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A B S T R A C T 

We derive a consistent set of moment equations for cosmic ray (CR)-magnetohydrodynamics, assuming a gyrotropic distribution 

function (DF). Unlike pre vious ef forts, we deri ve a closure, akin to the M1 closure in radiation hydrodynamics (RHD), that 

is valid in both the nearly isotropic DF and/or strong-scattering regimes, and the arbitrarily anisotropic DF or free-streaming 

regimes, as well as allowing for anisotropic scattering and transport/magnetic field structure. We present the appropriate two- 

moment closure and equations for various choices of evolved variables, including the CR phase space DF f , number density n , 

total energy e , kinetic energy ǫ, and their fluxes or higher moments, and the appropriate coupling terms to the gas. We show that 

this naturally includes and generalizes a variety of terms including convection/fluid motion, anisotropic CR pressure, streaming, 

diffusion, gyro-resonant/streaming losses, and re-acceleration. We discuss how this extends previous treatments of CR transport 

including diffusion and moment methods and popular forms of the Fokker–Planck equation, as well as how this differs from 

the analogous M1-RHD equations. We also present two different methods for incorporating a reduced speed of light (RSOL) to 

reduce time-step limitations: In both, we carefully address where the RSOL (versus true c ) must appear for the correct behaviour 

to be reco v ered in all interesting limits, and show how current implementations of CRs with an RSOL neglect some additional 

terms. 

Key words: MHD – plasmas – methods: numerical – cosmic rays – ISM: structure – galaxies: evolution. 

1  I N T RO D U C T I O N  

Cosmic rays (CRs) could play a potentially crucial role in the 

interstellar and circumgalactic medium, star and galaxy formation, 

and our understanding of high-energy astroparticle and plasma 

physics. In recent years, there has been a surge of interest in 

attempts to model CR dynamics explicitly in star, planet, and galaxy 

simulations – i.e. following the transport and matter interactions 

of CRs alongside the magnetohydrodynamics (MHD), gravity, and 

other plasma physics effects in these systems (see e.g. Uhlig et al. 

2012 ; W iener , Zweibel & Oh 2013b ; Salem & Bryan 2014 ; Pakmor 

et al. 2016 ; Salem, Bryan & Corlies 2016 ; Simpson et al. 2016 ; 

Ruszkowski, Yang & Zweibel 2017 ; Zweibel 2017 ; Butsky & Quinn 

2018 ; Girichidis et al. 2018 ; Mao & Ostriker 2018 ; Chan et al. 2019 ; 

Hopkins et al. 2020d ; Ji et al. 2020 ; Su et al. 2020 ). Simultaneously, 

work has continued on more traditional CR propagation methods 

that trace CR trajectories as ‘tracer particles’ across static analytical 

galaxy models in order to understand Solar system observables (e.g. 

Cummings et al. 2016 ; Guo, Tian & Jin 2016 ; J ́ohannesson et al. 

2016 ; Korsmeier & Cuoco 2016 ; Evoli et al. 2017 ; Amato & Blasi 

2018 ). Ideally, one would simply solve the full Vlasov equation for 

CRs as a function of position x and momentum p for each CR species, 

⋆ E-mail: phopkins@caltech.edu 

but the high dimensionality of this equation is prohibitiv e. Moreo v er, 

in planet/star/galaxy formation models the resolution scales are vastly 

larger than CR gyro radii for CRs with energies � TeV (which contain 

most of the energy/pressure, and dominate the interactions with the 

non-relativistic matter). As such, these applications have generally 

relied on moment-based approaches, where one begins by assuming 

that the CR distribution function (DF) f is gyrotropic (symmetric 

around the magnetic field direction), averages over the micro-scale 

Lorentz forces and scattering processes, and then considers moments 

of the DF in terms of the remaining momentum direction, the pitch 

angle μ. 

The simplest of these – ‘zeroth moment methods’ – correspond to 

pure diffusion models. These involve either assuming nearly isotropic 

behaviour and solving an isotropic Fokker Plank equation for f or 

solving a diffusion-like equation, ∂ t q = ∇ · ( κ · ∇ q ) + ... , for some 

integrated ‘macroscopic’ CR property q (e.g. energy density; the 

diffusion tensor κ should be anisotropic on scales much larger 

than the gyro radius, κ = κ‖ ̂  b ̂ b ). Ho we ver, it is well known that 

this approximation cannot accurately represent man y re gimes of 

interest: the free-streaming or weak-scattering regimes, significantly 

anisotropic f ( μ), the trans-Alfv ́enic CR ‘streaming’ limit, and oth- 

ers. Moreo v er, it can produce highly unphysical behaviour (e.g. 

superluminal CR transport), and imposes a severe time-step (and 

therefore CPU cost) penalty in numerical simulations that explicitly 

integrate the CRs. Moti v ated by this, recently Jiang & Oh ( 2018 ), 
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Table 1. Commonly used variables in this paper. 

f CR DF f ≡ f ( x , p , t, s, ... ) 

p , v CR momentum p , velocity v ( p ≡ | p | , v ≡ | v | ) 
μ CR pitch-angle μ ≡ ˆ p · ˆ b 
ˆ b , v A Magnetic field direction ˆ b ≡ B / | B | , Alfv ́en speed v A 

c , ˜ c True ( c ) and ‘reduced’ ( ̃ c ) speed-of-light (RSOL) 

β, γ CR velocity/Lorentz factors β = v/ c , γ = 1 / 
√ 

1 − β2 

u , βu Gas velocity u , with βu ≡ u /c 

D t Conserv ati v e como ving deri v ati ve D t X ≡ ∂ t X + ∇ · ( u X) 

q , F q Moments of the DF and associated fluxes (equations 2–3) 

n , e , ǫ CR number n , energy e , kinetic energy ǫ densities 

n 
′ 
, e 

′ 
, ǫ

′ 
Differential n ′ ≡ d n/ d p = 4 πp 2 f̄ 0 , etc. 

f̄ n Pitch-angle moments of the DF: f̄ n ≡ 〈 μn f 〉 μ (equation 6) 
〈

μn 
f 

〉

DF-weighted pitch-angle moment 
〈

μn 
f 

〉

≡ f̄ n / f̄ 0 (equation 7) 

ν̄ Pitch-angle averaged scattering rate ̄ν ≡ ν̄+ + ̄ν−
(equation 24) 

D̄ μμ, D̄ pp Averaged scattering coefficients D μμ, etc. (equation 24) 

v̄ A Streaming speed v̄ A ≡ v A ( ̄ν+ − ν̄−) / ( ̄ν+ + ̄ν−) 

G Deri v ati ve operator G( X) ≡ ˆ b · [ ∇ · ( D X)] (equation 25) 

P , D CR pressure tensor P and Eddington-type tensor D 

(equation 26) 

χ Second-moment function χ ≡ (1 −
〈

μ2 
f 

〉

) / 2 (equation 27) 

M 2 Closure function 
〈

μ2 
f 

〉

≈ M 2 ( 
〈

μ1 
f 

〉

) (equation 28) 

Chan et al. ( 2019 ), and Thomas & Pfrommer ( 2019 ) proposed two- 

moment schemes, ef fecti vely e volving not just the isotropic part of 

f but its first moment as well (or equi v alently, e volving both CR 

energy and its flux), which resolve many of these problems. The 

formulations in Jiang & Oh ( 2018 ) and Chan et al. ( 2019 ) were 

heuristically moti v ated by the analogous popular moment methods 

for radiation hydrodynamics (RHD), but they did not attempt to 

link these to the actual equations of motion for a gyrotropic CR 

distribution. Thomas & Pfrommer ( 2019 ) did make such a link and 

developed a formalism for further expanding on this; ho we ver, their 

formulation makes some restricting assumptions, e.g. that the CRs 

are ultra-relativistic and that the DF f ( μ) is al w ays nearly isotropic. 

Moreo v er, although all of these works have suggested and adopted 

the use of a ‘reduced speed of light’ (RSOL) as a method to prevent 

extremely small numerical time-steps when CRs are free-streaming 

(again, analogous to the procedure common in RHD), none have 

attempted to verify that the RSOL formulation is consistent in all 

rele v ant limits of their equations to guarantee accurate steady-state 

solutions. 

In this paper, we therefore expand upon this previous work to 

develop more general forms of the CR-MHD equations. In applica- 

tion, this work is intended primarily for numerical models of planet, 

star, and galaxy formation, or the interstellar or circum/intergalactic 

medium, where one desires to evolv e CR populations e xplicitly. 

We make two fundamental assumptions throughout, appropriate for 

these applications: (1) that the background MHD fluid velocities u are 

non-relativistic [so we can expand to leading order in e.g. O( u/c)] 

and (2) that the CRs have a gyrotropic DF with gyro radii/time- 

scales much smaller than the macroscopically resolved scales in 

the calculation. Importantly, ho we ver, we do not assume that e.g. 

the CR scattering mean free paths (MFPs) are short – akin to e.g. 

kinetic MHD (Kulsrud 1983 ), we will show that the small-gyro- 

radius assumption is sufficient for a ‘fluid-like’ expansion of the 

Vlaso v equation, pro vided appropriate closure relations are adopted 

to truncate the moment expansion. 

In Section 2, we present various assumptions and definitions, and 

in Section 3 use this to derive the appropriate two-moment equations 

(Section 3.4) and closures go v erning the CR DF (Section 3.4.1) or 

its integrals (CR number or energy density; Section 3.4.2), as well 

as the corresponding couplings to the gas equations (Section 3.5). 

In Section 4, we alternatively present expressions appropriate for 

methods that attempt to e xplicitly evolv e the CR pitch-angle distri- 

bution directly (Section 4.1). In Section 5, we consider a number of 

test problems to compare various closure assumptions and ‘zeroth 

moment methods’ to exact solutions, summarized in Section 5.6. In 

Section 6, we discuss how the formulations here extend previous 

moment equations in the literature (Section 6.1) and popular forms 

of the Fokker–Planck equation (Section 6.2), and relate to analogous 

RHD expressions (Section 6.3). We discuss the reduced-speed-of- 

light (RSOL) approximation in Section 7 and present two possible 

implementations (Section 7.1), deriving correction terms needed 

in various limits to ensure reasonable behaviour (Section 7.2) and 

re vie wing the (dis)adv antages of each (Section 7.3). We summarize 

in Section 8. 

For ease of reference, we define variables in Table 1 and collect 

many of the most important derived equations in Appendix A. 

2  ASSUMPTI ONS  A N D  DEFI NI TI ONS  

Our starting point is the general focused CR transport equation (see 

e.g. Skilling 1971 , 1975 ; Isenberg 1997 ; le Roux, Matthaeus & Zank 

2001 ; le Roux et al. 2005 ; Zank 2014 ; le Roux et al. 2015 ) as written 

in polar momentum coordinates: 

1 

c 
D t f + μβ ˆ b · ∇f − f ∇ · βu 

+ 

[ 

1 − 3 μ2 

2 
( ̂ b ̂ b : ∇ βu ) −

1 − μ2 

2 
∇ · βu −

μ ˆ b · a 

βc 2 

] 

p 
∂f 

∂p 

+ 

[ 

β∇ · ˆ b + μ∇ · βu − 3 μ( ̂ b ̂ b : ∇ βu ) −
2 ̂ b · a 

βc 2 

] 

1 − μ2 

2 

∂f 

∂μ

= 
1 

c 

∂f 

∂t 

∣

∣

∣

coll 
. (1) 

This describes the evolution of a gyr otr opic CR DF f , defined in 

the comoving frame (with fluid velocity u ), valid to second order 

in O( u/c) (where c denotes the true speed of light throughout). 

We will consider the CR equations as a continuous function of 

momentum p or Lorentz factor γ for a given CR species s –

i.e. it should be understood here that some quantity ψ is actually 

ψ γ, s ( x , t, p, s, m s , ... ) for species s with mass m s , etc., but we will 

not write this out for the sake of compact notation. 

In equation (1), μ is the CR pitch angle, ˆ b ≡ B / | B | is the unit 

magnetic field vector, β ≡ | v | / c = v/ c is the speed of the CRs, βu ≡
u /c is the speed of the fluid, a ≡ d u / d t ≡ ∂ u /∂ t + ( u · ∇) u is the 

fluid acceleration, A : B ≡ Tr[ A · B ] denotes the double dot product, 

D t X ≡ ∂ t X + ∇ · ( u X ) ≡ ρd t ( X /ρ) is the conserv ati v e como ving 

deri v ati ve, ρ is the fluid density, d t X ≡ ∂ t X + ( u · ∇) X , ∂ t X ≡
∂ X / ∂ t , and ∂ t f | coll denotes the scattering + collisional terms and other 

loss/injection processes. 

We define various integrals of the DF as 

q = q( x , ... ) ≡
∫ 

d 3 p ψ q f 

= 

∫ 

p 
2 d p d μd φψ q f ( μ, p , x , ... ) , (2) 

where φ is the phase angle, x is the spatial coordinate, and ψ q 

corresponds to each q . So for e.g. the volumetric number den- 
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Consistent closures for CR dynamics 3781 

sity n , total energy e , or kinetic energy ǫ, we have q = ( n, e, ǫ) 

with ψ q = (1 , E( p) , T ( p)), respectively, where E( p) = γmc 2 and 

T ( p) = E( p) − mc 2 refer to the total and kinetic energy of an 

individual CR particle of rest mass m , respectively. We will 

consider a single CR species: We can later reconstruct the total 

DF by summing o v er different species. The corresponding fluxes 

are 

F q = F q ̂
 b ≡

∫ 

d 3 p ψ q f v 

= ˆ b 

∫ 

4 πp 
2 d p 

(

1 

2 

∫ 

d μψ q f μv 

)

, (3) 

where the alignment with ± ˆ b follows immediately from our 

assumed gyrotropic DF. The CR pressure tensor P is defined 

as 

P ≡
∫ 

d 3 p ( pv ) f ≡ 3 P 0 D , (4) 

where P 0 ≡
∫ 

4 πp 
2 d p ( p v/ 3) f is a scalar pressure and D 

is an Eddington-type tensor of trace unity (specified be- 

low). We also define the pitch-angle-averaging operations, 

pitch-angle moments of f , and DF-weighted pitch-angle mo- 

ments: 

〈 X 〉 μ ≡
1 

4 π

∫ 

d μd φX , (5) 

f̄ n ≡ 〈 μn f 〉 μ, (6) 

〈

μn 
f 

〉

≡
〈 μn f 〉 μ
〈 f 〉 μ

= 
f̄ n 

f̄ 0 
. (7) 

3  D E R I VAT I O N  O F  T H E  C R  TRANSPORT  

M O M E N T  E QUAT I O N S  

3.1 Ordering in O( u/c) 

3.1.1 General moment equations 

Let us first discuss the general case before considering to the specific 

isotropic and anisotropic limits. We begin from equation (1), and 

take the ‘zeroth moment’ equation (average equation 1 o v er μ). 

Integrating by parts, we have for a general gyrotropic DF 

1 

c 
D t f̄ 0 + ∇ · ( β ˆ b f̄ 1 ) − f̄ 0 ∇ · βu 

+ p 
∂ 

∂p 

[ 

1 − 3 
〈

μ2 
f 

〉

2 
( ̂ b ̂ b : ∇ βu ) −

1 −
〈

μ2 
f 

〉

2 
∇ · βu 

] 

f̄ 0 

+ 
3 
〈

μ2 
f 

〉

− 1 

2 
[ ∇ · βu − 3( ̂ b ̂ b : ∇ βu )] f̄ 0 

−
ˆ b · a 

βc 2 

[

2 f̄ 1 + p 
∂ f̄ 1 

∂p 

]

= 

〈

1 

c 

∂f 

∂t 

∣

∣

∣

coll 

〉

μ

. (8) 

Assuming O( β) ∼ O(1) and defining some gradient wavenumber 

k ∼ 1 /ℓ grad ∼ O( ∇), equation (8) has a collection of ‘adiabatic’ 

terms O( f̄ 0 ∇ βu ) ∼ O( f̄ 0 ku/c), acceleration terms O[ f̄ 1 a /c 
2 ], and 

a flux term O( k f̄ 1 ). In the free-streaming limit, O( f̄ 1 ) ∼ O( f̄ 0 ), 

so the adiabatic terms are O( u/c) smaller than the flux term, 

but in the strong-scattering/isotropic limits f̄ 1 can vanish [the 

bulk CR drift/streaming speed can be � O( u )], so we need to 

keep the O( ∇ βu ) terms as they can be leading order in some 

limits. 

Now consider the acceleration term: note O( a /c 2 ) ∼
O( ∇P eff, gas /ρc 2 ), where P eff, gas ∼ ρc 2 eff, gas is the ef fecti ve pressure 

e x erting forces on the gas, and c eff, gas is some ef fecti ve sound speed 

so O( c eff, gas ) ∼ O( u ). 1 So we have O( a /c 2 ) ∼ O( ku 
2 /c 2 ), which is 

al w ays at least one order in O( u/c) smaller than the other terms 

abo v e and therefore should be dropped. 

