (Mswept ≈ Mej). Equivalently, given that most of the

shock energy injected into the ISM, and therefore CR energy, comes

from core-collapse SNe, we obtain nearly-identical results if we in-

stead assume that the injection is dominated by shocks with velocity

7 Note that Hopkins et al. (2021a) wrote a similar expression to our Eq. 7,

but with ψ replaced by −2(1+β2) in the D̄pp term. Their expression came

from considering the behavior of the mean momentum of a “packet” of CRs

with a δ-function-like DF, as opposed to the simpler behavior here where

we consider a piecewise power-law so (p/ f̄0)(∂ f̄0/∂p) = ψ by definition.

Nevertheless, it is striking that over the energy range MeV-TeV, these give

quite-similar prefactors (both ∼−4) despite reflecting wildly different DFs.

& 2000kms−1. We show below that slower (e.g. ISM or AGB, or

late-stage Sedov/snowplow SNe) shocks cannot contribute signifi-

cant Fermi-I acceleration of the species followed.

2.4.2 Scattering Rates

In future studies we will explore physically-motivated models for

scattering rates as a function of local plasma properties, pitch an-

gle, gyro-radius, etc. But in this first study we restrict to sim-

ple phenomenological models, where we parameterize by default

the (pitch-angle-weighted) scattering rates as a single power-law

ν̄ = ν̄0 (v/c)(R/R0)
−δ with R0 ≡ 1GV (e.g. ν̄ ∝ v/ℓscattering where

ℓscattering ∝ Rδ is some characteristic length). In the strong-scattering

flux-steady-state limit, this gives a parallel diffusivity κ‖ = v2/3 ν̄
or, in the isotropic Fokker-Planck equation ∂t f =∇(Dxx ∇ f ), Dxx =
v2/9 ν̄, so reduces to the common assumption in phenomenologi-

cal Galactic CR models that Dxx = βD0 (R/R0)
δ . Here our default

models (motivated by both historical studies and the comparison to

observations discussed below) take ν̄0 ≈ 10−9 s−1, δ = 0.5, equiva-

lent to D0(R = 1GV)≈ 1029 cm2 s−1.

2.5 Initial Conditions

In a follow-up paper, we will present full cosmological simu-

lations from z ≈ 100, as in our previous single-bin CR stud-

ies (see Hopkins et al. 2021c,e, 2020b, 2021d; Ji et al. 2020,

2021b and Paper II). These, however, are (a) computationally

expensive, and (b) inherently chaotic owing to the interplay of

N-body+hydrodynamics+stellar feedback (Su et al. 2017, 2018b;

Keller et al. 2019; Genel et al. 2019), which makes it difficult

if not impossible to isolate the effects of small changes in input

assumptions (e.g. the form of ν̄(R)) and to ensure that we are

comparing to a “MW-like” galaxy. Because we focus on Solar-

neighborhood observations, we instead in this paper adopt a suite of

“controlled restarts” as in Orr et al. (2018); Hopkins et al. (2018b);

Angles-Alcazar et al. (2020). We begin from a snapshot of one of

our “single-bin” CR-MHD cosmological simulations from Paper II,

which include all the physics here but treat CRs in the “single-

bin” approximation from § 1. Illustrations of the stars and gas in

these systems are shown in Fig. 1. Per § 1, these initial conditions

have been extensively compared to MW observations to show that

they broadly reproduce quantities important for our calculation like

the Galaxy stellar and gas mass in different phases (El-Badry et al.

2018b; Hopkins et al. 2020b; Gurvich et al. 2020), molecular and

neutral gas cloud properties and magnetic field strengths (Gusze-

jnov et al. 2020a; Benincasa et al. 2020), gas disk sizes and mor-

phological/kinematic structure (El-Badry et al. 2018a; Garrison-

Kimmel et al. 2018), SNe and star formation rates (Orr et al. 2018;

Garrison-Kimmel et al. 2019b), γ-ray emission properties (pro-

vided reasonable CR model choices; Chan et al. 2019; Hopkins

et al. 2021e), and circum-galactic medium properties in different

gas phases (Faucher-Giguere et al. 2015; Ji et al. 2020), suggesting

they provide a reasonable starting point here. We take galaxy m12i

(with the initial snapshot from the “CR+(κ= 3e29)” run in Paper II)

as our fiducial initial condition, though we show results are similar

for galaxies m12f and m12m.

We re-start that simulation from a snapshot at redshift z≈ 0.05,

using the saved CR energy in every gas cell to populate the CR

DF for all species, assuming an initially isotropic DF with the ini-

tial spectral shape and relative normalization of different species

all set uniformly to fits to the local ISM (LISM) spectra (Bisschoff

et al. 2019). The spectra are re-normalized to match the snapshot

CR energy density8 before beginning, to minimize any initial per-

turbation to the dynamics. We then run for ≈ 500Myr to z = 0. As

8 Throughout this paper, when we refer to and plot the CR “energy density”

ecr, we will follow the convention in the observational literature and take
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discussed in detail and demonstrated in numerical tests in § C, this

is more than sufficient for all quantities in the local ISM (LISM;

which we use interchangeably with warm-phase ISM gas at Solar-

like galacto-centric radii and densities ∼ 0.1 − 1cm−3) to reach

their quasi-steady-state values (which should physically occur on

the loss/escape timescale in the LISM, maximized at ∼ 1−10Myr

around ∼ 1GeV) – only in the further CGM at > 10kpc from the

galaxy do CR transport timescales exceed ∼Gyr. We have con-

firmed this directly by comparing the simulation results at various

times spread over ∼ 100− 200Myr before z = 0; we discuss this

below but the variations in the median are generally much smaller

than the ±1σ range for different Solar-like locations. To test the in-

dependence of our results on the CR ICs, we have also re-started

simulations with zero initial CR energy in all cells. This produces a

more pronounced initial transient in the first couple disk dynamical

times (∼ 100 Myr) owing to the loss of CR pressure but converges

to the same equilibrium after somewhat longer physical time, and

all our conclusions are identical at z = 0. This also provides an in-

dependent test that the simulations have converged to steady-state

behaviors.

3 RESULTS & DISCUSSION

3.1 Working Models

3.1.1 Parameters: Single Power-Law Injection & Diffusion Can

Fit the Data

The first point worth noting is that it is actually possible to obtain

reasonable order-of-magnitude agreement with the Solar neighbor-

hood CR data, as shown in Fig. 2. This may seem obvious, but recall

that the models here have far fewer degrees of freedom compared to

most historical Galactic CR population models: the Galactic back-

ground is entirely “fixed” (so e.g. Alfvén speeds, magnetic geom-

etry, radiative/Coulomb/ionization loss rates, convective motions,

re-acceleration, etc. are determined, not fit or “inferred” from the

CR observations); we assume a universal single-power-law injec-

tion spectrum (with just two parameters entirely describing the in-

jection model for all species) and do not separately fit the injection

spectra for different nuclei but assume they trace the injection of

protons given their a priori abundances in the medium; and we sim-

ilarly assume a single power-law scattering rate ν(R) as a function

of rigidity to describe all species.

In our favored model(s), the injection spectrum for all species

is a single power-law with d j ∝ p−4.2 d3p (with all heavy species

relative abundance following their actual shock abundances), with

∼ 10% of the shock energy into CRs and ∼ 2% of that into lep-

tons, and the scattering rate scales as ν̄ ∼ 10−9 s−1βR
−(0.5−0.6)
GV .

Under the assumptions usually made to turn the CR transport equa-

tions into an isotropic Fokker-Planck diffusion equation, this cor-

responds to Dxx ≈ βD0 RδGV with δ in the range δ = 0.5− 0.6 and

D0 ≈ 1029 cm2 s−1.9

Briefly, we note in Fig. 2 that the largest statistical discrepancy

between the simulations and observations appears to be between the

flat values of p̄/p at high energies ∼ 10−300GV, where our model

±1σ predictions continue to rise by another factor ∼ 2− 3. This is

generically the most difficult feature to match, of those we compare,

while simultaneously fitting all other observations, and we will in-

vestigate in more detail in future work. It is interesting in particular

this to be the kinetic energy density (not including the CR rest mass energy),

unless otherwise specified.
9 In Appendix A, we also show that this translates to typical effective CR

“drift velocities” of roughly ∼ 300kms−1 (T/GeV)0.3 in Solar circle, mid-

plane LISM gas with densities n ∼ 1cm−3, but this can vary more signifi-

cantly with environment.

because it runs opposite to the recent suggestion that reproducing

p̄/p alongside B/C requires some “additional,” potentially exotic

(e.g. decaying dark matter) source of p̄ (Heisig 2020). But we cau-

tion against over-interpretation of our result for several reasons: (1)

the systematic detection/completeness corrections in the data and

(2) the physical p̄ production cross-sections at these energies re-

main significant sources of uncertainty (Cuoco et al. 2019; Heisig

et al. 2020); (3) the observations still remain within the ±2σ range,

so the LISM may simply be a ∼ 2σ fluctuation; (4) recalling that the

energy of a secondary p̄ is ∼ 10% the primary p, most of this dis-

crepancy occurs at such high energies that it depends sensitively on

the behavior of our highest-energy p and C bins – i.e. our “bound-

ary” bins; and (5) we are only exploring empirical models with a

constant (in space and time) scattering rate, while almost any phys-

ical model predicts large variations in ν̄ with local ISM environ-

ment, which can easily produce systematic changes in secondary-

to-primary ratios at this level (Hopkins et al. 2021e).

We also caution (as noted in § 2.2.2 and demonstrated in

Girichidis et al. 2020; Ogrodnik et al. 2021 and § C5) that the small

“step” features between CR spectral bins (in Fig. 2 and our subse-

quent plots) are a numerical artifact of finite sampling and the “bin-

centered” approximation for the spatial fluxes. This directly leads

to the “jagged” small-scale features evident in B/C and 10Be/9Be.

There, we follow standard convention and take the intensity ratio

of e.g. B-to-C at fixed CR kinetic energy per nucleon (T/A). But

recall (§ 2.2.3, Table C1), our spectral bins for different species are

aligned in rigidity, not necessarily in kinetic-energy-per-nucleon, so

when taking the ratios the bin edges are offset from one another for

different nucleons, producing the “jagged” or “odd-even” type fea-

tures spaced at semi-regular fractions of the bin widths. Obviously

these features should not be over-interpreted. Fortunately these ef-

fects are small compared to the full dispersion seen in Fig. 2 and to

the systematic differences between different Galactic environments

or scattering rate parameterizations shown below.

3.1.2 Comparison to Idealized, Static-Galaxy Analytic CR

Transport Models

The “favored” parameters (those which agree best with the ob-

servations) above in § 3.1.1 are completely plausible. The injec-

tion spectrum (ψinj ≈ 4.2) is essentially identical to the “canon-

ical” theoretically-predicted injection spectrum and efficiency for

first-order Fermi acceleration in SNe shocks (Bell 1978; Malkov &

Drury 2001; Spitkovsky 2008; Caprioli 2012). Considering how dif-

ferent the models are in detail, the favored scattering rate in § 3.1.1

and its dependence on rigidity are remarkably similar to the values

inferred from most studies in the past decade which have fit the CR

properties assuming a simple toy model analytic Galaxy model and

isotropic Fokker-Planck equation model for CR transport, provided

they allow for a CR “scattering halo” with size ∼ 5−10kpc (Blasi

& Amato 2012a; Vladimirov et al. 2012; Gaggero et al. 2015; Guo

et al. 2016; Jóhannesson et al. 2016; Cummings et al. 2016; Ko-

rsmeier & Cuoco 2016; Evoli et al. 2017; Amato & Blasi 2018).

Consider e.g. De la Torre Luque et al. 2021 , who compare the

most recent best-fit models from both GALPROP and DRAGON,

which both favor a CR scattering halo of scale-height ∼ 7kpc with

a very-similar Dxx ∼ 0.6 × 1029 cm2 s−1 for ∼ 1 GV protons and

δ ∼ 0.4− 0.5. Korsmeier & Cuoco (2021) reached similar conclu-

sions.10 This is also consistent with a number of recent studies using

10 In detail Korsmeier & Cuoco (2021) more broadly considered an ex-

tensive survey of GALPROP model variations with various statistical mod-

eling methods to show that the combination of Li, Be, B, C, N, O re-

quires halo heights zh & 5kpc across models, in turn requiring δ ≈ 0.5 and

Dxx ∼ 0.6× 1029 cm2 s−1 at ∼ 1GV. But they note that larger halo heights

(with correspondingly larger diffusivities scaling as Dxx ∝ z
0.8−1.0
h

) are also
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calorimetric limit (Lacki et al. 2011; Fu et al. 2017; Lopez et al.

2018), which inferred that a value of ν̄ ≈ 10−9 s−1 at E ≈ 1GeV

was required to reproduce the γ-ray observations.

This is by no means trivial, however. Some recent studies us-

ing classic idealized analytic CR transport models have argued that

features such as the “turnover” in B/C at low energies or minimum

in e+/e− require strong breaks in either the injection spectrum or

dependence of ν̄(p) (e.g. favoring a D(p) which is non-monotonic

in momentum p and rises very steeply with lower-p below ∼GeV;

Strong et al. 2011), or artificially strong re-acceleration terms (much

larger than their physically-predicted values here) which would im-

ply (if true) that most of the CR energy observed actually comes

from diffusive reacceleration, not SNe or other shocks (Drury &

Strong 2017), or some strong spatial dependence of ν̄ in differ-

ent regions of the galaxy (Liu et al. 2018). Other idealized ana-

lytic transport models (Maurin et al. 2010; Trotta et al. 2011; Blasi

2017; Yuan et al. 2020) have argued for δ in the range ∼ 0.3− 1

and some for ν̄ as large as ∼ 10−7 s−1 at ∼ 1GeV (equivalent to

D0 ∼ 1027 cm2 s−1). These go far outside the range of models which

we find could possible reproduce the LISM observations.

The fundamental theoretical uncertainty driving these large de-

generacies in previous studies is exactly what we seek to address

in this study here: the lack of a well-defined galaxy model. In the

studies cited above, quantities like the halo size, source spatial dis-

tribution, Galactic magnetic field structure and Alfvén speeds, key

terms driving different loss processes (ionization, Coulomb, syn-

chrotron, inverse Compton), adiabatic/convective/large-scale turbu-

lent re-acceleration, are all either treated as “free” parameters, or

some ad-hoc empirical model is adopted. For example, it is well-

known that if one neglects the presence of any “halo”/CGM/thick

disk (and so effectively recovers a classic “leaky box” model with

sources and transport in a thin . 200pc-height disk), then one

typically infers a best-fit with much lower D0 ∼ 1027 cm2 s−1 and

“Kolmogorov-like” δ ∼ 0.3 (Maurin et al. 2010). At the opposite

extreme, assuming the “convective” term has the form of a uniform

vertical disk-perpendicular outflow everywhere in the disk (neglect-

ing all local turbulent/fountain/collapse/inflow/bar/spiral and other

motions, and assuming a vertically-accelerating instead of decel-

erating outflow) – the inferred δ can be as large as ∼ 1 (Maurin

et al. 2010). Similarly, in these analytic models one can make dif-

ferent loss and/or re-acceleration terms as arbitrarily large or small

as desired by assuming different Alfvén speeds, densities, neutral

fractions, etc., in different phases; so e.g. models which effectively

ignore or artificially suppress ionization & Coulomb losses will re-

quire a break in the injection or diffusion versus momentum p, to

reproduce the correct observed spectra.

Briefly, it is worth noting that in some analytic models, es-

pecially the classic “leaky box” models, it is common to refer to

the residence or loss or escape times of CRs. We discuss these

further below, but readers interested in more details can see Ap-

pendix A, where we explicitly present the CR drift velocities and

loss timescales in our fiducial simulation as a function of species

and energy for LISM conditions.

