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ABSTRACT

We derive a consistent set of moment equations for cosmic ray (CR)-magnetohydrodynamics, assuming a gyrotropic distribution
function (DF). Unlike previous efforts, we derive a closure, akin to the M1 closure in radiation hydrodynamics (RHD), that
is valid in both the nearly isotropic DF and/or strong-scattering regimes, and the arbitrarily anisotropic DF or free-streaming
regimes, as well as allowing for anisotropic scattering and transport/magnetic field structure. We present the appropriate two-
moment closure and equations for various choices of evolved variables, including the CR phase space DF f, number density n,
total energy e, kinetic energy €, and their fluxes or higher moments, and the appropriate coupling terms to the gas. We show that
this naturally includes and generalizes a variety of terms including convection/fluid motion, anisotropic CR pressure, streaming,
diffusion, gyro-resonant/streaming losses, and re-acceleration. We discuss how this extends previous treatments of CR transport
including diffusion and moment methods and popular forms of the Fokker—Planck equation, as well as how this differs from
the analogous M 1-RHD equations. We also present two different methods for incorporating a reduced speed of light (RSOL) to
reduce time-step limitations: In both, we carefully address where the RSOL (versus true ¢) must appear for the correct behaviour
to be recovered in all interesting limits, and show how current implementations of CRs with an RSOL neglect some additional

terms.
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1 INTRODUCTION

Cosmic rays (CRs) could play a potentially crucial role in the
interstellar and circumgalactic medium, star and galaxy formation,
and our understanding of high-energy astroparticle and plasma
physics. In recent years, there has been a surge of interest in
attempts to model CR dynamics explicitly in star, planet, and galaxy
simulations — i.e. following the transport and matter interactions
of CRs alongside the magnetohydrodynamics (MHD), gravity, and
other plasma physics effects in these systems (see e.g. Uhlig et al.
2012; Wiener, Zweibel & Oh 2013b; Salem & Bryan 2014; Pakmor
et al. 2016; Salem, Bryan & Corlies 2016; Simpson et al. 2016;
Ruszkowski, Yang & Zweibel 2017; Zweibel 2017; Butsky & Quinn
2018; Girichidis et al. 2018; Mao & Ostriker 2018; Chan et al. 2019;
Hopkins et al. 2020d; Ji et al. 2020; Su et al. 2020). Simultaneously,
work has continued on more traditional CR propagation methods
that trace CR trajectories as ‘tracer particles’ across static analytical
galaxy models in order to understand Solar system observables (e.g.
Cummings et al. 2016; Guo, Tian & Jin 2016; Johannesson et al.
2016; Korsmeier & Cuoco 2016; Evoli et al. 2017; Amato & Blasi
2018). Ideally, one would simply solve the full Vlasov equation for
CRs as a function of position x and momentum p for each CR species,
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but the high dimensionality of this equation is prohibitive. Moreover,
in planet/star/galaxy formation models the resolution scales are vastly
larger than CR gyro radii for CRs with energies <TeV (which contain
most of the energy/pressure, and dominate the interactions with the
non-relativistic matter). As such, these applications have generally
relied on moment-based approaches, where one begins by assuming
that the CR distribution function (DF) f is gyrotropic (symmetric
around the magnetic field direction), averages over the micro-scale
Lorentz forces and scattering processes, and then considers moments
of the DF in terms of the remaining momentum direction, the pitch
angle w.

The simplest of these — ‘zeroth moment methods’ — correspond to
pure diffusion models. These involve either assuming nearly isotropic
behaviour and solving an isotropic Fokker Plank equation for f or
solving a diffusion-like equation, 3,q = V - (k - Vgq) + ..., for some
integrated ‘macroscopic’ CR property ¢ (e.g. energy density; the
diffusion tensor « should be anisotropic on scales much larger
than the gyro radius, K = K"f)f)). However, it is well known that
this approximation cannot accurately represent many regimes of
interest: the free-streaming or weak-scattering regimes, significantly
anisotropic f(it), the trans-Alfvénic CR ‘streaming’ limit, and oth-
ers. Moreover, it can produce highly unphysical behaviour (e.g.
superluminal CR transport), and imposes a severe time-step (and
therefore CPU cost) penalty in numerical simulations that explicitly
integrate the CRs. Motivated by this, recently Jiang & Oh (2018),
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Table 1. Commonly used variables in this paper.

f CRDF f = f(x,p, 1,5, ...)

p.v CR momentum p, velocity v (p = |p|, v = |v])

n CR pitch-angle £ = p - b

b, v4 Magnetic field direction b = B/|B|, Alfvén speed v4

c, ¢ True (¢) and ‘reduced’ (¢) speed-of-light (RSOL)

B,y CR velocity/Lorentz factors 8 = v/c, y = 1/y/1 — B2

u, B, Gas velocity u, with 8, =u/c

D, Conservative comoving derivative D; X = ;X + V - (uX)

q.Fy Moments of the DF and associated fluxes (equations 2-3)

n,e,e€ CR number n, energy e, kinetic energy € densities

n,e, € Differential n’ = dn/dp = 4x p? fo, etc.

fa Pitch-angle moments of the DF: f, = (u" f) « (equation 6)

<M'}> DF-weighted pitch-angle moment <ﬂ’;> = £,/ fo (equation 7)

v Pitch-angle averaged scattering rate b= Uy 4o
(equation 24)

Dy, Dy Averaged scattering coefficients D,,,, etc. (equation 24)

0 Streaming speed U4 = va(V4 — D) /(D4 + D)

g Derivative operator G(X) = b-[V-(DX)] (equation 25)

P,D CR pressure tensor P and Eddington-type tensor D
(equation 26)

X Second-moment function x = (1 — <u§c>) /2 (equation 27)

Mo Closure function <pd2f> ~ M2(<1Llf>) (equation 28)

Chan et al. (2019), and Thomas & Pfrommer (2019) proposed two-
moment schemes, effectively evolving not just the isotropic part of
f but its first moment as well (or equivalently, evolving both CR
energy and its flux), which resolve many of these problems. The
formulations in Jiang & Oh (2018) and Chan et al. (2019) were
heuristically motivated by the analogous popular moment methods
for radiation hydrodynamics (RHD), but they did not attempt to
link these to the actual equations of motion for a gyrotropic CR
distribution. Thomas & Pfrommer (2019) did make such a link and
developed a formalism for further expanding on this; however, their
formulation makes some restricting assumptions, e.g. that the CRs
are ultra-relativistic and that the DF f() is always nearly isotropic.
Moreover, although all of these works have suggested and adopted
the use of a ‘reduced speed of light’ (RSOL) as a method to prevent
extremely small numerical time-steps when CRs are free-streaming
(again, analogous to the procedure common in RHD), none have
attempted to verify that the RSOL formulation is consistent in all
relevant limits of their equations to guarantee accurate steady-state
solutions.

In this paper, we therefore expand upon this previous work to
develop more general forms of the CR-MHD equations. In applica-
tion, this work is intended primarily for numerical models of planet,
star, and galaxy formation, or the interstellar or circum/intergalactic
medium, where one desires to evolve CR populations explicitly.
We make two fundamental assumptions throughout, appropriate for
these applications: (1) that the background MHD fluid velocities u are
non-relativistic [so we can expand to leading order in e.g. O(u/c)]
and (2) that the CRs have a gyrotropic DF with gyro radii/time-
scales much smaller than the macroscopically resolved scales in
the calculation. Importantly, however, we do not assume that e.g.
the CR scattering mean free paths (MFPs) are short — akin to e.g.
kinetic MHD (Kulsrud 1983), we will show that the small-gyro-
radius assumption is sufficient for a ‘fluid-like’ expansion of the
Vlasov equation, provided appropriate closure relations are adopted
to truncate the moment expansion.
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In Section 2, we present various assumptions and definitions, and
in Section 3 use this to derive the appropriate two-moment equations
(Section 3.4) and closures governing the CR DF (Section 3.4.1) or
its integrals (CR number or energy density; Section 3.4.2), as well
as the corresponding couplings to the gas equations (Section 3.5).
In Section 4, we alternatively present expressions appropriate for
methods that attempt to explicitly evolve the CR pitch-angle distri-
bution directly (Section 4.1). In Section 5, we consider a number of
test problems to compare various closure assumptions and ‘zeroth
moment methods’ to exact solutions, summarized in Section 5.6. In
Section 6, we discuss how the formulations here extend previous
moment equations in the literature (Section 6.1) and popular forms
of the Fokker—Planck equation (Section 6.2), and relate to analogous
RHD expressions (Section 6.3). We discuss the reduced-speed-of-
light (RSOL) approximation in Section 7 and present two possible
implementations (Section 7.1), deriving correction terms needed
in various limits to ensure reasonable behaviour (Section 7.2) and
reviewing the (dis)advantages of each (Section 7.3). We summarize
in Section 8.

For ease of reference, we define variables in Table 1 and collect
many of the most important derived equations in Appendix A.

2 ASSUMPTIONS AND DEFINITIONS

Our starting point is the general focused CR transport equation (see
e.g. Skilling 1971, 1975; Isenberg 1997; le Roux, Matthaeus & Zank
2001; le Roux et al. 2005; Zank 2014; le Roux et al. 2015) as written
in polar momentum coordinates:

1 N
Dif +upb-Vf— [V B,

—3u? . 1—pu? ub-a| of
bb: V — V. — —
+ 5« B.) 5 B. s |Pop
. . 2b-a|1—u?d
+ BV b+ uv.B, —3ubb: VE,) - wor
Bc? 2
19f
=-=L . 1
¢ 0t lcoll M

This describes the evolution of a gyrotropic CR DF f, defined in
the comoving frame (with fluid velocity u), valid to second order
in O(u/c) (where ¢ denotes the true speed of light throughout).
We will consider the CR equations as a continuous function of
momentum p or Lorentz factor y for a given CR species s —
i.e. it should be understood here that some quantity v is actually
Yy s(X, £, p, s, mg, ...) for species s with mass mj, etc., but we will
not write this out for the sake of compact notation.

In equation (1), u is the CR pitch angle, b = B/|B| is the unit
magnetic field vector, 8 = |v|/c = v/c is the speed of the CRs, 8, =
u/c is the speed of the fluid, a = du/dr = du/dt + (u - V)u is the
fluid acceleration, A: B = Tr[A - B] denotes the double dot product,
DX =0,X+V-(uX)=pd(X/p) is the conservative comoving
derivative, p is the fluid density, d.X = 9,X + (u - V)X, 9.X =
0X/0t, and 0,f].on denotes the scattering+-collisional terms and other
loss/injection processes.

We define various integrals of the DF as

qg=qx, ..)= /d3pwqf

- / Pdpdudg, £, p.x. .., @)

where ¢ is the phase angle, x is the spatial coordinate, and v,
corresponds to each ¢g. So for e.g. the volumetric number den-
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sity n, total energy e, or kinetic energy €, we have g = (n, e, €)
with ¥, = (1, E(p), T(p)), respectively, where E(p) = ymc? and
T(p) = E(p) — mc? refer to the total and kinetic energy of an
individual CR particle of rest mass m, respectively. We will
consider a single CR species: We can later reconstruct the total
DF by summing over different species. The corresponding fluxes
are

F, = Fb= /d3p1//qfv

N 1
—b [ 4rpiap (5 / d/wqfuv) , @)

where the alignment with 4b follows immediately from our
assumed gyrotropic DE. The CR pressure tensor P is defined
as

P = /d3p(pv)f =3P)D, 4)

where Pozf4np2dp(pv/3)f is a scalar pressure and D
is an Eddington-type tensor of trace unity (specified be-
low). We also define the pitch-angle-averaging operations,
pitch-angle moments of f, and DF-weighted pitch-angle mo-
ments:

1
(X)) = i /d,ud(i)X, 5)
=" fu (6)
(7 S VR
) = = =, 7
W= =% @

3 DERIVATION OF THE CR TRANSPORT
MOMENT EQUATIONS

3.1 Ordering in O(u/c)

3.1.1 General moment equations

Let us first discuss the general case before considering to the specific
isotropic and anisotropic limits. We begin from equation (1), and
take the ‘zeroth moment’ equation (average equation 1 over w).
Integrating by parts, we have for a general gyrotropic DF

1 B . _
;th() + V. (ﬂbfl) - f()v : ﬂu

ST | — (2 _
+”ai M(bb:VﬂL)—Mv‘ﬂ“ fo
p| 2
3(p%) —1 bF i
n %[v B, —3(b:VB)If
b-al - an) _/J1af
— W _Zfl +P$:| - <E§ coll>u. (8)

Assuming O(B) ~ O(1) and defining some gradient wavenumber
k ~ 1/€ga ~ O(V), equation (8) has a collection of ‘adiabatic’
terms O(foVB,) ~ O(foku/c), acceleration terms O[ fia/c?], and
a flux term O(k f1). In the free-streaming limit, O(f;) ~ O(fo),
so the adiabatic terms are O(u/c) smaller than the flux term,
but in the strong-scattering/isotropic limits f; can vanish [the
bulk CR drift/streaming speed can be <O(u)], so we need to
keep the O(V,) terms as they can be leading order in some
limits.