Next, we take the ‘first moment’ equation by multiplying equa- 

tion (1) by μ and averaging over μ. This gives 

1 

c 
D t f̄ 1 + β ˆ b · ∇ 

(〈

μ2 
f 

〉

f̄ 0 
)

+ 

( 

3 
〈

μ2 
f 

〉

− 1 

2 

) 

βf̄ 0 ∇ · ˆ b 

+ [3 ̂ b ̂ b : ∇ βu − 2 ∇ · βu ] f̄ 1 + 
1 

2 
[ ̂ b ̂ b : ∇ βu − ∇ · βu ] p 

∂ f̄ 1 

∂p 

−[6 ̂ b ̂ b : ∇ βu − 2 ∇ · βu ] f̄ 3 −
1 

2 

[

3 ̂ b ̂ b : ∇ βu − ∇ · βu 

]

p 
∂ f̄ 3 

∂p 

+ 

ˆ b · a 

βc 2 

[

(

1 − 3 
〈

μ2 
f 

〉)

f̄ 0 − p 
∂ f̄ 2 

∂p 

]

= 

〈

μ

c 

∂f 

∂t 

∣

∣

∣

coll 

〉

μ

. (9) 

Going term by term, after the time deri v ati ve we first have ‘flux’ and 

‘focusing’ terms that scale as O( k f̄ 0 ) and O( k f̄ 2 ); because O( k f̄ 0 ) ∼
O( k f̄ 2 ) (at least in the isotropic limit), we cannot drop one of these 

relative to the other. Next, we have a large number of ‘adiabatic terms’ 

O( ∇ βf̄ 1 ) ∼ O( k f̄ 1 u/c); ho we ver, these are al w ays O( u/c) smaller 

than the flux/focusing terms O( k f̄ 0 ), both in the free-streaming limit 

[where O( f̄ 1 ) ∼ O( f̄ 0 )] by O( u/c) and in the isotropic limit by 

O[( f̄ 1 / f̄ 0 )( u/c)] ≪ O( u/c). 2 Next, a similar set of terms appears 

in O( ∇ βf̄ 3 ), but since O( f̄ 3 ) � O( f̄ 1 ) (or more formally since f̄ 3 
is bounded like f̄ 1 with | f̄ 3 | ≤ | f̄ 0 | ) and we dropped the terms in 

O( ∇ βf̄ 1 ), we should drop the O( ∇ βf̄ 3 ) terms as well. Finally, we 

have the acceleration terms O( f̄ 0 | a | /c 2 ); given the order of | a | noted 

earlier, we immediately see that this is O( u 
2 /c 2 ) smaller than the 

leading terms. 

We can also obtain this hierarchy from the various integral equa- 

tions. Multiplying equation (8) by 4 πp 
2 d p E( p ) and equation (9) by 

4 πp 
2 d p E( p ) v and integrating, we obtain the CR total energy and 

energy flux equations: 

1 

c 
D t e + ∇ ·

(

F e 

c 
ˆ b 

)

+ P : ∇ βu + 
F e 

c 

2 ̂ b · a 

c 2 
= 

1 

c 

∂e 

∂t 

∣

∣

∣

coll 
, 

1 

c 
D t 

F e 

c 
+ ˆ b · ( ∇ · P ) + 

F e 

c 
ˆ b ̂ b : ∇ βu + ( e + P : ˆ b ̂ b ) 

ˆ b · a 

c 2 

= 
1 

c 2 

∂F e 

∂t 

∣

∣

∣

coll 
. (10) 

These are directly analogous to the comoving equations of RHD 

(Mihalas & Mihalas 1984 , equations 95.87–95.88), with each fea- 

turing the comoving time-deri v ati ve term ( D t ), flux term [ ∇ · ( ̂ b F ) 

or ˆ b · ∇ P ], velocity-gradient terms ( ∝ ∇ βu ), acceleration term 

1 Note that, even in the strong-coupling limit, if CR pressure domi- 

nates the forces on the gas, so P eff, gas → P cr ∼ e cr ∼ γ n cr mc 2 , we have 

O( ∇P eff, gas /ρc 2 ) ∼ O( kP cr /ρc 2 ) ∼ O( kn cr /n gas ); i.e. this scales as the ratio 

of the number of CRs to non-relativistic particles, which is also extremely 

small for any limits we consider where we could treat the gas in the MHD 

limit. 
2 Like the analogous radiation-hydrodynamics case, it is important here that 

we began from the comoving focused transport equation, so f̄ 1 is comoving, 

and the dropped O( ∇ βu ) terms in the flux equations are those outside the 

operator D t . If f̄ 1 were the ‘lab-frame’ moment, leading-order O( ∇ βu f̄ 1 ) 

terms in equation (9) would appear outside the Eulerian deri v ati ves ∂ t f̄ 1 . 
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3782 P . F . Hopkins, J. Squire and I. S. Butsky 

( ∝ a ), and collisional/scattering terms. In RHD, it is well estab- 

lished that in any rele v ant limit [free streaming/unconfined, with 

ν → 0; or static/dynamical diffusion or strong scattering, with 

F e ∼ ( c 2 /ν) ∇e; or advection, with F e ∼ v stream e; whether the gas or 

relativistic particle pressure dominates a ]: (1) the acceleration terms 

are al w ays smaller by O( u 
2 /c 2 ) compared to the dominant terms; 

and (2) the velocity gradient ∇ βu terms in the flux ( f̄ 1 ) equation 

are smaller by O( u/c), but must be retained in the energy ( f̄ 0 ) 

equation to reco v er the correct behaviour in the strong-scattering 

limit. 

If we now return to equation (8) and keep only leading-order terms 

in O( u/c), we have (after some algebra to simplify) 

1 

c 
D t f̄ 0 + ∇ · ( βf̄ 1 ̂  b ) −

1 

p 2 

∂ 

∂p 

[

p 
3 f̄ 0 D : ∇ βu 

]

= 

〈

1 

c 

∂f 

∂t 

∣

∣

∣

coll 

〉

μ

, 

1 

c 
D t f̄ 1 + ∇ · ( βf̄ 2 ̂  b ) − χβf̄ 0 ∇ · ˆ b = 

〈

μ

c 

∂f 

∂t 

∣

∣

∣

coll 

〉

μ

, 

D ≡ χ I + (1 − 3 χ ) ̂ b ̂ b , χ ≡
1 −

〈

μ2 
f 

〉

2 
. (11) 

3.1.2 Scattering terms 

Enormous contro v ersy still surrounds the behaviour of the CR 

scattering terms, and this is the focus of much of the CR lit- 

erature (see e.g. Chandran 2000 ; Yan & Lazarian 2002 , 2004 , 

2008 ; Zweibel 2013 , 2017 ; Zank 2014 ; Bai et al. 2015 , 2019 ; 

Lazarian 2016 ; Holcomb & Spitko vsk y 2019 ; van Marle, Casse 

& Marcowith 2019 ). Our derivation here, on the other hand, is 

almost entirely focused on the collisionless CR transport terms 

(those outside ∂ t f | coll ). Ho we ver, to write down a sensible galactic CR 

transport equation, we must make some assumption about scattering. 

So we will briefly consider these, in an intentionally simplified 

manner. 

We begin from the usual quasi-linear theory (QLT) slab scalings 

(Schlickeiser 1989 ): 

∂f 

∂t 

∣

∣

∣

sc 
= 

∂ 

∂μ

(

D μμ

∂f 

∂μ
+ D μp 

∂f 

∂p 

)

+ 
1 

p 2 

∂ 

∂p 

[

p 
2 

(

D μp 
∂f 

∂μ
+ D pp 

∂f 

∂p 

)]

, 

D μμ = 
(1 − μ2 ) 

2 

[

(

1 − μ
v A 

v 

)2 
ν+ + 

(

1 + μ
v A 

v 

)2 
ν−

]

. 

D μp = 
(1 − μ2 ) 

2 

pv A 

v 

[ (

1 − μ
v A 

v 

)

ν+ −
(

1 + μ
v A 

v 

)

ν−

] 

, 

D pp = 
(1 − μ2 ) 

2 

p 
2 v 2 A 

v 2 
[ ν+ + ν−] , (12) 

where v A is the appropriate Alfv ́en speed and ν±( μ) are the scattering 

rates from forward- and backward-propagating waves (Skilling 

1975 ). Taking the appropriate moments and assuming O( v A ) ∼ O( u ) 

give 

〈

∂f 

∂t 

∣

∣

∣

sc 

〉

μ

= 
1 

p 2 

∂ 

∂p 

[

p 
2 

(

S f̄ 0 + D̄ μp f̄ 1 + D̄ pp 
∂ f̄ 0 

∂p 

)]

+ O 

(

u 
2 

v 2 

)

, 

〈

μ
∂f 

∂t 

∣

∣

∣

sc 

〉

μ

= −D̄ μμ,μf̄ 1 − D̄ μp,μ

∂ f̄ 0 

∂p 
+ O 

(

u 
2 

v 2 

)

, (13) 

where 

D̄ pp ≡ ( ∂ p f ) 
−1 〈 D pp ∂ p f 〉 μ ≈ χ

p 
2 v 2 A 

v 2 
ν̄, 

D̄ μp ≡ f̄ −1 
1 〈 D μp ∂ μf 〉 μ ≈

p ̄v A 

v 
ν̄, 

D̄ μμ,μ ≡ −f̄ −1 
1 〈 μ∂ μD μμ∂ μf 〉 μ ≈ ν̄, 

D̄ μp,μ ≡ ( ∂ p f ) 
−1 〈 μD μp ∂ p f 〉 μ ≈ χ

p ̄v A 

v 
ν̄, 

v̄ A ≡ v A 

(

ν̄+ − ν̄−

ν̄+ + ν̄−

)

, ν̄ ≡ ν̄+ + ν̄−. (14) 

Note that we have defined ν̄ and v̄ A for convenience, with ν̄±
representing the appropriate μ-av erages. F or completeness, the 

∂ t f | coll term should also include a term p 
−2 ∂ p [ p 

2 S f̄ 0 ] representing 

continuous external momentum loss/gain processes (e.g. radiative 

losses), and some j representing injection or catastrophic losses. 

3.1.3 Focused transport equation to leading order 

With Section 3.1.1 in mind, we now return to the focused transport 

equation (1) to obtain a simplified form valid to O( u/c). First 

dropping just the (al w ays higher order) acceleration terms, after some 

tedious algebra we can write equation (1) as 

1 

c 
D t f + ∇ · ( μβf ̂  b ) −

1 

p 2 

∂ 

∂p 
[ p 

3 f D : ∇ βu ] 

+ 
∂ 

∂μ
[ χ{ β∇ · ˆ b + μ( I − 3 ̂ b ̂ b ) : ∇ βu } f ] = 

1 

c 

∂f 

∂t 

∣

∣

∣

coll 
. (15) 

Based on the abo v e arguments in Section 3.1.1, we see that the μ( I −
3 ̂ b ̂ b ) : ∇ βu term inside ∂ μ[ χ{ ... } ] is smaller by O( u/c) than the 

others in all rele v ant regimes and can also be dropped. Specifically, 

this term produced only terms in the D t f̄ 0 and D t f̄ 1 equations that 

we argued were smaller by O( u/c) and should be dropped in those 

equations. Ho we ver, we can see this directly as well: In all rele v ant 

regimes, μ( I − 3 ̂ b ̂ b ) : ∇ βu is smaller by O( u/c) compared to the 

focusing term β∇ · ˆ b inside ∂ μ[ χ{ ... } ]. Even if ∇ · ˆ b = 0, the μ( I −
3 ̂ b ̂ b ) : ∇ βu term is still al w ays smaller by O( u/c) compared to the 

flux-of-flux term (outside ∂ μ), so it can be safely dropped here. Re- 

adding the leading-order scattering terms from Section 3.1.2, and 

keeping only the remaining (leading-order) terms in O( u/c) in each 

power of ∂ t, x , p , ν, etc., we have 

1 

c 
D t f + ∇ · ( μβf ̂  b ) 

= 
∂ 

∂μ

[

χ

{

−f β∇ · ˆ b + 
ν

c 

(

∂f 

∂μ
+ 

v̄ A 

v 
p 

∂f 

∂p 

)}]

+ 
1 

p 2 

∂ 

∂p 

[

p 
3 

{

( D : ∇ βu ) f + 
νχ

c 

(

v̄ A 

v 

∂f 

∂μ
+ 

v 2 A 

v 2 
p 

∂f 

∂p 

)}]

, 

(16) 

where χ = (1 − μ2 )/2 and ν±( μ) are a function of μ. We note 

that all expansions and discussion used to derive equation (16) rely 

only on our O( u/c) expansion, and the deri v ation can, if desired, be 

carried out without needing to first follow the moment expansion in 

our Section 3.1.1. 

3.2 The close-to-isotropic-DF case 

We now consider an example of a specific form for the CR DF 

that is nearly isotropic in μ. The deri v ation here will closely follow 

Thomas & Pfrommer ( 2019 ), to whom we refer for more details. 
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Consistent closures for CR dynamics 3783 

By assumption, if f is close to isotropic in μ, it can be expanded in 

pitch-angle moments as f ( μ) ≈ f̄ 0 + 3 μf̄ 1 + O( | f 1 | 2 / | f 0 | 2 ≪ 1), 

which implies f̄ 2 ≈ f̄ 0 / 3 or 
〈

μ2 
f 

〉

= 1 / 3 (and f̄ 3 ≈ 3 f̄ 1 / 5). With 

this assumption, the pressure tensor becomes isotropic: P = P 0 I (i.e. 

D = I / 3), where P 0 = 
∫ 

d 3 p f pv / 3 ( = β2 e/ 3 integrated in a narrow 

interval of p ). Either directly using this form for f and taking the zeroth 

and first μ moment averages of equation (1) or simply inserting the 

abo v e for 
〈

μ2 
f 

〉

in equations (8)–(9), we can immediately verify that 

these give consistent expressions, and the ordering in O( u/c) is the 

same as in Section 3.1.1. 

For the leading-order terms, we have 

1 

c 
D t f̄ 0 + ∇ · ( β ˆ b f̄ 1 ) − f̄ 0 ∇ · βu + ... 

+ 

[ 

1 − 3 
〈

μ2 
f 

〉

2 
( ̂ b ̂ b : ∇ βu ) −

1 −
〈

μ2 
f 

〉

2 
∇ · βu 

] 

p 
∂ f̄ 0 

∂p 

= 

〈

1 

c 

∂f 

∂t 

∣

∣

∣

coll 

〉

μ

, (17) 

1 

c 
D t f̄ 1 + β ˆ b · ∇ 

(〈

μ2 
f 

〉

f̄ 0 
)

+ ... = 

〈

μ

c 

∂f 

∂t 

∣

∣

∣

coll 

〉

μ

, (18) 

where ... denotes the dropped terms, and we write out 
〈

μ2 
f 

〉

(instead 

of inserting 1/3) for reference below. For the scattering terms, we 

obtain to leading order in O( u/c): D̄ μμ,μ = ν̄, D̄ μp = ( p ̄v A /v) ̄ν, 

D̄ μp,μ = (1 / 3)( p ̄v A /v) ̄ν, and D̄ pp = (1 / 3)( pv A /v) 2 ν̄. 

3.3 The maximally anisotropic DF case 

Next, consider the opposite limit of the maximally anisotropic DF 

f ( μ) = f̄ 0 δ( μ − μ0 ) – i.e. all CRs at a given ( x , p, s, ... ) have 

identical pitch angle, and f̄ n = 
〈

μn 
f 

〉

f̄ 0 = μn 
0 f̄ 0 . Our ordering abo v e 

in O( u/v) is not sensitive to this, so keeping only the terms to leading 

order, the moments of equation (1) become 

1 

c 
D t f̄ 0 + ∇ · ( β ˆ b f̄ 1 ) − f̄ 0 ∇ · βu + ... 

+ 

[ 

1 − 3 
〈

μ2 
f 

〉

2 
( ̂ b ̂ b : ∇ βu ) −

1 −
〈

μ2 
f 

〉

2 
∇ · βu 

] 

p 
∂ f̄ 0 

∂p 

+ 
3 
〈

μ2 
f 

〉

− 1 

2 
[ ∇ · βu − 3( ̂ b ̂ b : ∇ βu )] f̄ 0 = 

〈

1 

c 

∂f 

∂t 

∣

∣

∣

coll 

〉

μ

, 

(19) 

and (again being careful regarding μ commutation), 

1 

c 
D t f̄ 1 + β ˆ b · ∇ 

(〈

μ2 
f 

〉

f̄ 0 
)

+ ... 

+ 

( 

3 
〈

μ2 
f 

〉

− 1 

2 

) 

βf̄ 0 ∇ · ˆ b + ... = 

〈

μ

c 

∂f 

∂t 

∣

∣

∣

coll 

〉

μ

, (20) 

where ... denotes the dropped terms of subleading order in O( u/c). 

If μ0 is independent of p (or we integrate over a narrow range of p ), 

the pressure tensor is P cr = 3 P 0 D = P iso + P aniso with 

D = 

( 

1 −
〈

μ2 
f 

〉

2 

) 

I + 

( 

3 
〈

μ2 
f 

〉

− 1 

2 

) 

ˆ b ̂ b . (21) 

Defining the mean scattering coefficients so that ν̄± = ν±( μ = μ0 ) 

because f ∝ δ( μ − μ0 ), we obtain to leading O( u/c): D̄ μμ,μ = ν̄, 

D̄ μp = ( p ̄v A /v) ̄ν, D̄ μp,μ = ([1 −
〈

μ2 
f 

〉

] / 2)( p ̄v A /v) ̄ν, and D̄ pp = 

([1 −
〈

μ2 
f 

〉

] / 2)( pv A /v) 2 ν̄. 

Written this way, we verify an important connection to equa- 

tions (17)–(18): At this order, the equations differ only in the addition 

of terms with the pre-factor (3 
〈

μ2 
f 

〉

− 1), which vanish identically 

with the nearly isotropic DF closure 
〈

μ2 
f 

〉

= 1 / 3. Likewise, the 

pressure tensor and these expressions for the D̄ coefficients reduce 

to exactly their near-isotropic-DF values when 
〈

μ2 
f 

〉

= 1 / 3. Thus, 

equation (11) or equations (19)–(21) are valid in both the nearly 

isotropic DF and maximally anisotropic DF cases, for appropriate 

choice of 
〈

μ2 
f 

〉

. 