3.1.3 On the Inevitability of the “Halo” Size

One particular aspect requires comment here: in cosmological

galaxy formation models, a very large “halo” is inevitable. Indeed,

as noted in § 1, in modern galaxy theory and observations, the re-

gion within < 10kpc above the disk would not even be called the

“halo” but more often the thick disk or corona or disk-halo inter-

face. It is well-established that most of the cosmic baryons asso-

ciated with galaxies are located in the CGM reaching several hun-

dred kpc from galaxy centers, distributed in a slowly-falling power-

law-like (not exponential or Gaussian) profile with scale lengths

∼ 20− 50kpc (Maller & Bullock 2004; Steidel et al. 2010; Martin

et al. 2010; Werk et al. 2014; Sravan et al. 2016; Tumlinson et al.

2017). This is visually obvious in Fig. 1.

Thus, from a galaxy-formation point of view, it is not at all

surprising that models with a large “CR scattering halo” are ob-

servationally favored and agree better with realistic galaxy mod-

els like those here. What is actually surprising, from the galaxy

perspective, is how small the best-fit halo sizes in some analytic

Galactic CR transport models (e.g. ∼ 7− 8kpc, in the references

above) actually are. These ∼ 5 − 10kpc sizes are actually much

smaller than the scale length for the free-electron density or mag-

netic field strength inferred in theoretical and observational studies

of the CGM (see references above and e.g. Lan & Prochaska 2020).

However, there is a simple explanation for this: as parameterized in

most present analytic models for CR transport, the “halo size” does

not really represent the scale-length of e.g. the magnetic energy or

free-electron density profile; rather, the “halo size” in these mod-

els is more accurately defined as the volume interior to which CRs

have an order-unity probability of scattering “back to” the Solar po-

sition. In the CGM (with sources concentrated at smaller radii), for

any spatially-constant diffusivity, the steady-state solution for the

CR kinetic energy density is a spherically-symmmetric power-law

profile with ecr ∝ 1/κr (Hopkins et al. 2020b), so the characteris-

tic length-scale for scattering “back into” some r = r0 is just ≈ r0.

In other words, in any slowly-falling power-law-like medium with

spatially-constant diffusivity, the inferred CR scattering “halo scale

length” at some distance R0 ≈ 8kpc from the source center (e.g.

the Solar position) will always be Lhalo ≈ R0 to within a factor of

∼ 2 depending on how the halo and its boundaries are defined (and

indeed this is what models infer), more or less independent of the

actual CGM ne or B-field scale-length (generally ≫ R0).

Empirically, Korsmeier & Cuoco (2021) argue for a similar

conclusion from a comparison of parameterized analytic CR scat-

tering models to LISM data. They show that so long as the assumed

scattering halo volume is sufficiently extended (zh & 5kpc, in their

models), the CR observables at the Solar position become essen-

tially independent of its true size (zh) – i.e. the “effective” scattering

halo size becomes constant.

3.2 Effects of Different Physics & Parameters

We now briefly discuss the qualitative effects of different variations

on CR spectra, using tests where we fix all parameters and physics

but then “turn off” different physics or adjust different parameters

each in turn, with resulting spectra shown in Figs. 3, 4, & 5. Here,

our “reference” model is that in Fig. 2. We have considered a set

of simulations varying other parameters simultaneously, and in Ap-

pendix B, we repeat the exercise in Figs. 3, 4, & 5, but for variations

with respect to a different reference model with larger scattering rate

and different dependence of scattering on rigidity. This allows us to

confirm that all of our qualitative conclusions here are robust.

It is useful to define some reference scalings, by reference to a

toy leaky-box type model: if the CR injection rate in some p inter-

val were d j = j0 (p/p0)
−ψinj d3p, and the CR “residence time” (or

escape time) were ∆tres =∆t0 (p/p0)
−ψres , then the observed num-

ber density would scale as dNobs =∆t d j =∆t0 j0 (p/p0)
−ψN

obs d3p.

For the more usual units of intensity we have dI ∝ dN/dt dAdT ∝
p−ψobs with ψobs = ψinj +ψres −2. Again, the explicit loss or escape

timescales calculated in LISM conditions in our reference simula-

tion from Fig. 2, for each of the processes discussed below, are pre-

sented in Appendix A, to which we refer for additional details.

• Injection Spectra: As expected, the CR spectral shapes scales

with the injection spectrum, shown in Fig. 3. However, the scal-

ing is not perfectly linear as the above toy model would imply:

changing the injection ψinj by some ∆ψinj, we obtain ∆ψobs ∼
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14 Hopkins et al.

cially disable ionization losses, the low-E spectra of p, e−, CNO,

and many other species are significantly more shallow, and the B/C

ratio also becomes flat below ∼ 100− 200MeV (in conflict with

the Voyager data). At these densities and diffusivities, the effect of

disabling Coulomb losses alone is relatively weak compared to ion-

ization, however if we either consider the spectrum in much more

tenuous gas (a poorer match to observations overall) or higher dif-

fusivities, then the relative role of Coulomb losses increases until

both are comparable. The Coulomb or ionization loss time at low

energies is ∼ 1Myr(T/10MeV)(n/cm−3)−1 Z−2, so this is easily

shorter than CR diffusive lifetimes at low-E (see also § A, Figs. A2

& A3), and they (Coulomb & ionization losses) scale almost iden-

tically, the only difference is whether they act in neutral or ion-

ized gas. So if CRs are spread uniformly in volume (e.g. owing to

efficient diffusion) then the ratio of losses integrated over CR tra-

jectories or volume is just the ratio of total ISM+inner CGM gas

mass in ionized vs neutral phases (see e.g. Hopkins et al. 2021e,

for a derivation of this), which is O(1) in the ISM (with modestly

more gas in neutral phases, but not by a large factor). However as

shown below, the lowest-energy CRs are not infinitely-diffusive, so

the CR energy density and loss rates at low rigidities are higher in

denser gas, which tends to be neutral (explaining why ionization

losses have a larger integrated effect at low rigidities than Coulomb

losses). In either case, for low-energy hadrons (with γ ∼ 1, i.e.

not ultra-relativistic), this gives ∆tres ∝ p2 (mildly non-relativistic)

or ∆tres ∝ p3 (highly non-relativistic; at T ≪ 100MeV), giving

ψobs ∼ 0 (assuming the usual injection spectrum), i.e. a “flat” in-

tensity at intermediate energies turning over to ψobs ∼ −0.8, i.e.

an intensity ∝ T 0.4 in the low-energy/sub-relativistic regime, as

observed. For electrons e− (with β ≈ 1 and γ ≫ 1) this gives

∆tres ∝ p1, so ψobs ∼ 1 (intensity ∝ T−1), also as observed.

• Hadronic/Catastrophic/Spallation/Pionic/Annihilation Losses:

Obviously, we cannot get the correct secondary-to-primary ratios

if we do not include these processes; our question here is whether

these processes strongly modify the primary spectrum. Annihilation

serves to “cut off” the spectrum of p̄ and e+ around their rest-mass

energies. Radioactive losses here only shape the 10Be ratios. As for

the spectra of CRs, at LISM conditions, the e− and p population

(as required by the e+/e− and p̄/p ratios and γ-ray luminosity) is

mostly primary, with relatively modest catastrophic losses, so we

see in Fig. 4 that such losses do not dramatically reshape the spec-

tra of these primaries (of course, they can do so in extreme envi-

ronments like starbursts, which reach the proton calorimetric limit).

Nonetheless removing the actual losses from e.g. pionic+hadronic

processes does produce a non-negligible increase in the p spectrum,

and artificially boosts B/C owing to the “retained” primaries pro-

ducing more B, and the lack of losses of B from spallation, which

are actually significant under the conditions where B/C would nor-

mally be maximized.

• Inverse Compton & Synchrotron Losses: Fig. 4 also shows that

if we disable inverse Compton (IC) & synchrotron losses, the high-

E e− and e+ spectra become significantly more shallow, basically

tracing the shape of the p spectrum (set by injection+diffusion).

The magnitude of the change to the spectrum therefore depends

on the assumed ν̄(p) scaling (compare e.g. Appendix B, where

we consider a reference model with δ ∼ 1, where the effect is

somewhat smaller). For high-energy leptons, IC+synchrotron loss

times are ∼ 1Myr(T/100GeV)−1 [(uB + urad)/3eVcm−3]−1, so

shorter than diffusive escape times (again see § A, Figs. A2 &

A3), and this ∆tres ∝ p−1 produces ψobs ∼ 3, as observed. Since

IC & synchrotron scale identically with the radiation & magnetic

energy density, respectively, whichever is larger on average domi-

nates (volume-weighted, since CR transport is rapid at these p).

Even in the MW, it is actually not always trivial that the

synchrotron losses should be comparable to IC losses, since

in many Galactic environments, uB ≪ urad. Consider some ba-

sic observational constraints in different regions, noting uB =
0.02eVcm−3 B2

µG. First, e.g. the CGM, where B ≪ 1µG (Farnes

et al. 2017; Prochaska et al. 2019; Vernstrom et al. 2019; Lan &

Prochaska 2020; Malik et al. 2020; O’Sullivan et al. 2020), but

urad cannot be lower than the CMB value ≈ 0.3eVcm−3; or at

the opposite extreme consider typical star-forming complexes or

OB associations or superbubbles (where most SNe occur) with

observed upper limits from Zeeman observations in e.g. Crutcher

et al. (2010); Crutcher (2012) of 〈|B|〉. 10µG(n/300cm−3)2/3 ∼
5µG(MGMC/106 M⊙)

−1/3 (inserting the GMC size-density rela-

tion; Bolatto et al. 2008) compared to observed urad ∼ 300eVcm−3

averaged over the entire regions out to ∼ 200pc and ∼ 104 eVcm−3

in the central ∼ 40pc (Lopez et al. 2011; Pellegrini et al. 2011;

Barnes et al. 2020; Olivier et al. 2020).13 But the ratio uB/urad

is maximized in the WIM phases with n ∼ 0.1 − 1cm−3, urad ∼
1.3eVcm−3 (the ISRF+CMB; Draine 2011) and B ∼ 1 − 10µG

(uB ∼ 0.02−2eVcm−3 Sun & Reich 2010; Jansson & Farrar 2012;

Haverkorn 2015; Beck et al. 2016; Mao 2018; Ma et al. 2020b). In

Fig. 6, we show a quantitative plot of this for the same simulation

as Fig. 4, comparing the energy density in different (radiation, mag-

netic, CR, thermal) forms, as a function of local gas density, just

for gas in the Solar circle. This agrees well with the broad obser-

vational constraints above, and indeed shows that uB/urad is max-

imized in the WIM phases. The fact that this is a volume-filling

phase, and that CRs diffuse effectively (so that the total synchrotron

emission is effectively a volume-weighted integral) ensures the syn-

chrotron losses are not much smaller than the inverse Compton in

the integral, allowing for the standard arguments (e.g. Voelk 1989)

to explain the observed far infrared (FIR)-radio correlation (at least

within the > 1dex observed 90% inclusion interval; Magnelli et al.

2015; Delhaize et al. 2017; Wang et al. 2019).14

As a consequence of this, in Fig. 4, we see that the effect of re-

moving synchrotron losses on the e− spectrum is generally compa-

rable to the effect of removing IC losses, but the synchrotron losses

are somewhat larger at energies . 20GeV which contain most of

the e− energy (thus in a “bolometric” sense synchrotron dominates

over IC losses), while IC losses slightly dominate at even larger en-

ergies. This owes to the fact that higher-energy CRs (being more

diffusive) sample an effectively larger CR scattering halo, therefore

with loss rates reflecting lower-density CGM gas where urad & uB.

• Re-Acceleration (Convective, Streaming/Gyro-Instability, and

Diffusive): We discuss the different “re-acceleration” terms in de-

tail below in § 3.3. In Fig. 4, we see that removing each of the

three re-acceleration terms in turn has relatively small effects. The

convective term can have either sign, while the “streaming” term is

almost always a loss term, and the “diffusive reacceleration” term is

a gain term; on average for CRs we see the sum of the three (usually

dominated by the convective term) results in a weak net loss term

on average.

For the sake of comparison with historical Galactic CR transport

models which usually only include the “diffusive re-acceleration”

term with an ad-hoc or fitted coefficient, we run one more test

(“Maximal Diffusive Reacceleration x10”) where we artificially

(1) turn off both the convective and streaming re-acceleration/loss

13 This can also be derived taking the observed nearly-constant MW cloud

surface density and star formation efficiency and convolving with the IMF

for a young SSP, see Lee & Hopkins (2020).
14 It is worth noting that other authors have shown that even if IC losses

are significantly larger than synchrotron, the FIR-radio correlation is not

strongly modified, when one accounts for secondary processes, radiation

escape, and other effects (Lacki et al. 2010; Lacki & Thompson 2010; Wer-

hahn et al. 2021c).
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3.3 On Re-Acceleration, “Adiabatic,” and “Streaming Loss”

Terms

We generically find that re-acceleration plays a modest to mini-

mal role (see Fig. 3). But there are three different “re-acceleration”

terms, per Eq. 7, and contradictory conclusions in the literature. We

therefore discuss the physics of each in turn, to assess their rela-

tive importance (for more details and explicit values of the asso-

ciated loss/gain timescales for each, see Appendix A). We will dis-

cuss physical behaviors in both self-confinement (SC) and extrinsic-

turbulence (ET) limits.

3.3.1 “Adiabatic” Term

First, consider the “adiabatic” term, ṗ/p = ṗad/p = −D : ∇u ∼
O(∇·u). Despite its simplicity, in a complicated flow there are con-

tributions to ∇u from modes on all scales λ, which we can decom-

pose as ∼ δu(λ)/λ. In a standard turbulent cascade, δu(λ)/λ ∼
1/teddy(λ) ∼ λ−(1/2−2/3) (depending on the cascade model) is

larger on small scales. Galactic fountains, pure gravitational col-

lapse/fragmentation cascades, etc., all produce similar results in

this respect (see Elmegreen 2002b; Vázquez-Semadeni et al. 2003;

Krumholz & McKee 2005; Klessen & Hennebelle 2010; Kim et al.

2013; Krumholz & Burkert 2010; Ballesteros-Paredes et al. 2011;

Kim & Ostriker 2015b). However, the quantity of interest (what

actually determines the net effect on the CR spectrum and en-

ergy) is not actually ṗad/p, but a mean (volume-averaged) time-

integrated (over the CR travel time) 〈 ṗad〉, which it is well-known

from many galactic/ISM theoretical and observational studies (Sta-

nimirovic et al. 1999; Elmegreen 2002a; Décamp & Le Bourlot

2002; Mac Low & Klessen 2004; Block et al. 2010; Bournaud et al.

2010; Hopkins 2013a; Squire & Hopkins 2017) is dominated by the

largest-scale modes which are coherent over λ ∼ H, the disk scale

height.16 Briefly, this can be understood with a simple toy model.

Since ∇u has either sign, and modes on small scales λ compared

to the total CR travel length ℓ along b̂ are un-correlated, then av-

eraging over CR paths (assuming a diffusive 3D random walk in

space with λ≪ ℓ) or averaging over volume d3x (equivalent if the

CRs are in steady-state or we assume ergodicity), the coherent ef-

fect of the modes is reduced by a factor of ∼ N
−1/2

modes ∼ (ℓ/λ)−3/2.

So for any realistic spectrum the largest coherent modes domi-

nate the integral, and for any realistic disk structure these must

have λ ∼ MIN(ℓ, H) ∼ H (for the energies of interest), giving

O(〈D : ∇u〉)∼O(t−1
dyn) with the disk dynamical time tdyn ∼ 35Myr

at the Solar position.

The magnitude of the coherent effect of this term can then

be estimated as ∆p/p ∼O(∆tres 〈D : ∇u〉)∼O(∆tres/tdyn). Since

at R & 1GV, the residence time ∆tres decreases with R, this term

is most important at lower energies, as expected. The sign is not

a-priori obvious, however. But again note the averaging above:

if CRs diffuse efficiently, so the CR density is not strongly de-

pendent on the local gas density, then the CR travel time integral

above is dominated by the most volume-filling phases of the ISM

and inner halo/corona traversed. These diffuse phases are the ones

most strongly in outflow, so more often than not, the appropriately-

weighted 〈D : ∇u〉> 0 (for detailed discussion of how the adiabatic

term depends on ISM phases, see Pfrommer et al. 2017; Chan et al.