Consistent closures for CR dynamics 3781

Now consider the acceleration term: note O(a/c?) ~
O(V Pegt gas/ pC?), Where Pegr gas ~ ,ocgfﬂgas is the effective pressure
exerting forces on the gas, and cejr g5 is some effective sound speed
80 O(Cef,gas) ~ O(u)." So we have O(a/c?) ~ O(ku?/c?), which is
always at least one order in O(u/c) smaller than the other terms
above and therefore should be dropped.

Next, we take the ‘first moment’ equation by multiplying equa-
tion (1) by u and averaging over w. This gives

_ . _ 3y —1 _ N
%thl + Bb- V(</"“?f>f0) + (<Mf2>> BfoV -b

+[3bb: VB, —2V - B,1fi + %[BB VB, — V- ﬂu]p%

666 VB, ~ 2V ,1f5 — 5 [366: VB, -V B,] p%

2 o] (L),
i

S

Bc ap ¢ ot
Going term by term, after the time derivative we first have ‘flux” and

‘focusing’ terms that scale as O(k fy) and O(k f>); because O(k fo) ~
O(k f>) (at least in the isotropic limit), we cannot drop one of these
relative to the other. Next, we have a large number of ‘adiabatic terms’
O(VB f1) ~ Ok fiu/c); however, these are always O(u/c) smaller
than the flux/focusing terms O(k fp), both in the free-streaming limit
[where O(f}) ~ O(fy)] by O(u/c) and in the isotropic limit by
OL(fi/ fo)u/c)] < O(u/c).? Next, a similar set of terms appears
in O(VB f3), but since O(f3) < O(f1) (or more formally since f;
is bounded like f; with | f3] <|fy|) and we dropped the terms in
O(VB f1), we should drop the O(VB f3) terms as well. Finally, we
have the acceleration terms O( fy|a|/c?); given the order of |a| noted
earlier, we immediately see that this is O(u?/c?) smaller than the
leading terms.

We can also obtain this hierarchy from the various integral equa-
tions. Multiplying equation (8) by 47 p>dp E(p) and equation (9) by
47 p*dp E(p)v and integrating, we obtain the CR total energy and
energy flux equations:

F, . F,2b. 19
7D,e+V-<—'b)+[P:Vﬁu+— a_ %
C C C

2 cdtlear’
1 _F . F, .. . b-a
7D,—+b-(V~[P)+—bb:Vﬂu+(e+ﬂ°:bb)—2
c ¢ c
1 OF,
T o
These are directly analogous to the comoving equations of RHD

(Mihalas & Mihalas 1984, equations 95.87-95.88), with each fea-
turing the comoving time-derivative term (D;), flux term [V - (bF)
or b-VP], velocity-gradient terms (o V,), acceleration term

10)

coll )

"Note that, even in the strong-coupling limit, if CR pressure domi-
nates the forces on the gas, so Pefr,gas — Per ™~ €cr ~ yncrmcz, we have
O(V Pefi,gas/ pc?) ~ Ok Per/ pc?) ~ O(kner [ngas); i.¢. this scales as the ratio
of the number of CRs to non-relativistic particles, which is also extremely
small for any limits we consider where we could treat the gas in the MHD
limit.

2Like the analogous radiation-hydrodynamics case, it is important here that
we began from the comoving focused transport equation, so f] is comoving,
and the dropped O(V,,) terms in the flux equations are those outside the
operator D,. If f; were the ‘lab-frame’ moment, leading-order O(VB,, f1)
terms in equation (9) would appear outside the Eulerian derivatives 9 fi.
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(xa), and collisional/scattering terms. In RHD, it is well estab-
lished that in any relevant limit [free streaming/unconfined, with
v — 0; or static/dynamical diffusion or strong scattering, with
F, ~ (c?/v)Ve; or advection, with F, ~ vgame; whether the gas or
relativistic particle pressure dominates a]: (1) the acceleration terms
are always smaller by O(u?/c?) compared to the dominant terms;
and (2) the velocity gradient VB, terms in the flux (f}) equation
are smaller by O(u/c), but must be retained in the energy (fo)
equation to recover the correct behaviour in the strong-scattering
limit.

If we now return to equation (8) and keep only leading-order terms
in O(u/c), we have (after some algebra to simplify)

coll > P

19f

1 1
Eszo-f—V (ﬁflb)———[p foD:VB,] = <Cal

Lo, £.b ro o /HASf

D fi + V- (Bfib)— xBfV b = <77 >

¢ ¢ 0t leoll u
~An 1—{u2

3.1.2 Scattering terms

Enormous controversy still surrounds the behaviour of the CR
scattering terms, and this is the focus of much of the CR lit-
erature (see e.g. Chandran 2000; Yan & Lazarian 2002, 2004,
2008; Zweibel 2013, 2017; Zank 2014; Bai et al. 2015, 2019;
Lazarian 2016; Holcomb & Spitkovsky 2019; van Marle, Casse
& Marcowith 2019). Our derivation here, on the other hand, is
almost entirely focused on the collisionless CR transport terms
(those outside 9,f|.on)- However, to write down a sensible galactic CR
transport equation, we must make some assumption about scattering.
So we will briefly consider these, in an intentionally simplified
manner.

We begin from the usual quasi-linear theory (QLT) slab scalings
(Schlickeiser 1989):

] af aof
=— (D" +D,,-~
3#( o ’”’3p>
1 9 ) aof of
+725|: (Dupa +Dppap ’
(1 —pu? v v\ 2
Dy = S (1= ) vk (1402) .

1 —u?) pv v v
D,, = LZ#)Pva [(1 _,hA) by — (H,HA) v_] ,
2 v v v

a- 2)p
2

A1 lse

D,, = (12)

where v, is the appropriate Alfvén speed and v (1) are the scattering
rates from forward- and backward-propagating waves (Skilling
1975). Taking the appropriate moments and assuming O(v4) ~ O(u)

give
1 0 a fo
— = —— S D D
(% > grap |7 (55 D+ 2 )|
u>
+O(ﬁ)7
ek (e
at :_Dult-ﬂfl_Dﬂp#E_*’O ﬁ ’ (13)
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where
2.2
_ p Dy
Dy = @, ) (Dppdypflu zAv,
= e pVa _
wp = [ I(Dupauf) ~ TV
Dw,u = _fl_l(“aﬂDwauf>u ~D,
Dpoa _

D;Lp,u. = (8]7]{)7 (ILD;/.papf>u ~ Xi

_ \_1+_V_
Vg = Uy - —
vy 4+v_ )’

Note that we have defined ¥ and v, for convenience, with D
representing the appropriate p-averages. For completeness, the
8 flcon term should also include a term p~23,[p?S fy] representing
continuous external momentum loss/gain processes (e.g. radiative
losses), and some j representing injection or catastrophic losses.

D=7, +_. (14)

3.1.3 Focused transport equation to leading order

With Section 3.1.1 in mind, we now return to the focused transport
equation (1) to obtain a simplified form valid to O(u/c). First
dropping just the (always higher order) acceleration terms, after some
tedious algebra we can write equation (1) as

1 N
*th+V'(M/3fb)— **[17 JD:VB,]

13
—[x{ﬂv b =366 VB, 1= 120 as)

Based on the above arguments in Section 3.1.1, we see that the p(l —
3bb) : VB, term inside d,[x{...}] is smaller by O(u/c) than the
others in all relevant regimes and can also be dropped. Specifically,
this term produced only terms in the D, fy and D, f; equations that
we argued were smaller by O(u/c) and should be dropped in those
equations. However, we can see this directly as well: In all relevant
regimes, u(l — 3bb) : VB, is smaller by O(u/c) compared to the
focusing term AV - b inside 9, [x{.-}]. Evenif v . b =0, the u(l —
3bb) : Vv B, term is still always smaller by O(u/c) compared to the
flux-of-flux term (outside 9,,), so it can be safely dropped here. Re-
adding the leading-order scattering terms from Section 3.1.2, and
keeping only the remaining (leading-order) terms in O(u/c) in each
power of 9; x p, v, etc., we have

DV BB
0 TR,
_Em[ { JBY b+ (au v 3P>H

2
i o2 (22 )
p?a 8p

(16)

where x = (1 — u?)/2 and v.(p) are a function of u. We note
that all expansions and discussion used to derive equation (16) rely
only on our O(u/c) expansion, and the derivation can, if desired, be
carried out without needing to first follow the moment expansion in
our Section 3.1.1.

3.2 The close-to-isotropic-DF case

We now consider an example of a specific form for the CR DF
that is nearly isotropic in p. The derivation here will closely follow
Thomas & Pfrommer (2019), to whom we refer for more details.
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By assumption, if f'is close to isotropic in w, it can be expanded in
pitch-angle moments as f () ~ fo + 3 fi + OUfil2/1 fol> < 1),
which implies f, &~ f,/3 or <,u,f> =1/3 (and f3 ~ 3f;/5). With
thls assumption, the pressure tensor becomes isotropic: P = Pyl (i.e.
= 1/3), where Py = [ d*p fpv/3 (= B%e/3 integrated in a narrow
1nterval of p). Either directly using this form for fand taking the zeroth
and first © moment averages of equation (1) or simply inserting the
above for (15 ) in equations (8)~(9), we can immediately verify that
these give consistent expressions, and the ordering in O(u/c) is the
same as in Section 3.1.1.
For the leading-order terms, we have

1 _ ~ - _
ED[fO + V-(Bbfi) = foV-B,+..

_ 2 £
s |12 g v, - L) g, poh
2 2
_ (1
- <C ot coll># {17
. i waf
Ethl +ﬂb . V(< >f) <C ot 0011>M ’ (18)

where ... denotes the dropped terms, and we write out < M2f> (instead
of inserting 1/3) for reference below. For the scattering terms, we
obtain to leading order in O(u/c): D,y = b, Dy, = (pBa/v)D,
Dup,u = (1/3)(171_)/1./1))‘_), and Dpp = (1/3)([7UA/U)2

3.3 The maximally anisotropic DF case

Next, consider the opposite limit of the maximally anisotropic DF
f(w) = fod(u — ) — ie. all CRs at a given (X, p,s,...) have
identical pitch angle, and f, = < M'}> fo = 14 fo- Our ordering above
in O(u/v) is not sensitive to this, so keeping only the terms to leading
order, the moments of equation (1) become

1 ~ P _
EthO +V. (ﬂbfl) - f()v : ﬂu + ..

— 2 7
=2 32<“ 2 b p,) - <”“ L=y, ] oo
ap

32y —1 PR _ 10
$ g, —3(bbivﬂu)]fo=< o > :
2 ¢ 9t lcoll P
19)
and (again being careful regarding x4 commutation),
| R A ~
;thl + Bb -V ((uf) fo) +
3ty —1 ~ N ad
+ Hup) -t BV bt = (L . 0)
2 ¢ 9t leon/

where ... denotes the dropped terms of subleading order in O(u/c).
If 10 is independent of p (or we integrate over a narrow range of p),
the pressure tensor is P, = 3P)D = Pigo + Paniso With

D=(1_§M§>>H+<3<M?2>_1>BB. @1

Defining the mean scattering coefficients so that vy = vi(u = o)
because fod(;0 — fuo), we obtain to leading O(u/c): Dy, w="n,
Dyup = (pta/v)0, Dypy = (1 = (u5)1/2)(pia/v)v, and D, =
(11 = (W5)1/2)(pva/v)*o.