3.4 Comoving expressions to leading order 

3.4.1 General expressions and closure relation 

After some re-arrangement, we can now write a series of expressions 

valid in both the nearly isotropic DF and maximally anisotropic DF 

limits: 

1 

c 
D t f̄ 0 + ∇ · ( β ˆ b f̄ 1 ) − D : ∇ βu 

[

3 f̄ 0 + p 
∂ f̄ 0 

∂p 

]

= 
1 

cp 2 

∂ 

∂p 

[

p 
2 

(

S f̄ 0 + ˜ D pμf̄ 1 + ˜ D pp 
∂ f̄ 0 

∂p 

)]

+ 
j 0 

c 
, (22) 

1 

c 
D t f̄ 1 + βG( f̄ 0 ) = −

1 

c 

[

˜ D μμf̄ 1 + ˜ D μp 
∂ f̄ 0 

∂p 

]

+ 
j 1 

c 
, (23) 

˜ D pp = χ
p 

2 v 2 A 

v 2 
ν̄, ˜ D pμ = 

p ̄v A 

v 
ν̄, ˜ D μμ = ν̄, 

˜ D μp = χ
p ̄v A 

v 
ν̄. (24) 

We have added the terms S , which represents continuous (e.g. 

radiative) losses, and j , which represents injection or catastrophic 

losses. We also define the operator G( q) and Eddington tensor D in 

terms of the variable χ : 

G( q) ≡ ˆ b · ∇ ( [1 − 2 χ ] q ) + (1 − 3 χ ) q∇ · ˆ b , 

= ∇ ·
(〈

μ2 
f 

〉

q ̂  b 
)

− χq∇ · ˆ b = ˆ b · [ ∇ · ( D q)] , (25) 

D ≡ χ I + (1 − 3 χ ) ̂ b ̂ b , (26) 

χ ≡
1 −

〈

μ2 
f 

〉

2 
= 

1 

2 

[

1 −
f̄ 2 

f̄ 0 

]

. (27) 

Provided some expression for scattering rates and 
〈

μ2 
f 

〉

≡ f̄ 2 / f̄ 0 , 

the abo v e form a complete system of equations for ( f̄ 0 , f̄ 1 ). Ho we ver, 

we do not have a general equation for f̄ 2 : We have the usual moment 

hierarchy problem, requiring some closure relation. Without solving 

for the entire f ( μ, φ, ... ), by analogy to the M1 closure(s) in RHD 

we can define an approximate closure 
〈

μ2 
f 

〉

≈ M 2 ( 
〈

μ1 
f 

〉

), which 

(with equations 22–23) accurately captures both the isotropic DF 

and maximally anisotropic DF limits (note that 
〈

μ1 
f 

〉

≡ f̄ 1 / f̄ 0 ). The 

function M 2 should satisfy the following: (1) in the nearly isotropic 

DF case, by definition, | 
〈

μ1 
f 

〉

| ≪ 1 and 
〈

μ2 
f 

〉

= 1 / 3 + O( 
〈

μ1 
f 

〉2 
); 

(2) in the free-streaming case with f → δ( μ ± 1) (maximally 

anisotropic DF case), 
〈

μ2 
f 

〉

= 
〈

μ1 
f 

〉2 
, with O( f̄ n ) ∼ O( f̄ 0 ); and (3) 

the DF should be realizable , meaning that an f ( μ) exists that is finite 

and non-ne gativ e for all −1 ≤ μ ≤ 1 with the given 
〈

μ1 
f 

〉

and 
〈

μ2 
f 

〉

. 

A natural choice satisfying the abo v e is the popular RHD closure 

from Levermore ( 1984 ), which is the unique M 2 if there e xists an y 

frame in which (after Lorentz boosting) the DF is isotropic: 

〈

μ2 
f 

〉

≈ M 2 

(〈

μ1 
f 

〉)

= 
3 + 4 

〈

μ1 
f 

〉2 

5 + 2 
(

4 − 3 
〈

μ1 
f 

〉2 )1 / 2 
. (28) 
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3784 P . F . Hopkins, J. Squire and I. S. Butsky 

This is not the only possible closure, ho we v er. F or e xample, Minerbo 

( 1978 ) note that if the DF satisfies a maximum entropy principle, 

M 2 = 
1 

3 
+ 

2 

15 

〈

μ1 
f 

〉2 (
3 − | 

〈

μ1 
f 

〉

| + 3 
〈

μ1 
f 

〉2 )
. (29) 

Various other choices are re vie wed in Murchiko va, Abdikamalo v & 

Urbatsch ( 2017 ). We stress that while the closure relation equa- 

tion (28) (or equation 29) is an approximation, equations (22)–

(33) are exact (to lowest order in u / c ) for any DF, provided the 

‘correct’ 
〈

μ2 
f 

〉

and ν̄. So one can easily imagine constructing 

more complicated or exact closure relations, analogous to ‘variable 

Eddington tensor’ methods in RHD, to assign the correct values of 
〈

μ2 
f 

〉

. 

3.4.2 CR number and energy equations 

We can now obtain equations for ( q, F q ) by multiplying equa- 

tions (22)–(23) by 4 πp 
2 ψ q d p and integrating. First, it is helpful 

to consider the equations integrated over an infinitesimal range of p , 

e.g. �n ≡ (d n/ d p ) �p . This gives 

D t ( n 
′ ) + ∇ ·

(

F 
′ 
n 

ˆ b 
)

= S ′ n , 

D t 

(

F 
′ 
n 

)

+ c 2 G( β2 n ′ ) = −ν̄
[

F 
′ 
n − 3 χv̄ A n 

′ ]+ S ′ F n , (30) 

where n ′ ≡ d n/ d p = 4 πp 
2 f̄ 0 , F 

′ 
n ≡ d F n / d p = 4 πp 

2 v f̄ 1 , S ′ n ≡
4 πp 

2 j 0 , and S ′ F n ≡ 4 πp 
2 vj 1 . For total energy e , we have 

D t ( e 
′ ) + ∇ ·

(

F 
′ 
e 
ˆ b 
)

= S ′ e + ˜ S ′ sc − P 
′ : ∇u , 

D t 

(

F 
′ 
e 

)

+ c 2 G( β2 e ′ ) = −ν̄
[

F 
′ 
e − 3 χv̄ A 

(

e ′ + P 
′ 
0 

)]

+ S ′ F e , (31) 

with e ′ ≡ d e/ d p = 4 πp 
2 E( p) f̄ 0 , F 

′ 
e ≡ d F e / d p = 4 πp 

2 E( p) v f̄ 1 , 

S ′ e ≡ 4 πp 
2 ( E( p) j 0 − S v), S ′ F e ≡ 4 πp 

2 E( p) vj 1 , P 
′ 
0 ≡ d P 0 / d p = 

4 πp 
2 ( pv/ 3) f̄ 0 , P 

′ ≡ 3 P 
′ 
0 D , and 

˜ S ′ sc ≡ −
ν̄

c 2 

[

v̄ A F 
′ 
e − 3 χv 2 A 

(

e ′ + P 
′ 
0 

)]

= −
ν̄

c 2 

[

γ

γ − 1 
v̄ A F 

′ 
ǫ − 3 χv 2 A 

(

γ

γ − 1 
ǫ′ + P 

′ 
0 

)]

. (32) 

Then, for kinetic energy ǫ we obtain 

D t ( ǫ
′ ) + ∇ ·

(

F 
′ 
ǫ

ˆ b 
)

= S ′ ǫ + ˜ S ′ sc − P 
′ : ∇u , 

D t 

(

F 
′ 
ǫ

)

+ c 2 G( β2 ǫ′ ) = −ν̄
[

F 
′ 
ǫ − 3 χv̄ A 

(

ǫ′ + P 
′ 
0 

)]

+ S ′ F ǫ , (33) 

with ǫ′ ≡ d ǫ/ d p = 4 πp 
2 T ( p) f̄ 0 , F 

′ 
ǫ ≡ d F e / d p = 4 πp 

2 T ( p) v f̄ 1 , 

S ′ ǫ ≡ 4 πp 
2 ( T ( p) j 0 − S v), and S ′ F ǫ ≡ 4 πp 

2 T ( p) vj 1 . It is useful to 

note the relations 

P 
′ 
0 = 

β2 e ′ 

3 
= ( γeos − 1) ǫ′ = 

1 + γ −1 

3 
ǫ′ , (34) 

P 
′ ≡ 3 P 

′ 
0 D = β2 e ′ D = 3 P 

′ 
0 

[

χ I + (1 − 3 χ ) ̂ b ̂ b 
]

, (35) 

〈

μ1 
f 

〉

≡
f̄ 1 

f̄ 0 
= 

F q 

qv 
, 

〈

μ2 
f 

〉

≈ M 2 

(〈

μ1 
f 

〉)

, (36) 

i.e. the ‘ef fecti ve adiabatic index’ relating CR pressure and kinetic 

energy density is γ eos = (4 + γ −1 )/3 at a given Lorentz factor γ . 

One uses 
〈

μ1 
f 

〉

= F q /qv to determine the closure values of 
〈

μ2 
f 

〉

or χ . 

Note every term in the ‘macroscopic’ equations for q has a simple 

interpretation and correspondence with a term in equations (22)–(23) 

for f . The D t f̄ 0 , 1 → D t ( q, F q ) term is the comoving conserv ati ve 

deri v ati ve; ∇ · ( βf̄ 1 ̂  b ) → ∇ · ( F q ) is the normal flux; D : ∇ βu → 

P : ∇u is the ‘adiabatic’ term (for 
〈

μ2 
f 

〉

= 1 / 3, P : ∇u → P 0 ∇ · u ) 

related in detail to the non-inertial frame (akin to the analogous RHD 

term); S and j represent loss/gain processes in number and momen- 

tum space (e.g. radiative/catastrophic losses, injection); βG( f̄ 0 ) → 

G( β2 q) is the ‘flux of flux’ (flux source) term; D μμf̄ 1 → ν̄F is the 

scattering term in the flux equation; D μp ∂ p f̄ 0 → χv̄ A ( q + ... ) is the 

‘streaming’ term if the scattering is asymmetric; and the D p μ and D pp 

terms give rise to the gyro-resonant loss or dif fusi ve re-acceleration 

terms ˜ S sc (discussed below). 

Taking the dif fusi ve limit ( 
〈

μ2 
f 

〉

→ 1 / 3, D t F 
′ 
q → 0), we immedi- 

ately see that the parallel (anisotropic) spatial dif fusi vity 3 at a gi ven 

p is κ‖ ( p) ≡ ( βc) 2 / (3 ̄ν). 

3.4.3 Spectr ally integr ated expressions 

Integrating equations (30)–(33) over all CR momenta gives equations 

for the spectrally integrated CR number and energy; for example, 

D t n + ∇ · ( F n ̂
 b ) = S n , 

D t F n + c 2 
∫ 

d pG( β2 n ′ ) = S ′ F n −
∫ 

d p ̄ν
[

F 
′ 
n − 3 χv̄ A n 

′ ] . (37) 

Although 
∫ 

d pq ′ = q is trivial, this immediately introduces practical 

difficulties in terms like 
∫ 

d pG( β2 q ′ ) and 
∫ 

d p ̄ν[ F 
′ 
q − 3 χv̄ A ( q 

′ + 

... )] in the flux, and 
∫ 

d p[ ̃  S ′ sc − P 
′ : ∇u ] in the energy equations. 

The issue is that even if we know the form of ν̄±( p), we cannot write 

these equations in terms of a single ‘ef fecti ve’ χ , ν̄, v̄ A , β, γ , etc., 

because the ‘weights’ (combination of p -dependent factors in the 

integrals) in each part of each term are different. Moreo v er, ev en if 

we specified an initial spectral shape [ f̄ 0 ( p) and f̄ 1 ( p)] to calculate 

some ef fecti ve v alues, the p -dependence would immediately alter the 

spectrum and change those values. 

If one wishes to adopt the spectrally integrated equations in 

practical applications, therefore, one must impose a universal (fixed) 

spectral shape. In that limit, the CR total energy is the meaningful 

quantity to evolve, since a ‘fixed-spectrum’ CR number equation 

will not conserve energy or momentum. We can further simplify by 

noting that most of the total CR energy is in particles with β ≈ 1 and 

E ( p ) ∼ T ( p ), giving 

D t e + ∇ · ( F e ̂
 b ) ≈ S e − P e : ∇u −

ν̄e 

c 2 

[

v̄ e A F e − 3 χe v 
2 
A ( e + P 0 ) 

]

, 

D t F e + c 2 G e (3 P 0 ) ≈ −ν̄e 

[

F e − 3 χe ̄v 
e 
A ( e + P 0 ) 

]

+ S F e . (38) 

Here, P 0 ≈ e /3; G e (3 P 0 ) = ˆ b · ( ∇ · P e ) = ˆ b · ∇([1 − 2 χe ]3 P 0 ) + 

(1 − 3 χe )3 P 0 ∇ · ˆ b ; and P e ≡ 3 P 0 D e = 3 P 0 [ χe I + (1 − 3 χe ) ̂ b ̂ b ]; 

with χ e , v̄ 
e 
A , and ν̄e understood to be the appropriate ‘spectrally 

averaged’ values. 4 

3.5 The gas equations and conser v ation 

As discussed in Zweibel ( 2013 , 2017 ) and Thomas & Pfrommer 

( 2019 ), the CRs can exchange momentum with the (non-relativistic) 

gas and magnetic fields 5 primarily via two effects: (1) scattering 

and (2) Lorentz forces. If we note that the CR momentum density 

3 If we assume a scattering rate that scales with CR speed as ̄ν ∼ ( βc) /r 0 for 

some characteristic scattering scale r 0 (e.g. for Bohm diffusion, r 0 is the gyro 

radius), then we obtain the common ansatz κ( p) ∼ βcr 0 . 
4 For completeness, we note that the ‘zeroth moment’ spectrally integrated 

CR energy equation arises from equation (38) taking the strong-scattering 

(isotropic-DF, 
〈

μ2 
f 

〉

→ 1 / 3), flux-steady-state ( D t F e → 0) limit, so F e → 

v̄ e A ( e + P 0 ) − ( c 2 / ̄νe ) ̂ b · ∇P 0 . 
5 Since we are working in the limit where the CR gyro radii are small, and 

obviously the non-relativistic ion + electron gyro radii are much smaller still, 
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Consistent closures for CR dynamics 3785 

is 
∫ 

d 3 pp f = (1 /c 2 ) F e [using p = E( p) v /c 2 ], then it is imme- 

diately clear how to account for (1): We simply add an equal- 

and-opposite momentum flux to the gas momentum equation to 

match the scattering ( ̄ν) term in equation (31), i.e. D t ( ρu ) + ... = 

+ (1 /c 2 ) ̂ b 
∫ 

d p ̄ν[ F 
′ 
e − 3 χv̄ A ( e 

′ + P 
′ 
0 )]. 

Deriving the Lorentz term (2) requires revisiting the CR mo- 

mentum equation before gyro-averaging. In generality (making no 

assumption about the form of f ) for a non-relativistic background, the 

como ving Vlaso v equation for f is d t f + ∇ x · ( v f ) + ∇ p · ( F f ) = 

d t f | coll , where ∇ x , p denote gradients in position and momentum 

space, respectively, and F is the external force term. Here, F = 

F Lorentz + O( u/c ) with F Lorentz = ( q/c )( v × B ) in this frame. 6 Now, 

take the momentum density by multiplying by p and integrat- 

ing o v er d 3 p . Inte grating by parts and using various identities, 

note: 
∫ 

d 3 pp ∇ p · ( F f ) = −
∫ 

d 3 p f {∇ p · ( Fp ) } = −
∫ 

d 3 p f [ p ( ∇ p ·
F ) + ( F · ∇ p ) p ] = −

∫ 
d 3 p f F Lorentz . 

7 Now separate this into parallel 

and perpendicular components by projecting with ˆ b ̂ b and ( I − ˆ b ̂ b ), 

respectively. Because ˆ b · F Lorentz = 0, the parallel equation be- 

comes 
∫ 

d 3 p ̂ b ( p · ˆ b )( D t f − f ∇ x · u ) + ˆ b ̂ b · pv · ∇ x f + ... = ˆ b ( ̂ b ·
d t f coll ). Recalling that p · ˆ b = e vμ/c 2 , this is immediately recog- 

nizable as ˆ b (1 /c 2 ) D t F e + .... = −ν̄( ... ), i.e. our equation (31) for 

(1 /c 2 ) D t F e , multiplied by ˆ b . Since the terms on the left-hand side of 

this parallel equation represent free transport and relativistic correc- 

tions (coordinate-transformation terms), with no F term appearing, 

the scattering term represents the only parallel momentum exchange 

with the gas – i.e. we have re-derived the scattering term (1), which 

was derived more heuristically above from momentum-conservation 

arguments. 

Now consider the perpendicular component. Averaged 

o v er the ‘macroscopic’ spatial/time-scales ( ℓ macro , t macro ) 

much larger than the gyro radius/time ( r g , �g ), the first 

term D t F e, ⊥ = 〈 
∫ 

d 3 p ( I − ˆ b ̂ b ) p f 〉 � must vanish, because 

there can be no coherent flux of CRs perpendicular to the 

field [more precisely, this term must be smaller than the 

dominant terms by O( r g /ℓ macro )]. The second term (the ∇ x 

term) does not vanish, but gives: ( I − ˆ b ̂ b ) ·
∫ 

d 3 pp ( v · ∇ x ) f = 

( I − ˆ b ̂ b ) · {∇ x · [ 
∫ 

d 3 ppv f ] } = ∇ ⊥ · P . 8 The third term 

( I − ˆ b ̂ b ) · 〈−
∫ 

d 3 p ( F Lorentz f ) 〉 � = −〈 
∫ 

d 3 p ( F Lorentz f ) 〉 � = 

−〈 
∫ 

d 3 p ( q/c)( v × B ) f 〉 � = −(1 /c) 〈 j cr × B 〉 � = −f cr 
Lorentz 

represents the total Lorentz force per unit volume on CRs 

f cr 
Lorentz . The scattering term in the perpendicular direction ( I − ˆ b ̂ b ) 

is negligible compared to the Lorentz forces by O( r g /ℓ mfp ) 

[where ℓ mfp ∼ 3 c/ ̄ν ∼ O( ℓ macro )], so force balance requires 

f cr 
Lorentz = ∇ ⊥ · P { 1 + O( r g /ℓ macro ) } . The Lorentz force on CRs 

redirecting v requires an equal-and-opposite force on gas, 9 giving 

D t ( ρu ) + ... = −f cr 
Lorentz = −∇ ⊥ · P { 1 + O( r g /ℓ macro ) } . 10 

the MHD assumption that the non-relativistic ion gyro radii are vanishingly 

small compared to resolved scales is reasonable. 
6 We neglect other exchange terms such as the gravity of the CRs, secondary 

transfer of momentum from scattering of beamed CR radiation, etc., as these 

are several orders of magnitude smaller. 
7 In this last step, we have used the fact that F ≈ F Lorentz can be written as F 

= p × Q , where Q = Q ( p ) depends only on the magnitude (but not direction) 

of p and external/constant properties, so ∇ p · F = ∇ p · ( p × Q [ p ]) = ( ∇ p ×
p ) · Q − p · ( ∇ p × Q ( p )) = 0, and ( F · ∇ p ) p = F . 
8 We define the parallel and perpendicular tensor divergence as ∇ ‖ · P ≡
ˆ b ̂ b · ( ∇ · P ) and ∇ ⊥ · P ≡ ( I − ˆ b ̂ b ) · ( ∇ · P ), respectively. 
9 Equi v alently, we can insert j cr in Ampere’s law to obtain ∇ × B = ( j gas + 

j cr )/ c , and use this to calculate the ‘back-reaction’ force = −f cr 
Lorentz on gas. 