2019), and the net effect of this term is usually to decrease CR en-

ergies. Because the effect is weaker at higher CR energies, in a vol-

umetric sense this has the net effect of making the CR spectra more

16 For our purposes, the largest modes with λ ∼ H where H is the disk

scale-height or Toomre length have, by definition in a trans or super-

sonically turbulent ISM, |∇u| ∼ Vc/rdisk ∼ 1/tdyn, where tdyn is the galac-

tic dynamical time (Elmegreen & Efremov 1997; Gammie 2001; Hopkins

2013b; Hopkins & Christiansen 2013).

shallow (i.e. if Jobs ∝ p−α, this decreases α). But we stress, again,

that the sign of the effect will be different in different Galactic en-

vironments.

3.3.2 “Streaming” Term

Next consider the Dpµ or “streaming” term ṗ = ṗst =−〈µ〉 D̄pµ or

ṗst/p=−ν̄ (v̄A f̄1)/(v f̄0) =−ν̄ (v̄A/c)F ′
e /(3cP′

0), where F ′
e and P′

0

are the CR energy flux and pressure in a narrow interval in p. In SC-

motivated models, as discussed in detail in Hopkins et al. (2021a)

and noted above, the asymmetry in ν+ and ν− gives v̄A f̄1 ≈ vA f̄1, so

the ratio of the “streaming” Dµp to “diffusive” Dpp terms is always

≥ Fe/vA e ∼ veff/vA (where veff is the effective bulk transport speed

of CRs) – i.e. it dominates whenever the CRs move at trans or super-

Alfvénic speeds, which is usually true. Moreover, as shown in Hop-

kins et al. (2021a) or seen by plugging into Eq. 1-2, in flux-steady-

state the sum of these two terms becomes ṗst/p =−ν̄ [ f̄1/ f̄0 v̄A/v−
χψ v2

A/v2] → −[vA |b̂ · ∇P0|/3P0 + ν̄ |ψ/(2 + 2β2))|(vA/γ β c)2].

This term is negative-definite, representing the “streaming losses”

(energy lost to gyro-resonant instability as the CRs move), and the

leading term is ∼ vA/ℓgrad, cr where ℓgrad, cr = 3P0/|b̂ ·∇P0|. Compar-

ing this to the magnitude of the adiabatic term, we have | ṗad/ ṗst| ∼
(|u|/vA)(ℓgrad, cr/ℓgrad,u) & 1. Thus the “adiabatic” term is almost

always larger than the “streaming” term, because (a) on galaxy

scales the bulk turbulent and convective/fountain/inflow/outflow

motions are trans or super-Alfvénic (|u| & vA), and (b) CR diffu-

sion/streaming means that the CR pressure profile is almost always

smoother than the local gas velocity structure (ℓgrad, cr ≫ ℓgrad,u).

In ET-motivated historical Galactic CR transport models, this

Dpµ term is often neglected, implicitly assuming that the scattering

modes are exactly symmetric in the co-moving and Alfvén frames

(ν+(µ) = ν−(µ), so v̄A → 0). In reality, multiple effects break this

degeneracy: for example gyro/streaming instabilities (both resonant

and non-resonant) excite modes in one direction and damp in the

other, giving ν+ ≫ ν− or ν+ ≪ ν− (depending on the sign of 〈µ〉),
giving the SC behavior above. Even if these instabilities are negligi-

ble, symmetry is broken by advective/transport terms, potentially at

the order-unity level (see Zweibel 2017) – the symmetry-breaking

would have to be smaller than O(vA/c) for the Dpµ term to be much

smaller than the Dpp term.

3.3.3 “Diffusive” Term

Now consider the Dpp or “diffusive” term ṗ = ṗdi ∼ 4 D̄pp/p2 ∼
ν̄ 4χ(vA/v)2. First note, as shown in Hopkins et al. (2021a), that

this term vanishes entirely when CRs approach a “free-streaming”

or highly-anisotropic distribution function limit (χ→ 0), and in any

weak-scattering (small ν) limit D : ∇u (which does not depend on

ν) trivially becomes the dominant re-acceleration term.

The Dpp term is also, as noted above, guaranteed to be sub-

dominant in steady-state to the “streaming” term if streaming in-

stabilities are significant (e.g. in SC-motivated models). So in or-

der to estimate the maximum possible importance of the term,

let us assume ET-type models, with a nearly-isotropic DF, and

relatively low-energy CRs (where ν is larger) giving ṗad/p ≈
(2/3) ν̄ v2

A/v2 ≈ (2/27)v2
A/Dxx. Using the fact that in this limit,

the diffusive bulk transport speed is veff ∼ Dxx/2ℓgrad, cr, the ratio

of the adiabatic ṗad term to this diffusive ṗdi term is | ṗad/ ṗdi| ∼
(10)(|u|/vA)(veff/vA)(ℓgrad, cr/ℓgrad,u)≫ 1, as each of the four (...)
terms is & 1. Even comparing this value of the diffusive term in

the ET limit to the “streaming” term, if we include the minimal

advective symmetry-breaking terms above, we see | ṗdi| . | ṗst| for

reasonable coefficients.

Finally, even if we ignore these other re-acceleration terms, it

is difficult for ṗdi to have a large effect: since the magnitude scales

as ∝ v2
A/Dxx ∝ ν̄ v2

A/c2, the re-acceleration time is ( ṗdi/p)−1 ∼
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is nowhere near sufficient, and faster OB/WR winds are so weakly

enhanced that they give essentially identical results to “pure ISM”

acceleration.

If we assume acceleration near SNe, we can constrain the to-

tal ratio of “entrained” mass per SNe at the time of acceleration,

to the initial ejecta mass. Again, if the only requirement for effi-

cient CR acceleration were a Mach number M & 5, then accel-

eration would be efficient throughout the end of the Sedov-Taylor

and well into the snowplow phase of remnant evolution – we test

this directly in Fig. 7 by running a model where the swept-up mass

Mswept is given by the mass at the end of the Sedov-Taylor phase.

In general, at the end of the Sedov-Taylor phase for a clustered

group of NSNe, the shock velocity is vshock ∼ 200kms−1, and the

swept-up ISM mass is ∼ 3000NSNe M⊙ (Cioffi et al. 1988; Walch

& Naab 2015; Kim & Ostriker 2015a; Hopkins et al. 2018a). The

initial ejecta metallicity has been completely diluted at this point,

predicting NO/NH ∼ 0.0005, again. Per § 2.2.4, if the accelera-

tion occurs from a mix of ambient gas and ejecta when the shock

has entrained a mass Mswept, then the CR NO/NH ≈ (N′
O, ej Mej +

N′
O, ISM Mswept)/(N

′
H, ej Mej + N′

H, ISM Mswept). If we instead assume

Mswept ≈ Mej (our default model), then we obtain NO/NH ∼ 0.008

for both core-collapse and Ia SNe, in excellent agreement with the

CR observations, as shown for C/H in Fig. 7 (we do not show O/H

but the conclusions are essentially identical). Theoretically, this is a

particularly interesting value, since it corresponds to the time when

the reverse shock fully-forms and propagates through the ejecta,

essentially to the “onset” of the shock and end of the ejecta free-

streaming phase. In any model where the CR acceleration efficiency

to ∼GeV is an increasing function of Mach number or an increas-

ing function of the shock kinetic energy dissipation rate, this will

be the phase which dominates acceleration.17 For completeness, in

Fig. 7 we also consider a model where CRs are accelerated with

“pure ejecta” abundances, i.e. Mswept → 0, which in contrast over

predicts the abundance of intermediate elements.

3.4.2 Energetics: Most CR Energy Comes From SNe Energy

If we assume that CR acceleration imparts a constant fraction

ǫ ∼ 0.1 of the thermalized/dissipated shock kinetic energy to CRs,

then we have directly verified that in our simulations most of the

CR energy comes from SNe, even if we allow CR injection at

ISM shocks of arbitrarily low Mach number. This is expected: inte-

grated over time and the stellar IMF, the kinetic energy input from

stellar mass-loss (dominated by fast O/B winds) is ∼ 10% that of

core-collapse SNe (Leitherer et al. 1999, 2014; Smith 2014; Rosen

et al. 2014; Eldridge et al. 2017). The input from proto-stellar ra-

diation and jets is only ∼ 1% of that from SNe, while the energy

from winds accelerated around remnants (e.g. PWNe, XRBs, etc.)

is even smaller still (Federrath et al. 2014; Bally 2016; Guszejnov

et al. 2021). From ISM shocks, our simulations reproduce the usual

result that the ISM turbulent dissipation rate is ∼ 1 − 5% of the

SNe energy input rate (Hopkins et al. 2012a; Faucher-Giguère et al.

2013; Kim & Ostriker 2015a; Martizzi et al. 2015; Orr et al. 2018),

17 For the usual definition of CR acceleration efficiency η(M), the flux

of accelerated CRs in a strong shock is Fcr ∼ η(M)(1/2)ρV 3
sh

(for shock

velocity Vsh and upstream density ρ), so the contribution to the total CR

energy in some time interval dt is dEcr ∝
∮

Fcr dt ∝ η(M) r2
sh V 3

sh
dt ∼

η(M) r2
sh V 2

sh drsh (with rsh the shock radius). But in the Sedov-Taylor phase

(rsh ∝ Vsh t ∝ t2/5) this is just ∝ η(M)d ln rsh with M ∝ r
−3/2

sh
. Thus,

any model where η(M) is an even weakly increasing function of M (as

expected qualitatively in most theories of diffusive shock acceleration, see

e.g. Blandford & Eichler 1987; Amato & Blasi 2005; Bell 2013) will pro-

duce most CR acceleration at the smallest rsh possible (i.e. the onset of the

Sedov-Taylor phase, when the reverse shock forms).

which also follows from the trivial order-of-magnitude expecta-

tion for super-sonic turbulence, Ė ∼ (1/2)Msweptσ
2
turb/tdyn, where

tcross = teddy(H) = H/σ = tdyn for any disk with Toomre Q ∼ 1,

given canonical MW-like values for Mswept ∼ 1010 M⊙ and σturb ∼
10kms−1 with tdyn = r/Vc at the effective radius ∼ 5kpc. What this

cannot tell us is “how close” to SNe CRs are accelerated (e.g. at

the onset or later in the shock), since by definition during e.g. the

Sedov-Taylor phase the shock energy is conserved – for this we re-

fer to the abundance argument.

3.4.3 Environment: Most SNe Explode in Super-Bubbles

If most CRs are accelerated “near” SNe (before they sweep up a

mass ≫ Mejecta), it follows trivially in simulations like ours that

most CRs are accelerated in super-bubble environments, simply

because the majority of SNe explode in such environments. Note

this is weighted by number or energy, so most SNe come from

∼ 10M⊙ stars that explode ∼ 30Myr after they reach the main se-

quence, well after more massive stars in the complex have exploded

and destroyed their natal GMCs; see e.g. Grudić et al. 2018a. We

have shown that the fact that most SNe energy goes into super-

bubble type structures (overlapping SNe shocks during the energy-

conserving phase) is true for FIRE simulations in a number of stud-

ies (Hopkins et al. 2012b, 2013c; Muratov et al. 2015; Escala et al.

2018), and many other simulation and observational studies have

shown the same (Walch & Naab 2015; Martizzi et al. 2015; Haid

et al. 2016; Fielding et al. 2018; Gentry et al. 2019; Li et al. 2019;

Grasha et al. 2019). And we also confirm this directly in Fig. 7.

Indeed, the fact that star formation (and therefore Type-II SNe)

are strongly clustered in both space and time are not just observa-

tional facts, but are generic consequences of any reasonable model

where gravitational collapse and hierarchical fragmentation (e.g.

from ISM to clouds to clumps to cores to stars) plays an important

role (Hopkins 2013a; Guszejnov et al. 2017a, 2018; Grudić et al.

2018b).

If superbubble type environments have typical densities n ≡
0.01n0.01 cm−3 (per Fig. 7), and the majority of the CR accel-

eration occurs early in the Sedov-Taylor phase when the shock

forms and the dissipation rate is maximized, i.e. when the entrained

mass is ∼ Mejecta ∼ 10M⊙, then the characteristic shocks occur

at radii ∼ 20n
−1/3

0.01 pc, after ∼ 104 n
−1/3

0.01 yr of free-expansion, with

the “ambient” mass being primarily SNe-enriched material and a

characteristic delay time between events (i.e. delay time seen by

the ambient medium before the accelerating shock) of ∆tSNe ∼
2×105 yr(Mcl/104 M⊙)

−1 in terms of association stellar mass Mcl.

All of these properties agree well with the constraints from CR ob-

servations (e.g. detailed isotopic ratios) argued for in Higdon et al.

(1998); Parizot et al. (2004); Becker Tjus & Merten (2020).

3.5 Variations Across and Within MW-Like Galaxies

3.5.1 Variation With Galactic Environment

In Fig. 8 we note that the variation in the CR spectra can be signifi-

cant, and quantify some of these variations and their dependence on

the local Galactic environment. We have examined how the spec-

tra vary as a function of local ISM properties including: galacto-

centric radius, height above the midplane, gas density, temperature,

ionization fraction, local inflow/outflow velocity, magnetic energy

density, radiation energy density, turbulent dissipation rate, star for-

mation or SNe rate per unit volume, plasma β, and other properties.

For most of these, there is some correlation with CR spectra, but

it is important to remember that all of these parameters are them-

selves mutually correlated within a galaxy; as a result most of the

systematic variation with the properties above can be captured by

the dependence on galacto-centric radius r and local gas density n,

shown explicitly in Fig. 8.
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(∼ 8 kpc cylindrical) as a function of vertical height above the disk.

We see the expected trend: owing to less-efficient diffusion, lower-

energy CR protons have shorter radial and vertical scale-lengths. In

the vertical direction (again, at the Solar circle), the CR profiles are

approximately exponential (ncr(Ecr, |z|)∝ exp(−|z|/h[ecr])) within

a few kpc of the disk,19 and the vertical scale-height increases sys-

tematically with CR energy, from ∼ 0.5− 1 kpc at ∼ 1− 5MeV to

∼ 2kpc at ∼ 1−3Gev to ∼ 6−10kpc at ∼ 0.3−1TeV. In the mid-

plane radial direction the qualitative trends are similar but the pro-

files deviate more strongly from a single exponential and differ from

one another more weakly as a function of energy, owing to the con-

tinuous distribution of sources populating the disk and much larger

range of galactocentric scales considered. This confirms, however,

that there is an extended CR halo, whose size increases as a func-

tion of CR energy. The dependence of profile shape on energy is

generally weaker at low energies (.GeV), owing to the fact that

low-energy hadrons (with low diffusivity) have residence times in-

creasingly dominated by losses.

Fig. 11 compares to observations of the inferred CR emissiv-

ity in γ-rays at energies Eγ > 100MeV and Eγ > 1GeV. We cal-

culate the emissivity directly from the CR spectra (including pion

production from protons and heavier nuclei, as well as e+ and p̄ an-

nihilation), with the same cross sections used in-code (see § 2.2 and

e.g. Dermer et al. 2013). We caution that there can be spatial vari-

ations in emissivity from e.g. nearby clouds or Galactic structures

even at a given galactocentric radius (see Ackermann et al. 2012 and

note that detections and upper limits in Fig. 11 at the same distance

range often differ in emissivity by much more than their statistical

error bars), and that there are often very large distance uncertainties

(which are themselves model-dependent) regarding where observed

emission actually originates, so it is important to compare the ob-

served points and uncertainty range to the full range (shaded area)

predicted. With that in mind, the simulations agree quite well with

both the radial and vertical trends, at a range of different γ-ray/CR

energies. Comparing our three different galaxy models, we note that

there are some appreciable differences in the profiles especially in

the galactic nucleus (which is sensitive to the instantaneous state of

the galaxy, e.g. whether there has been a recent nuclear starburst,

while the Milky Way appears to be in a period of quiescence; Orr

et al. 2021), and at large radii (where the less-extended star forming

disk in m12i owing to its bar and warped disk structure noted in

Fig. 1 leads to a more rapid falloff at & 15kpc).