Written this way, we verify an important connection to equa-
tions (17)—(18): At this order, the equations differ only in the addition
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of terms with the pre-factor (3(x5) — 1), which vanish identically
with the nearly isotropic DF closure (13) = 1/3. Likewise, the
pressure tensor and these expressions for the D coefficients reduce
to exactly their near-isotropic-DF values when <,u2f> = 1/3. Thus,
equation (11) or equations (19)—(21) are valid in both the nearly
isotropic DF and maximally anisotropic DF cases, for appropriate
choice of < M§>

3.4 Comoving expressions to leading order

3.4.1 General expressions and closure relation

After some re-arrangement, we can now write a series of expressions
valid in both the nearly isotropic DF and maximally anisotropic DF
limits:

1 _ P d
;tho +V.-(Bbf1)—D: VB, {3f0 + Pﬁ]

ap
1 9 Jo
= — S D D, =, 22
szap{ <ﬁ)+ pufi+ '”3p>}+c 22
| _ 1 3 fo
;thl +ﬁg(f0) = _; [ /Ul.f] +D;/.p 8 :| + = (23)
2.2
= PV _ = pia_ =« _
DPP =X va v, DFV- = T‘)v Dup. =V,
Dy = x%v (24)

We have added the terms S, which represents continuous (e.g.
radiative) losses, and j, which represents injection or catastrophic
losses. We also define the operator G(g) and Eddington tensor D in
terms of the variable x:

G@=b-V(l-2xlg)+ 1 -3x)qV b,

= V- ((1})gb) — xqV-b=b-[V (D), 25)

D = xI+ (1 —3x)bb, (26)
_ =) h

s i 1} e

Provided some expression for scattering rates and <,u j> 2/ fos
the above form a complete system of equations for ( fyy, f). However,
we do not have a general equation for f>: We have the usual moment
hierarchy problem, requiring some closure relation. Without solving
for the entire f(u, ¢, ...), by analogy to the M1 closure(s) in RHD
we can define an approximate closure (u%) ~ My((u;)), which
(with equations 22-23) accurately captures both the isotropic DF
and maximally anisotropic DF limits (note that (1) = fi/ fo). The
function M, should satisfy the following: (1) in the nearly isotropic
DF case, by definition, (1} )| < 1 and (u3) =1/3 + O(</L}>2);
(2) in the free-streaming case with f — §(u £ 1) (maximally
anisotropic DF case), (113) = </,Lf> with O(f,) ~ O(fp); and (3)
the DF should be realzzable, meaning that an f{t) exists that is finite
and non-negative for all —1 < u < 1 with the given <,u'f> and < ui)

A natural choice satisfying the above is the popular RHD closure
from Levermore (1984), which is the unique M, if there exists any
frame in which (after Lorentz boosting) the DF is isotropic:

34+4u))”
5+2(4—3(ul))"*

(up) ~ Mo ((uy)) =

(28)
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This is not the only possible closure, however. For example, Minerbo
(1978) note that if the DF satisfies a maximum entropy principle,

1 2
My b 2 (6 )+ 300, @)

Various other choices are reviewed in Murchikova, Abdikamalov &
Urbatsch (2017). We stress that while the closure relation equa-
tion (28) (or equation 29) is an approximation, equations (22)—
(33) are exact (to lowest order in u/c) for any DF, provided the
‘correct’ <p.§> and D. So one can easily imagine constructing
more complicated or exact closure relations, analogous to ‘variable
Eddington tensor’ methods in RHD, to assign the correct values of

(13)-

3.4.2 CR number and energy equations

We can now obtain equations for (g, F,) by multiplying equa-
tions (22)—(23) by 47 p*y,dp and integrating. First, it is helpful
to consider the equations integrated over an infinitesimal range of p,
e.g. An = (dn/dp)Ap. This gives

D)+ V- (Fb) =S,
D, (F)) +c*G(B*n") = =v [F, = 3xvan'] + S . (30)
where n' =dn/dp =4np*fy, F,=dF,/dp =4np™vfi, S, =
47 p?jo, and S w, =4m p?vj;. For total energy e, we have

Di(e)+ V- (Fb) =S, + 5, —F : Vu,
D, (F)) +*G(B*e) = —v [F, = 3x0a(e' + P))] + Sy, (3D
with ¢ =de/dp = 47 p*E(p) fo, F. =dF,/dp = 4w p*E(p)v fi,
S, =4 p*(E(p)jo — Sv), Sy, =4np*E(p)vji, Pg=dPy/dp =
47 p*(pv/3) fo, P’ = 3P}D, and

St = =5 [0aF. =393 (¢/ + )]

v

ﬁAFg/—3xvi< Y /+P(;)}. (32)

I Py v —1

Then, for kinetic energy € we obtain

Di(e)+ V- (F/b) = S, + 8, — P : Vu,
D, (F) +c*G(B*€) = —v [F. = 3xva(e' + P))] + Sp..  (33)
with €’ =de/dp = 4 p*T(p) fo, F. =dF,/dp = 4np*T(p)v fi,

€

S, =4np*(T(p)jo — Sv), and S}, = 47w p*>T(p)vjy. It is useful to
note the relations

NS b A
P() - T - (Vens 1)5 - 3 €, (34)
P'=3PD = p%'D =3P [x]+ (1 — 3x)bb], (35)
hH _F -
iy ==y W)~ Ma((up). (36)

i.e. the ‘effective adiabatic index’ relating CR pressure and kinetic
energy density iS yeos = (4 + y1)/3 at a given Lorentz factor y.
One uses <,u}> = F;/qv to determine the closure values of <;,L§>
or x.

Note every term in the ‘macroscopic’ equations for ¢ has a simple
interpretation and correspondence with a term in equations (22)—(23)
for f. The D,fo’l — D(q, F,) term is the comoving conservative
derivative; V - (,Bflf)) — V. (F,) is the normal flux; D: VB, —
P : Vu s the ‘adiabatic’ term (for (%) = 1/3, P : Vu — PV - u)
related in detail to the non-inertial frame (akin to the analogous RHD

MNRAS 509, 3779-3797 (2022)

term); S and j represent loss/gain processes in number and momen-
tum space (e.g. radiative/catastrophic losses, injection); BG( fo) —
G(B%q) is the “flux of flux’ (flux source) term; D, fi — DF is the
scattering term in the flux equation; D,,,d,, fo — x¥a(q + ...) is the
‘streaming’ term if the scattering is asymmetric; and the D,,, and D,,,
terms give rise to the gyro-resonant loss or diffusive re-acceleration
terms S (discussed below).

Taking the diffusive limit (<M?> — 1/3, D,F,; — 0), we immedi-
ately see that the parallel (anisotropic) spatial diffusivity® at a given
pisky(p) = (Bc)*/(3D).

3.4.3 Spectrally integrated expressions

Integrating equations (30)—(33) over all CR momenta gives equations
for the spectrally integrated CR number and energy; for example,

Din+V - (Fb) =S,
D,F, +c2/dpg(,32n’) =S — /dpa [F, —3xvan’].  (37)

Although [ dpg’ = q is trivial, this immediately introduces practical
difficulties in terms like [dpG(B>q’) and [dp¥[F, —3x0a(q’ +
..)] in the flux, and [ dp[SgC — [P’ : Vu] in the energy equations.
The issue is that even if we know the form of ¥.(p), we cannot write
these equations in terms of a single ‘effective’ y, U, U4, B, ¥, etc.,
because the ‘weights’ (combination of p-dependent factors in the
integrals) in each part of each term are different. Moreover, even if
we specified an initial spectral shape [ fy(p) and fi(p)] to calculate
some effective values, the p-dependence would immediately alter the
spectrum and change those values.

If one wishes to adopt the spectrally integrated equations in
practical applications, therefore, one must impose a universal (fixed)
spectral shape. In that limit, the CR total energy is the meaningful
quantity to evolve, since a ‘fixed-spectrum’ CR number equation
will not conserve energy or momentum. We can further simplify by
noting that most of the total CR energy is in particles with 8 & 1 and
E(p) ~ T(p), giving

Die+V-(FB)~ S, — P, : Vu— 2 [0 F, - 3x.05(e + Py,
C
D,F, + ¢*G.(3Py) ~ —¥, [F, — 3x.0%(e + Po)| + Sr.. (38)

Here, Py ~ e/3; G.3Py)=b-(V-P,)=b- V(1 —2x.13P,) +
(1=3x.)3P,V-b; and P, =3P,D, = 3Py[x.] + (1 — 3x.)bb];
with x,, ¥4, and D, understood to be the appropriate ‘spectrally
averaged’ values.*

3.5 The gas equations and conservation

As discussed in Zweibel (2013, 2017) and Thomas & Pfrommer
(2019), the CRs can exchange momentum with the (non-relativistic)
gas and magnetic fields® primarily via two effects: (1) scattering
and (2) Lorentz forces. If we note that the CR momentum density

3If we assume a scattering rate that scales with CR speed as o ~ (B¢)/rg for
some characteristic scattering scale ry (e.g. for Bohm diffusion, ry is the gyro
radius), then we obtain the common ansatz k(p) ~ Bcro.

4For completeness, we note that the ‘zeroth moment’ spectrally integrated
CR energy equation arises from equation (38) taking the strong-scattering
(isotropic-DF, <[,L2f> — 1/3), flux-steady-state (D,F, — 0) limit, so F, —
74 (¢ + Po) — (2 /De)b - VPy.

3Since we are working in the limit where the CR gyro radii are small, and
obviously the non-relativistic ion+-electron gyro radii are much smaller still,
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is [d&®ppf = (1/c*F, [using p= E(p)v/c?], then it is imme-
diately clear how to account for (1): We simply add an equal-
and-opposite momentum flux to the gas momentum equation to
match the scattering (V) term in equation (31), i.e. D,(pu) + ... =
+(1/e3)b [dpv[F! —3x0ale + PI.

Deriving the Lorentz term (2) requires revisiting the CR mo-
mentum equation before gyro-averaging. In generality (making no
assumption about the form of f) for a non-relativistic background, the
comoving Vlasov equation for fis d,; f + Vx - (vf) + V, - (Ff) =
d; fleon, Where Vi, denote gradients in position and momentum
space, respectively, and F is the external force term. Here, F =
Florenty + O(u/c) with FLoen, = (g/c)(v x B) in this frame.® Now,
take the momentum density by multiplying by p and integrat-
ing over d®p. Integrating by parts and using various identities,
note: [ d*ppVy - (Ff) = — [ d*pf(V, - (Fp)} = — [ @*pfIp(V, -
F)+ (F - Vp)pl = — [ &*p fFroren,.” Now separate this into parallel
and perpendicular components by projecting with bb and (I — bb),
respectively. Because b - Fioeny = 0, the parallel equation be-
comes [ d*pb(p-b)(D,f — fVy-u)+bb-pv-Vyf +..=b(b-
d,feon). Recalling that p - b= eviL /c , this is 1mmed1ately recog-
nizable as b(l/cz)D,Fg + .... = —9(...), i.e. our equation (31) for
(1/¢*)D,F,, multiplied by b. Since the terms on the left-hand side of
this parallel equation represent free transport and relativistic correc-
tions (coordinate-transformation terms), with no F term appearing,
the scattering term represents the only parallel momentum exchange
with the gas —i.e. we have re-derived the scattering term (1), which
was derived more heuristically above from momentum-conservation

arguments.

Now consider the perpendicular component. Averaged
over the ‘macroscopic’ spatial/time-scales (€macros  fmacro)
much larger than the gyro radius/time (rg, €2,), the first
terem D,F, ;| = ( f d3p(ﬂ—l313)p f)e must vanish, because

there can be no coherent flux of CRs perpendicular to the
field [more precisely, this term must be smaller than the
dominant terms by O(ry/fmacro)]. The second term (the Vi
term) does not vanish, but gives: (ﬂ—ﬁf))-fd3pp(v-Vx)f =
—bb)- (V- [[dppvf]} =V, -P*  The third term
- BB) fd p(FLorentzf) Q= fd3p(FL0rentzf))Q -
—( Ep@/V x B) fla = —(1/)(jer X Bl = —ETyen,
represents the total Lorentz force per unit volume on CRs
i enz- The scattering term in the perpendicular direction (I — bb)
is negligible compared to the Lorentz forces by O(ry/fmg)
[where Lng ~ 3¢/ ~ O(lmacro)], so  force balance requires
forenz = Vi - P{1 4+ O(ry/€macro)}. The Lorentz force on CRs
redlrectmg v requires an equal-and-opposite force on gas,” giving

Dt(pu) + .. flii)renlL = _VL : [P{l + O(rg/zlnacro)}~10

the MHD assumption that the non-relativistic ion gyro radii are vanishingly
small compared to resolved scales is reasonable.

OWe neglect other exchange terms such as the gravity of the CRs, secondary
transfer of momentum from scattering of beamed CR radiation, etc., as these
are several orders of magnitude smaller.

In this last step, we have used the fact that F & Fy grent; can be written as F
=p x Q, where Q = Q(p) depends only on the magnitude (but not direction)
of p and external/constant properties, so Vp - F = Vy - (p x Q[p]) = (Vp x
P -Q—p-(Vpx Q) =0,and (F-Vp)p=F.

8We define the parallel and perpendicular tensor divergence as Vi-P=
bb-(V-P)and V, - P = (I — bb) - (V - P), respectively.

9Equivalently, we can insert j., in Ampere’s law to obtain V x B = (Jgas +
Jjer)/c, and use this to calculate the ‘back-reaction’ force = —f[ . . on gas.
10Tt may appear inconsistent with our assumption of a gyrotropic
CR distribution elsewhere to show (jeor x BY/c &~ V) -P #0, since
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This has a simple interpretation: spatial differences in the colli-
sionless CR pressure tensor (non-zero V - P) source a net CR current
(mean (v) or net flux F,). The parallel momentum current is f)Fe,
which is resisted only by scattering (exchanging momentum with
gas). The perpendicular current, on the other hand, is immediately

redirected by Lorentz forces, exerting an equal-and-opposite force
on the gas. The gas momentum equation becomes

Di(pu) + ... = Z/47tp2dp { — (I] — Bf)) . [V~ (IDpvf'o)]
20.fo

+b [ //,u.flp + D//,p £:| } (39)

or
‘_} !
D;(pu) + ... Z/dp{ —2 —3va(e —i—PO)]—VL-[P],
(40)

where the ... refers to all the non-CR terms, and the sum and integral

refer to the summation over all CR species and integration over all
momenta. Noting bG(B%¢’) = V| - P/, itis often convenient to rewrite
this as

D.(pu)+..+V-P= —C%BD,Fe
- BZ/dp{g(ﬂze’) + :—2 [

This has the form of a hyperbolic pressure gradient term V - P that
can be included in a Riemann solver, plus a ‘source term’ (the right-
hand side) that vanishes identically when the energy flux equation is
in local steady state.