10 It may appear inconsistent with our assumption of a gyrotropic 

CR distribution elsewhere to show 〈 j cr × B 〉 /c ≈ ∇ ⊥ · P �= 0 , since 

This has a simple interpretation: spatial differences in the colli- 

sionless CR pressure tensor (non-zero ∇ · P ) source a net CR current 

(mean 〈 v 〉 or net flux F e ). The parallel momentum current is ˆ b F e , 

which is resisted only by scattering (exchanging momentum with 

gas). The perpendicular current, on the other hand, is immediately 

redirected by Lorentz forces, e x erting an equal-and-opposite force 

on the gas. The gas momentum equation becomes 

D t ( ρu ) + ... = 

∑ 

s 

∫ 

4 πp 
2 d p 

{

−
(

I − ˆ b ̂ b 
)

·
[

∇ ·
(

D pv f̄ 0 
)]

+ ̂  b 

[

˜ D μμf̄ 1 p + ˜ D μp p 
2 ∂ f̄ 0 

∂p 

]}

(39) 

or 

D t ( ρu ) + ... = 

∑ 

s 

∫ 

d p 

[

ˆ b 
ν̄

c 2 

[

F 
′ 
e − 3 χv̄ A 

(

e ′ + P 
′ 
0 

)]

− ∇ ⊥ · P 
′ 
]

, 

(40) 

where the ... refers to all the non-CR terms, and the sum and integral 

refer to the summation o v er all CR species and integration over all 

momenta. Noting ̂  b G( β2 e ′ ) = ∇ ‖ · P 
′ , it is often convenient to rewrite 

this as 

D t ( ρu ) + ... + ∇ · P = −
1 

c 2 
ˆ b D t F e 

= ˆ b 

∑ 

s 

∫ 

d p 

{ 

G( β2 e ′ ) + 
ν̄

c 2 

[

F 
′ 
e − 3 χv̄ A 

(

e ′ + P 
′ 
0 

)]

} 

. (41) 

This has the form of a hyperbolic pressure gradient term ∇ · P that 

can be included in a Riemann solver, plus a ‘source term’ (the right- 

hand side) that vanishes identically when the energy flux equation is 

in local steady state. 

In the total gas + radiation energy equation, the behaviour is 

straightforward: the kinetic energy terms simply follow the mo- 

mentum equation: D t e gas = ... u · D t ( ρu ) | cr [where D t ( ρu ) | cr col- 

lects the terms on the right-hand side of equation 40], and 

the thermal + magnetic + radiation terms see the source terms 

D t e gas + rad + ... = −
∑ 

s 

∫ 
d p[ ̃  S ′ sc + S ′ e ], so 

D t e gas + rad + ... = u · [ D t ( ρu ) | cr ] −
∑ 

s 

∫ 

d p 
[

˜ S ′ sc + S ′ e 
]

. (42) 

Physically, the source/sink S ′ e term corresponds to either energy lost 

to CR acceleration at injection, or thermalized or radiated away from 

various loss processes (thus determining how much goes into thermal 

versus radiation energy). The kinetic terms reflect work done and, 

in flux steady state, behave like an adiabatic ‘PdV’ term balancing 

the P : ∇u term in the CR energy equation. The scattering term ˜ S sc 

corresponds to energy loss/gain from scattering with micro-scale 

(gyro-resonant) magnetic fluctuations. By definition for the applica- 

tions of interest, these are unresolved, and have rapid thermalization 

times, so this can be treated as part of the gas thermal/internal energy 

for a perfectly gyrotropic distribution j cr × B = 0 exactly . Physically , 

one can think of this as the perpendicular CR pressure gradient 

inducing a very small non-gyrotropic perturbation to compensate. The 

fractional deviation from perfectly gyrotropic orbits can be estimated as 

∼〈 j × B /c〉 / | j × B /c| max ∼ |∇ ⊥ · P ′ | / ( n ′ qv| B | /c) ∼ |∇P ′ 0 | / ( n ′ pv/r g ) ∼
( n ′ pv/ℓ grad ) / ( n 

′ pv/r g ) ∼ r g /ℓ grad , where ℓ grad ∼ P ′ 0 / |∇P ′ 0 | ∼ O( ℓ macro ). 

So in all other expressions derived in this paper, this correction is subdominant 

by O( r g /ℓ macro ) and can be safely neglected. Ho we ver, in the back-reaction 

force on the gas, this term remains finite and leading order even as ( r g / ℓ macro ) 

→ 0. 
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3786 P . F . Hopkins, J. Squire and I. S. Butsky 

budget, although one could also evolve them explicitly as in Zweibel 

( 2013 ) and Thomas & Pfrommer ( 2019 ). 

As discussed at length in Mihalas & Mihalas ( 1984 ) in the RHD 

context and Thomas & Pfrommer ( 2019 ) for the CR limit, there are 

subtle ambiguities related to exact, separate energy and momentum 

conservation if we include the CR inertia at this order in O( u/c). 

These are related to the definition of frame, the consistency of other 

terms of higher O( u/c), and the fact that non-relativistic MHD 

drops terms of higher order in O( u/c). For example, including 

the CR inertia, the momentum change includes terms D t F e /c 
2 = 

ˆ b D t F e /c 
2 + ( F e /c 

2 ) D t ̂
 b , where the latter term becomes (for ideal 

MHD) ( F e /c)( I − ˆ b ̂ b )( ̂ b · ∇) βu , which is O( u/c) smaller than all 

the retained terms in the flux equation. These could be added to 

maintain manifest conservation if desired, but are not well posed, as 

they relate to higher order terms dropped in both the CR and MHD 

equations. Ho we ver, one can immediately verify that in the flux- 

steady-state or Newtonian ( c → ∞ ) limits, as assumed in MHD, 

manifest conservation in the lab and comoving frames is recovered. 

4  EXPLICIT  PITCH-ANGLE  E VO L U T I O N  

M E T H O D S  

4.1 DF equation in finite-volume form 

Although we have focused on developing the μ-moment equations, 

there may be occasions where one wishes to directly evolve the 

pitch-angle distribution, as in our exact solution cases below in 

Section 5.1. This can be done explicitly by integrating on a phase- 

space grid that includes the μ dimension explicitly, similar to e.g. 

direct ray integration methods for RHD like those in Jiang, Stone & 

Davis ( 2014 ). This is actually simpler for CRs as compared to RHD, 

because we retain the gyrotropic assumption so can still integrate out 

the φ dimension. For these applications, it is useful to take the focused 

transport equation in equation (16), which incorporates the scattering 

terms (equation 12) and carefully retains only leading-order terms in 

O( u/c). This can be conveniently written as 

D t f + ∇ · ( μvf ̂  b ) 

= 
∂ 

∂μ

[

χ

{

−f v∇ · ˆ b + ν

(

∂f 

∂μ
+ 

v̄ A 

v 
p 

∂f 

∂p 

)}]

+ 
1 

p 2 

∂ 

∂p 

[

p 
3 

{

( D : ∇u ) f + νχ

(

v̄ A 

v 

∂f 

∂μ
+ 

v 2 A 

v 2 
p 

∂f 

∂p 

)}]

, 

(43) 

where now terms like χ = (1 − μ2 )/2, D = χ I + (1 − 3 χ ) ̂ b ̂ b , 

and ν ≡ ν+ ( μ) + ν−( μ) refer to each value of μ (without 

averaging). 11 There is a one-to-one correspondence between each 

term in equation (43) and their pitch-angle-averaged equi v alents in 

f̄ 0 , f̄ 1 (equations 22–23). 

11 It is also often useful to write equation (43) in terms of the one-dimensional 

DF such that d n = d pd μf 1D as opposed to d n = d 3 p f = p 2 d pd μd φf 

defined abo v e. This giv es 

D t f 1D + ∇ · ( μvf 1D ̂ b ) 

= 
∂ 

∂μ

[

χ

{

−f 1D v∇ · ˆ b + ν

(

∂f 1D 

∂μ
−

v̄ A 

v 

[

2 f 1D − p 
∂f 1D 

∂p 

])}]

+ 
∂ 

∂p 

[ 

p 

{ 

( D : ∇u ) f 1D + νχ

( 

v̄ A 

v 

∂f 1D 

∂μ
−

v 2 A 

v 2 

[

2 f 1D − p 
∂f 1D 

∂p 

]

) } ] 

. 

(44) 

Equation (43) is straightforward to implement numerically using 

standard finite-volume methods: The time-evolution D t f of the 

comoving f can be operator split into three terms representing (1) 

translation/flux in position space [the ∇ · (...) advection term] at fixed 

μ and p ; (2) translation/flux in pitch-angle space [the ∂ μ(...) terms] 

at fixed x and p ; and (3) translation/flux in rigidity/energy space 

[the ∂ p (...) terms] at fixed x and μ. Each reduces to a finite-volume 

problem in the x , μ, p space, and (2)–(3) being local in position space 

allows them to be integrated efficiently; the major o v erhead is the 

higher dimensionality of the problem causing (potentially e xcessiv e) 

computation. For an example where e.g. the p terms are integrated 

in a finite-volume fashion in p -space, see Girichidis et al. ( 2020 ). 

4.2 Equations for the mean evolution of a CR ‘group’ 

It is instructive to consider the gyro-a veraged ev olution equations 

for the mean state of a CR ‘wave packet’ or ‘group’ with instan- 

taneous state U ( t) = 〈 U 〉 ( t) ≡ ( x , μ, p, s)[ t] = ( 〈 x 〉 , 〈 μ〉 , 〈 p〉 , 〈 s〉 ). 
This is obtained by taking p 

2 f ( x , μ, p, t, s) → δ( x − 〈 x 〉 [ t] , μ −
〈 μ〉 [ t ] , p − 〈 p〉 [ t ] , s − 〈 s〉 [ t ] , t ) in the general DF equation (43), and 

then multiplying equation (43) by U and integrating over x , μ, p, s to 

obtain ˙〈 U 〉 , the rate of change of the state vector along the path of the 

group. The ‘species equation’ for s tri vially e v aluates to ˙〈 s〉 = 0, since 

we have not included explicit spallation or other species-changing 

processes. The position equation is simply ˙〈 x 〉 = u + 〈 μ〉〈 v〉 ̂ b , i.e. 

translation with the gas velocity and along the field. The pitch angle 

and momentum equations are non-trivial, however. For μ, we have 

˙〈 μ〉 = 〈 χ〉〈 v〉∇ · ˆ b + 〈 χ〉 
∂ν

∂μ

−ν

[

〈 μ〉 − 〈 χ〉 
v̄ A 

〈 v〉 

(

2 + 〈 β〉 2 + 
∂ ln δν

∂ ln p 

)]

≈ 〈 χ〉〈 v〉∇ · ˆ b − ν

[

〈 μ〉 − 〈 χ〉 
v̄ A 

〈 v〉 
(2 + 〈 β〉 2 ) 

]

, (45) 

where δν ≡ ν+ − ν−, ν = ν( 〈 U 〉 ), and the ≈ makes the grey 

approximation for ν (which slightly changes the pre-factors but none 

of the behaviours). We can understand the physics of each term 

in equation (45): (1) The term ∝ 〈 v〉∇ · ˆ b is the ‘focusing’ term, 

corresponding to the ∇ · ˆ b terms in G( q) in the flux equations; (2) 

D μμ∂ μf → ν∂ μf → ν〈 μ〉 is the normal scattering term ( ∼νF q in 

the flux equations), which acts like a ‘drag’ term on the mean 〈 μ〉 –
but note, because this an equation just for 〈 μ〉 , the dif fusi ve behaviour 

(which would increase 〈 μ2 〉 if we started from a δ-function DF) does 

not appear here; (3) the term D μp → ν( ̄v A /v) p∂ p f → ν〈 χ〉 ̄v A / 〈 v〉 
gives rise to trans-Alfv ́enic CR streaming, appearing as the χv̄ A q 

terms in the flux equations, and giving a mean 〈 μ〉 → v̄ A / 〈 v〉 , i.e. 

streaming at ∼v̄ A , in the strong-scattering ( ν → ∞ ) limit. 

For the momentum equation, we have 

˙〈 p〉 
〈 p〉 

= − ( 〈 D 〉 : ∇u ) −
v A 

〈 v〉 

[

〈 μ〉 δν − 〈 χ〉 
∂δν

∂μ

]

+ 2 ν〈 χ〉 
v 2 A 

〈 v〉 2 

[

1 + 〈 β〉 2 + 
〈 p〉 
2 ν

∂ν

∂p 

]

≈ − ( 〈 D 〉 : ∇u ) − ν

[

〈 μ〉 
v̄ A 

〈 v〉 
− 〈 χ〉 

v 2 A 

〈 v〉 2 
(2 + 2 〈 β〉 2 ) 

]

, (46) 

where again ≈ indicates the grey approximation. Again, the terms 

can be understood as follows: (1) 〈 D 〉 : ∇u is the ‘adiabatic’ term 

(immediately analogous to the term in the energy equations); 

(2) D pμ → νχv̄ A ∂ μf → νv̄ A 〈 μ〉 is the streaming/gyro-resonant 

loss term ( ∝ νv̄ A F e in ˜ S sc in the energy equations); and (3) 
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Consistent closures for CR dynamics 3787 

D pp → νv 2 A χp∂ p f → ν〈 χ〉 v 2 A / 〈 v〉 2 is the turbulent/dif fusi ve re- 

acceleration term. 

If desired, these equations can be directly integrated as well, in 

Monte Carlo-type methods where each e xplicitly evolv ed CR ‘su- 

perparticle’ represents the gyro-averaged behaviour of an ensemble 

of CRs with a δ-function DF, but this would require adding some 

stochastic scattering terms to capture the dif fusi ve/second-deri v ati ve 

behaviour (i.e. the change in 〈 μ2 〉 or non- δ-function behaviour of f 

as it evolves away from an initial δ-function). 

5  EXAMPLE  PROBLEMS  A N D  ILLUSTRATI VE  

B E H AV I O U R S  

5.1 Set-up and closures considered 

We now consider some extremely simplified test problems to 

illustrate how solutions of the CR transport equations differ de- 

pending on the closure. In that spirit, we take ultra-relativistic 

CRs ( β → 1) in a gas medium with negligible fluid motion ( u 

→ 0), ˆ b = ˆ b ( x ) and ν̄ = ν̄( x ) independent of time, uniform ρ, 

with symmetric scattering and weak fields ( ̄v A → 0, v A → 0) no 

sources/sinks/other losses, and sufficiently low CR density such that 

the CR forces on gas are negligible (i.e. ‘pure CR transport’). We 

will make the problem dimensionless by defining f → f / f i ( e → 

e / e i ), τ → ν̄0 t , x → x ̄ν0 /c, for some reference f i (or e i ) and ν̄0 , and 

define the path-length ℓ integrated along a field line ℓ = 
∫ x f 

x 0 
d x · ˆ b 

(so ˆ b · ∇X → ∂ ℓ X). With these simplifications, the equations are 

ef fecti vely one dimensional in ℓ and are identical for any moments 

pair ( q, F q ) = ( f̄ 0 , f̄ 1 ), ( n, F n ), ( e, F e ), etc.: ∂ τq = −∇ · ( F q ̂
 b ) and 

∂ τF q + G( q) = −ν̄F q . 

For initial conditions (ICs), we take q to be a Gaussian with q( τ = 

0) = exp {−( ℓ − ℓ 0 ) 
2 / 2 σ 2 

q } for arbitrary ℓ 0 . For the same q ( τ = 0), 

we will consider (1) isotropic ICs, where 
〈

μ1 
f 

〉

| τ= 0 = F q /q| τ= 0 = 0, 

and (2) ‘streaming’ ICs, where 
〈

μ1 
f 

〉

| τ= 0 = F q /q| τ= 0 = 1. 

We will compare the following closure assumptions. Except for 

the zeroth-moment/diffusion and exact solution cases, all adopt the 

two-moment expansion, but make different assumptions about the 

closure assumption for 
〈

μ2 
f 

〉

or f̄ 2 . 

(i) Zer oth-Moment/Diffusion Appr oximation : Assume the 

isotropic-DF limit ( χ → 1/3) and Newtonian + strong-scattering 

limits ( D τ F q → 0), so we obtain the single diffusion equation: 

∂ τq = ∇ · [(3 ̄ν) −1 ̂  b ̂ b · ∇ q ]. 

(ii) Isotropic DF : Assume 
〈

μ2 
f 

〉

= 1 / 3 ( χ = 1/3) al w ays, appro- 

priate for an isotropic DF, so G( q) → (1 / 3) ̂ b · ∇q. 

(iii) Maximal Streaming : Assume 
〈

μ2 
f 

〉

= 1 ( χ = 0) al w ays, 

appropriate for the fastest-possible-streaming DF, f ∝ δ( μ ± 1), so 

G( q) → ∇ · ( q ̂  b ). 