Note that the above applies to protons (other hadrons are sim-

ilar). The electrons (leptons) behave differently, however, owing to

the more complicated role of losses. Considering the electron ver-

tical profiles at the Solar circle, for example, we see the e− scale-

height decreases with increasing energy weakly (by ∼ 20%) from

1 → 50MeV where diffusivities are very low so transport is dom-

inated by advection and streaming, then increases with energy (by

a factor of ∼ 2 from 50MeV to 50GeV) at intermediate energies

where losses are not dominant (outside the disk) and diffusivity in-

creases with energy, then at & 50− 100GeV the scale height starts

to drop significantly with increasing energy owing to rapid inverse

Compton and synchrotron losses even in the halo.

We have also compared the variation of the mean predicted

spectral index (αγ in Iγ ∝ E
−αγ

γ ) of the emissivity as a func-

tion of midplane radius R to FERMI observational estimates from

Acero et al. (2016) and Yang et al. (2016). Interestingly, at energies

19 In Fig. 11 we see that there is, especially at low energies, a steeper initial

falloff at small |z| followed by a somewhat shallower vertical profile. This

reflects the fact that the quasi-exponential vertical profile transitions to a

more quasi-spherical, power-law profile in the CGM, at sufficiently large

radii where the disk/source geometry is no longer important.

∼ 3− 30GeV which dominate the fitted indices in those observa-

tional studies, our m12i run at z = 0 produces a trend very similar

to that observed (wherein αγ peaks with a very steep/soft value at

. 2kpc in the galactic center, then falls rapidly by ∆αγ ∼ 0.4−0.6
with increasing R to shallower/harder values from R ∼ 2− 6kpc,

then gradually increases/steepens again by ∆αγ ∼ 0.3 out to R ∼
10− 20kpc). However, our m12m and m12f runs at z = 0 do not

show the same trend (they show a weaker trend of αγ with R, with

occasionally opposite sign); moreover analyzing different snapshots

shows this varies in time, as well. This is because the γ-ray emis-

sion (scaling as ∼ ngas ncr) is sensitive to the densest emitting regions

in each annulus, which have different spectral slopes at intermedi-

ate energies as shown in Fig. 8; moreover as discussed in Acero

et al. (2016) this can also depend on variations in losses (as some

dense regions reach calorimetric losses) and the structure of out-

flows (with advection modifying transport speeds). As such, these

higher-order trends, while possible to reproduce, are sensitive to the

instantaneous dynamical state of the galaxy.

3.5.5 Implications for the CR Ionization Rate

A number of studies have attempted to compare the CR ionization

rate ζ inferred from the observed molecular line structure of GMCs,

to the rate one would get from simply extrapolating the LISM CR

spectrum. Although these inferences of ζ must be taken with some

caution as the values are strongly model-dependent and have poten-

tially large systematic errors, a number of independent studies in

e.g. Indriolo et al. (2009); Padovani et al. (2009); Indriolo & Mc-

Call (2012); Indriolo et al. (2015); Cummings et al. (2016) have

concluded that there must be some variation in ζ between nearby

molecular gas in GMCs in the Solar neighborhood (where the in-

ferred ζ ∼ 10−16 s−1) and the (predominantly ionized, much-lower-

density) LISM (which has an implied ζ ∼ 10−17 s−1). Similarly, In-

driolo et al. (2015) showed there must be significant variation with

galacto-centric radius (with larger ζ towards the Galactic center).

Recalling that CR ionization is dominated by low-energy CRs

with E . 100MeV, the variations we have described above im-

mediately provide a potential explanation for all of these obser-

vations. We can make this more rigorous by directly calculating

the CR ionization rate from our spectra, as shown in Fig. 12. Fol-

lowing Indriolo et al. (2009),20 and consistent with our assumed

in-code CR ionization rates (corresponding to the CR ionization

losses in § 2.3.1), we take: ζ ≡
∑

s
4π 1.5

∫ Thigh

Tlow
Js(T )σs(T )dT

with Tlow ≈ 2MeV/n, Thigh ≈ 107 MeV/n, and σs(T ) ≈ 7.63 ×
10−20 cm2 Z2β−2 (1− 0.069β2 + 0.16 log10 [γ β]), and calculate ζ
in every cell in our simulations. We can then weight by the actual

total ionization rate of molecular gas (∝
∫

d3xζ(x)nH2
(x)) to com-

pare to the GMC observations which measure molecular indicators.

First, we examine which CRs contribute primarily to the ion-

ization rate. As expected, these are low-energy CRs, primarily pro-

tons, but there is a broad range of energies which contribute sim-

ilarly to the total ionization rate, and low-energy electrons are not

totally negligible.

By definition, since our “fiducial” model roughly reproduces

the observed low-energy Voyager CR spectra of e− and p, it should

also approximately reproduces the LISM-inferred ζ ∼ 10−17 s−1

in diffuse ionized gas of the appropriate densities, and we see in

Fig. 12 that this is indeed the case. But we also see immediately

20 Note our definition is slightly different from Indriolo et al. (2009), who

also multiply by the parameter ξs = 0, 1.5, 2.3 in ionized or atomic or

molecular gas respectively, to account for secondary ionizations. We cor-

rect the observations by this factor so they can be compared directly: i.e. we

define ζ such that an exactly identical CR spectrum will produce an identical

ζ, regardless of the ambient non-relativistic gas properties.
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crucial sources of systematic uncertainty in those models (which

remain order-of-magnitude).

From the point of view of constraining CR models for appli-

cation in Galaxy formation simulations, the models here allow us

to calibrate CR transport assumptions in far greater detail and rigor

than is possible with “single” bin models (where one can compare

e.g. the total γ-ray emission from p → pion production to observa-

tions, but this provides only a single, galaxy-integrated data point

for a few galaxies). In the future, we will explore detailed syn-

chrotron spectra from these models in external galaxies. This will

allow us to explore the consequences of CRs in other galaxies with

much greater fidelity.

4.1 Key Conclusions

We show the following:

(i) It is possible to (roughly) match Solar/LISM CR constraints

with simple transport and injection models. Specifically assuming a

single-power-law injection spectrum with a standard slope (∼ 4.2),

single-power-law scaling of the CR scattering rate with rigidity

ν̄ ∝ βR−δ and δ ∼ 0.5 − 0.6, following all the major loss/gain

processes with their expected (locally-varying) rates. As expected,

in the LISM, we show that the shape of the high-energy hadronic

spectra are regulated by injection+escape (dependence of scatter-

ing rates on rigidity), while high-energy leptonic spectral shapes

are regulated by synchrotron+inverse Compton losses, and low-

energy leptonic+hadronic spectra are regulated (primarily) by ion-

ization+Coulomb losses.

(ii) “Large” halo sizes are inevitable & favored. The normal-

ization of the halo structure is not a free parameter in our models.

Indeed, it is now well-established that a majority of the baryons

and significant magnetic field strengths extend to hundreds of kpc

around galaxies in the CGM, so it is un-avoidable that the “thin

disk” or “leaky box” model would be a poor approximation. In

terms of the idealized cylindrical CR scattering halos sometimes

adopted analytically, in the limit of diffusive CRs, the correct “ef-

fective” halo size (defined as the region interior to which a CR has

a non-negligible probability of scattering to Earth) will always be

(up to an order-unity factor) the same as the Solar circle radius

r⊙ ∼ 8kpc). This in turn means that relatively low CR scattering

rates (giving relatively high effective diffusivities), compared to

decades-older “leaky box” models which ignored the halo+CGM,

are required. Our inferred scattering rate at ∼ 1GV, ν̄ ∼ 10−9 s−1,

is in fact in excellent agreement (within a factor of ∼ 2, despite

enormous differences in model details) with most recent analytic

Galactic CR transport models, almost all of which have argued that

a scattering halo21 with effective size ∼ 5− 10kpc is required to

match the LISM observations (Blasi & Amato 2012a; Vladimirov

et al. 2012; Gaggero et al. 2015; Guo et al. 2016; Jóhannesson et al.

2016; Cummings et al. 2016; Korsmeier & Cuoco 2016; Evoli et al.

2017; Amato & Blasi 2018; Korsmeier & Cuoco 2021; De la Torre

Luque et al. 2021).

(iii) Re-acceleration terms are not dominant, and obey a generic

ordering. There are three terms which can act as “re-acceleration”:

the “adiabatic” or non-inertial frame term ṗad = −pD : ∇u, the

“streaming loss” term ṗst = −〈µ〉D̄pµ ∼ −p ν̄ (v̄A/c)(F/ec), and

21 As discussed in § 3.1.3, the term “halo” in the CGM literature generally

refers to the extended gas (and cosmic ray) distribution on tens to hundreds

of kpc scales (out to or past the virial radius), while in the CR literature it

often refers to a region confined to a few kpc above/below the disk (also

often called the “thick disk” or “corona” or “disk-halo interface”). The “CR

scattering halo” specifically refers here to the effective volume interior to

which CRs have a non-negligible probability of scattering back interior to

the Solar circle.

the “diffusive” or “micro-turbulent” re-acceleration term ṗdi =
4 p−1 D̄pp ∼ p ν̄ (vA/c)2. We show that for almost any physically-

realistic structure of the ISM in terms of vA, u, etc. and allowed

values of ν̄, there is a robust ordering with | ṗad| & | ṗst| & | ṗdi| at

&GV, and that these terms have at most modest (tens of percent)

effects on the total CR spectrum.

(iv) Most .TeV Galactic CRs are accelerated in SNe shocks, in

super-bubbles, early in the Sedov-Taylor phase (after the reverse

shock forms). Observed abundances of intermediate and heavy pri-

mary elements in CRs are all consistent, to leading order, with a

universal single-power-law acceleration spectrum with all species

tracing their in-situ abundances in the test particle limit if we as-

sume CRs are accelerated with an efficiency ǫ ∼ 10% of strong

shock energy when the shock first forms – i.e. when the entrained

mass of ambient ISM material is approximately equal to the initial

ejects mass (Mswept ≈ Mej). This is naturally predicted if CRs accel-

erate when the shock first “forms,” and therefore the kinetic energy

dissipation rate and Mach number are maximized. If instead accel-

eration occurred primarily in stellar wind/jet shocks, diffusive ISM

shocks with Mach number ≫ 1, or throughout the entire Sedov-

Taylor phase of SNe remnants, then the abundances of CNO at

∼MeV-TeV would be under-predicted by factors of ∼ 20. Given

the favored conditions, most MW acceleration occurs in SNe shocks

within super-bubble-type conditions.

(v) CR spectra vary significantly in time & space, both systemat-

ically and stochastically. With more realistic Galactic models, sub-

stantial variations are expected between and within Galaxies. CR

energy densities decrease with increasing galacto-centric radius r

(∝ 1/r, for constant scattering rates, over a range of radii) and spec-

tra are harder in hadrons, softer in leptons towards the Galactic cen-

ter, owing to differences in loss rates and source spatial distribu-

tions. We show this naturally reproduces Galactic γ-ray emissivity

observations, though γ-ray-inferred variations in spectral shape can

be sensitive to the local dynamical state of the dense γ-ray emit-

ting gas in the Galactic center. At the Solar circle, the CR spec-

tra still vary significantly with local environment and gas density

n, with e.g. CR kinetic energy density ∝ n0.5 (i.e. higher in more-

dense environments) – the effect is stronger at lower CR energies

owing to tighter coupling with the gas, while becoming negligi-

ble at & 100GeV. Even controlling for e.g. r, n and other variables

(temperature, etc.), the scatter in particularly low-energy CR spectra

from point-to-point in space or time or between galaxies can vary

by orders of magnitude (∼ 90% interval of ±1.5dex at . 10MeV),

owing to the enormous inhomogeneities in local source distributions

(clustered star formation & SNe), loss rates (orders-of-magnitude

variation in local densities, ionization fractions, radiation energy

densities, etc.), and local gas dynamics (e.g. local inflow/outflow,

turbulence structure). This provides a natural explanation for obser-

vations which have inferred a different CR ionization rate in local

molecular clouds (compared to the diffuse LISM observed by Voy-

ager) and different ionization rates at different Galactic positions.

4.2 Future Work

This is only a first study and there are many different directions in

which it can be extended. In future work, we will explore predic-

tions for a wide range of galaxies outside of the MW, from dwarfs

through starbursts and massive ellipticals, at both low and high

redshifts. With the models here, we can make detailed forward-

modeled predictions for spatially-resolved synchrotron spectra in

these galaxies, to compare to the tremendous wealth of resolved

extragalactic synchrotron studies. We can also forward-model the

γ-ray spectrum, which provides a key complementary constraint,

albeit only in a few nearby galaxies.

We stress that the extremely simple (and constant in space and
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time) scaling of the scattering rates adopted here, ν̄ = ν0βR−δ
GV , is

purely heuristic/empirical. This is quite radically different, in fact,

from what is predicted by either traditional “extrinsic turbulence”

models for CR scattering or more modern “self-confinement” mo-

tivated models. In both of those model classes the local scattering

rates (e.g. across different ISM regions at the Solar circle) can vary

by many orders of magnitude in both space and time, on scales

smaller than the CR residence time or disk/halo scale height, as a

strong function of the local turbulence properties, plasma-β, neutral

fractions, magnetic field strength, gas density, and other parameters

(Hopkins et al. 2021e). These effects simply cannot be captured in

standard CR transport models which adopt simplified static analytic

models for Galactic structure. The most interesting application of

the new methods here, which attempt to combine more detailed CR

propagation constraints with detailed, live galaxy simulations that

explicitly evolve those parameters, is therefore likely to be explor-

ing and making detailed predictions from those more physically-

motivated CR transport/scattering models, in a way which was pre-

viously not possible.

It will also be particularly important, especially with a variable

ν̄, to investigate how local variations in plasma properties mod-

ify CR loss and other key timescales commonly assumed in ana-

lytic models for CR transport or observables such as the FIR-radio

or γ-ray-SFR relations. For example, the “effective” or mean syn-

chrotron loss timescale 〈tsynch〉 at some CR energy represents a com-

plicated weighted average over different ISM regions, so can dif-

fer significantly from the synchrotron loss timescale estimated us-

ing just the volume-averaged mean magnetic field value. Exploring

where and when these differences are important in detail will be an

important subject for future study.
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M., Rudie G. C., Rakic O., 2010, ApJ, 717, 289

Strong A. W., Moskalenko I. V., 2001, Advances in Space Research, 27, 717

Strong A. W., Moskalenko I. V., Ptuskin V. S., 2007, Annual Review of

Nuclear and Particle Science, 57, 285

Strong A. W., Orlando E., Jaffe T. R., 2011, A&A, 534, A54

Su K.-Y., Hopkins P. F., Hayward C. C., Faucher-Giguère C.-A., Kereš D.,

Ma X., Robles V. H., 2017, MNRAS, 471, 144

Su K.-Y., Hayward C. C., Hopkins P. F., Quataert E., Faucher-Giguère C.-A.,

Kereš D., 2018a, MNRAS, 473, L111

Su K.-Y., et al., 2018b, MNRAS, 480, 1666

Su K.-Y., et al., 2019, MNRAS, 487, 4393

Su K.-Y., et al., 2020, MNRAS, 491, 1190

Su K.-Y., et al., 2021, MNRAS, in press, arXiv:2102.02206, p.