In the total gas+radiation energy equation, the behaviour is
straightforward: the kinetic energy terms simply follow the mo-
mentum equation: D;eg = ...+ D;(pw)|; [Where D;(pu)|c: col-
lects the terms on the right-hand side of equation 40], and
the thermal+magnetic+radiati0n terms see the source terms
Dtegas+rad + .= _Z fd[)[S’ + S,] SO

Fl=3xoa(¢ +P)]}. @D

Dyegasinad + - =0 [Dy(pW]e] = > / dp [S,.+S.]. (42)

Physically, the source/sink S, term corresponds to either energy lost
to CR acceleration at injection, or thermalized or radiated away from
various loss processes (thus determining how much goes into thermal
versus radiation energy). The kinetic terms reflect work done and,
in flux steady state, behave like an adiabatic ‘PdV’ term balancing
the P : Vu term in the CR energy equation. The scattering term S,
corresponds to energy loss/gain from scattering with micro-scale
(gyro-resonant) magnetic fluctuations. By definition for the applica-
tions of interest, these are unresolved, and have rapid thermalization
times, so this can be treated as part of the gas thermal/internal energy

for a perfectly gyrotropic distribution jo x B =0 exactly. Physically,
one can think of this as the perpendicular CR pressure gradient
inducing a very small non-gyrotropic perturbation to compensate. The
fractional deviation from perfectly gyrotropic orbits can be estimated as
~{j x B/c)/li X B/clmax ~ V.1 - P'|/(n'qu[Bl/c) ~ |V P§|/(n pv/rg) ~
(”/pv/ggrad)/(n/pv/rg) ~ rg/egrad: where egrad ~ Pé/lvpél ~ O(lmacro)-
Soin all other expressions derived in this paper, this correction is subdominant
by O(rg /€macro) and can be safely neglected. However, in the back-reaction
force on the gas, this term remains finite and leading order even as (rg/¢macro)
— 0.
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budget, although one could also evolve them explicitly as in Zweibel
(2013) and Thomas & Pfrommer (2019).

As discussed at length in Mihalas & Mihalas (1984) in the RHD
context and Thomas & Pfrommer (2019) for the CR limit, there are
subtle ambiguities related to exact, separate energy and momentum
conservation if we include the CR inertia at this order in O(u/c).
These are related to the definition of frame, the consistency of other
terms of higher O(u/c), and the fact that non-relativistic MHD
drops terms of higher order in O(u/c). For example, including
the CR inertia, the momentum change includes terms D,F,/c? =
bD,F,/c* + (F,/c*)D,b, where the latter term becomes (for ideal
MHD) (F,/c)(I — bb)(b - V)B,,, which is O(u/c) smaller than all
the retained terms in the flux equation. These could be added to
maintain manifest conservation if desired, but are not well posed, as
they relate to higher order terms dropped in both the CR and MHD
equations. However, one can immediately verify that in the flux-
steady-state or Newtonian (¢ — oo) limits, as assumed in MHD,
manifest conservation in the lab and comoving frames is recovered.

4 EXPLICIT PITCH-ANGLE EVOLUTION
METHODS

4.1 DF equation in finite-volume form

Although we have focused on developing the p-moment equations,
there may be occasions where one wishes to directly evolve the
pitch-angle distribution, as in our exact solution cases below in
Section 5.1. This can be done explicitly by integrating on a phase-
space grid that includes the p dimension explicitly, similar to e.g.
direct ray integration methods for RHD like those in Jiang, Stone &
Davis (2014). This is actually simpler for CRs as compared to RHD,
because we retain the gyrotropic assumption so can still integrate out
the ¢ dimension. For these applications, it is useful to take the focused
transport equation in equation (16), which incorporates the scattering
terms (equation 12) and carefully retains only leading-order terms in
O(u/c). This can be conveniently written as

D.f + V- (uvfb)

_ 0f  a 0f
_@[ { SOV b+v(3u ap)H

2
+ii{ {(lD Vu)f +vx (”A8f+ 4 3f)}],
p?ap au Bp

43)

where now terms like x = (1 — u2)/2, D = xl+ (1 — 3x)bb,
and v = vy (u) + v_(u) refer to each value of p (without
averaging).!! There is a one-to-one correspondence between each
term in equation (43) and their pitch-angle-averaged equivalents in
fo. fi (equations 22-23).

Tt is also often useful to write equation (43) in terms of the one-dimensional
DF such that dn = dpdu fip as opposed to dn = d®pf = p?dpdude f
defined above. This gives

D; fip + V - (uvfipbh)

= ()i [X {*levV-f)er (@ _ba [zle,pm]>H

# e v ap

d Da 0 f v2 af
+£ [ {([D Vu) fip + v <A8;D - U% {Zflb—P$]>}] .

MNRAS 509, 3779-3797 (2022)

Equation (43) is straightforward to implement numerically using
standard finite-volume methods: The time-evolution D,f of the
comoving f can be operator split into three terms representing (1)
translation/flux in position space [the V - (...) advection term] at fixed
w1 and p; (2) translation/flux in pitch-angle space [the 0,,(...) terms]
at fixed x and p; and (3) translation/flux in rigidity/energy space
[the 9,(...) terms] at fixed x and . Each reduces to a finite-volume
problem in the x, 1, p space, and (2)—(3) being local in position space
allows them to be integrated efficiently; the major overhead is the
higher dimensionality of the problem causing (potentially excessive)
computation. For an example where e.g. the p terms are integrated
in a finite-volume fashion in p-space, see Girichidis et al. (2020).

4.2 Equations for the mean evolution of a CR ‘group’

It is instructive to consider the gyro-averaged evolution equations
for the mean state of a CR ‘wave packet’ or ‘group’ with instan-
taneous state U(7) = (U)(1) = (X, u, p, )] = ({x), (u), {p), (s)).
This is obtained by taking p” f(x, u, p,t,s) — 8(x — (x)[t], n —
()[t], p — (p)lt], s — (s)[z], t) in the general DF equation (43), and
then multiplying equation (43) by U and integrating over x, i, p, s to
obtain (U), the rate of change of the state vector along the path of the
group. The ‘species equation’ for s trivially evaluates to (s) = 0, since
we have not included explicit spallation or other species-changing
processes. The position equation is simply (x) = u 4+ (u)(v)b, i.e.
translation with the gas velocity and along the field. The pitch angle
and momentum equations are non-trivial, however. For u, we have

. av
(1) = (X)()V-b+ (x >3
nw
U 5 81n8v
—v {(H)—(X)(w ( +(B)? 8lnp)}
%<X>(U)V'B—V[(u) (X)*(2+ 2)}, (45)

where 6v = vy — v_, v = V((U)), and the ~ makes the grey
approximation for v (which slightly changes the pre-factors but none
of the behaviours). We can understand the physics of each term
in equation (45): (1) The term o (v)V - b is the ‘focusing’ term,
corresponding to the V - b terms in G(g) in the flux equations; (2)
D0, f — v, f — v(u) is the normal scattering term (~vF, in
the flux equations), which acts like a ‘drag’ term on the mean (u) —
but note, because this an equation just for (), the diffusive behaviour
(which would increase (112) if we started from a 8-function DF) does
not appear here; (3) the term D, — v(04/v)pd, f — v{x)Va/(v)
gives rise to trans-Alfvénic CR streaming, appearing as the y04q
terms in the flux equations, and giving a mean () — ¥4/(v), i.e.
streaming at ~1,, in the strong-scattering (v — o) limit.

For the momentum equation, we have
PL_ oy vy - A [<u>8v - <x>a‘3—“}
(p) (v) o

) % (p) v
+ V(X)ﬁ{ + (B)? +§@}

~ — (D) : V) — v {(MLA B e 2<ﬁ>2>] . (46)

(v) (v)
where again & indicates the grey approximation. Again, the terms
can be understood as follows: (1) (D) : Vu is the ‘adiabatic’ term
(immediately analogous to the term in the energy equations);
(2) Dy, — vxva0,f — via(n) is the streaming/gyro-resonant
loss term (o< visF, in Sy in the energy equations); and (3)
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2 is the turbulent/diffusive re-

Dy, — VU,%;Xpapf - V(X)”%/(”)
acceleration term.

If desired, these equations can be directly integrated as well, in
Monte Carlo-type methods where each explicitly evolved CR ‘su-
perparticle’ represents the gyro-averaged behaviour of an ensemble
of CRs with a §-function DF, but this would require adding some
stochastic scattering terms to capture the diffusive/second-derivative
behaviour (i.e. the change in (14?) or non-8-function behaviour of f
as it evolves away from an initial §-function).

5 EXAMPLE PROBLEMS AND ILLUSTRATIVE
BEHAVIOURS

5.1 Set-up and closures considered

We now consider some extremely simplified test problems to
illustrate how solutions of the CR transport equations differ de-
pending on the closure. In that spirit, we take ultra-relativistic
CRs (B — 1) in a gas medium with negligible fluid motion (u
— 0), b=Dbx) and 7 = v(x) independent of time, uniform p,
with symmetric scattering and weak fields (14 — 0, v4 — 0) no
sources/sinks/other losses, and sufficiently low CR density such that
the CR forces on gas are negligible (i.e. ‘pure CR transport’). We
will make the problem dimensionless by defining f — fIf; (e —
ele;), T — Vot, X — X¥y/c, for some reference f; (or e;) and vy, and
define the path-length ¢ integrated along a field line ¢ = f,:)f dx-b

(s0 b+ VX — 9,X). With these simplifications, the equations are
effectively one dimensional in ¢ and are identical for any moments
pair (¢, F,) = (fo, /i), (n, F,), (e, F,), etc.: 3, = —V - (F,b) and
0. F, +G(q) = —VF,.

For initial conditions (ICs), we take ¢ to be a Gaussian with ¢(t =
0) = exp {—(£ — £0)*/20,7} for arbitrary €. For the same ¢(z = 0),
we will consider (1) isotropic ICs, where (i )|:=0 = Fy/qlr=0 = 0,
and (2) ‘streaming’ ICs, where (u)l:—0 = F,/qlr=0 = 1.

We will compare the following closure assumptions. Except for
the zeroth-moment/diffusion and exact solution cases, all adopt the
two-moment expansion, but make different assumptions about the
closure assumption for (113 ) or f5.

(i) Zeroth-Moment/Diffusion — Approximation: ~ Assume  the
isotropic-DF limit (x — 1/3) and Newtonian+strong-scattering
limits (D.F, — 0), so we obtain the single diffusion equation:
9.q =V -[30)"'bb - Vq1.

(ii) Isotropic DF: Assume (%) = 1/3 (x = 1/3) always, appro-
priate for an isotropic DF, so G(q) — (1/3)5 -Vg.

(iii) Maximal Streaming: Assume <M§«> =1 (x = 0) always,
appropriate for the fastest-possible-streaming DF, focé(n = 1), so
G(q) = V- (gb).

(iv) Maximal Anisotropy: Assume the DF corresponds to a §-
function with the given (u},) = fi/ fo = Fy/quv,so (u3) = <;L1f>2
always.

(v) Interpolated(p’ ): Levermore: This adopts the proposed

scaling (2) = Mo((u})) = B+ 4(1})")/(5 + 24 /4 = 3(ul)D)
from Levermore (1984), which interpolates between the isotropic-
DF and anisotropic-DF limits and represents the exact closure for any
DF that can be made isotropic under some Lorentz transformation.

(vi) Interpolated{p%): Minerbo: Adopt (%) = Ma((u})) =
(1/3)+ (2<p,;>2/15)(3 — (uh)l + 3<u‘f>2) from Minerbo (1978),
which similarly interpolates between limits but is exact for a DF
satisfying a classical maximum-entropy principle.
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(vii) Interpolated(p%): Wilson: Adopt (u%) = Ma((u})) =
(1— |</L}>| + 3<,u,1f>2)/3, from Wilson et al. (1975), which is
realizable but represents an ad hoc interpolation function between
isotropic and anisotropic limits.

(viii) Exact Solution: We compare these to the results of directly
integrating the focused CR transport equation for f{u) explicitly as
a function of p and x per equation (16) (Section 4), using a grid of
~1000 elements in the © dimension at each spatial position. For the
isotropic IC, we initialize an isotropic DF f{u), for the streaming IC
we initialize f{u)oxd( — 1), and for simplicity we assume isotropic
scattering v = .

Note that we have also considered other closures such as the Ker-
shaw function My((u})) = (1 + 2<M}>2)/3 or Janka (1992) func-
tions M2(<p.}->) =+ oto<u}->a' + 2 - ozo)<,u'f>a2) with various
(v, a1, @p) suggested therein, but these generally perform more
poorly than the other interpolated closures considered above.

5.2 1D pure propagation in a homogenous medium

Take b = 2 = constant, b = Dy =constant, so the transport equations
simplify to 9.q = —0,F, and 3, F, + 8,((u% )q) = —F,. The prob-
lem is one dimensional and the solutions depend only on the ICs and
closure (1% ), which we vary and compare in Fig. 1.