(iv) Maximal Anisotropy : Assume the DF corresponds to a δ- 

function with the given 
〈

μ1 
f 

〉

= f̄ 1 / f̄ 0 = F q /qv, so 
〈

μ2 
f 

〉

= 
〈

μ1 
f 

〉2 

al w ays. 

(v) Interpolated 
〈

µ2 
f 

〉

: Levermore: This adopts the proposed 

scaling 
〈

μ2 
f 

〉

= M 2 ( 
〈

μ1 
f 

〉

) = (3 + 4 
〈

μ1 
f 

〉2 
) / (5 + 2 

√ 

4 − 3 
〈

μ1 
f 

〉2 
) 

from Levermore ( 1984 ), which interpolates between the isotropic- 

DF and anisotropic-DF limits and represents the e xact closure for an y 

DF that can be made isotropic under some Lorentz transformation. 

(vi) Interpolated 
〈

µ2 
f 

〉

: Minerbo: Adopt 
〈

μ2 
f 

〉

= M 2 ( 
〈

μ1 
f 

〉

) = 

(1 / 3) + (2 
〈

μ1 
f 

〉2 
/ 15)(3 − | 

〈

μ1 
f 

〉

| + 3 
〈

μ1 
f 

〉2 
) from Minerbo ( 1978 ), 

which similarly interpolates between limits but is exact for a DF 

satisfying a classical maximum-entropy principle. 

(vii) Interpolated 
〈

µ2 
f 

〉

: Wilson: Adopt 
〈

μ2 
f 

〉

= M 2 ( 
〈

μ1 
f 

〉

) = 

(1 − | 
〈

μ1 
f 

〉

| + 3 
〈

μ1 
f 

〉2 
) / 3, from Wilson et al. ( 1975 ), which is 

realizable but represents an ad hoc interpolation function between 

isotropic and anisotropic limits. 

(viii) Exact Solution : We compare these to the results of directly 

integrating the focused CR transport equation for f ( μ) explicitly as 

a function of μ and x per equation (16) (Section 4), using a grid of 

∼1000 elements in the μ dimension at each spatial position. For the 

isotropic IC, we initialize an isotropic DF f ( μ), for the streaming IC 

we initialize f ( μ) ∝ δ( μ − 1), and for simplicity we assume isotropic 

scattering ν = ν̄. 

Note that we have also considered other closures such as the Ker- 

shaw function M 2 ( 
〈

μ1 
f 

〉

) = (1 + 2 
〈

μ1 
f 

〉2 
) / 3 or Janka ( 1992 ) func- 

tions M 2 ( 
〈

μ1 
f 

〉

) = (1 + α0 

〈

μ1 
f 

〉α1 + (2 − α0 ) 
〈

μ1 
f 

〉α2 
) with various 

( α0 , α1 , α2 ) suggested therein, but these generally perform more 

poorly than the other interpolated closures considered abo v e. 

5.2 1D pure propagation in a homogenous medium 

Take ̂  b = ˆ z = constant, ̄ν = ν̄0 = constant, so the transport equations 

simplify to ∂ τ q = −∂ ℓ F q and ∂ τF q + ∂ ℓ ( 
〈

μ2 
f 

〉

q) = −F q . The prob- 

lem is one dimensional and the solutions depend only on the ICs and 

closure 
〈

μ2 
f 

〉

, which we vary and compare in Fig. 1 . 

First ( top-left panel), consider a case that is well described by 

the isotropic, dif fusi ve limit: ICs with σ q = 10, F q ( τ = 0) = 0, 

evolved to τ = 200. The CRs begin isotropic, and, recalling that 

ℓ = 1 corresponds in these units to the scattering MFP = c/ ̄ν, all 

of the gradient length and time-scales even in the ICs are much 

larger than the CR scattering MFP. Indeed, the zeroth-moment (i), 

isotropic-DF (ii), and all the interpolated closures (v)–(vii) give 

nearly identical results here in excellent agreement with the exact 

solution (viii), as they should. The maximal-anisotropy closure (iv) 

fails catastrophically: It assumes that an initial 
〈

μ1 
f 

〉

= 0 corresponds 

to a pitch-angle distribution with all CRs at μ = 0, so no flux can ever 

develop. The maximal-streaming closure (iii) fails as well: Although 

the flux equation approaches steady state, the assumed 
〈

μ2 
f 

〉

= 1 

means that the ef fecti ve dif fusion coef ficient is 3 × larger than the 

correct value. 

Secondly ( top-centre panel), consider a case that is close to free 

streaming, a ‘streaming’ IC with σ q = 0.02, F q ( τ = 0) = q , evolved 

to τ = 0.02, so the CRs are initially free streaming and all scales 

are much shorter than the MFP. Now, the maximally anisotropic (iv), 

maximal-streaming (iii), and interpolated (v)–(vii) closures are very 

similar to the exact solution (viii). Zeroth moment/diffusion (i) fails 

catastrophically as expected, since the system is not in the dif fusi ve 

limit. The isotropic-DF closure (ii) underestimates the correct speed 

of propagation of the ‘pulse’, as expected, 12 but more problematically 

we see that q (e.g. f̄ 0 or e or n ) has become ne gativ e in some places. 

This is the formally correct solution if we impose 
〈

μ2 
f 

〉

= 1 / 3 – the 

issue stems from the fact that this closure violates the realizability 

constraint from Section 3.4.1: There exists no positive-definite DF 

with 
〈

μ1 
f 

〉

= 1 (imposed by the ICs) and 
〈

μ2 
f 

〉

= 1 / 3 everywhere. 

Thirdly, consider two intermediate cases. For an isotropic IC with 

σ q = 0.15 evolved to τ = 2 ( top-right panel), the exact solution 

[for isotropic scattering; (viii)] is a symmetric flat-topped ‘shelf’ 

12 Taking the deri v ati ve of the q equation in Section 5.2 to combine it with 

the F q equation, we have ∂ 2 τ F q + ∂ τ F q = ∂ ℓ ( 
〈

μ2 
f 

〉

∂ ℓ F q ). If we enforce the 

isotropic-DF 
〈

μ2 
f 

〉

= 1 / 3, then we see immediately that this reduces the 

maximum free-streaming speed from c to c/ 
√ 

3 . 
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3788 P . F . Hopkins, J. Squire and I. S. Butsky 

Figure 1. Idealized test problems from Section 5 comparing different closure assumptions (Section 5.1) for the Boltzmann/Vlasov moment hierarchy v ersus e xact 

solutions. We simplify to ‘pure transport’ problems in a stationary background where the ICs are specified by the initial pitch-angle DF [ 
〈

μ1 
f 

〉

= 0 corresponding 

to an isotropic DF f = f̄ 0 , 
〈

μ1 
f 

〉

= 1 to a free-streaming DF with f = f̄ 0 δ( μ − 1)], width of the (initially Gaussian) CR number or f̄ 0 ∝ exp {−( ℓ − ℓ 0 ) 
2 / 2 σ 2 

q } , 
scattering coefficient ν̄( ℓ ), and field divergence ∇ · ˆ b . We plot the value of the μ-integrated DF f̄ 0 or its moments ( n , e ) versus spatial coordinate along a field 

line ℓ , in units of scattering time 1 / ̄ν0 and length c/ ̄ν0 , at plotted time τ = ν̄0 t . Exact solutions evolve the entire pitch-angle-resolved DF f ( μ) explicitly. The 

‘interpolated’ closures evolve the first two CR μ-moment equations, differing in the exact form of 
〈

μ2 
f 

〉

= M 2 ( 
〈

μ1 
f 

〉

) used to close the moment hierarchy; 

the y giv e v ery similar results and qualitatively reproduce the exact solution behaviour (albeit imperfectly) in all problems while retaining positive-definite f̄ 0 . 

The ‘isotropic-DF’, ‘maximal-streaming’, and ‘maximal-anisotropy’ closures adopt 
〈

μ2 
f 

〉

= 1 / 3, = 1, = 
〈

μ1 
f 

〉2 
(appropriate for isotropic or free-streaming 

or δ-function DFs), respectively; these can give qualitatively incorrect behaviour and produce solutions with ne gativ e f̄ 0 (ne gativ e energy/particle number) in 

some circumstances. ‘Zeroth-moment/diffusion’ refers to the common diffusion closure at zeroth order by assuming flux steady state and strong scattering; this 

preserv es positiv e-definite beha viour b ut produces qualitatively wrong beha viours and superluminal CR transport in many problems. 

moving outwards at speed intermediate between the isotropic and 

free-streaming cases, with dif fusi ve ‘tails’. 13 None of the closures 

perfectly reproduces this, but the interpolated closures (v)–(vii) are 

13 We stress that this is different from the ‘streaming problem’ discussed 

e xtensiv ely in e.g. Sharma, Colella & Martin ( 2010 ), Jiang & Oh ( 2018 ), and 

Thomas & Pfrommer ( 2019 ), which also produces a ‘flat shelf’ behaviour. 

That problem ef fecti vely takes the assumptions here but further imposes (1) 

the strong-scattering limit with ν̄ very large so that | ̄v A | ≫ ( c|∇ f̄ 0 | ) / ( νf̄ 0 ), 

(2) an isotropic-DF closure, and (3) non-zero ̄v A = constant, so F q → v stream q 

for some constant v stream . That is a less interesting problem for our purposes, 

ho we ver, since all of the interpolated closures here trivially reproduce the 

exact solution in this limit, and even a zeroth-order closures can capture the 

rele v ant behaviour provided careful numerical treatment (Sharma et al. 2010 ). 

much closer to the exact solution and behave qualitatively similar 

to one another (and also rapidly converge to the exact solution 

as we evolve further in time). Maximal anisotropy (iv) again fails 

catastrophically as it cannot propagate starting from 
〈

μ1 
f 

〉

= 0. 

Despite the IC being isotropic, the zeroth moment/diffusion approx- 

imation (i) also performs poorly (producing e xcessiv e ‘tails’ and an 

incorrectly peaked shape), as the strong-scattering/flux-steady-state 

assumption does not apply. Both the isotropic DF (ii) and maximal 

Streaming (iii), or any other closure with 
〈

μ2 
f 

〉

= constant, produce 

two spurious ‘peaks’ that propagate outwards with a low central 

density in between. 

For a streaming IC with σ q = 0.1 evolved to τ = 1 ( middle- 

left panel), the interpolated closures (v)–(vii) all resemble the exact 

solution (viii) (the peak propagates at the correct speed, with just 
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Consistent closures for CR dynamics 3789 

a slightly modified shape). As expected, the zeroth-order/dif fusi ve 

closure (i) fails totally. The isotropic-DF closure (ii) again produces 

an unphysically ne gativ e f̄ 0 , and underestimates the pulse speed. The 

maximal-streaming (iii) closure o v erestimates the front speed but 

also produces an artefact of a ‘shelf’ extending to ℓ < ℓ 0 . Unlike the 

previous streaming IC, the maximal-anisotropy (iv) closure now also 

underestimates the propagation speed, as assuming 
〈

μ2 
f 

〉

= 
〈

μ1 
f 

〉2 

suppresses the flux source term too rapidly when 
〈

μ1 
f 

〉

is not very 

close to ±1. 

5.3 1D propagation with variable scattering 

Now consider a spatially variable ν̄ = ν̄0 g( ℓ ) [dimensionless equa- 

tions ∂ τ q = −∂ ℓ F q , ∂ τF q + ∂ ℓ ( 
〈

μ2 
f 

〉

q) = −gF q ]. First consider 

g = exp {−( ℓ − ℓ 0 ) 
2 / (2 σ 2 

g ) } with σ g ∼ 0.1–10, qualitatively akin 

to analytical models for Galactic CR transport with ℓ representing 

the height in the Galactic disc/halo, with both an isotropic ( middle- 

centre panel) and streaming ( middle-right panel) IC. The effect 

here is primarily to exaggerate the differences already seen in Sec- 

tion 5.2. Most notably, the zeroth moment/diffusion approximation 

fails much more dramatically here, because ν → 0, causing the 

dif fusi vity κ → ∞ at | ℓ − ℓ 0 | � σ g . This leads to the PDF 

becoming almost perfectly flat and the dif fusi v e ‘tails’ trav elling 

at v ≫ c (e.g. at the times plotted, we obtain fronts moving at 

� 10 6 c). 

Ne xt, consider g = e xp {−2( ℓ − ℓ 0 ) } ( bottom-left panel), where 

there is an asymmetric gradient across the injection region (akin 

to injection in any off-centre location in a disc or galaxy). With 

the streaming IC (not shown), the differences between closures are 

similar to the case abo v e. With an isotropic IC (bottom-left panel), 

the broken symmetry is important: At τ = 1, the exact solution 

predicts an asymmetric shelf from −0.5 � ℓ − ℓ 0 � 0.8, with 

slightly higher density f at ℓ < 0 (as CRs are being scattered more 

rapidly at ℓ < ℓ 0 ). The constant- 
〈

μ2 
f 

〉

closures (ii), (iii) fail to 

capture this: They again produce two peaks but these mo v e with 

nearly symmetric speed, and actually predict much larger amplitude 

of the peak in the ℓ > ℓ 0 direction (the opposite of the correct 

behaviour). The zeroth moment (i) case predicts essentially infinite 

transport speeds in the + ℓ direction. Interestingly, of the interpolated 

closures here the Wilson closure (vii) best captures the correct 

asymmetry, suggesting that this test can distinguish between more 

subtle variations. 

5.4 Propagation with bent fields in a simple geometry 

Now consider a variant of the ‘diffusing ring’ in a cylindrical field 

geometry, with ̄ν = constant and ˆ b = ˆ φ purely azimuthal about some 

axis. This is a useful problem to illustrate the differences between 

the closure relation (even for ‘pure transport’ in the ultra-relativistic 

limit) for CRs, derived here, and the analogous M1 closure relation 

for photons (RHD), as discussed in Section 6.3. 

5.4.1 Comparison to the M1 RHD closure 

To illustrate the key behaviours, here we explore mathematically the 

intuitive idea that CR streaming and diffusion are confined along 

field lines (unlike RHD). This is also sketched in Fig. 2 . Take 

the Newtonian limit ( c → ∞ ) or flux steady-state D t F → 0, so 

we have ∂ τ q = −∇ · F q with F q = −Kg cr , where K ∼ c 2 / ̄ν is 

some ef fecti ve dif fusi vity and g cr ≡ ˆ b G( q) = ˆ b ̂ b · [ ∇ · ( D q)]. For 

q = e , this becomes g cr = ˆ b ̂ b · ( ∇ · P ). Compare this to the RHD 

CR Closure: 
Isotropic-DF, Strong-Scattering

M1 RHD Closure: 
Isotropic-DF, Strong-Scattering

CR Closure: 
Free-Streaming Limit

M1 RHD Closure: 
Free-Streaming Limit

Figure 2. Cartoon illustrating the qualitative difference in behaviours be- 

tween the CR closures proposed here ( top ) and the analogous M1 RHD 

closures ( bottom ), following the mathematical demonstration in 5.4.1. Al- 

though the functional form of the pressure tensor P and its dependence on 
〈

μ2 
f 

〉

, 
〈

μ1 
f 

〉

(the ‘closure relation’) is seemingly identical if we equate ˆ b 

with the specific intensity direction ˆ n , Lorentz forces confining CRs give 

rise to fundamentally different anisotropic transport confined to fields. The 

figure illustrates this in a problem with purely cylindrical fields (arrows 

show the local direction ˆ b , with an initial narrow Gaussian distribution of f 

(magenta circle) injected at some position (black circle shows the closed 

field line along which this appears), and distribution at a later time in 

blue. In the isotropic-DF strong-scattering limit ( left ), the CR equations here 

reduce to spatially anisotropic diffusion (despite the DF being isotropic in 

μ) along the field line in both directions; in the RHD closure, they reduce 

to globally isotropic multidimensional diffusion. In the anisotropic-DF free- 

streaming limit ( 
〈

μ1 
f 

〉

= 1, initially; right ), the CR closure reduces to free 

streaming ‘around’ the field lines, while the RHD closure produces straight- 

line trajectories. 

M1 closure, where the flux equation has the form D t F rad + ∇ · P rad 

with P rad = D rad e rad , where D rad = χrad I + (1 − 3 χrad ) ̂ n ̂ n with χrad ≡
(1 − 〈 μ2 

rad 〉 ) / 2, identical to our definition for CRs if we identify 
ˆ b = ˆ n (the radiation flux direction). In flux steady state, this gives 

F rad = −K rad g rad with g rad = ∇ · P rad . 

Thus, even in flux steady state with identical ef fecti ve dif fusi vities, 

we see that although the anisotropic P and P rad are similar, F cr 

fundamentally differs from F rad in that F cr is projected along ˆ b . This 

leads to major qualitative differences in behaviours in both isotropic- 

DF and streaming limits. First, take the isotropic-DF ( 
〈

μ2 
f 

〉

→ 1 / 3) 

case: g cr → (1 / 3) ̂ b ̂ b · ∇e = (1 / 3) ̂  φ ˆ φ · ∇e and g rad → (1 / 3) ∇e. So 

for CRs, even if the pitch-angle distribution is isotropic, we still have 

anisotropic diffusion with only parallel diffusion along the field lines 

allo wed, o wing to our assumption of a gyrotropic DF with small gyro 

radii. For RHD, we obtain isotropic diffusion, and all information 

about the field lines is lost, because photons are not ‘confined’ 

to field lines. Now consider the free-streaming limit: For CRs 

g CR → ˆ b {∇ · ( e ̂  b ) } while for RHD g rad → ∇ · ( e ̂  n ̂ n ) = ∇ · ( e ̂  b ̂ b ). 