arXiv:2102.02206

Sun X.-H., Reich W., 2010, Research in Astronomy and Astrophysics, 10,

1287

Tang Q.-W., Wang X.-Y., Tam P.-H. T., 2014, ApJ, 794, 26

Thomas T., Pfrommer C., 2019, MNRAS, 485, 2977

Thomas T., Pfrommer C., 2021, MNRAS,

Thomas T., Pfrommer C., Pakmor R., 2021, MNRAS, 503, 2242

Tibaldo L., 2014, Brazilian Journal of Physics, 44, 600

Tibaldo L., et al., 2015, ApJ, 807, 161

Tibaldo L., Gaggero D., Martin P., 2021, Universe, 7, 141

Tomassetti N., 2015, arXiv e-prints, p. arXiv:1510.09212

Trotta R., Jóhannesson G., Moskalenko I. V., Porter T. A., Ruiz de Austri

R., Strong A. W., 2011, ApJ, 729, 106

Tumlinson J., Peeples M. S., Werk J. K., 2017, ARA&A, 55, 389

Uhlig M., Pfrommer C., Sharma M., Nath B. B., Enßlin T. A., Springel V.,

2012, MNRAS, 423, 2374

Van de Voort F., Quataert E., Faucher-Giguère C.-A., Kereš D., Hopkins

P. F., Chan T. K., Feldmann R., Hafen Z., 2018, MNRAS, 477, 80

Vázquez-Semadeni E., Ballesteros-Paredes J., Klessen R. S., 2003, ApJ,

585, L131

Vazza F., Wittor D., Brunetti G., Brüggen M., 2021, A&A, 653, A23

Vernstrom T., Gaensler B. M., Rudnick L., Andernach H., 2019, ApJ, 878,

92

Vink J., Yamazaki R., 2014, ApJ, 780, 125

Vladimirov A. E., Jóhannesson G., Moskalenko I. V., Porter T. A., 2012,

ApJ, 752, 68

Voelk H. J., 1989, A&A, 218, 67

Walch S., Naab T., 2015, MNRAS, 451, 2757

Walch S., et al., 2015, MNRAS, 454, 238

Wang X., Fields B. D., 2018, MNRAS, 474, 4073

Wang L., et al., 2019, A&A, 631, A109

Werhahn M., Pfrommer C., Girichidis P., Puchwein E., Pakmor R., 2021a,

MNRAS, 505, 3273

Werhahn M., Pfrommer C., Girichidis P., Winner G., 2021b, MNRAS, 505,

3295

Werhahn M., Pfrommer C., Girichidis P., 2021c, MNRAS, 508, 4072

Werk J. K., et al., 2014, ApJ, 792, 8

Wheeler C., et al., 2019, MNRAS, 490, 4447

Wiener J., Oh S. P., Guo F., 2013a, MNRAS, 434, 2209

Wiener J., Zweibel E. G., Oh S. P., 2013b, ApJ, 767, 87

Wiener J., Pfrommer C., Oh S. P., 2017, MNRAS, 467, 906

Wiersma R. P. C., Schaye J., Theuns T., Dalla Vecchia C., Tornatore L.,

2009, MNRAS, 399, 574

Winkler M. W., 2017, J. Cosmology Astropart. Phys., 2017, 048

Winner G., Pfrommer C., Girichidis P., Pakmor R., 2019, MNRAS, 488,

2235

Wise J. H., Abel T., Turk M. J., Norman M. L., Smith B. D., 2012, MNRAS,

427, 311
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APPENDIX A: CR DRIFT VELOCITIES AND LOSS

TIMESCALES

Here we present and discuss the characteristic CR drift velocities

and different loss timescales in LISM conditions.

A1 Typical LISM Drift Velocities

Fig. A1 presents the typical “drift velocities” of the CRs, ex-

tracted directly from our fiducial simulation (Fig. 2) at z = 0.

Specifically, we define the drift velocity in standard fashion as

vdrift ≡ |FE
cr |/ecr = |Fcr · b̂|/ecr = |v f̄1|/ f̄0 = |〈µ〉|β c (per Eq. 1-2

or § C1) measured independently for CRs of each given species s

in a narrow range of rigidity (for simplicity, we extract this just at

the bin center, for each bin). This is the coherent net drift speed

of those CRs along b̂, relative to the gas. We restrict to LISM-

like gas (galacto-centric radius 7kpc < R < 9kpc, vertical position

|z| < 0.5kpc, gas densities 0.3cm−3 < n < 3cm−3), and weight

the mean and distribution of vdrift by the contribution to the CR

flux, i.e. 〈vdrift〉 = (
∫

ecr vdrift d3x)/(
∫

ecr d3x) (so the mean CR flux

is |FE
cr |= 〈vdrift〉〈ecr〉).
We see that the drift speeds for different species are broadly

similar as a function of CR energy, and (over most of the plot-

ted range) follow a scaling vdrift ∼ 300kms−1 (T/GeV)0.3. This

corresponds well to the expected “diffusive drift speed” vdiff
drift ∼

κeff/ℓgrad, cr, assuming tangled magnetic fields so the effective

isotropically-averaged diffusivity is κeff ∼ v2/(9 ν̄) (with our fidu-

cial ν̄ = 10−9 s−1 R−0.6
GV ) and a CR gradient scale-length ℓgrad, cr ≡

ecr, s/|∇ecr, s| ∼ kpc(T/GeV)0.3. But that scaling of the gradient

scale-length ℓgrad, cr is very similar to what we found by directly

plotting the vertical CR profiles (at energies 100MeV) in Fig. 11
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teristic turbulent/fountain motions are broadly trans-Alfvénic (like

the warm ISM), and do not dominate the loss timescales. We also

confirm that the three “re-acceleration” terms (adiabatic, streaming

loss, and diffusive re-acceleration) obey the expected hierarchy of

relative importance discussed in detail in § 3.3. Bremsstrahlung (for

electrons) and catastrophic losses (for protons) are also generally

sub-dominant, though not completely negligible in some environ-

ments. Recalling that the total loss/escape rate is given by the sum

of all these processes, we see that the loss/escape timescales are

maximized for CRs near the peak of the spectrum (∼ 0.1−1GeV),

at a few Myr (see also § C6.3).

To get some sense of how these numbers depend on environ-

ment, in Fig. A3 we re-calculate the same loss timescales, again in

Solar circle disk gas, but include all gas densities and weight by

either gas mass (biased to the high-density environments) or vol-

ume (biased to low-density environments). As expected, in denser

environments (which contain much of the ISM gas mass), the

loss timescales are shorter and the relative importance of both ra-

diative and catastrophic losses increases (with catastrophic loss

timescales becoming comparable to diffusive escape in e.g. GMC

environments). Conversely, in lower-density environments (con-

taining much of the ISM volume), loss timescales increase and ra-

diative+catastrophic losses are less important compared to diffu-

sive escape. But the qualitative behaviors and relative importance

of different terms, in a broad sense, is similar to what we found in

Fig. A2.

APPENDIX B: ADDITIONAL PHYSICS & PARAMETER

VARIATIONS

In § 3.2, Figs. 3, 4, & 5 compared the effects of different parameter

and physics variations on CR observables, by turning on and off

different physics or varying different parameters with respect to the

“reference” or best-fit model in Fig. 2.

We have explored a number of other variations as well, as de-

scribed in the main text, in order to identify robust trends and the

best-fit model compared to observations. Figs. B1, B2, & B3 illus-

trate some of these. These are identical to Figs. 3, 4, & 5, except

that we consider a different “reference” model as the baseline about

which parameters and physics are varied. Specifically here we take

a model with a fixed higher scattering rate (lower diffusivity) nor-

malization ν̄0 = 10−8 s−1, which is then re-tuned (fitting δ and ψinj)

to try and reproduce the spectra and B/C ratios as best as possible,

giving ν̄ ∼ 10−8 s−1βR−1
GV (i.e. δ = 1, with slightly-different ψinj =

4.3), as compared to main-text default ν̄0 = 10−9 s−1, δ= 0.5−0.6,

ψinj = 4.2. We stress that directly comparing this reference model to

the observations as in Fig. 2 shows that even with “re-fitting” δ and

ψinj at this ν̄0, the fit (comparing to Solar circle LISM data) is signif-

icantly more poor than our default main-text model: B/C is too flat

between ∼ 0.3− 100GeV (under-predicting B/C at < 3 GeV and

over-predicting B/C at > 3GeV), 10Be/9Be is systematically too-

high at ∼ 0.03− 100GeV, e+/(e+ + e−) is “too flat” (it does not

feature the “curvature” observed from ∼ 0.5− 300GeV), and the

spectra are too hard, under (over)-predicting the intensity of e− and

p at < 100GeV (> 100GeV).

Nonetheless, this provides a useful reference case to consider

the systematic effects of different physics and parameter variations

in Figs. 3, 4, & 5. Because of non-linear interactions between the

different physics, as described in the text, it is not totally obvious

that changing one of the physics or assumptions would have the

same systematic effect if we also change the “reference” model.

For example, since the diffusivity at low CR energies is much lower

here than in our main-text reference model, certain losses in dense

ISM environments could be qualitatively more important, and this

can order-of-magnitude change the ratio of e.g. diffusive reaccel-

eration to streaming loss terms. Nonetheless, Figs. B1, B2, & B3

confirm that all of our qualitative conclusions in the text, regarding

the systematic effects of these variations as well as their qualitative

importance, appear to be robust.

APPENDIX C: ADDITIONAL NUMERICAL DETAILS

Here we outline various technical numerical details of the methods

used for CR evolution in our simulations, originally presented in

other papers we refer to below. We direct the interested reader to

these and other papers cited for additional numerical tests.

To begin, as shown in Hopkins et al. (2021a), Eqs. 1-2 can be

re-written in the convenient form:

Dt f̄0,s =−∇· (v f̄1,s b̂)+ j0,s +
1

p2

∂

∂p

[

Qs p
2

f̄0,s

]

(C1)

Qs ≡ Sℓ+ pDs : ∇u+ D̃pµ,s
f̄1,s

f̄0,s
+

D̃pp,s

f̄0,s

∂ f̄0,s

∂p

with

Dt f̄1,s + v∆( f̄0,s) =−
[

D̃µµ,s f̄1,s + D̃µp,s
∂ f̄0,s

∂p

]

+ j1,s (C2)

This is just a matter of definitions and some algebra to re-arrange

terms, but it will be useful below. Note that we explicitly include the

subscript s indicating species here. The total distribution function

can be reconstructed from

f̄0 ≡
∑

s

f̄0,s, (C3)

f̄1 ≡
∑

s

f̄1,s,

but the important point is that these equations are completely sep-

arable in species (there are no “cross terms” to be integrated, ex-

cept for secondary injection which we detail below). This means

that we simply repeat the identical numerical exercise for each sep-

arate species (calculated as a simple loop of species in every nu-

merical step described below), and all our numerical methods are

completely agnostic to the actual species being followed. In princi-

ple, one could trivially extend our method to a completely arbitrary

list of species, with the only constraint being computational mem-

ory limitations and the cost of repeating so many computations in

the relevant loops.

As noted in § 2.2, we will operator split these equations, ac-

cording to each of the three terms on the right-hand side of Eq. C1:

(1) the “spatial” or coordinate-space integration term −∇· (v f̄1,s b̂)
(and all of the Dt f̄1 or “flux” equation except for the j1 term); (2)

the j0 and j1 terms which describe injection by SNe, catastrophic

losses, and secondary production; (3) the terms inside ∂p[...] (i.e.

in Qs), which describe continuous evolution in momentum-space

(integrating the CR spectral evolution).

Also recall the definition of the conserved quantities we inte-

grate: CR number N j,n,s and kinetic energy E j,n,s, integrated over a

spatial domain/cell j and momentum interval/bin n for one species

s.

N j,n, s(t)≡
∫

V j

n j,n, s d
3
x ≡

∫

V j

∫ p+n, s

p
−
n, s

f j,n, s(...)d
3
xd

3
p (C4)

E j,n, s(t)≡
∫

V j

ǫ j,n, s d
3
x ≡

∫

V j

∫ p+n, s

p
−
n, s

Ts(p) f j,n, s(...)d
3
xd

3
p (C5)

These are what we actually evolve (computing fluxes etc.), in or-

der to ensure manifest conservation. But as noted in the main text,

for any bin n,s, there is a one-to-one correspondence between the

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/m

n
ra

s
/s

ta
c
1
7
9
1
/6

6
2
5
6
5
0
 b

y
 C

a
lifo

rn
ia

 In
s
titu

te
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 1

2
 S

e
p
te

m
b
e
r 2

0
2
2









O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

CR Spectra in Galaxies 35

The challenge here is, as noted by e.g. Girichidis et al. (2020);

Ogrodnik et al. (2021) and Hanasz et al. (2021), that we cannot

trivially integrate Dtv f̄1 over d3p and arrive at an equation for a

“single” F
N,E
j,n,s which can be evolved if the bin has a finite width

in momentum-space (we would need infinitesimally small bins). It

is significantly less complex, computationally less expensive, more

numerically stable, and directly analogous to the previous “single-

bin” CR studies to calculate instead the “bin-centered” fluxes as in

both those previous studies – essentially solving for F
N,E
j,n,s by taking

the values of ν̄ j,n,s(p), 〈µ〉 at the bin center p = p0
n, j,s. This auto-

matically means quantities like χ→ χ0, j,n,s are constant over the

bin (within one bin, one species, one cell: they can and do vary be-

tween different species, bins, and cells). Then we can take Eq. C7

for f̄1, multiply through by v and insert the definitions of D̃µµ, D̃µp,

and ∆(q) ≡ b̂ ·∇ · (Dq) from Eq. 2, and use our local-power-law

definition of f̄0 to treat the ∂p f̄0 terms. Integrating then immedi-

ately yields the desired bin-centered equation: DtF
N
j,n,s + c2 b̂ · ∇ ·

N j,n,s =−ν̄0, j,n,s

[

FN
j,n,s − vst,0, j,n,s n j,n,s

]

where n j,n,s ≡ N j,n,s/Vj is the

CR number density, N j,n,s ≡ D0, j,n,sβ
2
0, j,n,s n j,n,s is a second-moment

tensor, and vst,0, j,n,s ≡ −χ0, j,n,sψ j,n,s v̄A, j is an effective “streaming

speed” (note ψ j,n,s < 0 at all energies here, so −ψ j,n,s = |ψ j,n,s|).
Given this bin-centered approximation (which necessarily means

FE
j,n,s and FN

j,n,s do not simultaneously follow the full integrals of

f̄1 except for infinitesimal bins), we have implicitly assumed a con-

stant drift velocity vd = FN/N = FE/E over the bin, so consistency

requires that

F
E
j,n,s =

(

E j,n,s

N j,n,s

)

F
N
j,n,s. (C11)

Alternatively, we could first derive FE
j,n,s directly from the f1 equa-

tion and infer FN
j,n,s from the Eq. C11 relation, and this would be

equally valid/consistent at the level of the bin-centered approxima-

tion, giving:

DtF
E
j,n,s + c

2
b̂ ·∇ · P̃ j,n,s =−ν̄0, j,n,s

[

F
E
j,n,s − vst,0, j,n,s e j,n,s

]

, (C12)

where P̃ j,n,s ≡ D j,n,sβ
2
0, j,n,s e j,n,s is akin to the CR pressure tensor.23

Cast in this representation (e.g. Eqs. C10 & C12), we can now

see directly that the numerical two-moment equations for the spa-

tial evolution of the CRs, for each individual species and bin, are

numerically identical to the equations solved in many of our pre-

vious “single-bin” CR studies in the references above. We simply

repeat the previous “single bin” flux and advection computation nu-

merically about Nbins ×Nspecies ∼ 70 times per interface (once for

each bin, for each species), and evolve the entire set of fluxes and

time derivatives. With this in mind, the interface flux which appears

in the Riemann problem is determined in exactly the same way as

in those previous single-bin studies. We compute this interface flux

first for FE
j j′ ,n,s, then if the net flux flows from j → j′ (i.e. CRs move

from cell j to cell j′), we take FN
j j′ = (N j,n,s/E j,n,s)FE

j j′ (i.e. the

CRs carry the same energy as j), if it flows from j′ → j, FN
j j′ =

(N j′ ,n,s/E j′ ,n,s)FE
j j′ . The updates to conserved quantities are then

drifted and kicked using the standard scheme for all conserved ad-

vected radiation-MHD quantities (identical to our previous single-

bin implementation). Every time N j,n,s or E j,n,s is updated, we im-

mediately recompute the “primitive variables” f̄0, j,n,s[p0
n,s], ψ j,n,s.