First (top-left panel), consider a case that is well described by
the isotropic, diffusive limit: ICs with o, = 10, Fy,(r = 0) = 0,
evolved to v = 200. The CRs begin isotropic, and, recalling that
¢ =1 corresponds in these units to the scattering MFP = ¢/7, all
of the gradient length and time-scales even in the ICs are much
larger than the CR scattering MFP. Indeed, the zeroth-moment (i),
isotropic-DF (ii), and all the interpolated closures (v)—(vii) give
nearly identical results here in excellent agreement with the exact
solution (viii), as they should. The maximal-anisotropy closure (iv)
fails catastrophically: It assumes that an initial < “ 'f> = O corresponds
to a pitch-angle distribution with all CRs at i = 0, so no flux can ever
develop. The maximal-streaming closure (iii) fails as well: Although
the flux equation approaches steady state, the assumed <,u2f> =1
means that the effective diffusion coefficient is 3 x larger than the
correct value.

Secondly (fop-centre panel), consider a case that is close to free
streaming, a ‘streaming’ IC with o, = 0.02, F,(t = 0) = ¢, evolved
to T = 0.02, so the CRs are initially free streaming and all scales
are much shorter than the MFP. Now, the maximally anisotropic (iv),
maximal-streaming (iii), and interpolated (v)—(vii) closures are very
similar to the exact solution (viii). Zeroth moment/diffusion (i) fails
catastrophically as expected, since the system is not in the diffusive
limit. The isotropic-DF closure (ii) underestimates the correct speed
of propagation of the ‘pulse’, as expected, > but more problematically
we see that g (e.g. f, or e or n) has become negative in some places.
This is the formally correct solution if we impose (13 ) = 1/3 - the
issue stems from the fact that this closure violates the realizability
constraint from Section 3.4.1: There exists no positive-definite DF
with (p}) = 1 (imposed by the ICs) and (1% ) = 1/3 everywhere.

Thirdly, consider two intermediate cases. For an isotropic IC with
o4 = 0.15 evolved to © = 2 (top-right panel), the exact solution
[for isotropic scattering; (viii)] is a symmetric flat-topped ‘shelf’

12Taking the derivative of the ¢ equation in Section 5.2 to combine it with
the F; equation, we have BTZ Fy+ 0. Fy = 6@(<u§>65 Fy). If we enforce the
isotropic-DF <,1,sz> = 1/3, then we see immediately that this reduces the
maximum free-streaming speed from c to ¢/+/3.
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Figure 1. Idealized test problems from Section 5 comparing different closure assumptions (Section 5.1) for the Boltzmann/Vlasov moment hierarchy versus exact
solutions. We simplify to ‘pure transport’ problems in a stationary background where the ICs are specified by the initial pitch-angle DF [< /,L]f> = 0 corresponding
to an isotropic DF f = fj, <le> = 1 to a free-streaming DF with f = fo8(u — 1)], width of the (initially Gaussian) CR number or f oc exp {—(£ — 40)2/2%2},
scattering coefficient (£), and field divergence V - b. We plot the value of the u-integrated DF £, or its moments (12, e) versus spatial coordinate along a field
line ¢, in units of scattering time 1/ and length ¢/, at plotted time t = Dyz. Exact solutions evolve the entire pitch-angle-resolved DF f{j1) explicitly. The
‘interpolated’ closures evolve the first two CR p-moment equations, differing in the exact form of <,u2f> = Mz(<,u_lf>) used to close the moment hierarchy;
they give very similar results and qualitatively reproduce the exact solution behaviour (albeit imperfectly) in all problems while retaining positive-definite fj.
The ‘isotropic-DF’, ‘maximal-streaming’, and ‘maximal-anisotropy’ closures adopt <[L2f> =1/3,=1,= <p,}»>2 (appropriate for isotropic or free-streaming
or §-function DFs), respectively; these can give qualitatively incorrect behaviour and produce solutions with negative f (negative energy/particle number) in
some circumstances. ‘Zeroth-moment/diffusion’ refers to the common diffusion closure at zeroth order by assuming flux steady state and strong scattering; this
preserves positive-definite behaviour but produces qualitatively wrong behaviours and superluminal CR transport in many problems.

moving outwards at speed intermediate between the isotropic and
free-streaming cases, with diffusive ‘tails’.'> None of the closures
perfectly reproduces this, but the interpolated closures (v)—(vii) are

13We stress that this is different from the ‘streaming problem’ discussed
extensively in e.g. Sharma, Colella & Martin (2010), Jiang & Oh (2018), and
Thomas & Pfrommer (2019), which also produces a ‘flat shelf” behaviour.
That problem effectively takes the assumptions here but further imposes (1)
the strong-scattering limit with b very large so that [4] > (c|V fo)/(v fo),
(2) anisotropic-DF closure, and (3) non-zero v4 =constant, so F; — Usireamq
for some constant vgyeam. That is a less interesting problem for our purposes,
however, since all of the interpolated closures here trivially reproduce the
exact solution in this limit, and even a zeroth-order closures can capture the
relevant behaviour provided careful numerical treatment (Sharma et al. 2010).
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much closer to the exact solution and behave qualitatively similar
to one another (and also rapidly converge to the exact solution
as we evolve further in time). Maximal anisotropy (iv) again fails
catastrophically as it cannot propagate starting from (u)) = 0.
Despite the IC being isotropic, the zeroth moment/diffusion approx-
imation (i) also performs poorly (producing excessive ‘tails’ and an
incorrectly peaked shape), as the strong-scattering/flux-steady-state
assumption does not apply. Both the isotropic DF (ii) and maximal
Streaming (iii), or any other closure with <,u2f> =constant, produce
two spurious ‘peaks’ that propagate outwards with a low central
density in between.

For a streaming IC with o, = 0.1 evolved to T = 1 (middle-
left panel), the interpolated closures (v)—(vii) all resemble the exact
solution (viii) (the peak propagates at the correct speed, with just
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a slightly modified shape). As expected, the zeroth-order/diffusive
closure (i) fails totally. The isotropic-DF closure (ii) again produces
an unphysically negative fy, and underestimates the pulse speed. The
maximal-streaming (iii) closure overestimates the front speed but
also produces an artefact of a ‘shelf” extending to ¢ < £y. Unlike the
previous streaming IC, the maximal-anisotropy (iv) closure now also
underestimates the propagation speed, as assuming (u%) = ( le>2
suppresses the flux source term too rapidly when <M}> is not very
close to 1.

5.3 1D propagation with variable scattering

Now consider a spatially variable ¥ = Dyg(¢) [dimensionless equa-
tions 0, = —0¢F,, 0. F, + 85(<;L§->q) = —gF,]. First consider
g=exp{—(— KQ)Z/(ZO‘:)} with o, ~ 0.1-10, qualitatively akin
to analytical models for Galactic CR transport with ¢ representing
the height in the Galactic disc/halo, with both an isotropic (middle-
centre panel) and streaming (middle-right panel) IC. The effect
here is primarily to exaggerate the differences already seen in Sec-
tion 5.2. Most notably, the zeroth moment/diffusion approximation
fails much more dramatically here, because v — 0, causing the
diffusivity k — oo at [ — €y| 2 o,. This leads to the PDF
becoming almost perfectly flat and the diffusive ‘tails’ travelling
at v > ¢ (e.g. at the times plotted, we obtain fronts moving at
>10°¢).

Next, consider g = exp {—2(£ — £y)} (bottom-left panel), where
there is an asymmetric gradient across the injection region (akin
to injection in any off-centre location in a disc or galaxy). With
the streaming IC (not shown), the differences between closures are
similar to the case above. With an isotropic IC (bottom-left panel),
the broken symmetry is important: At T = 1, the exact solution
predicts an asymmetric shelf from —0.5 < ¢ — £, < 0.8, with
slightly higher density f at £ < 0 (as CRs are being scattered more
rapidly at £ < £o). The constant-(;%) closures (ii), (iii) fail to
capture this: They again produce two peaks but these move with
nearly symmetric speed, and actually predict much larger amplitude
of the peak in the ¢ > ¢, direction (the opposite of the correct
behaviour). The zeroth moment (i) case predicts essentially infinite
transport speeds in the +¢£ direction. Interestingly, of the interpolated
closures here the Wilson closure (vii) best captures the correct
asymmetry, suggesting that this test can distinguish between more
subtle variations.

5.4 Propagation with bent fields in a simple geometry

Now consider a variant of the ‘diffusing ring’ in a cylindrical field
geometry, with T =constant and b = ¢ purely azimuthal about some
axis. This is a useful problem to illustrate the differences between
the closure relation (even for ‘pure transport’ in the ultra-relativistic
limit) for CRs, derived here, and the analogous M1 closure relation
for photons (RHD), as discussed in Section 6.3.

5.4.1 Comparison to the M1 RHD closure

To illustrate the key behaviours, here we explore mathematically the
intuitive idea that CR streaming and diffusion are confined along
field lines (unlike RHD). This is also sketched in Fig. 2. Take
the Newtonian limit (¢ — o0) or flux steady-state D,FF — 0, so
we have d,q = —V - F, with F, = —K g, where K ~ ¢?/7 is
some effective diffusivity and g. = Bg(q) =bb-[V- (Dg)]. For
g = e, this becomes g.. = bb - (V - P). Compare this to the RHD
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Figure 2. Cartoon illustrating the qualitative difference in behaviours be-
tween the CR closures proposed here (fop) and the analogous M1 RHD
closures (bottom), following the mathematical demonstration in 5.4.1. Al-
though the functional form of the pressure tensor P and its dependence on
<M2/'>» <le> (the “closure relation’) is seemingly identical if we equate b
with the specific intensity direction f, Lorentz forces confining CRs give
rise to fundamentally different anisotropic transport confined to fields. The
figure illustrates this in a problem with purely cylindrical fields (arrows
show the local direction 13, with an initial narrow Gaussian distribution of f
(magenta circle) injected at some position (black circle shows the closed
field line along which this appears), and distribution at a later time in
blue. In the isotropic-DF strong-scattering limit (ef), the CR equations here
reduce to spatially anisotropic diffusion (despite the DF being isotropic in
) along the field line in both directions; in the RHD closure, they reduce
to globally isotropic multidimensional diffusion. In the anisotropic-DF free-
streaming limit (<le> = 1, initially; right), the CR closure reduces to free
streaming ‘around’ the field lines, while the RHD closure produces straight-
line trajectories.

M1 closure, where the flux equation has the form D,F,q + V - Praa
with Prag = Dragerad, where Dryg = Xradl] + (1 - 3Xrad)ﬁﬁ with Xrad =
(1 — (u2))/2, identical to our definition for CRs if we identify
b = i (the radiation flux direction). In flux steady state, this gives
Fra = _Kradgrad with 8rad = V- Pra.

Thus, even in flux steady state with identical effective diffusivities,
we see that although the anisotropic P and P,y are similar, F,
fundamentally differs from F,,4 in that F,, is projected along b. This
leads to major qualitative differences in behaviours in both isotropic-
DF and streaming limits. First, take the isotropic-DF ((u5) — 1/3)
case: g — (1/3)bb - Ve = (1/3)¢¢ - Ve and gq — (1/3)Ve. So
for CRs, even if the pitch-angle distribution is isotropic, we still have
anisotropic diffusion with only parallel diffusion along the field lines
allowed, owing to our assumption of a gyrotropic DF with small gyro
radii. For RHD, we obtain isotropic diffusion, and all information
about the field lines is lost, because photons are not ‘confined’
to field lines. Now consider the free-streaming limit: For CRs
gcr — B{V - (eb)} while for RHD g,q — V - (efifi) = V - (¢bb).
Now the difference is less obvious, as the RHD case is still
anisotropic. However, the ordering here produces totally different be-
haviour: g, — bV - (¢b) = ¢ - Ve corresponds again to transport
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around an azimuthal ring (following b),'* while g.q — V - (ebb) =
($ . V)(e(i}) = (;5:;5 -Ve + e(g;i . V)& = && - Ve — (e/r)7 produces a
radially propagating flux. Notably, while gcr saturates once e —
e(r) becomes azimuthally symmetric, the RHD solution in this limit
actually corresponds to a ring that expands outwards at speed ~K/r
(see e.g. Hopkins 2017), because in the free-streaming limit there is
nothing to ‘bend’ the photon trajectories.

5.4.2 Behaviour of the CR closures

Returning to the two-moment CR equations, noting for b = ¢ that
V. $ =0,s0V - (qf)) = (i - Vq = 0¢q, we can write d.q = —03,F,,
3 Fy + 9:({u7)q) = —F,. However, this is exactly identical to the
equations with b = constant in Section 5.2, written in terms of
the distance ¢ along the field line (so we have already shown the
effects of different closures in Fig. 1). The only difference is (1)
that this line is globally curved, but that can simply be considered
an embedding/coordinate transformation; and (2) the circular nature
of ¢ means that the boundaries for e, f are periodic, whereas in
Section 5.2 we implicitly considered open boundaries. In these
simplified cases with u = 0, time-invariant background, V - b = 0,
etc., any field geometry can be transformed into an equivalent 1D
problem since CRs are confined along b. The physical assumption
that drives this behaviour, fundamentally, is that the gyro radii of the
CRs are much smaller than the radius of curvature of b smoothed on
the scales of interest.