Now the difference is less obvious, as the RHD case is still 

anisotropic. Ho we ver, the ordering here produces totally different be- 

haviour: g cr → ˆ b ∇ · ( e ̂  b ) = ˆ φ ˆ φ · ∇e corresponds again to transport 
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3790 P . F . Hopkins, J. Squire and I. S. Butsky 

around an azimuthal ring (following ˆ b ), 14 while g rad → ∇ · ( e ̂  b ̂ b ) = 

( ̂  φ · ∇)( e ̂  φ) = ˆ φ ˆ φ · ∇ e + e( ̂  φ · ∇ ) ̂  φ = ˆ φ ˆ φ · ∇e − ( e/r) ̂ r produces a 

radially propagating flux. Notably, while g CR saturates once e → 

e ( r ) becomes azimuthally symmetric, the RHD solution in this limit 

actually corresponds to a ring that expands outwards at speed ∼K / r 

(see e.g. Hopkins 2017 ), because in the free-streaming limit there is 

nothing to ‘bend’ the photon trajectories. 

5.4.2 Behaviour of the CR closures 

Returning to the two-moment CR equations, noting for ˆ b = ˆ φ that 

∇ · ˆ φ = 0, so ∇ · ( q ̂  b ) = ˆ φ · ∇ q = ∂ ℓ q , we can write ∂ τ q = −∂ ℓ F q , 

∂ τF q + ∂ ℓ ( 
〈

μ2 
f 

〉

q) = −F q . Ho we ver, this is exactly identical to the 

equations with ˆ b = constant in Section 5.2, written in terms of 

the distance ℓ along the field line (so we have already shown the 

ef fects of dif ferent closures in Fig. 1 ). The only dif ference is (1) 

that this line is globally curved, but that can simply be considered 

an embedding/coordinate transformation; and (2) the circular nature 

of ˆ φ means that the boundaries for e , f are periodic, whereas in 

Section 5.2 we implicitly considered open boundaries. In these 

simplified cases with u = 0, time-invariant background, ∇ · ˆ b = 0, 

etc., any field geometry can be transformed into an equi v alent 1D 

problem since CRs are confined along ˆ b . The physical assumption 

that drives this behaviour, fundamentally, is that the gyro radii of the 

CRs are much smaller than the radius of curvature of ˆ b smoothed on 

the scales of interest. 

5.5 Propagation in a non-trivial field geometry 

Now consider a case with non-zero ‘focusing’, ∇ · ˆ b �= 0, 

e.g. a dipole field B ∝ (1 /r 3 )(2 cos [ θ ] ̂ r + sin [ θ ] ̂  θ ), which gives 

∇ · ˆ b = r −1 (3 / 
√ 

2 )(27 cos [ θ ] + 5 cos [3 θ ] ) / (5 + 3 cos [2 θ ] ) 3 / 2 . For 

ν̄ = constant, let ̟ ≡ ( c/ ̄ν) ∇ · ˆ b , so our equations become ∂ τq = 

−( ∂ ℓ F q + F q ̟  ) and ∂ τF q + ∂ ℓ [(1 − 2 χ ) q] + (1 − 3 χ ) q̟ = −F q . 

Since ˆ b is constant in time, we can write ̟  = ̟  ( ℓ, x 0 ) as a function 

of length ℓ along some path following ˆ b , and again the problem 

becomes one dimensional along each field line. Mathematically, 

∇ · ˆ b acts like a source/sink term representing the (de)focusing 

of field lines (e.g. for a dipole, near the ‘pole’ with θ ≪ π /2, 

∇ · ˆ b ≈ 3 /r); ho we ver, we see that the effect in the flux equation 

depends on the closure χ . For simplicity, we take ̟ = 3 to be 

constant o v er the interval calculated, and consider an isotropic IC 

( bottom-middle panel of Fig. 1 ) and a streaming IC ( bottom-right 

panel). 

With an isotropic IC, we see that the isotropic-DF (ii) and maximal- 

anisotropy (iv) cases fail completely to capture the correct anisotropy: 

In the F q equation, an isotropic-DF closure exactly eliminates the fo- 

cusing term, and the maximal-anisotropy case produces propagation 

opposite the exact solution (viii). Meanwhile, maximal streaming 

(iii) strongly o v erestimates the anisotropy. The interpolated closures 

(v)–(vii) at least capture the key qualitative behaviours. 

With the streaming IC, the interpolated closures (v)–(vii) are nearly 

identical and all behave qualitatively akin to the exact solution 

(viii). Both constant- 
〈

μ2 
f 

〉

(isotropic or anisotropic) (ii), (iii), and 

maximally anisotropic (iv) cases produce ne gativ e DFs. 15 We also see 

14 For the cylindrical field ˆ b = ˆ φ, it is worth noting that ∇ · ˆ φ = 0, so g cr → 

ˆ φ ˆ φ · ∇([1 − 2 χ ] e) generically and the free-streaming and isotropic-DF cases 

for CRs differ only in the χ factor in this test problem. 
15 While technically closure (iii) with 

〈

μ2 
f 

〉

= 1 is realizable for any 
〈

μ1 
f 

〉

, 

this al w ays represents a sum of δ-functions with μ = ±1, which means that 

that the zeroth-moment (i) closure fails in a new manner: This closure 

cannot correctly treat the focusing term. For anisotropic diffusion 

F q ∝ − ˆ b ̂ b · ∇ q , as required for realistic CR dynamics, a non-zero 

∇ · ˆ b still appears as a source term in the q equation, but the flux 

closure assumption (i) means that the focusing term in the flux is not 

included. The result is that the front for (i) actually propagates in the 

opposite direction to that of the correct solution. 

5.6 Summary 

Just like the analogous RHD case, no two-moment closure can 

capture the exact behaviour of full phase-space solutions for f ( μ). 

Ho we ver, the interpolated closures (v)–(vii) at least capture the 

qualitative behaviours of all terms in all test problems considered 

here. Constant- 
〈

μ2 
f 

〉

closures like assuming a near-isotropic-DF (ii) 

or a free-streaming-DF (iii) or a maximally anisotropic ( δ-function) 

DF (iv) fail catastrophically on some problems and, most crucially, 

fail to ensure non-ne gativ e solutions for f or f̄ 0 (e.g. CR number 

and energy density). While taking the zeroth-moment/diffusion limit 

(i) does ensure positive-definite solutions, it fails catastrophically 

in other ways: It drives CR transport in the incorrect direction 

in situations with strong focusing, streaming, or scattering-rate- 

gradients, and it produces superluminal transport. 

Among the interpolated closures, the Levermore and Minerbo 

closures (v)–(vi) produce very similar results (not surprising since 

the y giv e nearly identical 
〈

μ2 
f 

〉

( 
〈

μ1 
f 

〉

) functions). The Wilson 

closure (vii) performs slightly more accurately with isotropic ICs, 

though it sometimes slightly underestimates peak amplitude in free- 

streaming ICs, which is expected as it gives 
〈

μ2 
f 

〉

slightly closer to 

the isotropic-DF 
〈

μ2 
f 

〉

= 1 / 3 at intermediate 
〈

μ1 
f 

〉

. 

Of course, real problems will be vastly more complex, with 

adv ection v elocities u comparable to CR transport speeds, spatial- 

and-time variable versions of all abo v e quantities, ν̄ dependent on 

μ as well as space and time, etc. We emphasize that many of the 

most important consequences of the proposed closures may only 

be evident in those scenarios. For example, if the ‘adiabatic’ terms 

∝ ( χ I + [1 − 3 χ ] ̂ b ̂ b ) : ∇u , gyro-resonant losses ∝ v̄ A F e , dif fusi ve 

re-acceleration gains ∝ 3 χv 2 A ( e + P 0 ), and trans-Alfv ́enic or CR 

‘streaming’ speed ∝ 3 χv̄ A are important, these depend quite strongly 

on χ and therefore on the closure (with re-acceleration and Alfv ́enic 

streaming behaviours vanishing entirely in the anisotropic limit). 

Likewise, simulations where the CR forces on gas are important will 

be sensitive to the closure relation because the shape and anisotropic 

form of P depend explicitly on the closure relation. 

6  RELATI ON  TO  OTH ER  C R  A N D  R A D I AT I O N  

T R A N S P O RT  F O R M U L AT I O N S  

6.1 Relation to previous CR moment formulations 

Recently, Jiang & Oh ( 2018 ), Chan et al. ( 2019 ), Thomas & 

Pfrommer ( 2019 ), and Hopkins et al. ( 2020b ) have explored two- 

moment formulations of the CR energy transport equation ( q = e ). 

Those in Chan et al. ( 2019 ), Hopkins et al. ( 2020b ), and Jiang & 

Oh ( 2018 ) were heuristically moti v ated by two-moment treatments 

of RHD but the authors did not attempt to derive a set of equations 

consistent with the actual DF equation for CRs (nor appropriate 

even a local minimum in f can have net ‘outgoing’ flux in ±ℓ directions, 

producing ne gativ e solutions. Meanwhile, realizability for (iv) fails as it 

attempts to interpolate through a position where f → 0. 

MNRAS 509, 3779–3797 (2022) 
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Consistent closures for CR dynamics 3791 

closure, etc.). Thomas & Pfrommer ( 2019 ) (here TP) did attempt 

such a deri v ation for the nearly isotropic-DF case, and indeed 

Section 3.2 mostly follows their more detailed and comprehensive 

discussion. It is therefore worth noting how the work here extends 

their formulation. The major differences here are: (1) We derive 

moment equations for the DF f itself as well as integrals like 

CR number/total energy/kinetic energy n , e , ǫ, while TP primarily 

focused on just e . (2) Our equations are valid for arbitrary CR γ , 

while TP considered only the ultra-relativistic ( γ ≫ 1, β ≈ 1 case). 

(3) We develop the equations for the entire CR spectrum f ( p ) or e 
′ 
( p ), 

while TP focused on the spectrally integrated expressions. (4) Our 

equations are agnostic to the specific scattering model (this physics 

is not our focus), while TP focused in detail on deriving specific 

expressions for ν̄± due to CR scattering from Alfv ́en waves within 

the context of CR self-confinement scenarios. (5) Most importantly, 

TP focused e xclusiv ely on the nearly isotropic DF case and enforced 

the strong-scattering closure 
〈

μ2 
f 

〉

= 1 / 3; we derive a more general 

set of expressions that allow for anisotropic DFs and CR pressure, 

and can approximately capture the CR free-streaming limit. 

Most earlier CR transport models in galaxy simulations adopted a 

‘zeroth-moment’ or pure-diffusion approximation, evolving e.g. the 

spectrally integrated e with F e = κ∇P 0 . The anisotropic version of 

this, with κ = κ‖ ̂  b ̂ b , of course arises if we take the isotropic-DF, 

strong-scattering, Newtonian ( c → ∞ , so flux steady state al w ays 

applies) limit. Although simpler, this can give a number of unphysical 

behaviours, as discussed abo v e. This can be mitigated by adopting 

a flux-limited-diffusion-type approximation, replacing κ‖ ̂  b ̂ b · ∇e → 

φlim κ‖ ̂  b ̂ b · ∇ e with φlim ≡ MIN [1 , βe c / | κ‖ ̂  b ̂ b · ∇e | ], but as we have 

shown, there are qualitative phenomena this closure still fails to 

capture. 

6.2 Relation to the isotropic FP equation 

By far, the most popular form of the CR transport equations adopted 

in Galactic models of CR transport that do not attempt to explicitly 

follow galactic dynamics – e.g. GALPROP (Strong & Moskalenko 

2001 ) or DRAGON (Evoli et al. 2017 ) – is the isotropic Fokker–

Planck equation: 

∂f 

∂t 
= ∇ · ( D̄ xx ∇f ) + 

1 

p 2 

∂ 

∂p 

[

p 
2 

(

Sf + D̄ pp 
∂f 

∂p 

)]

+ j . (47) 

If fluid velocities are included (these are often dropped), they are 

taken to add the terms −u · ∇f + (1 / 3)( ∇ · u ) p∂ p f to the right- 

hand side of equation (47). 

This equation arises from our equations (22)–(23), if we make 

the following assumptions: (1) assume an isotropic-DF closure, 

so 
〈

μ2 
f 

〉

→ 1 / 3, D → I / 3, G( q) → ˆ b · ∇q/ 3, etc.; (2) assume the 

Newtonian limit ( c → ∞ ) or the infinite-strong-scattering ( ̄ν → ∞ ) 

limit in the CR flux or first μ-moment f̄ 1 equation (equation 23), 

so that the CR flux reaches its local equilibrium value instanta- 

neously, with D t f̄ 1 → 0; (3) assume that the scattering is also 

exactly isotropic with respect to pitch angle, so that ν̄+ = ν̄−
(to O( u/c)) and v̄ A → 0; this causes the D μp and D p μ terms to 

vanish; (4) take the resulting anisotropic spatial diffusion term 

∇ · ( β ˆ b f̄ 1 ) → ∇ · ( D̄ ‖ ̂  b ̂ b · ∇ f 0 ) with D̄ ‖ = ( βc) 2 / (3 ̄ν), and assume 

that the magnetic field direction ̂  b is isotropically random or ‘tangled’ 

on scales of the MFP (below some averaging scale), allowing it 

to be approximated as an isotropic diffusion ∇ · ( D̄ xx ∇ f̄ 0 ) with 

D̄ xx ≡ D̄ ‖ / 3 (which produces the commonly assumed relation for 

this limit D xx D pp = p 
2 v 2 A / 9); and (5) drop the terms involving the 

fluid velocities u (sometimes called ‘convective’ terms). 

The major limitations of equation (47) are therefore that it cannot 

capture anisotropy in the DF f ( μ), anisotropy in the scattering rates 

ν±( μ), or anisotropy in the field geometry ˆ b (each of which is inde- 

pendent). It also cannot correctly describe the free-streaming/weak- 

scattering or out-of-flux-equilibrium limit (e.g. D t F �= 0, rele v ant 

just after injection, or when ˆ b changes direction rapidly, or when 

ν̄ varies spatially or temporally). Finally, depending on the form 

adopted, it ignores or treats less accurately the fluid velocity and 

como ving-v ersus-inertial frame terms. 

6.3 Relation to the M1 RHD equations 

Our deri v ation of the CR moment equations and closure from 

the focused transport equation closely parallels the deri v ation of 

the radiation moments and M1 closure from the specific intensity 

equation in e.g. Levermore ( 1984 ), Mihalas & Mihalas ( 1984 ), and 

others, and indeed there are many similarities. Ho we ver, there are 

some important differences. The physics, of course, is completely 

distinct, and the detailed form of the scattering and collisional/loss 

terms is totally different. Most obviously, radiation is al w ays in the 

ultra-relativistic limit, so properties like β → 1 and ǫ → e are always 

satisfied in RHD. None the less, even for ‘free’ transport of ultra- 

relati vistic CRs, important dif ferences arise from tw o k ey effects: (1) 

the CRs are gyrotropic and feel Lorentz forces, and there is a scale 

hierarchy imposed by the assumption that the gyro radius is much 

smaller than resolved scales; and (2) the ‘preferred direction’ is ˆ b 

(not the solid angle vector ˆ n in RHD), which can change direction 

and responds to the gas physics. 

As a result, a number of terms appear that do not have an RHD 

analogue, including (1) the ˜ S sc terms and v̄ A terms that introduce 

the Alfv ́en frame; (2) the perpendicular pressure forces in the gas 

hydro equation (which relate to Lorentz forces and therefore do not 

v anish e ven with weak parallel scattering), and (3) various geometric 

terms that alter the directions of key transport behaviours. For the 

latter, mathematically we see that the non-commutation of ˆ b and 

∇ results in the flux equation having the form ˆ b D t F instead of 

D t F . Terms such as G( q) = (1 − 2 χ ) ̂ b · ∇q + (1 − 3 χ ) q∇ · ˆ b have 

fundamentally non-hyperbolic components and do not have the same 

form as their RHD analogue, which can be written as D t F = −∇ ·
P + ... . We could only do this if ˆ b and χ were uniform everywhere. 

The consequences of this are plainly illustrated in Section 5.4.1 – it 

produces qualitatively different behaviours. 

Like the M1 case in RHD, there are still cases where our 

‘interpolated’ closure (equation 28) fails. For example, it cannot 

capture the ‘intersecting rays’ problem, where 
〈

μ1 
f 

〉

= 0 not because 

of an isotropic distribution [as the proposed closure in equation (28) 

assumes], but because f ( μ) = (1 / 2) f̄ 0 ( δ( μ − 1) + δ( μ + 1)). If 

ν̄ → 0, the closures predict that two free-streaming rays will ‘collide’ 

and then diffuse out, rather than pass one another truly collisionlessly. 

More complicated closure schemes for 
〈

μ2 
f 

〉

can be devised to 

address this. It is less clear, ho we ver, whether this is as much 

a problem for CRs as for radiation, since the CRs are not truly 

collisionless ‘test particles’ as they stream, in the way photons are. 

In fact, in this particular situation the CRs would be unstable to two- 

stream instabilities, so ‘collide then diffuse’ may indeed be a more 

accurate description of their true dynamics. Fully kinetic CR models 

that do not assume even CR gyrotropy (as assumed from the start of 

our deri v ations) are needed to properly address such physics. 

Related to this, an important physical difference is that the M1- 

RHD closure imposes the assumption that the DF is symmetric 

about the flux direction ˆ F ad hoc, without any particular physical 

moti v ation. This can be violated rather severely on all spatial scales, 
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3792 P . F . Hopkins, J. Squire and I. S. Butsky 

e.g. if rays intersect at oblique angles. Here, the gyrotropic CR 

assumption is much more well moti v ated, and has a well-defined 

scale length (the gyro scale) providing a formal scale-separation 

hierarchy. 

6.4 Hybrid schemes and a note on the ‘gyr o-r esonant loss’ and 

‘re-acceleration’ terms 

Recently, hybrid schemes have been proposed that evolve f ( x , p ) in 

large-scale simulations by directly evolving f̄ 0 ( p | x ) in momentum 

space at each cell position x , while using a zeroth- or first-moment 

expansion scheme for the spatial terms (e.g. Girichidis et al. 2020 ). 