Finally, this also gives us everything we need to evaluate the

CR force on gas. Per Hopkins et al. (2021a), Eq. 41 therein, we can

23 We note here that P̃ ≡ Dβ2 e refers to either the kinetic or total energy,

whichever is evolved by e in the expressions above. But the usually-defined

scalar “CR pressure” as it appears in e.g. the gas momentum equation in the

tightly-coupled limit is defined as β2/3 times the total CR energy density

(or = (1+γ−1)/3 times the kinetic); see Hopkins et al. 2021a for details.

rewrite the combined Lorentz+scattering term from Eq. 6 as:

Dt(ρu)+ ...+∇·Ptot =− b̂

c2

∑

s,n

DtF
Etot

n,s (C13)

where P
tot ≡

∑

s,n Pn,s =
∑

s,n Dn,s P0,n,s is just the sum of the CR

pressure over all bins, and likewise for DtF
Etot (here in terms of the

total energy, so DtF
Etot

n,s = DtF
Ekin

n,s +ms c2 DtF
Ntot ). In-code, we sim-

ply add P
tot to the total pressure tensor used in the Riemann prob-

lem, then (in each cell immediately following the Riemann problem

update to the momentum fluxes) add the DtF
Etot

n,s as a source term

(using the discrete value of DtF
Etot

n,s we would have at the end of the

timestep). The detailed treatment of the latter makes little differ-

ence, since we see from this form that it acts as a correction which

(a) is suppressed by ∼ 1/c2 (so is typically suppressed relative to

other terms in the gas momentum equation by O(ncr/ngas)), and (b)

vanishes when the CRs approach flux-steady-state (which generally

occurs on the scattering time ∼ ν̄−1).

C1.2 Timestep Condition

As discussed in the papers above, this imposes the usual Courant

condition on the cell timesteps

∆t
cell
j ≤Ccour ∆x j/c̃ , (C14)

where c̃ (c̃ = 104 kms−1 is our default, with Ccour = 0.25 to be con-

servative; for various tests see Hopkins 2015; Hopkins & Raives

2016; Hopkins 2016, 2017; Hubber et al. 2018; Panuelos et al. 2020;

Deng et al. 2019; Bonnerot et al. 2021). As in all other applications

in GIZMO the actual timesteps are determined by the smallest of

all possible constraints, including e.g. gravity, MHD, and any other

constraints (see Hopkins 2015), but in these runs, that is almost al-

ways set by this condition given the extremely large c̃.

C2 Injection, Catastrophic Losses, and Secondary

Production

Now consider the j (injection, catastrophic loss, and secondary pro-

duction) terms:

Dt f̄0,s = j0,s , (C15)

Dt f̄1,s = j1,s .

C2.1 Injection

For injection from discrete (point) sources, i.e. SNe and stellar

mass-loss, the injection terms j0 and j1 are handled in the exact

same manner as our previous single-bin CR studies (Chan et al.

2019; Hopkins et al. 2020b, 2021e; Ji et al. 2020, 2021b; Chan

et al. 2021; Su et al. 2019, 2020, 2021) or any other injection of

scalar quantities such as mass, metals, passive scalars/tracers, or

thermal energy (Hopkins et al. 2018a). Briefly, in a timestep for

a star particle ∆t∗, if a SNe occurs some total CR energy ∆E∗
cr (or

∆E∗
cr = Ė∗

cr ∆t∗, for continuous sources like O/B mass-loss) will be

injected into the surrounding cells each receiving some fraction

∆E
∗
cr, j = w j ∆E

∗
cr (C16)

according to an appropriate weight function (such that
∑

j
w j =

1), and we then immediately calculate exactly the corresponding

∆N j,n,s, ∆E j,n,s according to the specified injection spectra as de-

fined in the main text (these are equivalent to the integral of j0 over
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each bin).

∆N j,n,s ≡
∫ p+n,s

p
−
n,s

4π p
2

d p j
∗
0,n,s(p)∆t∗ (C17)

∆E j,n,s ≡
∫ p+n,s

p
−
n,s

4π p
2

d pT (p) j
∗
0,n,s(p)∆t∗ (C18)

∑

n,s

∆E j,n,s ≡∆E
∗
cr, j = w j ∆E

∗
cr (C19)

Recall, we assume j∗0 ∝ p−ψinj (with ψinj = 4.2) is a simple power-

law, so these can easily be calculated exactly, with the normalization

of j∗0,n,s for each species given by (1) Eq. C19, which normalizes the

total sum energy deposited to be exactly that desired,24 and (2) the

ratios of different species following the ratios specified in § 2.2.4 &

2.4.25 These ∆N j,n,s and ∆E j,n,s are added to the cell N j,n,s and E j,n,s

respectively, and the primitive variables are re-computed.

For consistency, we also update the flux (e.g. include the

j1 = 〈µ〉inj j0 term), assuming the newly-injected CRs are stream-

ing radially away from the star (so given our bin-centered approxi-

mation, ∆FN
j,n,s = v0, j,n,s ∆N j,n,s r̂ · b̂), but because the CR flux equa-

tion evolves towards local equilibrium on the (very rapid) scattering

timescale ∼ ν̄−1, it makes no detectable difference if we ignore this

flux update.

Extensive tests of the actual numerical injection algorithm for

arbitrary scalar fields demonstrating its numerical stability, manifest

conservation, numerical isotropy (ability to avoid imprinting pre-

ferred directions), and accuracy are given in Hopkins et al. (2018a).

C2.2 Catastrophic Losses

Catastrophic/fragmentation/pionic losses, annihilation, radioactive

decay, and secondary production also fall into this term, as they

can be described by some j = ḟ term effectively “adding” or

“removing” CRs, rather than slowly and continuously increas-

ing/decreasing their individual momenta p. So for example as

in the main text, for some catastrophic collisional loss process,

ḟs = −σ vs nx fs, where nx is the local ISM density of nucleons

or whatever relevant “target” species. These are integrated along-

side the momentum-space terms, on the same subcycle timestep

∆tsub
j ≤ ∆tcell

j (where ∆tcell
j is the cell timestep for other oper-

ations). Assume on the sub-cycle timestep (always smaller than

e.g. the CR transport timestep ∼ 0.25∆x j/c̃, which is itself al-

most always much smaller than any other evolved MHD fluid evo-

lution timescales) that the background (non-CR) fluid state vector26

U j(x, t) (e.g. magnetic field, density, gas velocity, etc.) is constant

over the substep (a good assumption for the reasons above).

First consider the loss terms, and define the total CR number

loss rate as

ḟloss, j,s = ḟcatastrophic, j,s + ḟannihilation, j,s + ḟdecay, j,s , (C20)

summing all the relevant expressions for each species as a function

24 Because for our injection spectra, the total energy is totally dominated

by protons/H, if we instead defined ∆E∗
cr, j as specifically that injected into

protons our results are nearly indistinguishable.
25 As noted in the text, the injection abundances of antimatter, B, Be are

negligible, so of the species we follow this is only important for e−, where

j∗
0,n,e−

≡ 0.02 j∗0,n,H and CNO where the abundance is scaled relative to H

(with dNs(β)/dβ = (Ns, j/NH, j)dNH(β)/dβ at each β) according to the

ambient ISM and ejecta abundances (Ns, j/NH, j) as given in § 2.2.4 & 2.4.
26 For the CR momentum-space and catastrophic loss update, we adopt the

value of U j drifted to the midpoint of the timestep of j. However because

our CR timesteps are so small compared to macroscopic MHD evolution

timescales (& 106 yr), it makes no perceptible difference if we use the value

of U j at the beginning or end of each step.

of p for each species s (all given explicitly in § 2.3.1). This can be

written

ḟloss, j,s(p) =−R j,s(p, s, U j, ...) f j,s (C21)

for all terms considered. Then for every cell j, for every subcycle

timestep ∆tsub
j , for every species s, for every CR momentum bin n,

we compute

Ṅ j,n,s ≡−〈R j,s〉N
n N j,n,s ≡−

∫

V j

∫ p+n, s

p
−
n, s

d
3
xd

3
pR j,s(...) f j,n,s (C22)

Ė j,n,s ≡−〈R j,s〉E
n E j,n,s ≡−

∫

V j

∫ p+n, s

p
−
n, s

d
3
xd

3
pR j,s(...)Ts(p) f j,n,s .

For most of the terms in ḟ the 〈R j,s〉N,E
n terms can be computed

analytically but even if not, they can be pre-computed to arbitrary

precision again as a function of ψn,s (and U j, usually entering just in

the normalization of 〈R j,s〉N,E
n ) in a look-up-table. We then integrate

the change in N j,n,s and E j,n,s as:

N j,n,s(t j,0 +∆t
sub
j ) = N j,n,s(t j,0) exp

[

−〈R j,s〉N
n ∆t

sub
j

]

, (C23)

E j,n,s(t j,0 +∆t
sub
j ) = E j,n,s(t j,0) exp

[

−〈R j,s〉E
n ∆t

sub
j

]

.

While this is numerically stable for arbitrary timesteps, for ac-

curacy we impose a subcycle timestep restriction (together with the

restrictions for continuous losses below) of

∆t
sub
j ≤ Ccour

MAX
(

〈R j,s〉N
n , 〈R j,s〉E

n

) (C24)

where the maximum is taken over all n and s.

For consistency with the “bin-centered” approximation de-

scribed in § C1, which effectively takes 〈µ〉 j,n,s(p) = 〈µ〉0, j,n,s, we

simply reduce FN
j,n,s (and FE

j,n,s) by the same fractional amount as

N j,n,s (E j,n,s) after each subcycle (but for the same reasons above

regarding the rapid response of DtF
N,E
j,n,s , this update has almost no

effect on our results).

C2.3 Secondary Production

Secondary (or tertiary or any other successive) production is then

handled immediately following and consistent with these loss terms.

Consider a loss event which acts upon a CR with momentum p = ps

(in bin n), species s, within cell j, and leaves a product with p′
s′ (or

T ′
s′ ≡

√

p2
s′

c2 +m2
s′

c4 −ms′ c2), n′, s′ in j. Obviously the species

conversion s → s′ is specified by the reaction. As detailed in the

main text, we simplify for each secondary-producing reaction by

assuming a fixed energy ratio T ′
s′ =αss′ Ts for that reaction: knowing

s′ and T ′ (hence p′) we can then determine the bin n′ into which the

secondaries should be deposited.27 We then calculate the number

and energy of secondaries going into bin n′, s′. For an effective

production cross-section σs→s′ , by definition we have dṅs′(p′) ≡
d3p′ ḟs′(p′) = d3pσs→s′ vs nn fs(p), and dės′(p′) = T ′

s′(p′)dṅs′(p′).

27 For numerical convenience, since the map T ′
s′

= αss′ Ts and set of

secondary-producing processes is fixed at runtime, we pre-compute a lookup

table for each secondary-producing process which specifies the correspond-

ing bin(s) n′, s′ for each n, s.
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Defining28 R j,s→s′ ≡ σs→s′ vs nn and integrating, we have:

Ṅ j,n→n′ ,s→s′ ≡
∫

V j

∫ pmax

pmin

d
3
xd

3
pR j,s→s′(p, s, ...) f j,n,s (C25)

Ė j,n→n′ ,s→s′ ≡−
∫

V j

∫ pmax

pmin

d
3
xd

3
pR j,s→s′(p, s, ...)T

′
s′ f j,n,s

=−αss′

∫

V j

∫ pmax

pmin

d
3
xd

3
pR j,s→s′(p, s, ...)Ts f j,n,s

where pmin ≡ MAX[p−
n,s, ps(p

′,−
n′ ,s′)], pmax ≡ MIN[p+

n,s, ps(p
′,+
n′ ,s′)]

represent the appropriate minimum/maximum range of either the

“primary” bin (n) itself, or of the primary ps which would producing

a secondary p′ within the bounds of the “target” bin (n′).29 These

integrals have the exact same form as the catastrophic loss terms, so

we evaluate them identically30 to obtain the number ∆N j,n→n′ ,s→s′

and energy ∆E j,n→n′ ,s→s′ added to bin n′, s′. We then immediately

update the conserved variables for bin n′ of species s′: N j,n′ ,s′ →
N j,n′ ,s′ +∆N j,n→n′ ,s→s′ , E j,n′ ,s′ → E j,n′ ,s′ +∆E j,n→n′ ,s→s′ , and re-

compute the primitive variables for n′, s′. This is looped over each

bin n for each primary-producing species s in turn, alongside the

catastrophic losses.

Note that for some species (e.g. p̄), the highest values of

the secondary momentum we evolve (e.g. p
′,max

s′
= p

′,+
n′ , s′ for the

highest-energy bin n′) correspond to higher values of the pri-

mary momentum ps(p′
s′) outside of the range we evolve. To ac-

count for this, when we consider the highest-energy bin n for each

secondary-producing primary species s, we calculate Ṅ j,n→n′ ,s→s′

up to the maximum p
′,max

s′
by simply extrapolating the primary spec-

trum in that highest-energy bin to arbitrarily-large p (i.e. assum-

ing f̄0, j,n,s[p0
n,s](p/p0

n,s)
ψ j,n,s simply continues to p ≫ p+

n,s). This

is consistent with our spectral boundary conditions defined below

(§ C3.4).

For some species (e.g. p̄, B, etc.), it is possible in principle

that even-heavier nuclei which we do not follow explicitly could

produce some secondaries. We have attempted to assess the impor-

tance of this with the following method: first we assumed the spec-

tra of all heavier hadrons to follow the same relative normalization

to whatever the “primary” of interest is (e.g. H or CNO), as ob-

served in the fits to the spectra of different species in Cummings

et al. (2016); Bisschoff et al. (2019). Then, we combined this with

the production cross-sections from Moskalenko & Mashnik (2003);

Tomassetti (2015); Korsmeier et al. (2018); Evoli et al. (2018) to

calculate the mean “additional” production at each p′, relative to

the channels we follow. Then assume this ratio is constant, so that

the number produced dṅs′(p′) is enhanced (relative to the rate at the

channels we follow) by a factor 1+ ǫs′(p′). For all the secondary

species of interest here (e±, p̄, B, Be), this correction is negligible

(always . 10% and usually . 1%), compared to other uncertainties.

28 We also include radioactive decay production, with R j,s→s′ ≡
1/(γ t1/2,s/ ln2), but this is negligible for the species followed (see § 2.3.1).
29 This accounts for the fact that from one primary bin n, the products can

be split across two secondary bins n′, depending on the map p′(p), which

we treat in two successive secondary injection “steps” for each bin n, s.
30 For consistency, we calculate the ratio ΦN

ss′
≡ |Ṅ j,n→n′ ,s→s′ |/|Ṅ

tot
j,n,s|

where Ṅtot
j,n,s is the total catastrophic loss rate from bin n from

Eq. C22, then take ∆N j,n→n′ ,s→s′ = ΦN
ss′

|∆N j,n,s| where ∆N j,n,s =

N j,n,s(t j,0)−N j,n,s(t j,0 +∆tsub
j ) from Eq. C23, and do the same for energy

∆E j,n→n′ ,s→s′ =ΦE
ss′

|∆E j,n,s| (with ΦE
ss′

≡ |Ė j,n→n′ ,s→s′ |/|Ė
tot
j,n,s|). Thus

the correct fraction of the total loss is always assigned to n′, s′.

C3 Momentum-Space Integration

C3.1 Basic Setup

Now consider the continuous momentum-space terms,

Dt f̄0,s = p
−2 ∂p[Qs p

2
f̄0,s] . (C26)

which we can write in terms of the one-dimensional distribution

function f̄ 1D
0 ≡ 4π p2 f̄0 as

Dt f̄
1D
0 =−∂p[(−Qs) f̄

1D
0 ] , (C27)

i.e. f̄ 1D
0 is simply being translated or advected one-dimensionally in

|p|-space with a flux (−Qs) f̄ 1D
0 hence a Lagrangian “velocity” or

translation speed ṗ31

dp

dt
= ṗ =−Qs . (C28)

Combining this with the definitions of D̃pµ, D̃pp, f̄1 = (vd/v) f̄0, and

using our local power-law representation of f̄0, we can simplify to

obtain:

ṗ =−Qs =−Sℓ− p

[

D : ∇u+ ν̄

{

v̄A vd

v2
+ψχ

v2
A

v2

}]

(C29)

Here the advective/turbulent/convective term32 is ∝ D : ∇u, the

“streaming” or gyro-resonant loss term33 is ∝ ν̄ v̄A vd/v2, and the

diffusive re-acceleration term is ∝ ν̄ ψχv2
A/v2. All other continu-

ous losses (Coulomb, ionization, Bremstrahhlung, inverse Comp-

ton, synchrotron) are in

Sℓ ≡−
[

ṗCoulomb + ṗion + ṗBrems + ṗIC + ṗsynch

]

(C30)

with the expressions given for each species in § 2.3.1.