5.5 Propagation in a non-trivial field geometry

Now consider a case with non-zero ‘focusing’, V -b %0,
e.g. a dipole field B oc (1/r3)(2cos [0]7 + sin [016), which gives
V.-b= r"(3/«/§)(27 cos [0] + 5cos [30])/(5 + 3 cos [26])*2. For
v =constant, let @w = (¢/P)V - f), S0 our equations become d.q =
—(0¢F, + Fyw)and 0. F; + 9;[(1 = 2x)g]l + (1 = 3x)gw = —F,.
Since b is constant in time, we can write @ = @ (£, Xo) as a function
of length ¢ along some path following b, and again the problem
becomes one dimensional along each field line. Mathematically,
V-b acts like a source/sink term representing the (de)focusing
of field lines (e.g. for a dipole, near the ‘pole’ with 6 < 7/2,
V - b ~ 3/r); however, we see that the effect in the flux equation
depends on the closure x. For simplicity, we take @w = 3 to be
constant over the interval calculated, and consider an isotropic IC
(bottom-middle panel of Fig. 1) and a streaming IC (bottom-right
panel).

With an isotropic IC, we see that the isotropic-DF (ii) and maximal-
anisotropy (iv) cases fail completely to capture the correct anisotropy:
In the F,; equation, an isotropic-DF closure exactly eliminates the fo-
cusing term, and the maximal-anisotropy case produces propagation
opposite the exact solution (viii). Meanwhile, maximal streaming
(iii) strongly overestimates the anisotropy. The interpolated closures
(v)—(vii) at least capture the key qualitative behaviours.

With the streaming IC, the interpolated closures (v)—(vii) are nearly
identical and all behave qualitatively akin to the exact solution
(viii). Both constant-(u% ) (isotropic or anisotropic) (ii), (iii), and
maximally anisotropic (iv) cases produce negative DFs.'> We also see

For the cylindrical field b = @, it is worth noting that V - ¢ = 0, s0 ger —
dd - V(1 —2x]e) generically and the free-streaming and isotropic-DF cases
for CRs differ only in the x factor in this test problem.

I5While technically closure (iii) with <u%> = 1 is realizable for any <lL1f>,
this always represents a sum of é-functions with = %1, which means that
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that the zeroth-moment (i) closure fails in a new manner: This closure
cannot correctly treat the focusing term. For anisotropic diffusion
F, « —bb - Vg, as required for realistic CR dynamics, a non-zero
V - b still appears as a source term in the g equation, but the flux
closure assumption (i) means that the focusing term in the flux is not
included. The result is that the front for (i) actually propagates in the
opposite direction to that of the correct solution.

5.6 Summary

Just like the analogous RHD case, no two-moment closure can
capture the exact behaviour of full phase-space solutions for f{u).
However, the interpolated closures (v)—(vii) at least capture the
qualitative behaviours of all terms in all test problems considered
here. Constant—< ufc> closures like assuming a near-isotropic-DF (ii)
or a free-streaming-DF (iii) or a maximally anisotropic (8-function)
DF (iv) fail catastrophically on some problems and, most crucially,
fail to ensure non-negative solutions for f or f; (e.g. CR number
and energy density). While taking the zeroth-moment/diffusion limit
(i) does ensure positive-definite solutions, it fails catastrophically
in other ways: It drives CR transport in the incorrect direction
in situations with strong focusing, streaming, or scattering-rate-
gradients, and it produces superluminal transport.

Among the interpolated closures, the Levermore and Minerbo
closures (v)—(vi) produce very similar results (not surprising since
they give nearly identical < p.f,->(< ,u]f >) functions). The Wilson
closure (vii) performs slightly more accurately with isotropic ICs,
though it sometimes slightly underestimates peak amplitude in free-
streaming ICs, which is expected as it gives < u§> slightly closer to
the isotropic-DF < ,u2f> = 1/3 at intermediate <,u'f>

Of course, real problems will be vastly more complex, with
advection velocities u comparable to CR transport speeds, spatial-
and-time variable versions of all above quantities, ¥ dependent on
1 as well as space and time, etc. We emphasize that many of the
most important consequences of the proposed closures may only
be evident in those scenarios. For example, if the ‘adiabatic’ terms
x (x0+1[1— 3x]f)f)) : Vu, gyro-resonant losses o 04 F,, diffusive
re-acceleration gains o 3 Xvi(e + Py), and trans-Alfvénic or CR
‘streaming’ speed o 3 x U4 are important, these depend quite strongly
on x and therefore on the closure (with re-acceleration and Alfvénic
streaming behaviours vanishing entirely in the anisotropic limit).
Likewise, simulations where the CR forces on gas are important will
be sensitive to the closure relation because the shape and anisotropic
form of P depend explicitly on the closure relation.

6 RELATION TO OTHER CR AND RADIATION
TRANSPORT FORMULATIONS

6.1 Relation to previous CR moment formulations

Recently, Jiang & Oh (2018), Chan et al. (2019), Thomas &
Pfrommer (2019), and Hopkins et al. (2020b) have explored two-
moment formulations of the CR energy transport equation (g = e).
Those in Chan et al. (2019), Hopkins et al. (2020b), and Jiang &
Oh (2018) were heuristically motivated by two-moment treatments
of RHD but the authors did not attempt to derive a set of equations
consistent with the actual DF equation for CRs (nor appropriate

even a local minimum in f can have net ‘outgoing’ flux in ££ directions,
producing negative solutions. Meanwhile, realizability for (iv) fails as it
attempts to interpolate through a position where f — 0.
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closure, etc.). Thomas & Pfrommer (2019) (here TP) did attempt
such a derivation for the nearly isotropic-DF case, and indeed
Section 3.2 mostly follows their more detailed and comprehensive
discussion. It is therefore worth noting how the work here extends
their formulation. The major differences here are: (1) We derive
moment equations for the DF f itself as well as integrals like
CR number/total energy/kinetic energy n, e, €, while TP primarily
focused on just e. (2) Our equations are valid for arbitrary CR y,
while TP considered only the ultra-relativistic (y > 1, § & 1 case).
(3) We develop the equations for the entire CR spectrum f(p) or e (p),
while TP focused on the spectrally integrated expressions. (4) Our
equations are agnostic to the specific scattering model (this physics
is not our focus), while TP focused in detail on deriving specific
expressions for ¥ due to CR scattering from Alfvén waves within
the context of CR self-confinement scenarios. (5) Most importantly,
TP focused exclusively on the nearly isotropic DF case and enforced
the strong-scattering closure <,uzf> = 1/3; we derive a more general
set of expressions that allow for anisotropic DFs and CR pressure,
and can approximately capture the CR free-streaming limit.

Most earlier CR transport models in galaxy simulations adopted a
‘zeroth-moment’ or pure-diffusion approximation, evolving e.g. the
spectrally integrated e with F, = ¥V Py. The anisotropic version of
this, with & = «bb, of course arises if we take the isotropic-DF,
strong-scattering, Newtonian (¢ — 00, so flux steady state always
applies) limit. Although simpler, this can give a number of unphysical
behaviours, as discussed above. This can be mitigated by adopting
a flux-limited-diffusion-type approximation, replacing KHIA)IA) -Ve —
Brimk bb - Ve with ¢jin, = MIN[1, Bec/|k bb - Ve|], but as we have
shown, there are qualitative phenomena this closure still fails to
capture.

6.2 Relation to the isotropic FP equation

By far, the most popular form of the CR transport equations adopted
in Galactic models of CR transport that do not attempt to explicitly
follow galactic dynamics — e.g. GALPROP (Strong & Moskalenko
2001) or DRAGON (Evoli et al. 2017) — is the isotropic Fokker—
Planck equation:

L= 0t o | (sr 0,50 )| 45 @
If fluid velocities are included (these are often dropped), they are
taken to add the terms —u -V f + (1/3)(V -w)pd, f to the right-
hand side of equation (47).

This equation arises from our equations (22)—(23), if we make
the following assumptions: (1) assume an isotropic-DF closure,
so (u%) —1/3, D — /3, G(q) > b-Vq/3, etc.; (2) assume the
Newtonian limit (c — 00) or the infinite-strong-scattering (¥ — 00)
limit in the CR flux or first x-moment f] equation (equation 23),
so that the CR flux reaches its local equilibrium value instanta-
neously, with D, fj — 0; (3) assume that the scattering is also
exactly isotropic with respect to pitch angle, so that ¥, = v_
(to O(u/c)) and v4 — 0O; this causes the D,, and D,, terms to
vanish; (4) take the resulting anisotropic spatial diffusion term
V- (Bbf1) — V- (Dybb -V fo) with D; = (B¢)?/(3D), and assume
that the magnetic field direction bis isotropically random or ‘tangled’
on scales of the MFP (below some averaging scale), allowing it
to be approximated as an isotropic diffusion V - (D,,V fy) with
D, = Dy/3 (which produces the commonly assumed relation for
this limit D, D,, = pzvi /9); and (5) drop the terms involving the
fluid velocities u (sometimes called ‘convective’ terms).
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The major limitations of equation (47) are therefore that it cannot
capture anisotropy in the DF f{u), anisotropy in the scattering rates
v+ (), or anisotropy in the field geometry b (each of which is inde-
pendent). It also cannot correctly describe the free-streaming/weak-
scattering or out-of-flux-equilibrium limit (e.g. D,F' # 0, relevant
just after injection, or when b changes direction rapidly, or when
D varies spatially or temporally). Finally, depending on the form
adopted, it ignores or treats less accurately the fluid velocity and
comoving-versus-inertial frame terms.

6.3 Relation to the M1 RHD equations

Our derivation of the CR moment equations and closure from
the focused transport equation closely parallels the derivation of
the radiation moments and M1 closure from the specific intensity
equation in e.g. Levermore (1984), Mihalas & Mihalas (1984), and
others, and indeed there are many similarities. However, there are
some important differences. The physics, of course, is completely
distinct, and the detailed form of the scattering and collisional/loss
terms is totally different. Most obviously, radiation is always in the
ultra-relativistic limit, so properties like B — 1 and € — e are always
satisfied in RHD. None the less, even for ‘free’ transport of ultra-
relativistic CRs, important differences arise from two key effects: (1)
the CRs are gyrotropic and feel Lorentz forces, and there is a scale
hierarchy imposed by the assumption that the gyro radius is much
smaller than resolved scales; and (2) the ‘preferred direction’ is b
(not the solid angle vector fi in RHD), which can change direction
and responds to the gas physics.

As a result, a number of terms appear that do not have an RHD
analogue, including (1) the S terms and ¥, terms that introduce
the Alfvén frame; (2) the perpendicular pressure forces in the gas
hydro equation (which relate to Lorentz forces and therefore do not
vanish even with weak parallel scattering), and (3) various geometric
terms that alter the directions of key transport behaviours. For the
latter, mathematically we see that the non-commutation of b and
V results in the flux equation having the form BD,F instead of
D,F. Terms such as G(g) = (1 — 2)()13 -Vg+ (1 —-3x)qV - b have
fundamentally non-hyperbolic components and do not have the same
form as their RHD analogue, which can be written as D,;F = —V -
P + .... We could only do this if b and x were uniform everywhere.
The consequences of this are plainly illustrated in Section 5.4.1 — it
produces qualitatively different behaviours.

Like the M1 case in RHD, there are still cases where our
‘interpolated’ closure (equation 28) fails. For example, it cannot
capture the ‘intersecting rays’ problem, where <p,}> = O not because
of an isotropic distribution [as the proposed closure in equation (28)
assumes], but because f(u) = (1/2)fo(8(u — 1)+ 8(u +1)). If
v — 0, the closures predict that two free-streaming rays will ‘collide’
and then diffuse out, rather than pass one another truly collisionlessly.
More complicated closure schemes for <u§> can be devised to
address this. It is less clear, however, whether this is as much
a problem for CRs as for radiation, since the CRs are not truly
collisionless ‘test particles’ as they stream, in the way photons are.
In fact, in this particular situation the CRs would be unstable to two-
stream instabilities, so ‘collide then diffuse’ may indeed be a more
accurate description of their true dynamics. Fully kinetic CR models
that do not assume even CR gyrotropy (as assumed from the start of
our derivations) are needed to properly address such physics.

Related to this, an important physical difference is that the M1-
RHD closure imposes the assumption that the DF is symmetric
about the flux direction F ad hoc, without any particular physical
motivation. This can be violated rather severely on all spatial scales,
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e.g. if rays intersect at oblique angles. Here, the gyrotropic CR
assumption is much more well motivated, and has a well-defined
scale length (the gyro scale) providing a formal scale-separation
hierarchy.

6.4 Hybrid schemes and a note on the ‘gyro-resonant loss’ and
‘re-acceleration’ terms

Recently, hybrid schemes have been proposed that evolve f(x, p) in
large-scale simulations by directly evolving f,(p|x) in momentum
space at each cell position x, while using a zeroth- or first-moment
expansion scheme for the spatial terms (e.g. Girichidis et al. 2020).
These are straightforward to generalize to the methods here, by evolv-
ing fo, fi according to equations (22)—(23). In these approaches, the
equations for g or f can be operator split into a hyperbolic spatial
transport step D, fo + V - (v fi b)=0and a momentum-space step
where all the source and sink terms (including e.g. the ‘adiabatic’
term P : Vu, S, and S,) are evolved following equation (22).