These are straightforward to generalize to the methods here, by evolv- 

ing f̄ 0 , f̄ 1 according to equations (22)–(23). In these approaches, the 

equations for q or f̄ 0 can be operator split into a hyperbolic spatial 

transport step D t f̄ 0 + ∇ · ( v f̄ 1 ̂  b ) = 0 and a momentum-space step 

where all the source and sink terms (including e.g. the ‘adiabatic’ 

term P : ∇u , ˜ S sc , and S q ) are evolved following equation (22). 

In this spirit, recall from Section 4.2 that we can derive from the 

momentum-space translation/diffusion terms [including the adiabatic 

and p 
−2 ∂ p p 

2 ( D̄ pμf̄ 1 + D̄ pp ∂ p f̄ 0 ) terms] a mean rate of change ˙〈 p〉 
of the CR momentum or energy (of a CR ‘group’ with the same 

initial p ; see equation 46). Pitch-angle averaging equation (46), 

using 
〈

μ1 
f 

〉

= F q /q, gives ˙〈 p〉 /p = −( D : ∇u ) − ( ν/v 2 )[ ̄v A F q /q −
2 χv 2 A (1 + β2 )]. If we take q = e 

′ 
, and use various identities in 

Section 3.4.2 to replace β, we can rewrite this as 

˙〈 p〉 
p 

= −D : ∇u −
ν̄

c 2 

1 

3 P 
′ 
0 

[

v̄ A F 
′ 
e − 2 χv 2 A 

(

e ′ + 3 P 
′ 
0 

)]

+ ... (48) 

The first (adiabatic) term immediately reduces to the familiar ˙〈 p〉 = 

−(1 / 3)( ∇ · u ) p expression if we assume an isotropic-DF closure. 

The second (scattering) term closely resembles ˜ S ′ sc , and indeed in 

the ultra-relativistic limit where E ∝ p (and P 
′ 
0 = e ′ / 3) it becomes 

exactly ˜ S ′ sc /e 
′ (i.e. the rate of change of energy and momentum 

become identical). In this term, the first ( ∝ v̄ A F ) part stems from 

D p μ, while the second ( ∝ v 2 A e) stems from D pp . The ‘...’ term refers 

to other collisional terms (e.g. radiative losses). 

In self-confinement scenarios where the scattering waves are 

excited by gyro-resonant instabilities sourced by the CR flux, 

wav es are e xcited only in the direction of ˆ F 
′ 
e , so we generically 

e xpect 16 an e xtreme forw ard/backw ard difference with ν̄+ ≫ ν̄−
or ν̄+ ≪ ν̄−, corresponding to whichever points in the direction 

of F 
′ 
e . This gives v̄ A = v A ̂  F 

′ 
e · ˆ b = ±v A . While the scattering term 

in ˙〈 p〉 can be positive if the CRs are streaming sub-Alfv ́enically 

( | F 
′ 
e | � v A e 

′ ), it is generically ne gativ e, and if the CR energy 

(equation 31) is in flux steady state ( D t F 
′ 
e → 0) in the strong- 

scattering or isotropic-DF limit, it takes the ne gativ e-definite value 
˙〈 p〉 /p → −( v A | ̂ b · ∇P 0 | / 3 P 0 ) − ν̄( v A /γβc) 2 . In this limit, this rep- 

resents the CR energy loss to gyro-resonant instabilities – the 

‘streaming loss’ or ‘gyro-resonant loss’ term (W iener , Oh & Guo 

2013a ; Wiener et al. 2013b ; Ruszkowski et al. 2017 ; Thomas & 

Pfrommer 2019 ). 17 

In extrinsic turbulence scenarios, if the turbulence and scattering 

rates are perfectly isotropic in the Alfv ́en frame, then v̄ A = 0 

16 As discussed in Hopkins et al. ( 2020b ), if one somehow did have ν̄ ∼ ν̄−
on micro-scales, the time-scale for the ν̄± to come into the equilibrium state 

with v̄ A → v A ̂  F ′ e · ˆ b is much smaller than resolved time-scales in galaxy- 

scale simulations. 
17 In these studies, the CRs were taken to be ultra-relativistic, so the gyro- 

resonant losses simply become −v A | ̂ b · ∇P 0 | / 3 P 0 . 

( ̄ν+ = ν̄−), so the D p μ or F term abo v e vanishes and the scatter- 

ing term becomes positive definite with ˙〈 p〉 /p → ν̄( v A /v) 2 2 χ (1 + 

β2 ) ∼ v 2 A /D xx . This is the ‘turbulent’ or ‘dif fusi ve’ re-acceleration 

term. Ho we ver, note that in the anisotropic-DF case ( χ → 0) 

this v anishes; e v en in v ery weakly anisotropic scattering [unless 

ν+ ( μ) = ν−( μ) cancels to high precision | ν+ − ν−| / | ν+ + ν−| ≪
| v A ( e + P ) /F | ∼ v A /v eff ], the ν̄F or D p μ (loss) term will usually 

dominate. 

In any case, the preceding discussion makes it clear that our derived 

scalings include both the ‘gyro-resonant’ or ‘streaming’ loss and 

‘turbulent/dif fusi ve reacceleration’ terms, in a more general form. 

6.5 Where and when are these differences most important? 

It is helpful to ask ‘under what conditions will the predictions 

from the more accurate expressions herein differ most dramatically 

from the predictions of simpler, less-accurate (e.g. isotropic Fokker–

Planck, zeroth-moment/diffusion, or isotropic-DF) CR transport 

expressions?’ Examination of the rele v ant equations and our tests in 

Fig. 1 suggest that this will typically be most important when the CR 

scattering mean free time ( ∼ν̄−1 ) or path ( ℓ MFP ∼ c/ ̄ν, since we must 

consider the full range of μ) becomes larger than some other scales of 

interest or rele v ance for CR transport (e.g. the gradient scale lengths 

for ˆ b , ℓ ̂ b ≡ | ̂ b | / |∇ · ˆ b | , or ν̄, ℓ ̄ν ≡ ν̄/ |∇ ̄ν| , or background quantities 

such as the gas density or pressure if CR–gas interactions are of 

interest). As shown in Fig. 1 , this is true even if the CR DF is close to 

isotropic. Also, although the scattering time ν̄−1 is generally short, 

the scattering length can be quite large: If we take state-of-the-art 

empirical estimates of ̄ν in the Solar neighbourhood/LISM (e.g. Evoli 

et al. 2017 ; Amato & Blasi 2018 ; Chan et al. 2019 ; Hopkins et al. 

2020b ; de la Torre Luque et al. 2021 ; converting from an isotropic 

dif fusi vity to ν̄), we obtain ℓ MFP ∼ 10 pc R 
0 . 5 
GV , where R GV is the CR 

rigidity in GV. 

In phenomenological models where ν̄ is constant, ℓ ̄ν → ∞ by 

definition, so the effects of the expressions here will generally be 

more modest. Ho we ver, for ∼1 –10 GV CRs, ℓ ̂ b (essentially the 

Alfv ́en scale of ISM turbulence) can be comparable to ℓ MFP , and for 

� 10 GV CRs, ℓ MFP can begin to exceed the Galactic disc scale height. 

So propagation models o v er these scales, especially for high-energy 

CRs and/or models where the CR–gas coupling is important (e.g. 

models of CR-driven winds where the ‘launching’ occurs from the 

disc) could be sensitive to the more detailed CR transport expressions 

here. 

Much more dramatically, in physically moti v ated models where 

the scattering rates ν are set by some competition between damping 

and driving either by gyro-resonant instabilities (self-confinement 

models) or extrinsic turbulence, ν̄ can be a strong function of 

quantities such as the neutral fraction or gas temperature or local 

Mach numbers (see e.g. Yan & Lazarian 2004 ; Zweibel 2017 , or 

the re vie w in Hopkins et al. 2020b ), which can vary on vastly 

smaller scales (the skin depth of phase transitions or shock widths, 

orders of-magnitude smaller than ℓ MFP ). These rapid changes can be 

tightly associated with phenomena such as CR ‘bottlenecks’ (as CRs 

propagate across phase transitions) or the CR ‘staircase’ that arises 

in self-confinement models of CR-driven outflows, all of which have 

been the subject of considerable recent study using variations of the 

simpler CR transport expressions that may not accurately represent 

the exact solutions in this regime (e.g. Bustard & Zweibel 2020 ; 

Winner et al. 2020 ; Hin Navin Tsung, Oh & Jiang 2021 ; Huang & 

Davis 2021 ; Quataert, Thompson & Jiang 2021 ). In these regimes, the 

b ulk CR beha viour could differ substantially with the more accurate 

expressions proposed herein (Section 3.4.1). 
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Consistent closures for CR dynamics 3793 

Finally, if ν( μ) itself is strongly anisotropic, then an approach that 

evolves the pitch-angle DF, as in Section 4.1, becomes crucial to 

obtaining accurate results. 

7  T H E  REDUCED-SPEED-OF-LIGHT  (RSOL)  

APPROX IMATION  

Explicitly integrating equations (22)–(33) imposes a Courant-type 

time-step limiter �t ≤ C �x /c in Lagrangian codes [or �t ≤
C �x / ( c + u ) in Eulerian codes]. While this is generally less onerous 

at high resolution than the quadratic condition imposed by ‘pure dif- 

fusion’ or ‘zeroth moment’ schemes (where ∂ t f ∝ κ∇ 
2 f , imposing 

�t ≤ C �x 2 /κ), it is still often numerically prohibitive because c is 

much faster than any other signal speed in the problem. By analogy 

to RHD, we can therefore adopt an RSOL approximation, as in 

many previous CR studies (Jiang & Oh 2018 ; Chan et al. 2019 ; Su 

et al. 2019 , 2020 ; Buck et al. 2020 ; Hopkins et al. 2020a , b , c , d ; Ji 

et al. 2020 ). Ho we ver, in those studies, the CR transport equations 

were developed ad hoc, as described above. Here, we develop two 

viable RSOL formulations, and describe the terms where additional 

corrections are needed. 

7.1 Alternati v e (viable) formulations 

Per the preceding deri v ations, we can generically write the spatial 

transport terms in the CR moment equations for ( f̄ 0 , f̄ 1 ) 
18 or ( q, F q ) 

with q = ( n, e, ǫ) for some species and energy interval as 

1 

c 
D t q + ∇ ·

(

F q 

c 
ˆ b 

)

= 
1 

c 
S eff 

q ( ..., c) , 

1 

c 
D t 

(

F q 

c 

)

+ β2 G( q) = 
1 

c 
S eff 

F q 
( ..., c) (49) 

(we collect all of the non-transport terms such as scattering and 

sources/sinks in S eff ). 

When using the RSOL approximation, it is important to be careful 

which values of c are replaced with the RSOL ˜ c . We wrote these 

equations in the form c −1 D t q = ... because then (just like in RHD; 

see Skinner & Ostriker 2013 , and references therein) the RSOL 

replaces only the value(s) of c associated with the D t term. 19 There 

are then two choices of viable scheme, first: 

1 

˜ c 
D t q + ∇ ·

(

F q 

c 
ˆ b 

)

= 
1 

c 
S eff 

q ( ..., c) , 

1 

˜ c 
D t 

(

F q 

c 

)

+ β2 G( q) = 
1 

c 
S eff 

F q 
( ..., c) , (50) 

or alternatively 

1 

c 
D t q + ∇ ·

(

F q 

c 
ˆ b 

)

= 
� 

c 
S eff 

q ( ..., c) , 

1 

˜ c 
D t 

(

F q 

˜ c 

)

+ β2 G( q) = 
1 

c 
S eff 

F q 
( ..., c) . (51) 

The formulation in equation (50) is exactly equi v alent to replacing 

c −1 D t f → ˜ c −1 D t f in the original focused transport equation (1), 20 

18 Note that equations (22)–(23) can be written as c −1 D t f̄ 0 + ∇ · ( βf̄ 1 ̂ b ) = 

( ... ), c −1 D t ( βf̄ 1 ) + β2 G( f̄ 0 ) = β( ... ), matching the form in equation (49) for 

( q, F q ) = ( f̄ 0 , v f̄ 1 ). 
19 Because our moments are defined in the comoving frame, we associate 

˜ c with D t , as opposed to ∂ t , which is more appropriate when the salient 

quantities are defined in the lab frame. 
20 Consider the free-streaming limit of the focused transport equation (1), with 

negligible scattering in a homogeneous medium: c −1 D t f + ∇ · ( μβf ̂  b ) = 0. 

then following our derivations identically. It is also the more common 

scheme in RHD. The formulation in equation (51) associates ˜ c 

only with the flux equation, instead, and introduces the function 

� ≡ MIN [1 , | F q | /F true ] with F true ≈ MIN [ q βc, | F q ( ̃ c → ∞ ) | ], as 

justified below. 21 

These share the most important features: (1) the maximum signal 

speed for free streaming is reduced to β ˜ c , meaning that the sta- 

ble Courant time-step condition becomes �t ∝ �x/ ( β ˜ c ), allowing 

much larger time-steps (the reason to introduce the RSOL); (2) both 

e xactly reco v er the true equation (49) as ̃  c → c; and (3) both converge 

exactly to the true ( ̃ c = c) solutions for q , F q , and S eff 
q , in local steady 

state (when D t → 0). 

7.2 Out of equilibrium behaviours and time-scales 

The differences between the schemes come when ̃  c ≪ c out of steady 

state. Define Ŵ ≡ c/ ̃ c and consider some key time-scales: the flux- 

convergence time-scale � t F , the loss/injection time-scale � t in/loss , 

and the CR transport/escape time-scale � t esc . First assume that S eff 
F is 

dominated by a scattering term ∼ − νF /c 2 : with Ŵ = 1 (equation 49), 

the flux equation should converge to steady state ( D t → 0) on a 

scattering time �t true 
F ∼ ν−1 . For equation (50), �t 

(50) 
F ∼ Ŵν−1 ∼

Ŵ �t true 
F ; for equation (51), �t 

(51) 
F ∼ Ŵ 

2 ν−1 ∼ Ŵ 
2 �t true 

F . Now assume 

in the number/energy equation S eff 
q ∼ ±q/ ( cτ ), for some loss or 

production/injection processes. These processes reach equilibrium 

in �t true 
in / loss ∼ τ for equation (49). For equation (50), �t 

(50) 
in / loss ∼

Ŵ�t true 
in / loss , and for equation (51) �t 

(51) 
in / loss ∼ � 

−1 �t true 
in / loss . The CR 

transport/escape time � t esc ∼ L / v eff to some distance L is given 

by the ef fecti ve transport speed v eff [writing D t q + ∇ ( v eff q ) = ... ]: 

For equation (50), �t (50) 
esc ∼ ŴLq/F ; for equation (51), �t (51) 

esc ∼
Lq/F . Ho we ver, F depends on whether the flux equation has 

reached steady state. First consider case (a), where � t ≫ � t F 
and v eff � ˜ c , so both equations (50) and (51) have F → F true , 

and therefore �t (50) 
esc → Ŵ�t true 

esc , �t (51) 
esc → �t true 

esc . In case (b), � t 

≪ � t F , or equi v alently the system is free streaming/unconfined; 

thus, the true v eff ≫ ˜ c and equations (50)–(51) have v eff → ˜ c , giving 

�t (50) 
esc ∼ �t (51) 

esc ∼ L/ ̃ c ∼ Ŵ�t true 
esc . 

The quantities of interest in CR models – e.g. CR number densities 

of a given species at a given energy, primary-to-secondary or 

radioactive-to-stable ratios, etc. – are set by the appropriate ratios of 

injection/loss/escape time-scales (for a given galactic background). 

Since injection and non-transport (e.g. collisional) losses scale 

together in � t in/loss in both equations (50) and (51), their ratio (and 

therefore scalings that depend on balancing injection and non-escape 

losses) is insensitive to ˜ c . For equation (50), in all limits, the ratio 

� t in/loss / � t esc is also equal to its ‘true’ ( ̃ c = c) value, as both scale 

identically with Ŵ. For equation (51), ho we ver, this is only true if � 

→ 1 in case (a) and � → Ŵ 
−1 (or more generically � → F / F 

true ) in 

case (b). 

7.3 (Dis)advantages of each formulation 

This leads us to the major (dis)advantages of each method. The 

formulation of equation (50) ‘uniformly’ slows down CR transport: 

It is essentially equi v alent to a uniform rescaling of time, as seen 

This is pure advection with v = βμc; taking c → ˜ c correspondingly reduces 

the maximum bulk/free-streaming advection speed from βc to β ˜ c . 
21 Jiang & Oh ( 2018 ), Chan et al. ( 2019 ), and Hopkins et al. ( 2020d ) used a 

formulation similar to equation (51), but set � = 1, which as we argue below 

leads to significantly slower convergence with respect to ˜ c /c. 
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3794 P . F . Hopkins, J. Squire and I. S. Butsky 

by the CRs, by a factor ˜ c /c. This has the advantage that although 

the time � t to reach equilibrium in q and F q is increased, in both 

the free-streaming and confined limits (equi v alent to the optically 

thin and thick limits in the RHD literature where these were first 

derived), the system reaches the ‘correct’ number/energy density 

and losses/production at the same distance � x from any source. 

Also, the flux equation converges more rapidly than equation (51) 

[ �t 
(50) 
F ≪ �t 

(51) 
F ], although all terms in the number/energy equation 

(transport and production/loss) converge more slowly [ �t 
(50) 
in / loss ≫

�t 
(51) 
in / loss , �t 

(50) 
transport ≫ �t 

(51) 
transport ]. The problem this can create is that 

the time-scales �t 
(50) 
in / loss , �t 

(50) 
transport can potentially become so long, 

for computationally tractable RSOL values ˜ c , that the system never 

actually reaches that � x or steady state. This is most acute in the 

circum/intergalactic medium (CGM/IGM) around galaxies, where 

man y hav e argued that CRs may be most important (Booth et al. 2013 ; 

Wiener et al. 2013a ; Butsky & Quinn 2018 ; Butsky et al. 2020 ; Hop- 

kins et al. 2020a ; Ji et al. 2020 , 2021 ). Consider that even for rapid 

dif fusion (dif fusi vity κ ∼ κ30 10 30 cm 
2 s −1 ), at L ∼ L 30 30 kpc from 

a galaxy, �t (50) 
esc ∼ ŴL 

2 /κ ∼ 100 Gyr ( ̃ c / 1000 km s −1 ) −1 L 
2 
30 κ

−1 
30 . In 

other words, we require ˜ c ≫ 10 4 km s −1 for the CRs to ‘reach’ the 

CGM in less than a Hubble time in the formulation of equation (50). 