C3.2 Numerical Integration Method

This can then be immediately integrated using the method presented

in Girichidis et al. (2020) (see also Ogrodnik et al. 2021) without

modification, but we review that here for completeness. Since we

have operator-split these terms, there is no communication between

cells here: we are effectively updating a “one-zone” model in this

step independently within each cell j. Recall that on the subcycle

timestep ∆tsub
j , we assume the background MHD plasma state U j is

fixed, and note that each CR species in this step is strictly indepen-

dent (there are no cross-terms), so trivially we only need to define

the method for a single species s (we will update each species s in

serial in turn, on each substep ∆tsub
j ). Given this, it also immediately

follows that over the sub-step for a single species s, ṗ= ṗ j,s(p j,s, ...)
is purely a function of p and numerical constants.

Now consider each “bin” in turn. Assume (temporarily) that

ṗ > 0: then for convenience we will evaluate the bins in order of

increasing p0
j,n,s. For any initial p0, j,n,s in the bin (p−

n,s < p0, j,n,s <
p+

n,s), one can immediately calculate the final momentum

p f , j,n,s = p0, j,n,s +

∫ t0, j+∆t j

t0, j

ṗ j,s(p j,s, U j, ...)dt . (C31)

31 One can also see this as shown in Hopkins et al. (2021a) by inserting the

f for a CR “packet” with a single value of p = 〈p〉, and calculating Dt〈p〉
directly, to obtain Eq. C29. Note that technically the statement ṗ =−Qs and

our treatment of these terms is only valid if Qs can be written in a manner

that does not depend explicitly on f0,s itself (but instead on terms which

depend on p, s, µ, and external/background local plasma properties), but

this is trivially satisfied for all terms we consider as shown in Eqs. C29-C30.
32 Calculated using our standard second-order gradient estimator for ∇u j

for each cell, with the value of D j,n,s used for the flux update in § C1.
33 Again in-code we take vd = FN

j,n,s/n j,n,s = FE
j,n,s/e j,n,s defined in the flux

update, taken to be constant over the bin and subcycle step per our “bin-

centered” approximation.
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For some p0, j,n,s = p′
0, j,n,s, we will have

p
′
f , j,n,s = p

+
n,s . (C32)

Thus all CRs with p0, j,n,s < p′
0, j,n,s remain “in the bin” though their

energy may increase: we can compute their final number and energy

as

N f , j,n,s =

∫ p′0, j,n,s

p
−
n,s

dN0, j,n,s (C33)

E f , j,n,s =

∫ p′0, j,n,s

p
−
n,s

Ts(p f , j,n,s[p0, j,n,s])dN0, j,n,s

where

dN0, j,n,s ≡
∫

V j

d
3
x4π p

2
0,s d p0,s f̄0, j,s (C34)

≡Vj f̄0, j,n,s[p
0
n,s](p0, j,n,s/p

0
n,s)

ψ j,n,s 4π p
2
0, j,n,s d p0, j,n,s

is just the number density per unit “initial” momentum d p0, j,n,s

(given by the primitive variables for the cell, or equivalently by

N0, j,n,s, E0, j,n,s, at the start of this substep). We can likewise com-

pute a number and energy

∆N j,n→n′ ,s =

∫ p+n,s

p′
0, j,n,s

dN0, j,n,s (C35)

∆E j,n→n′ ,s =

∫ p+n,s

p′
0, j,n,s

Ts(p f , j,n,s[p0, j,n,s])dN0, j,n,s ,

which are the total number and final energy of the CRs which will

increase in momentum sufficiently to move from bin n to the “next”

bin n′. The relevant integrals here can be computed numerically

to arbitrary desired precision.34 Note that our subcycle timestep

condition ensures CRs do not cross multiple bins in a single sub-

step. We then immediately update the conserved quantities in both

bins (N j,n,s → N f , j,n,s, E j,n,s → E f , j,n,s, N j,n′ ,s → N j,n′ ,s +∆N j,n→n′ ,s,

E j,n′ ,s → E j,n′ ,s +∆E j,n→n′ ,s), and immediately recalculate the cor-

responding primitive variables. We then repeat this for the next bin

n′, and so on until all bins for species s in cell j are updated for

that subcycle step ∆tsub
j (we then repeat for each species, then re-

peat for the next subcycle timestep, until the full timestep ∆tcell
j is

complete). Of course, if ṗ j,s < 0, then the procedure above is nu-

merically identical, but we instead evaluate the number and energy

of CRs which “move down” to a lower-p j,s bin, working in order of

n from the highest-p j,s to lowest-p j,s bin.35

34 We can operator split all loss processes in ṗ and evaluate the integrals

to construct a table of p f , j,n,s[p0, j,n,s], which then immediately allows us

to evaluate the relevant updates to N j,n,s and E j,n,s, each independently ei-

ther analytically (where this is solveable) or pre-computed in a lookup ta-

ble. But we find identical results using a simple composite trapezoidal rule

quadrature to evaluate the integrals numerically for arbitrary ṗ j,s. For this we

impose a fractional error tolerance of better than 1% in |p f , j,n,s − p0, j,n,s|,
which is almost always easily satisfied for ∼ 10− 12 integration steps, but

because this tolerance is so much smaller than our bin sizes, and our sub-

cycle timesteps are small (so the “integration” is usually extremely well-

approximated by a simple linear expansion in ∆tsub
j , which makes the ex-

pressions above trivial for any ṗ) we find we can make the tolerance much

larger (up to ∼ 50%) before we detect measureable differences in any re-

sults.
35 It is possible, though extremely rare, for ṗ j,s(p j,s, ...) to change sign as

a function of p j,s over the range of p (for a given s and j) that we evolve

in our simulations for that s. In these cases, we evaluate bins in the “order”

(increasing or decreasing p) matching the sign of ṗ j,s in the majority of

bins for species s in cell j, but for each bin we use the correct value of ṗ j,s

to determine if there is flux to higher or lower-p bins (or both, if the sign-

change occurs mid-bin).

Again we stress that this is just a straightforward implemen-

tation of the method from Girichidis et al. (2020) (itself an ex-

tension of the methods proposed and utilized in e.g. Jun & Jones

1999; Miniati 2001, 2007; Miniati et al. 2001; Jones & Kang 2005;

Yang & Ruszkowski 2017; Winner et al. 2019), and readers inter-

ested in detailed numerical validation and tests should see that paper

(e.g. their Figs. 8-12). Another implementation of the same method

for leptons, demonstrating the applicability to different species and

flexibility to handle arbitrary cooling functions is given in Ogrodnik

et al. (2021), and other details of the method are discussed in Hanasz

et al. (2021). These papers, as well as our tests below, also motivate

our choice of bin sizes: if we restrict to the dynamic range of CR

energies we follow here, both suggest ∼ 10 intervals spanning that

particular range as “optimal,” though Ogrodnik et al. (2021) show

that increasing the bin number only modestly increases the accu-

racy of the results at a level significantly smaller than e.g. galactic

variations or variations between different diffusion models shown

in Figs. 2-5 in the text.

C3.3 Subcycle Timestep Condition

For stability and accuracy we enforce a subcycle timestep

∆t
sub
j ≤Ccour MIN

(

δt j,n, s

)

, (C36)

where the minimum is over all bins and species, and δt j,n, s is the

time required for a CR to cross from one bin boundary p±
j,n,s to the

next closest bin (higher or lower according to the sign of ṗ j,s evalu-

ated at p±
j,n,s), or to cool from the lowest-p bin boundary p−

j,n=0,s|min

for each species s to p = 0 (if ṗ j,s < 0 at this ps = p−
j,n=0,s|min). We

pre-calculate this for all bin “edges” for each species s in each cell

j, and take the minimum. We then take the minimum of this and

the similar timestep restriction from the j terms in § C2, and set the

subcycle timestep to the minimum of this or the cell timestep ∆tcell
j .

C3.4 Spectral Boundary Conditions

For the lowest and highest-p bins for each species s, we adopt a

simple inflow/outflow boundary condition. If the flux (∆N j,n→n′ ,s,

∆E j,n→n′ ,s) would move out of the spectral domain (e.g. if ṗ< 0 at

the p−
n,s boundary of the lowest-p j,n,s bin, or ṗ> 0 at the p+

n,s bound-

ary of the highest-p j,n,s bin) we simply allow it to be lost (outflow).

If there should be a flux “into” the domain (e.g. if ṗ > 0 at the p−
n,s

boundary of the lowest-p j,n,s bin, or ṗ < 0 at the p+
n,s boundary of

the highest-p j,n,s bin; rare at the low-p-boundary, but not uncommon

at the high-p-boundary), then we calculate the flux (∆N j,n′→n,s,

∆E j,n′→n,s) which should flow into the bin by temporarily assum-

ing the existence of a “ghost bin” which has a continuous power-law

distribution function matched to the same slope and normalization

at the bin edge (e.g. if in the final “regular” bin, the distribution

function is given by some f̄0, j,n,s[p0
n,s](p/p0

n,s)
ψ j,n,s , we simply as-

sume this power law continues to p ≪ p−
n,s or p ≫ p+

n,s for the lower

or higher boundaries respectively). Ignoring this “boundary flux,”

however, has very minimal effects (de-activating it leads to slightly-

steeper slopes for leptons in the highest-rigidity bins, but the effect

is small).

C4 Reduced Speed of Light Implementation

As described in the text, we implement a reduced speed of light

(RSOL) c̃ < c as is standard practice in the field, to allow larger

numerical timesteps. The specific implementation is presented and

derived exactly from the Vlasov equation for an arbitrary CR popu-

lation (obtained by multiplying the Dt f term in the Vlasov equation

by c/c̃, then re-deriving all equations) in Hopkins et al. (2021a)
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(their Eq. 50). Mathematically, this amounts to36 multiplying Dt f̄0,s

and Dt f̄1,s in Eq. C1-C2 by (c/c̃). Since c̃/c is a universal constant

in the simulation, this is numerically trivial (it has no effect on the

numerical methods above) – in fact it is, by construction, exactly

equivalent to a change of units for certain operations (Hopkins et al.

2021a). We stress that this method is identical to the standard im-

plementation of an RSOL in radiation-hydrodynamics simulations

(see e.g. Skinner & Ostriker 2013; Rosdahl et al. 2013, and refer-

ences therein), and recently-developed implementations for MHD-

PIC simulations (Ji & Hopkins 2021; Ji et al. 2021a) and as such

has been tested in hundreds of applications. As shown therein and

in Hopkins et al. (2021a), it is trivial to demonstrate that this neces-

sarily gives the exact solutions (for c̃ = c) in local steady-state, and

even out-of-steady-state, the solutions for e.g. any propagating pop-

ulation exactly match the c̃ = c solution at any fixed distance from

a source. And we show explicitly in the text (Figs. 5 & B3) that our

results are independent of c̃, as they should be.

C5 Simple Numerical Tests

Fig. C1 presents some idealized numerical tests of the methods

above. We emphasize that the methods here have all been presented

and tested in other papers previously, so these should be regarded as

“validation” tests our particular implementation, and readers inter-

ested in more comprehensive details should see the numerical meth-

ods papers referenced above. We consider tests of each operator-

split term from § C1-C3 in turn, in our GIZMO code.

C5.1 Injection & Catastrophic Terms

First consider the injection and catastrophic loss processes in j

(§ C2). Without loss of generality, consider a single species s, and

single cell j (i.e. a spatial “one-zone” model), in a frame comov-

ing with the cell. To test these terms, assume all other terms are

negligible,37 so the DF evolves according to Dt f ≈ jinj − jloss, with

jinj(p)∝ p−4.2 (as we assume in the text) and jloss =−(σ vn)loss f =
− f/tloss (the general form of all loss terms we consider, with tloss(p)
some function of p), with j and tloss independent of time, and be-

gin at t = 0 with f = 0. With these simplifications, the actual

units and normalization of jinj and jloss are arbitrary: so we sim-

ply work in convenient code units. This has an exact analytic so-

lution f (p, t) = jinj tloss (1 − exp{−t/tloss}). We compare the nu-

merical results, using our in-code implementation, for both an early

time and/or negligible loss case (t ≪ tloss, where the spectrum is es-

sentially “pure injection” with f ≈ jinj t), and for a time t ≈ 2 tmax
loss

(where tmax
loss is the maximum tloss over the momentum range we

evolve), by which point the spectrum should be close-to-steady-

state.

Note that the different catastrophic processes considered in

the text mostly have similar dependence on p: the different catas-

trophic hadronic processes generally feature approximate jloss ∝ β
(tloss ∝ 1/β) at high energies (i.e. roughly constant in the relativistic

limit),38 with a cutoff at very low energies where jloss → 0 (which

is not interesting for our test). Two exceptions are radioactive de-

cay, where tloss ∝ γ, and p̄ annihilation (where σpp̄ ∼ constant at

36 Trivially, this is also equivalent to taking F̃
N,E
j j′ ,n,s

→ (c̃/c) F̃
N,E
j j′ ,n,s

in

Eqs. C8-C10 and c2 b̂ · ∇P j,n,s → c c̃ b̂ · ∇P j,n,s, ν̄0, j,n,s → (c̃/c)ν̄0, j,n,s in

Eq. C12; j → (c̃/c) j in Eq. C15; and Qs → (c̃/c)Qs in Eq. C26.
37 We do this in-code by multiplying all other terms (besides those of inter-

est for our test) in the equations for Dt f by some arbitrarily small number.
38 This also includes positron annihilation: although the Dirac formula fea-

tures a complicated dependence on γ, for ultra-relativistic positrons (the case

of interest at our energies), this becomes tloss = constant+O(1/γ) to lead-

ing order. Likewise the residual T dependence for heavier nuclei is generally

weak.

high-p, but then rises ∝ p−1/3 at small-p, weaker than β−1 for non-

relativistic CRs). So for the sake of completeness we consider both

a case with tloss ∝ 1/β and ∝ γ at all energies, which bracket the

range of different cases for different species.

C5.2 Continuous Momentum-Space Terms

Next consider an analogous experiment for the continuous

momentum-space terms (§ C3), ignoring all other terms (be-

sides injection) so Dt f = jinj + p−2 ∂p(p2 Qs f ). Already analytic

solutions become non-trivial here, but the steady-state (Dt →
0) solutions can be easily solved exactly. For the simple (but

representative) case of a power-law Qs = − ṗ = p/tloss with

tloss ≡ tloss,0 (p/p0)
−ψloss (and jinj = j0 (p/p0)

−ψinj ), we have f →
( j0 tloss,0/(ψinj − 3))(p/p0)

−(ψloss+ψinj) = (ψinj − 3)−1 jinj tloss. We

again begin from f = 0 and evolve each test until t ≈ 2 tmax
loss (where

the maximum is over p for a given tloss[p] in each test).

We consider each of the continuous loss processes treated in-

code in turn, but since the units/normalization are arbitrary in these

tests, we only consider separately those which exhibit a different de-

pendence of tloss on p. Thus we have (1) adiabatic (tloss ∼ constant);

(2) Bremsstrahlung (tloss ∝ 1/(ln(2γ)− 1) ∝ p−(0.1−0.3) for lep-

tons, the case we consider), not very different from adiabatic;

(3) inverse Compton & synchrotron (tloss ∝ p/γ2 ∝ p−1, again

for leptons); (4) Coulomb & ionization losses (tloss ∝ pβ (1 +
1/(γ β)2)−1/2, or ∝ p3 in the non-relativistic limit and ∝ p in

the ultra-relativistic limit, for hadrons and similarly up to log-

arithmic corrections for leptons); (5) streaming losses and dif-

fusive reacceleration (tloss = (v2/ν̄)(v̄A vd + ψχv2
A)

−1 with vd ≡
FN

n,s/n j,n,s; the pre-factor here depends on the local drift velocity/flux

and spectral shape, so for simplicity in this test problem we as-

sume |v̄A vd +ψχv2
A| ∼ constant,39 with ν̄ ∝ β p−1/2 similar to the

observationally-favored values, so tloss ∝ v p1/2).