In this spirit, recall from Section 4.2 that we can derive from the
momentum-space translation/diffusion terms [including the adiabatic
and p~29,p*(D,. fi + D,pd, fo) terms] a mean rate of change (p)
of the CR momentum or energy (of a CR ‘group’ with the same
initial p; see equation 46). Pitch-angle averaging equation (46),
using (u)) = F,/q, gives (p)/p = —(D : Vu) — (v/v))[04F,/q —
2x vf‘(l + B?)]. If we take ¢ = ¢, and use various identities in
Section 3.4.2 to replace B, we can rewrite this as

%) =-D:Vu-— 0%376 [0AF. —2x0% (¢ +3P)] +...  (48)
The first (adiabatic) term immediately reduces to the familiar (p) =
—(1/3)(V - u)p expression if we assume an isotropic-DF closure.
The second (scattering) term closely resembles /., and indeed in
the ultra-relativistic limit where Eop (and P = ¢’/3) it becomes
exactly S‘;C /€’ (i.e. the rate of change of energy and momentum
become identical). In this term, the first (o< U4 F) part stems from
D,,,, while the second ( v%e) stems from D,,,. The ‘...” term refers
to other collisional terms (e.g. radiative losses).

In self-confinement scenarios where the scattering waves are
excited by gyro-resonant instabilities sourced by the CR flux,
waves are excited only in the direction of F;, so we generically
expect'® an extreme forward/backward difference with v, > b_
or ¥, < V_, corresponding to whichever points in the direction
of F,. This gives U4 = UAF; b = +v,. While the scattering term
in (p) can be positive if the CRs are streaming sub-Alfvénically
(IF)] S va€), it is generically negative, and if the CR energy
(equation 31) is in flux steady state (D,F, — 0) in the strong-
scattering or isotropic-DF limit, it takes the negative-definite value
(p)/p— —(ualb- V Py|/3Py) — D(va/yBc)?. In this limit, this rep-
resents the CR energy loss to gyro-resonant instabilities — the
‘streaming loss’ or ‘gyro-resonant loss’ term (Wiener, Oh & Guo
2013a; Wiener et al. 2013b; Ruszkowski et al. 2017; Thomas &
Pfrommer 2019)."7

In extrinsic turbulence scenarios, if the turbulence and scattering
rates are perfectly isotropic in the Alfvén frame, then v4 =0

16 A5 discussed in Hopkins et al. (2020b), if one somehow did have b ~ v_
on micro-scales, the time-scale for the D4 to come into the equilibrium state
with 74 — v AF; - b is much smaller than resolved time-scales in galaxy-
scale simulations.

7In these studies, the CRs were taken to be ultra-relativistic, so the gyro-
resonant losses simply become —vy4 |f) -VPy/3P.
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(b4 = V_), so the D,, or F term above vanishes and the scatter-
ing term becomes positive definite with (p)/p — D(v4/v)*2x(1 +
/32) ~ v%/ D,,. This is the ‘turbulent’ or ‘diffusive’ re-acceleration
term. However, note that in the anisotropic-DF case (x — 0)
this vanishes; even in very weakly anisotropic scattering [unless
vi(u) = v_(u) cancels to high precision [vy —v_|[/|vy +v_| K
[va(e + P)/F| ~ va/ve], the DF or Dy, (loss) term will usually
dominate.

In any case, the preceding discussion makes it clear that our derived
scalings include both the ‘gyro-resonant’ or ‘streaming’ loss and
‘turbulent/diffusive reacceleration’ terms, in a more general form.

6.5 Where and when are these differences most important?

It is helpful to ask ‘under what conditions will the predictions
from the more accurate expressions herein differ most dramatically
from the predictions of simpler, less-accurate (e.g. isotropic Fokker—
Planck, zeroth-moment/diffusion, or isotropic-DF) CR transport
expressions?’ Examination of the relevant equations and our tests in
Fig. 1 suggest that this will typically be most important when the CR
scattering mean free time (~9~!) or path (£ypp ~ ¢/ D, since we must
consider the full range of 1) becomes larger than some other scales of
interest or relevance for CR transport (e.g. the gradient scale lengths
for b, ly = |B|/|V b, or v, &; = v/| V1|, or background quantities
such as the gas density or pressure if CR—gas interactions are of
interest). As shown in Fig. 1, this is true even if the CR DF is close to
isotropic. Also, although the scattering time o' is generally short,
the scattering length can be quite large: If we take state-of-the-art
empirical estimates of ¥ in the Solar neighbourhood/LISM (e.g. Evoli
et al. 2017; Amato & Blasi 2018; Chan et al. 2019; Hopkins et al.
2020b; de la Torre Luque et al. 2021; converting from an isotropic
diffusivity to D), we obtain £ypp ~ 10pcRY%y, where Rgy is the CR
rigidity in GV.

In phenomenological models where ¥ is constant, {; — 0o by
definition, so the effects of the expressions here will generally be
more modest. However, for ~1-10GV CRs, ¢ (essentially the
Alfvén scale of ISM turbulence) can be comparable to £yrp, and for
=10 GV CRs, £ypp can begin to exceed the Galactic disc scale height.
So propagation models over these scales, especially for high-energy
CRs and/or models where the CR—gas coupling is important (e.g.
models of CR-driven winds where the ‘launching’ occurs from the
disc) could be sensitive to the more detailed CR transport expressions
here.

Much more dramatically, in physically motivated models where
the scattering rates v are set by some competition between damping
and driving either by gyro-resonant instabilities (self-confinement
models) or extrinsic turbulence, ¥ can be a strong function of
quantities such as the neutral fraction or gas temperature or local
Mach numbers (see e.g. Yan & Lazarian 2004; Zweibel 2017, or
the review in Hopkins et al. 2020b), which can vary on vastly
smaller scales (the skin depth of phase transitions or shock widths,
orders of-magnitude smaller than £ypp). These rapid changes can be
tightly associated with phenomena such as CR ‘bottlenecks’ (as CRs
propagate across phase transitions) or the CR ‘staircase’ that arises
in self-confinement models of CR-driven outflows, all of which have
been the subject of considerable recent study using variations of the
simpler CR transport expressions that may not accurately represent
the exact solutions in this regime (e.g. Bustard & Zweibel 2020;
Winner et al. 2020; Hin Navin Tsung, Oh & Jiang 2021; Huang &
Davis 2021; Quataert, Thompson & Jiang 2021). In these regimes, the
bulk CR behaviour could differ substantially with the more accurate
expressions proposed herein (Section 3.4.1).
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Finally, if v(w) itself is strongly anisotropic, then an approach that
evolves the pitch-angle DF, as in Section 4.1, becomes crucial to
obtaining accurate results.

7 THE REDUCED-SPEED-OF-LIGHT (RSOL)
APPROXIMATION

Explicitly integrating equations (22)—(33) imposes a Courant-type
time-step limiter At < CAx/c in Lagrangian codes [or Afr <
C Ax /(¢ + u)in Eulerian codes]. While this is generally less onerous
at high resolution than the quadratic condition imposed by ‘pure dif-
fusion’ or ‘zeroth moment’ schemes (where 3, f o k' V2 f, imposing
At < CAx?/k), it is still often numerically prohibitive because c is
much faster than any other signal speed in the problem. By analogy
to RHD, we can therefore adopt an RSOL approximation, as in
many previous CR studies (Jiang & Oh 2018; Chan et al. 2019; Su
et al. 2019, 2020; Buck et al. 2020; Hopkins et al. 2020a, b, c, d; Ji
et al. 2020). However, in those studies, the CR transport equations
were developed ad hoc, as described above. Here, we develop two
viable RSOL formulations, and describe the terms where additional
corrections are needed.

7.1 Alternative (viable) formulations

Per the preceding derivations, we can generically write the spatial
transport terms in the CR moment equations for (fy, f1)'® or (g, F,)
with ¢ = (n, e, €) for some species and energy interval as

1 F, . 1
7th +V. (?"b) = fsgff(...,c)

1
f)( >+ﬂ9@) st o (49)

(we collect all of the non-transport terms such as scattering and
sources/sinks in S¢).

When using the RSOL approximation, it is important to be careful
which values of ¢ are replaced with the RSOL ¢. We wrote these
equations in the form ¢~'D,q = ... because then (just like in RHD;
see Skinner & Ostriker 2013, and references therein) the RSOL
replaces only the value(s) of ¢ associated with the D, term.'® There
are then two choices of viable scheme, first:

1 F, . | B
:uq+v<ﬁ%>=—$%wa
C c C

lu(ﬂ)+ﬁwm=lﬁﬁm¢ (50)
c c c 1

or alternatively

1 Ff{" v eff
-Dig+V-{—b) = —Sq (...,0),
c c

1
ED(T>+ﬂQW)‘4g 0. (51)

The formulation in equation (50) is exactly equivalent to replacing
c¢™'D, f — &' D, f in the original focused transport equation (1),

18Note that equations (22)—(23) can be written as ¢~' D, fo + V - (Bf1b) =
(.., c~'Dy(Bf1) + B2G(fo) = B(...), matching the form in equation (49) for
(q, Fy) = (fo, v /).

19Because our moments are defined in the comoving frame, we associate
¢ with Dy, as opposed to 9;, which is more appropriate when the salient
quantities are defined in the lab frame.

20Consider the free-streaming limit of the focused transport equation (1), with
negligible scattering in a homogeneous medium: ¢! D, f + V - (uBfb) = 0.
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then following our derivations identically. It is also the more common
scheme in RHD. The formulation in equation (51) associates ¢
only with the flux equation, instead, and introduces the function
W = MIN[I, | F;|/Fel with Fye & MIN[gBc, |F;(¢ — 00)]], as
justified below.?!

These share the most important features: (1) the maximum signal
speed for free streaming is reduced to B¢, meaning that the sta-
ble Courant time-step condition becomes At o« Ax/(B¢), allowing
much larger time-steps (the reason to introduce the RSOL); (2) both
exactly recover the true equation (49) as ¢ — ¢; and (3) both converge
exactly to the true (¢ = ¢) solutions for g, F,, and S, in local steady
state (when D, — 0).

7.2 Out of equilibrium behaviours and time-scales

The differences between the schemes come when ¢ < ¢ out of steady
state. Define I' = ¢/¢ and consider some key time-scales: the flux-
convergence time-scale Atp, the loss/injection time-scale Afiyioss,
and the CR transport/escape time-scale Afg. First assume that § }ff is
dominated by a scattering term ~ — v F /c*: with " = 1 (equation 49),
the flux equation should converge to steady state (D, — 0) on a
scattering time A ~ v~!. For equation (50), At(so) vt~
T A1 for equation (51), AzS " ~ I2v~! ~ I2Arf . Now assume
in the number/energy equation S;ff ~ =£gq/(ct), for some loss or

production/injection processes. These processes reach equilibrium
(50)

in Aii ~ © for equation (49). For equation (50), Aty o ~
LAz and for equation (51) At‘(f/llim WAL The CR

transport/escape time Afe. ~ L/veg to some distance L is given
by the effective transport speed ve [writing D,g + V(verg) = ...]:
For equation (50), At ~T'Lg/F; for equation (51), At3D ~
Lqg/F. However, F depends on whether the flux equation has
reached steady state. First consider case (a), where At > Atg
and ver < ¢, so both equations (50) and (51) have F — Fie,
and therefore At80 — TArMe AtSD — Ar™ In case (b), At
< Atp, or equivalently the system is free streaming/unconfined;
thus, the true v > ¢ and equations (50)—(51) have ver — ¢, giving
AIGY ~ MG ~ L/e ~ DAL,

The quantities of interest in CR models —e.g. CR number densities
of a given species at a given energy, primary-to-secondary or
radioactive-to-stable ratios, etc. — are set by the appropriate ratios of
injection/loss/escape time-scales (for a given galactic background).
Since injection and non-transport (e.g. collisional) losses scale
together in Aty in both equations (50) and (51), their ratio (and
therefore scalings that depend on balancing injection and non-escape
losses) is insensitive to ¢. For equation (50), in all limits, the ratio
Atinoss! Atese 18 also equal to its ‘true’ (¢ = ¢) value, as both scale
identically with I". For equation (51), however, this is only true if ¥
— lincase (a) and ¥ — I"~! (or more generically ¥ — F/F'™¢) in
case (b).

7.3 (Dis)advantages of each formulation

This leads us to the major (dis)advantages of each method. The
formulation of equation (50) ‘uniformly’ slows down CR transport:
It is essentially equivalent to a uniform rescaling of time, as seen

This is pure advection with v = fuc; taking ¢ — ¢ correspondingly reduces
the maximum bulk/free-streaming advection speed from fc to S¢.