Similarly, we need very large ˜ c to ensure that �t 
(50) 
in / loss is not much 

longer than galaxy dynamical times (which would risk converging to 

the wrong equilibrium). 

The formulation of equation (51) a v oids this, by converging in 

the number/energy (loss and transport) equations much more rapidly 

(on the ‘correct’ time-scale, independent of ˜ c , on large scales). It 

converges in the flux equation more slowly, but this is still rapid 

in absolute terms, as e.g. �t 
(51) 
F ∼ 3 Myr κ30 ( ̃ c / 1000 cm 

2 s −1 ) −2 . The 

problem with equation (51) is that we can find ourselves in case 

(b), and potentially in the subcase where �t 
(51) 
F is larger than one of 

�t true 
in / loss or �t true 

esc – the limit where capturing the correct behaviour 

with ˜ c ≪ c r equir es including the � term with � → F / F 
true . Moti- 

vated by the abo v e and treatments of the flux limiter in flux-limited 

RHD with an RSOL, we therefore suggest the interpolation function 

� = MIN [1 , | F q | /F true ], where F true = MIN [ e ′ βc , | ̄v A ( e ′ + P 
′ 
0 ) + 

κ‖ ∇ ‖ e 
′ | ] for q = e 

′ 
(or F true = MIN [ n ′ βc, | ̄v A n + κ‖ ∇ ‖ n 

′ | ] for q = 

n 
′ 
, etc.) is given by the value the flux would have in local steady state 

( D t F q → 0) for ˜ c = c at the given energy. This ensures the correct 

behaviour in both asymptotic limits discussed in Section 7.2. 

With this definition, one can verify that both formulations in 

equations (50) and (51) converge to identical solutions as ˜ c in- 

creases. One would expect from the above that in the dense ISM, 

the formulation of equation (50) converges somewhat faster with 

respect to ˜ c /c (i.e. one can obtain converged solutions with lower 

˜ c , hence lower computational e xpense). Howev er, for the abo v e 

reasons, in the CGM, the formulation of equation (51) converges 

at much lower values of ˜ c . Equation (51) therefore has advantages 

for applications in, e.g. cosmological galaxy formation simulations, 

while the formulation in equation (50) is potentially advantageous 

for transport around sources or in the ISM within galaxies. 

7.4 Which speed of light enters the closure relation? 

Recall that for the closure relation equation (28) that we proposed to 

estimate 
〈

μ2 
f 

〉

, we used 
〈

μ1 
f 

〉

= f̄ 1 / f̄ 0 = F q / ( βq c). For the formu- 

lation in equation (50), the ‘actual’ flux of q is ( ̃ c /c) F q , so F q retains 

its usual meaning – free streaming will still have F q = βq c, so we 

can use this relation in unmodified form, 
〈

μ1 
f 

〉

= f̄ 1 / f̄ 0 = F q / ( βq c) 

(provided we follow all the above definitions). For the formulation 

in equation (51), we need to be more careful: F q saturates at ∼q ̃  c , 

but this can occur even if the system approaches a near-isotropic 

DF, for sufficiently large diffusivity. So in the closure relation, 

we require a function similar to the � term abo v e, e.g. taking 

F q / ( βq c) → F q / MAX [ βq ̃  c , | F q ( ̃ c → ∞ ) | ]. 

7.5 Rigidity-dependent RSOL 

Finally, we note that although the arguments abo v e assume ˜ c is 

constant in space and time, they do not require ˜ c be the same for 

different CR species or energies. In calculations that evolve a set of 

CR species of energies binned in rigidity, for example, one can adopt 

a ˜ c that increases for the highest rigidity CRs (for example, as ˜ c = ˜ c 0 
for R < 1 GV, and ˜ c 0 ( R/ GV ) at larger values). Larger rigidity CRs 

have lar ger κ (e.g. lar ger � t F ), so require lar ger ˜ c to conver ge. By 

subcycling the CR equations for the highest rigidity values, faster 

convergence may be possible. 

7.6 Appearance in the gas + radiation (momentum + energy) 

equations and conser v ation 

Just like with RHD (see e.g. Skinner & Ostriker 2013 ), it is important 

that the RSOL appears only in the dynamical equations for the CRs, 

not in the terms that couple to the gas that are written in terms of phys- 

ical quantities. Otherwise, certain terms, like the parallel forces or 

CR thermal heating rates, would not, in fact, converge to equilibrium 

when D t → 0 and would be severely incorrect. Thus, for example, 

the form of the gas momentum equation (40) as written remains 

identical. Likewise, the gas heating terms have their ‘normal’ values 

with respect to e , etc. One consequence of this, again identical to 

RHD, is that the formally conserved quantities with an RSOL are not 

total energy ( E other + E cr ) and momentum ( P other + c −2 F cr ). Instead, 

for the formulation in equation (50), they are [ E other + ( c/ ̃ c ) E cr ] and 

[ P other + ( c ̃  c ) −1 F cr ], while for the formulation in equation (51), they 

are ( E other + E cr ) and ( P other + ˜ c −2 F cr ). This is important to note but 

introduces no conceptual difficulty, provided the abo v e definitions 

are used. 

8  SUMMARY  

Beginning from the focused CR transport equation allowing for 

an arbitrary pitch-angle distribution, we have derived and tested 

a consistent set of moment equations for CR-MHD applications, 

analogous to widely used closures for RHD. We present equations for 

either e.g. the first two pitch-angle moments of the DF f ( 〈 f 〉 μ, 〈 μf 〉 μ), 

or corresponding integrated pairs like CR number density and its 

flux ( n, F n ), total CR energy and flux ( e, F e ), or CR kinetic energy 

and its flux ( ǫ, F ǫ). We present two different schemes to integrate 

these explicitly in simulations with an RSOL approximation, discuss 

their relativ e conv ergence properties and merits, and note some 

important terms missing from previous CR-RSOL implementations. 

The derived equations are summarized in Appendix A. 

Our equations are valid for all rele v ant CR β = v/ c (not 

just the ultra-relativistic limit), and do not impose any assump- 

tion about the slope or form of f ( p ). Unlike the Fokker–Planck 

or pure diffusion + streaming (zeroth-moment) formulations of the 

CR transport equations, the expressions here can handle both 

free-streaming/weak-coupling (arbitrarily large MFP) and strong- 

scattering (static or dynamic diffusion or adv ectiv e) limits, for 

both near-isotropic and arbitrarily anisotropic DFs, anisotropic 

forw ard/backw ard scattering, and anisotropic magnetic fields/global 

transport. The expressions are accurate to leading order in O( u/c) in 

all limits. The key assumptions are: (1) that the background fluid is 

MNRAS 509, 3779–3797 (2022) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
9
/3

/3
7
7
9
/6

3
8
0
5
3
8
 b

y
 C

a
lifo

rn
ia

 In
s
titu

te
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 1

2
 S

e
p
te

m
b
e
r 2

0
2
2



Consistent closures for CR dynamics 3795 

non-relativistic, | u | ≪ c ; and (2) the CRs have a gyrotropic DF, with 

gyro radii much smaller than resolved scales. 

It is easy to imagine extending this even further to include 

more complicated ‘variable Eddington tensor’ formulations akin 

to RHD (representing arbitrary CR DFs), although the gyrotropic 

nature of CRs remo v es some of the ambiguities associated with 

RHD formulations. In this spirit, we also present the rele v ant gyro- 

averaged equations for direct finite-volume phase-space integration 

of the pitch-angle distribution [following f ( x , p, μ, t, ... ) explicitly 

on a grid of x , μ, p], as there may be cases where the different 

formulations are beneficial. 

Finally, it is worth commenting on a major practical difference 

between RHD and CR-MHD applications: In many astrophysical 

RHD applications, the collisional/scattering terms (absorption and 

scattering coefficients) are reasonably well understood, and much 

of the debate in the literature has centred on methods to accurately 

handle the actual radiation transport. In contrast, in CR-MHD, the 

scattering terms – and, as a consequence, the diffusion/streaming 

coefficients – are enormously uncertain. This is true even of their 

qualitative form and dimensional scalings. Different state-of-the- 

art models for CR scattering rates ν differ by several orders of 

magnitude and often predict opposite dependence on properties 

like magnetic field or turbulence strength (see the re vie w in Hop- 

kins et al. 2020b ). Real progress in predictions will require a 

better understanding of the form of the CR scattering rates, their 

dependence on pitch angle and local plasma/ISM properties, and 

de veloping ne w diagnostics to compare models to observations. 

None the less, the hope is that the calculations in this paper can 

aid in reducing some of the better-understood uncertainties in 

CR transport. Also, we argue in Section 6.5 that there are many 

physically important situations, especially those that involve rapidly 

varying CR scattering rates and/or CR ‘bottlenecks’, where the 

more accurate form of the equations herein may predict significantly 

different behaviours compared to more simplified and less-accurate 

expressions. Further, in numerical applications where an RSOL is 

adopted, it is crucial to adopt treatments that can correctly interpolate 

between different limits. Finally, the basic principles of the closure 

structure proposed here can be used to include additional information 

about scattering coefficients in the CR-moment framework. For 

example, if one wished to model a scattering rate ν̄ = ν̄[ f ( μ)] ≈
ν̄( 
〈

μ1 
f 

〉

, 
〈

μ2 
f 

〉

, ... ) that is a function of the CR pitch-angle distri- 

bution, the structure herein provides a well-defined way to retain 

and estimate some (though certainly not all) of this physics without 

ha ving to ev olve the entire pitch-angle DF at each momentum and 

position. 
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APPENDIX  A :  SUMMARY  O F  K E Y  E QUAT I O N S  

We summarize some of the key equations derived herein, in compact 

form and with the consistent RSOL formulation (equation 50) 

included. All variables are defined in the main text. 

Equation (16) is the general evolution equation valid for any gy- 

rotropic CR DF f = f ( x , p, x, s, t, ... ), including all QLT scattering 

terms, to leading O( u/c) in all terms, written in finite-volume form 

(suitable for methods that evolve the DF on a grid of μ): 

1 

˜ c 
D t f + ∇ · ( μβf ̂  b ) 

= 
∂ 

∂μ

[

χ

{

−f β∇ · ˆ b + 
ν

c 

(

∂f 

∂μ
+ 

v̄ A 

v 
p 

∂f 

∂p 

)}]

+ 
1 

p 2 

∂ 

∂p 

[

p 
3 

{

( D : ∇ βu ) f + 
νχ

c 

(

v̄ A 

v 

∂f 

∂μ
+ 

v 2 A 

v 2 
p 

∂f 

∂p 

)}]

. 

(A1) 

Equations (22)–(23) take the first two pitch-angle moments f̄ 0 , f̄ 1 to 

derive a two-moment set of equations for f (akin to radiation moment 

methods that do not evolve the entire μ distribution explicitly): 

1 

˜ c 
D t f̄ 0 + ∇ · ( β ˆ b f̄ 1 ) − D : ∇ βu 

[

3 f̄ 0 + p 
∂ f̄ 0 

∂p 

]

= 
1 

cp 2 

∂ 

∂p 

[

p 
2 

(

S f̄ 0 + ˜ D pμf̄ 1 + ˜ D pp 
∂ f̄ 0 

∂p 

)]

+ 
j 0 

c 
, 

1 

˜ c 
D t f̄ 1 + βG( f̄ 0 ) = −

1 

c 

[

˜ D μμf̄ 1 + ˜ D μp 
∂ f̄ 0 

∂p 

]

+ 
j 1 

c 
, 

˜ D pp = χ
p 

2 v 2 A 

v 2 
ν̄, ˜ D pμ = 

p ̄v A 

v 
ν̄, ˜ D μμ = ν̄, ˜ D μp = χ

p ̄v A 

v 
ν̄. 

(A2) 

The following relations complete the closure of the moment hierar- 

chy: 

G( q) ≡ ˆ b · ∇([1 − 2 χ ] q) + (1 − 3 χ ) q∇ · ˆ b 

= ∇ ·
(〈

μ2 
f 

〉

q ̂  b 
)

− χq∇ · ˆ b = ˆ b · [ ∇ · ( D q ) ] , 

D ≡ χ I + ( 1 − 3 χ ) ̂  b ̂ b , 

χ ≡
1 −

〈

μ2 
f 

〉

2 
= 

1 

2 

[

1 −
f̄ 2 

f̄ 0 

]

, 

〈

μ1 
f 

〉

≡
f̄ 1 

f̄ 0 
= 

F q 

qv 
, 

〈

μ2 
f 

〉

≈ M 2 

(〈

μ1 
f 

〉)

= 
3 + 4 

〈

μ1 
f 

〉2 

5 + 2 
[

4 − 3 
〈

μ1 
f 

〉2 ]1 / 2 
. 

Equations (30), (31), and (33) inte grate these moment equations o v er 

a finite range of p to define corresponding moment equations for CR 

number n 
′ = d n /d p , energy e 

′ = d e /d p , and kinetic energy ǫ
′ = d ǫ/d p 

density, for a narrow range of p : 

1 

˜ c 
D t n 

′ + ∇ ·
(

F 
′ 
n 

c 
ˆ b 

)

= 
S ′ n 
c 

, 

1 

˜ c 
D t 

(

F 
′ 
n 

c 

)

+ G( β2 n ′ ) = −
ν̄

c 2 

[

F 
′ 
n − 3 χv̄ A n 

′ ]+ 
S ′ F n 
c 2 

, 

1 

˜ c 
D t e 

′ + ∇ ·
(

F 
′ 
e 

c 
ˆ b 

)

= 
1 

c 

[

S ′ e + ˜ S ′ sc − P 
′ : ∇u 

]

, 

1 

˜ c 
D t 

(

F 
′ 
e 

c 

)

+ G( β2 e ′ ) = −
ν̄

c 2 

[

F 
′ 
e − 3 χv̄ A 

(

e ′ + P 
′ 
0 

)]

+ 
S ′ F e 
c 2 

, 

1 

˜ c 
D t ǫ

′ + ∇ ·
(

F 
′ 
ǫ

c 
ˆ b 

)

= 
1 

c 

[

S ′ ǫ + ˜ S ′ sc − P 
′ : ∇u 

]

, 

1 

˜ c 
D t 

(

F 
′ 
ǫ

c 

)

+ G 
(

β2 ǫ′ ) = −
ν̄

c 2 

[

F 
′ 
ǫ − 3 χv̄ A 

(

ǫ′ + P 
′ 
0 

)]

+ 
S ′ F ǫ
c 2 

, 

(A3) 

with ˜ S ′ sc = −( ̄ν/c 2 ) 
[

v̄ A F 
′ 
e − 3 χv 2 A 

(

e ′ + P 
′ 
0 

)]

, P 
′ ≡ 3 P 

′ 
0 D , and 

P 
′ 
0 ≡ β2 e ′ / 3. The spectrally integrated equations are then obtained 

by integrating the above over 
∫ 

d p . Of particular rele v ance is equa- 

tion (38), the spectrally integrated total energy equation assuming 

that most of the CR energy is ultra-relativistic: 

1 

˜ c 
D t e + ∇ ·

(

F e 

c 
ˆ b 

)

≈
S e 

c 
− P e : ∇ βu 

−
ν̄e 

c 

[

v̄ A 

c 

F e 

c 
− 4 χe 

v 2 A 

c 2 
e 

]

, 

1 

˜ c 
D t 

(

F e 

c 

)

+ ˆ b · ( ∇ · P e ) ≈ −
ν̄e 

c 

[

F e 

c 
− 4 χe 

v̄ A 

c 
e 

]

+ 
S F e 

c 2 
, (A4) 

where P = 
∫ 

P 
′ d p ≈ e D ( χe ) and χ e , v̄ A , ν̄e , and other terms are 

understood to be the appropriate spectrally averaged values. Equa- 

tions (39)–(40) give the DF-integrated CR force on gas: 

D t ( ρu ) + ... = 

∑ 

s 

∫ 

4 πp 
2 d p 

{

−
(

I − ˆ b ̂ b 
)

·
[

∇ ·
(

D pv f̄ 0 
)]

+ ̂ b 

[

˜ D μμf̄ 1 p + ˜ D μp p 
2 ∂ f̄ 0 

∂p 

]}

= −∇ ⊥ · P + ˆ b 

∑ 

s 

∫ 

d p 
ν̄

c 2 

[

F 
′ 
e − 3 χv̄ A 

(

e ′ + P 
′ 
0 

)]

, 

(A5) 
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or alternatively from equation (41), 

D t ( ρu ) + ... + ∇ · P 

= ˆ b 

∑ 

s 

∫ 

d p 
{

G( β2 e ′ ) + 
ν̄

c 2 

[

F 
′ 
e − 3 χv̄ A 

(

e ′ + P 
′ 
0 

)]}

. (A6) 

Equation (42) gives the corresponding gas energy equation D t e gas = 

u · [ D t ( ρu ) | cr ] −
∫ 

d p[ ̃  S ′ sc + S ′ e ]. 

Equations (45)–(46) use the abo v e results to derive the evolution 

equations for the mean values 〈 U 〉 of a group of CRs with identical 

state p , μ, s , etc. The most rele v ant of these is the evolution equation 

for the mean momentum p of a group with an initially identical p , 

after gyro and pitch-angle averaging: 

( c 

˜ c 

) ˙〈 p〉 
p 

= − ( D : ∇u ) −
v A 

v 

[

〈

μ1 
f 

〉

δν̄ − χ
∂δν

∂μ

∣

∣

∣

〈

μ1 
f 

〉

]

+ χ
v 2 A 

v 2 

[

2 ̄ν(1 + β2 ) + p 
∂ ̄ν

∂p 

∣

∣

∣

p 

]

. 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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