Since some of these terms depend on β, γ and have dif-

ferent behavior in relativistic and non-relativistic limits, we fo-

cus on the most interesting cases by considering Bremsstrahlung

and inverse Compton+synchrotron for a leptonic case (e− or e+,

they are the same here), and Coulomb/ionization and stream-

ing/diffusive reacceleration for a hadronic case so we can see the

non-relativistic/relativistic transition (here we take protons [H] as

the test case, though the scaling to other hadrons is straightforward).

The adiabatic case is entirely independent of species choice in this

setup.

Note that a couple of these “loss” terms can have either

sign and represent gains (e.g. adiabatic), but then (in this highly-

simplified test problem) there is no steady-state solution so we

only consider the “loss” sense. In our full simulations this energy

comes from some other term (e.g. gas mechanical energy) and other

loss/escape terms are always present, so these cannot run away.

C5.3 Spatial Flux/Advection Terms

Next we consider the spatial flux terms (§ C1), ignoring all other

terms besides injection so Dt f̄0 = jinj −∇ · F with F = v f̄1 b̂. To

39 As noted in the text, when the flux equation (Dt f̄1) is in local steady-

state in the near-isotropic limit (|Dt f̄1| ≪ |ν̄ f̄1|), which is often a good

approximation, then vd takes a value such that the “streaming + diffusive

re-acceleration” term in Eq. C29 becomes ν̄ {...} → (v̄A/3) f̄
−1
0

b̂ ·∇ f̄0 +
(ψ ν̄/3) [(v2

A − v̄2
A)/v2]. For our default model assumptions in the main

text (allowing Alfvénic streaming, v̄A =±vA) this further simplifies to give

tloss = 3ℓ∇/vA where ℓ∇ ≡ f̄0/|b̂ ·∇ f̄0| ≈ nn,s/|∇‖nn,s|. In this limit then,

the streaming plus diffusive reacceleration term has tloss ∼ constant, iden-

tical to the adiabatic term, and is trivial to accurately integrate. Our test

therefore intentionally reflects a strongly “out-of-equilibrium flux” or a “no

streaming” (v̄A = 0) configuration, which are more challenging to treat ac-

curately.
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run preliminary (low-resolution) experiments with this method, and

find that the results are nearly identical to our bin-centered model

except the “step” structures are smoothed.

C5.4 Continuous versus Discrete Injection

In the experiments above, we treat the injection as continuous

(numerically, we operator split and include an injection step and

then subsequent CR operator steps in each cell timestep ∆tcell; see

§ C6.1), both because this allows comparison with simple steady-

state solutions and behaviors discussed in the main text, and be-

cause it is a numerically difficult “stress test.” It is well-known in

many contexts that accurately representing steady-state solutions in

the continuous-injection limit is more challenging (compared to e.g.

free-decay of CR spectra from some initial condition, without injec-

tion) for numerical methods like ours which operator-split injection

and losses. But in our simulations in the main text, recall that the

delay between individual injection events (i.e. SNe) in some patch

of the ISM is time-resolved,41 so achieving exact balance in contin-

uous injection is not particularly important to our results. We can

immediately test the free-decay limit by simply taking any of our

tests above and at some time turning off the injection (setting it to

zero or some numerically small number). As expected, the solutions

in this case are at least as accurate as those in Fig. C1, or formally

better (though the numerical errors are small in any case, except for

the “bin centered” effects, which are similar in both steady-state and

free-escape limits).

C6 Summary

C6.1 List of Operations in Pseudo-Code

To summarize, the CR-specific operations taken on every cell

timestep ∆tcell
j are, in-code:

• Compute cell timesteps ∆tcell
j and list of active cells.

• Perform first half-step kick for evolved fluxes (CR and MHD),

drift and synch cells. Calculate where sources (e.g. SNe) will occur.

• Update neighbor lists and re-compute volume decomposition,

and cell primitive variables (e.g. Vj).

• Inject CRs from discrete (stellar & black hole) sources, along-

side other mechanical feedback (e.g. ∆N
inj
j,n,s, per § C2). Update CR

variables (conservative and primitive).

• Compute spatial gradients, shielding, and other quantities for

inter-cell faces (e.g. A j j′ ) and fluxes.

• Compute inter-cell fluxes (e.g. F̃ j j′ ) for conserved quantities

(e.g. dNflux
j,n,s/dt, per § C1) for all interacting neighbors. MHD and

other fluxes also computed.

• Perform second half-step kick for evolved fluxes.

• Compute CR momentum-space update (losses & continuous

momentum-space terms; § C2 & C3).

– Calculate cell sub-cycle timestep ∆tsub
j from minimum of

all constraints.

– Iterate over subcycle timesteps within each cell j until the

subcycles reach ∆tcell
j .

· Iterate over each species s, within the subcycle step.

* Iterate over each bin n, for the species s.

* Calculate loss/gain or neighbor-bin flux n → n′ or

secondary-bin flux (n → n′, s → s′) for each loss/gain pro-

cess, from the current cell n.

41 At our fiducial resolution, a single star particle representing a young

stellar population has a mean time between individual supernova events of

∼ 1 Myr, compared to a numerical timestep of ∼ 103 yr.

* Update CR conserved and primitive variables for each

bin ( j,n,s, j,n′,s′), according to those loss/gain terms.

• Repeat until final simulation time is reached.

C6.2 Computational Expense and Typical Timesteps

In terms of computational expense, the simulations here are typi-

cally ∼ 30 times more expensive than an otherwise identical sim-

ulation without any CRs. This difference is almost entirely driven

by the Courant condition (∆tcell
j ≤Ccour ∆x j/vsignal), given our very

high c̃ ∼ vsignal adopted, which reduces the timesteps for all cells

at all times by a correspondingly large factor. If we compare to,

say, a single-bin CR simulation (Hopkins et al. 2020b) or an M1

radiation-hydrodynamics simulation (which solves numerically es-

sentially identical spatial advection/flux equations so imposes the

same Courant condition; see Hopkins et al. 2020a) with the same

c̃, the cost difference is much more modest, a factor . 2− 3. Of

that added cost, most owes to added communication and associ-

ated imbalances, particularly in the gradients and MHD (+CR) flux

computation, because the method requires calculating and passing

in memory ∼ 100 times as many CR-specific variables compared to

a “single bin” CR simulation, as each species and bin requires its

own “set” of variables (e.g. N j,n,s, E j,n,s, F
N,E
j,n,s , their gradients, etc.)

each equivalent to the set we would normally pass for a single-bin

CR calculation.

The momentum-space operations are relatively modest in cost

(typically entailing ∼ 10−20% of the total runtime), for three rea-

sons. First, while we invoke subcycling, the cells which dominate

the total CPU cost of our simulations (those with the smallest ∆tcell
j ,

generally the most dense, star-forming gas), generally do not require

many subcycles because their flux/Courant timesteps are already

very small: for e.g. a gas cell with nn ∼ 100cm−3 at our fiducial

mass resolution and reduced speed of light, ∆x j/c̃ ∼ 103 yr (so the

timestep is a couple hundred years). But at this density, the subcy-

cle timestep ∆tsub
j is generally limited by either the ionization loss

timescale (the gas being mostly neutral) for hadrons in the lowest-

energy bin (∼ p−
n,s/| ṗion, j,n,s| in the lowest-p hadronic bin) which is

also ∼ 103 yr, or by the synchrotron/inverse Compton loss timescale

in the highest-energy leptonic bin which is ∼ a few × 103 yr (for

magnetic+radiation energies of ∼ 100eVcm−3 at these gas densi-

ties, per Fig. 6 in the text). So these cells typically only feature a few

subcycles at most. Second, the momentum-space operations are em-

barrassingly parallel at the cell j and species s level (involving no

communication between threads). And third, the complicated sub-

operations (e.g. numerical integration and evaluation of the relevant

cooling/loss functions) are almost entirely floating-point operations

that are very high-efficiency.

There are some cases in e.g. very low-density cells where ∆tcell
j

is larger but the radiation energy density is still relatively high (as it

cannot fall much below the ISRF in the ISM or CMB in the CGM;

see Fig. 6), so more subcycles are required, reaching & 100−1000

in rare cases. But since the overall timesteps are so much larger to

begin with and this is a small fraction of all cells, it has little effect

on the total CPU cost.

C6.3 Timescales for Convergence

Briefly, we review here the timescales over which we expect

the simulations to converge to local-steady-state behavior for the

CR spectra. In steady state in the disk we have injection ḟ ∼
j̇inj balanced by some “effective loss” rate ḟ ∼ − f/tloss, where

“loss timescale” tloss is given by whatever process dominates the

loss rate (i.e. the fastest of all loss processes), including es-

cape (i.e. diffusive/streaming/advective losses from the disk to the

halo/CGM/IGM). Focusing on just the terms which dominate at

most of the energies and most of the species of interest, and
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using the expressions in the text or the values from the sim-

ulations shown in § A2, the Coulomb/ionization loss timescale

is given roughly by: tloss, ion ∼ 0.1Myr(cm−3/nn)(T/MeV); the

synchrotron-plus-inverse Compton loss timescale (for leptons) is

given by tloss, synch/IC ∼ 0.3Myr(eVcm−3/(urad +uB))(R/TV)−1;

and the escape loss timescale (for the best-fit scattering rates,

ignoring advection and streaming, for a simple smooth ver-

tical profile and tangled fields) is approximately: tloss, escape ∼
Myr(ℓcr/kpc)2 (R/GV)−1/2, where ℓcr(R) ∼ f̄0,s(R)/|∇ f̄0,s(R)| is

the CR gradient scale length at some rigidity.

First, note that these are extremely “well-resolved” timescales:

our typical numerical timestep in our fiducial simulations for gas at

densities ∼ 1cm−3 is ∼ 103 yr, so we do not have to worry about

e.g. the limit where the CRs converge to equilibrium on much faster

timescales than are numerically tractable (where implicit solvers

may be useful, compared to our explicit spectral integration).

Second, recall that the typical timescale for the CR proper-

ties to converge to steady-state at some R is given by the relevant

(shortest) loss timescale at that R:42 ∼ 0.1 Myr at the lowest and

highest CR energies we evolve, and ∼ a few Myr at the peak of

the spectrum (∼GeV) where the net loss+escape timescale is max-

imized (this, of course, is in part the reason why the spectum peaks

at these energies). So we expect to converge to numerical equilib-

rium in . 10Myr at all evolved CR energies in the Galactic disk.

But as discussed in the text, to be conservative we should account

for the reduced-speed-of-light slowing down CR escape. As shown

in Hopkins et al. (2021a), for our numerical formulation the steady-

state solutions are guaranteed to be invariant to the choice of c̃, and

we confirm this explicitly in e.g. Figs. 5 & B3, but in the worst-

case scenario, the simulation time it takes for the simulation to ac-

curately converge to steady-state can be increased systematically

by a factor = c/c̃. But for our highest-c̃ tests in Figs. 5 & B3,

this is just a factor ∼ 3, so we would expect worst-case conver-

gence times, at the slowest-converging energies, still ≪ 100Myr,

i.e. shorter than one Galactic dynamical time at the Solar circle

(and far shorter than the ∼ 500Myr for which we typically run

our simulations). Of course, as discussed in the text (§ 3.5.1, 3.5.2,

3.5.4), we have also confirmed directly that the simulations reached

steady-state (as expected), by verifying that the results are statis-

tically time-independent (e.g. independent of snapshot number, up

to small stochastic and, as we noted, effectively ergodic variations

at a given location corresponding to phenomena such as individual

SNe bubbles) for the last several hundred Myr over which we evolve

them.

This does, however, introduce the caveat (discussed in the main

text) that in very low-density gas, at distances far from the Galactic

center (≫ 10kpc), e.g. in the CGM, where one might have very low

nn and urad + uB and very large ℓcr ≫ kpc, these timescales could

become &Gyr, in which case we would not expect the local CR

spectra to have converged to equilibrium. Indeed, if the loss/escape

times exceed ∼Gyr in these regions, then it is not clear if the CGM

or IGM can converge to true steady state at all in a Hubble time. In

this regime (the distant CGM), fully-cosmological simulations are

required to capture both the relevant timescales and non-equilibrium

accretion/outflow/galaxy formation effects.

C6.4 Approximate “Error Budget”

For highly non-linear, chaotic, multi-physics simulations such as

those in this paper, it is impossible to rigorously define a theoretical

error or systematic uncertainty “breakdown” uniquely assigned to

42 Formally, if Dt f = j − f/tloss with j and tloss constant, then any de-

viations in the initial condition from the equilibrium solution are damped

exponentially with a decay time = tloss.

different terms. But we can make some estimates from our analytic

derivations, idealized tests, and full-physics tests in the paper.

On the purely numerical side, quantities such as errors from

our assumed closure relation for the Vlasov hierarchy of the CR

moments equations, or reduced-speed-of-light assumption, or finite

time needed for the CR equations to converge to local steady-state,

or numerical integration, are all formally demonstrably small, and

we confirm this directly in our tests (both idealized but also full-

physics, where we vary the closure, c̃, run-time or snapshots ana-

lyzed, resolution, etc.). From examination of our numerical deriva-

tions or full-physics results in Figs. 2-5 & B1-5, the most signifi-

cant numerical error is likely the “bin-centered” approximation for

the spatial fluxes (§ C1). As is well-known (see § C5 above and e.g.

Fig. 12 in Girichidis et al. 2020 and Fig. 7 in Ogrodnik et al. 2021),

this produces the “step” structure between bins of a given s (where

the spectra are not perfectly smooth between bin edges), which in

turn produces the more noticeable step features when taking ratios

of e.g. B/C (where the bin edges do not exactly align in units of

energy-per-nucleon). We could reduce this error by increasing the

number of bins by a large factor, but that is highly inefficient. A

more efficient approach would be to evolve the fluxes without mak-

ing such an approximation; but this introduces both conceptual dif-

ficulties (e.g. one must invoke some “closure” or model assumption

for how 〈µ〉 varies across each bin) and practical numerical chal-

lenges (it is difficult to construct a numerically-stable reconstruction

and integration; see e.g. Girichidis et al. 2020). So this is outside the

scope of our study here.

In any case, Figs. 2-10 & B1-5 show that physical uncertainties

are generally much larger than these pure-numerical uncertainties.

These are investigated in detail in the main text, but we briefly sum-

marize here. One uncertainty is whether our galaxies are “realistic”

in properties like the phase structure (which influence loss rates),

source (SNe/massive-star) distribution, magnetic field structure, etc.

For this reason we consider a wide range of models where we vary

different loss terms, make different assumptions about streaming

and diffusive reacceleration, change the magnetic fields by an or-

der of magnitude, compare different local regions of the galaxy and

different times/snapshots (separated by e.g. several galaxy dynam-

ical times, over which the phase structure and local field geome-

try, etc, will vary), as well as entirely different galaxies. In general,

these differences are larger than the numerical errors from e.g. the

bin-centered flux approximation, but still small compared to the dif-

ferences that arise from modest changes to the assumed scaling of

the CR scattering rates (e.g. Figs. 3 & B1), and small compared to

what would be needed to change our key qualitative conclusions

(as demonstrated, for example, by the fact that our conclusions and

favored ν̄(R) are very similar to what is inferred in classic models

which assume a static, much more highly-simplified analytic model

for the Galaxy). So the dominant physical uncertainty, as we discuss

in the text, is almost certainly our assumption that the CR scattering

rates can be approximated as a universal-in-time-and-space function

of rigidity. That is not the prediction of any physically-motivated

model (in either extrinsic turbulence or self-confinement motivated

scenarios), but is a common phenomenological approximation. In

future work (Hopkins et al. 2021b), we will lift this assumption and

explore different physically-motivated models.

APPENDIX D: MAGNETIC FIELD COMPARISONS

One can immediately read off the median magnetic field strength

|B| as a function of ISM gas density n in the Solar neighbor-

hood from Fig. 6 in the main text: fitting a power law we have

roughly |B| ∼ 6.3+3.5
−2.3µG(n/cm−3)0.4. This is consistent with (per-

haps slightly higher than, at the tens of percents level) typical ob-

servational estimates at gas densities ∼ 0.01−100cm−3 (e.g. Beck
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