21Jiang & Oh (2018), Chan et al. (2019), and Hopkins et al. (2020d) used a
formulation similar to equation (51), but set ¥ = 1, which as we argue below
leads to significantly slower convergence with respect to ¢/c.
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by the CRs, by a factor ¢/c. This has the advantage that although
the time Af to reach equilibrium in g and F, is increased, in both
the free-streaming and confined limits (equivalent to the optically
thin and thick limits in the RHD literature where these were first
derived), the system reaches the ‘correct’ number/energy density
and losses/production at the same distance Ax from any source.
Also, the flux equation converges more rapidly than equation (51)

[Az}?“) < Ats”], although all terms in the number/energy equation

(transport and production/loss) converge more slowly [At»(S/O,:7SS >

in

Ati(ns/ll)oss, At‘(é?,)sport > At‘(f‘:l)spon]. The problem this can create is that
(50) (50)

the time-scales Aty i, Aliangpore €an potentially become so long,
for computationally tractable RSOL values ¢, that the system never
actually reaches that Ax or steady state. This is most acute in the
circum/intergalactic medium (CGM/IGM) around galaxies, where
many have argued that CRs may be most important (Booth et al. 2013;
Wiener et al. 2013a; Butsky & Quinn 2018; Butsky et al. 2020; Hop-
kins et al. 2020a; Ji et al. 2020, 2021). Consider that even for rapid
diffusion (diffusivity & ~ k3010%° cm?s™"), at L ~ L3,30 kpc from
a galaxy, AtS ~ T'L?/k ~ 100 Gyr(¢/1000kms~")"" L3 x5, In
other words, we require ¢ > 10*kms~! for the CRs to ‘reach’ the
CGM in less than a Hubble time in the formulation of equation (50).
Similarly, we need very large ¢ to ensure that Ati(‘f/ol)oss is not much
longer than galaxy dynamical times (which would risk converging to
the wrong equilibrium).

The formulation of equation (51) avoids this, by converging in
the number/energy (loss and transport) equations much more rapidly
(on the ‘correct’ time-scale, independent of ¢, on large scales). It
converges in the flux equation more slowly, but this is still rapid
in absolute terms, as e.g. Atl(fl) ~ 3 Myrk30(¢/1000 cm?s~")~2. The
problem with equation (51) is that we can find ourselves in case
(b), and potentially in the subcase where Atéﬂ) is larger than one of
At or Atii® — the limit where capturing the correct behaviour
with ¢ < ¢ requires including the W term with ¥ — F/F"™¢. Moti-
vated by the above and treatments of the flux limiter in flux-limited
RHD with an RSOL, we therefore suggest the interpolation function
W = MIN[1, | Fy|/ Fiel, where Fie = MIN[e'Be, [Dale’ + Py) +
kyVye'll for g = € (or Fiye = MIN[1/Bc, |T4n + 1, V'] for ¢ =
1, etc.) is given by the value the flux would have in local steady state
(D,F, — 0) for & = c at the given energy. This ensures the correct
behaviour in both asymptotic limits discussed in Section 7.2.

With this definition, one can verify that both formulations in
equations (50) and (51) converge to identical solutions as ¢ in-
creases. One would expect from the above that in the dense ISM,
the formulation of equation (50) converges somewhat faster with
respect to ¢/c (i.e. one can obtain converged solutions with lower
¢, hence lower computational expense). However, for the above
reasons, in the CGM, the formulation of equation (51) converges
at much lower values of ¢. Equation (51) therefore has advantages
for applications in, e.g. cosmological galaxy formation simulations,
while the formulation in equation (50) is potentially advantageous
for transport around sources or in the ISM within galaxies.

7.4 Which speed of light enters the closure relation?

Recall that for the closure relation equation (28) that we proposed to
estimate <,uzf>, we used <le> = fi/fo= F,/(Bgc). For the formu-
lation in equation (50), the ‘actual’ flux of ¢ is (¢/c) F, so F, retains
its usual meaning — free streaming will still have F, = Bqc, so we
can use this relation in unmodified form, <le> = fi/fo= F,/(Bgc)
(provided we follow all the above definitions). For the formulation
in equation (51), we need to be more careful: F, saturates at ~g¢,
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but this can occur even if the system approaches a near-isotropic
DF, for sufficiently large diffusivity. So in the closure relation,
we require a function similar to the W term above, e.g. taking
F,/(Bgc) — F;/MAX[BqéE, |Fy(¢ — o0)l].

7.5 Rigidity-dependent RSOL

Finally, we note that although the arguments above assume ¢ is
constant in space and time, they do not require ¢ be the same for
different CR species or energies. In calculations that evolve a set of
CR species of energies binned in rigidity, for example, one can adopt
a ¢ that increases for the highest rigidity CRs (for example, as ¢ = &
for R < 1 GV, and &(R/GV) at larger values). Larger rigidity CRs
have larger « (e.g. larger Atp), so require larger ¢ to converge. By
subcycling the CR equations for the highest rigidity values, faster
convergence may be possible.

7.6 Appearance in the gas+radiation (momentum+energy)
equations and conservation

Just like with RHD (see e.g. Skinner & Ostriker 2013), it is important
that the RSOL appears only in the dynamical equations for the CRs,
notin the terms that couple to the gas that are written in terms of phys-
ical quantities. Otherwise, certain terms, like the parallel forces or
CR thermal heating rates, would not, in fact, converge to equilibrium
when D, — 0 and would be severely incorrect. Thus, for example,
the form of the gas momentum equation (40) as written remains
identical. Likewise, the gas heating terms have their ‘normal’ values
with respect to e, etc. One consequence of this, again identical to
RHD, is that the formally conserved quantities with an RSOL are not
total energy (Eqpner + Eer) and momentum (P + ¢ 2F,;). Instead,
for the formulation in equation (50), they are [ Eoper + (¢/¢)E:] and
[Poer + (¢&)~'F,], while for the formulation in equation (51), they
are (Egher + Eor) and (Poger + ¢ 2F;). This is important to note but
introduces no conceptual difficulty, provided the above definitions
are used.

8 SUMMARY

Beginning from the focused CR transport equation allowing for
an arbitrary pitch-angle distribution, we have derived and tested
a consistent set of moment equations for CR-MHD applications,
analogous to widely used closures for RHD. We present equations for
either e.g. the first two pitch-angle moments of the DF £ ({f) ., (1 f) 1),
or corresponding integrated pairs like CR number density and its
flux (n, F,), total CR energy and flux (e, F,), or CR kinetic energy
and its flux (e, F). We present two different schemes to integrate
these explicitly in simulations with an RSOL approximation, discuss
their relative convergence properties and merits, and note some
important terms missing from previous CR-RSOL implementations.
The derived equations are summarized in Appendix A.

Our equations are valid for all relevant CR B = v/c (not
just the ultra-relativistic limit), and do not impose any assump-
tion about the slope or form of f(p). Unlike the Fokker—Planck
or pure diffusion+streaming (zeroth-moment) formulations of the
CR transport equations, the expressions here can handle both
free-streaming/weak-coupling (arbitrarily large MFP) and strong-
scattering (static or dynamic diffusion or advective) limits, for
both near-isotropic and arbitrarily anisotropic DFs, anisotropic
forward/backward scattering, and anisotropic magnetic fields/global
transport. The expressions are accurate to leading order in O(u/c) in
all limits. The key assumptions are: (1) that the background fluid is
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non-relativistic, [u| < c¢; and (2) the CRs have a gyrotropic DF, with
gyro radii much smaller than resolved scales.

It is easy to imagine extending this even further to include
more complicated ‘variable Eddington tensor’ formulations akin
to RHD (representing arbitrary CR DFs), although the gyrotropic
nature of CRs removes some of the ambiguities associated with
RHD formulations. In this spirit, we also present the relevant gyro-
averaged equations for direct finite-volume phase-space integration
of the pitch-angle distribution [following f(x, p, i, t, ...) explicitly
on a grid of x, i, p], as there may be cases where the different
formulations are beneficial.

Finally, it is worth commenting on a major practical difference
between RHD and CR-MHD applications: In many astrophysical
RHD applications, the collisional/scattering terms (absorption and
scattering coefficients) are reasonably well understood, and much
of the debate in the literature has centred on methods to accurately
handle the actual radiation transport. In contrast, in CR-MHD, the
scattering terms — and, as a consequence, the diffusion/streaming
coefficients — are enormously uncertain. This is true even of their
qualitative form and dimensional scalings. Different state-of-the-
art models for CR scattering rates v differ by several orders of
magnitude and often predict opposite dependence on properties
like magnetic field or turbulence strength (see the review in Hop-
kins et al. 2020b). Real progress in predictions will require a
better understanding of the form of the CR scattering rates, their
dependence on pitch angle and local plasma/ISM properties, and
developing new diagnostics to compare models to observations.
None the less, the hope is that the calculations in this paper can
aid in reducing some of the better-understood uncertainties in
CR transport. Also, we argue in Section 6.5 that there are many
physically important situations, especially those that involve rapidly
varying CR scattering rates and/or CR ‘bottlenecks’, where the
more accurate form of the equations herein may predict significantly
different behaviours compared to more simplified and less-accurate
expressions. Further, in numerical applications where an RSOL is
adopted, it is crucial to adopt treatments that can correctly interpolate
between different limits. Finally, the basic principles of the closure
structure proposed here can be used to include additional information
about scattering coefficients in the CR-moment framework. For
example, if one wished to model a scattering rate ¥ = v[ f(n)] ~
o((uy), (%), ...) that is a function of the CR pitch-angle distri-
bution, the structure herein provides a well-defined way to retain
and estimate some (though certainly not all) of this physics without
having to evolve the entire pitch-angle DF at each momentum and
position.
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APPENDIX A: SUMMARY OF KEY EQUATIONS

We summarize some of the key equations derived herein, in compact
form and with the consistent RSOL formulation (equation 50)
included. All variables are defined in the main text.

Equation (16) is the general evolution equation valid for any gy-
rotropic CRDF f = f(x, p, x, s, t, ...), including all QLT scattering
terms, to leading O(u/c) in all terms, written in finite-volume form
(suitable for methods that evolve the DF on a grid of p):

1 X
EDrf'FV'(M,be)

0 af Ta Of
_Bu[ { TV b+ (8M+ pap)H

1 0 a vi 90
il (b))

(AL

Equations (22)—(23) take the first two pitch-angle moments f;, f; to
derive a two-moment set of equations for f (akin to radiation moment
methods that do not evolve the entire p distribution explicitly):
| . ) 3 fo
Do+ V- (Bbf1) — D:VB,|3fo+ P,

1 9 3 fo i
_ L { (sprwfl + Dy )} L2,

cp2 ap c
1 3fo] | Q
*D:f1+,3g(fo)——g |: uuf1+Dupa :| +;»
A P A Poa_ = I P _
Dpp =X vz Vv, Dpﬂ = TU, DMM =V, DMP = XTU.
(A2)
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The following relations complete the closure of the moment hierar-
chy:
G(g) =b- V(1 = 2x]g) + (1 =3x)qV -b
= V- ((u})ab) = xgV -b=b-[V-(Dg).
D= xI+(1—3y)bb,
=) 1 {1_52]

=T T2 fo

(uiy= 2=t

3 +4<u}>2
s+204—3(u)) ]

(uy) > Mz () =

Equations (30), (31), and (33) integrate these moment equations over
a finite range of p to define corresponding moment equations for CR
number ' = dn/dp, energy ¢ = de/dp, and kinetic energy € = de/dp
density, for a narrow range of p:

1 F' . S

-Din' + V- (—"b) = 2

C C C
1 F/ D
= (—) +G(B*n") = — [F, -
C C C

1 Fr\ 1

the +V 7b = —

c C c

L (F : D g a5 (o Y] 4 SF
=D (7) +G(B%) = = [F/ = 3xoa(e' + P))] +

!

Sk
3xvan'| + ==,
XA] 2

[S.+ 8, — P :Vu],

1 F. . 1 -
—Die +V- (—fb) =—[S.+ 8, —F:Vu],
c Cc c

1 FE/ / l_) !
() rae =L~

’
ke
B
c?

(A3)

3xva(e + Py)] +

with 8, = —(V/c?) [04F, = 3xv3 (¢ + P;)], P'=3PD, and
P} = p%e'/3. The spectrally integrated equations are then obtained
by integrating the above over [dp. Of particular relevance is equa-
tion (38), the spectrally integrated total energy equation assuming
that most of the CR energy is ultra-relativistic:

1 F, . Se
PR (S
C C C

1 £\ - 5, [F, 0] Sk,
-D, (—)+b-(vﬂ>ew—— {——4xe—"e}+ LAY
c c c c C c

where P = f[P’dp ~ eD(x,) and x., U4, Ve, and other terms are
understood to be the appropriate spectrally averaged values. Equa-
tions (39)—(40) give the DF-integrated CR force on gas:

Z/471p2dp{ (1—bb) - [V- (Dpvfo)]

Dy(pu) + ..

S[oetrooryl)

=-V,- [P—I—bZ/dp > LF. XvA(e —|—P)}

(A5)
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or alternatively from equation (41),
D;(puw)+ ..+ V- P
N ’ v / = / /
= bZ/dp{g(ﬂze V+ S [F =3l + R} (A6)

Equation (42) gives the corresponding gas energy equation D;egys =
u- [D,(pw)le] — [ dplSL, + S.1.

Equations (45)—(46) use the above results to derive the evolution
equations for the mean values (U) of a group of CRs with identical
state p, u, s, etc. The most relevant of these is the evolution equation

Consistent closures for CR dynamics 3797

for the mean momentum p of a group with an initially identical p,
after gyro and pitch-angle averaging:

c ddv

(E) % — —(D:Vu)— "7" [(MHW - Xa‘@;)}

vil. . 2 ab
a2+ B o |
v aplp

This paper has been typeset from a TEX/I&XTEX file prepared by the author.
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