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objective is to investigate the importance of an exponential-growth prediction bias (EGPB) in understanding why
the COVID-19 outbreak has exploded. To that end, our goal is to document EGPB in the comprehension of disease
data, study how it evolves as the epidemic progresses, and connect it with compliance of personal safety
guidelines such as the use of face coverings and social distancing. We also investigate whether a behavioral
nudge, cost less to implement, can significantly reduce EGPB.

Rationale: The scientific basis for our inquiry is the received wisdom that infectious disease spread, especially in
the initial stages, follows an exponential function meaning few positive cases can explode into a widespread
pandemic if the disease is sufficiently transmittable. If people suffer from EGPB, they will likely make incorrect
judgments about their infection risk, which in turn, may lead to reduced compliance of safety protocols.
Method: To collect data on prediction bias, we ran an incentivized, experiment on a global, online platform with
participation from people in forty-three countries, each at different stages of progression of COVID-19. We also
constructed several indices of compliance by surveying participants about their frequency of hand-washing and
use of sanitizers and masks; their willingness to pay for masks; their view about the social appropriateness of
others’ behavior; and their like/dislike of government responses. The prediction data was used to construct
several measures of EGPB. Our experimental design permits us to identify the root of under-prediction as EGPB
arising from the general tendency to underestimate the speed at which exponential processes unfold.

Results: Respondents make predictions about the path of the disease using a model that is substantially less
convex than the actual data generating process. This creates significant EGPB, which, in turn, is significantly and
negatively associated with non-compliance with safety measures. The bias is significantly higher for respondents
from countries at a later stage relative to those at an early stage of disease progression. A simple behavioral
nudge that shows prior data in terms of raw numbers, as opposed to a graph, causally reduces EGPB.
Conclusion: Behavioral biases concerning the comprehension of disease data are quantitatively important, and act
as severe impediments to effective policy action against the spread of COVID-19. Clear communication of future
infection risk via raw numbers could increase the accuracy of risk perception, in turn, facilitating compliance
with suggested protective behaviors.

1. 1 Introduction to strictly follow WHO guidelines regarding frequent washing of hands,
use of hand sanitizers and face masks, social distancing, and if needed,

The COVID-19 outbreak is a global pandemic, adversely affecting the self-quarantine. Of course, unsurprisingly, not everyone complies with
lives of millions of people around the world. Not a lot is yet known about these guidelines, at least not with the seriousness with which they need
the virus and how it operates. With considerable uncertainty about the to be followed (Cummins, 2020; Lunn et al., 2020; Pinsker, 2020; van
arrival of a vaccine, there is complete agreement on the need for people Bavel et al., 2020). This sort of (non)compliance is an active decision
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predicated upon, at least, one influential variable, the accuracy with
which an individual perceives her likelihood of getting infected (loosely,
her risk perception). All else the same, if her risk perception is high, she
is more likely to show compliance. This point was noted in a classic
article about the 1918 influenza pandemic in Science “People do not
appreciate the risks they run” (Soper, 1919).

A large body of work in behavioral psychology and economics has
documented how the accuracy of risk perception may be compromised
by a whole host of behavioral biases (such as optimism, overconfidence,
and so on). This study focuses attention on one such bias: exponential-
growth prediction bias (EGPB), the “pervasive tendency to linearize
exponential functions when assessing them intuitively,” which leads to
“a systematic tendency to underestimate a future value given a present
value” (Goda et al., 2019; Stango and Zinman, 2009). Existing analysis
of the exponential growth bias relies on quantifying the difficulty most
people have with compound interest rates (Levy and Tasoff, 2016).
General difficulty with discriminating linear from non-linear processes
is documented in Cordes et al. (2019) and shows up even as early as in
pre-kindergarten students (Ebersbach et al., 2010). Wagenaar and
Timmers (1979) make an early and influential attempt at understanding
the relative importance of numerical versus non-numerical (e.g.,
graphical) means of data delivery and its effect on the perception of
exponentiality. Why is a study of this bias critical to our understanding
of the current pandemic? Prior epidemiological studies (see Keeling and
Rohani (2011); Thomas (1996), and more recently, Li et al. (2020) for
Wuhan, China) document how the spread of infectious diseases, espe-
cially in the initial stages, often follows an exponential function. This
information means a few positive cases, initially can explode into a
pandemic if the disease is sufficiently contagious. To illustrate this point
in the current context, focus attention on Figure A1, which plots the time
trajectory of reported cases for four countries, Germany, the United
States, France, and Spain. In each case, it is apparent that the growth
trajectory is exponential. But do humans see it that way? Pinsker (2020)
argues, no: “[t]he human brain can have trouble keeping pace with such
rapid growth” and that “people tend to underestimate the speed at
which exponential processes—such as a disease outbreak—unfold.”
This, in other words, is EGPB, a behavioral failure to “read the tea
leaves” correctly, which may lead to inaccurate infection risk percep-
tion. Ours is a first attempt at documenting EGPB in the comprehension
of disease data, to study how it evolves as the epidemic progresses, and
to connect it with compliance with personal safety guidelines.

We define prediction bias as the systematic error arising from under
or over -prediction of the number of COVID-19 positive detections x-
weeks hence when presented with y-weeks of prior, actual data on the
same. We call it EGPB if the actual data follows an exponential function,
and the predictions fail to appreciate the extent of the true convexity.
Our analysis works off the premise that those who suffer from EGPB will
significantly underestimate how quickly a disease spreads, fail to
perceive the onrushing infection risk, and hence, show low compliance
with safety measures.

We use data from an online experiment to investigate three pressing
questions of significant policy relevance:

1. How much of individual-level compliance with WHO guidelines can
be explained by the bias associated with predicting the number of
COVID-19 cases, after controlling for demographic and cultural
variables?

2. We identify three distinct stages a country can be in: Stage 1 with less
than 100 positive detections, Stage 2 with between 100 and 999, and
finally, Stage 3 with 1000 or more as of March 21, 2020. Does EGPB
diminish as a country moves through different stages of the disease?

3. Does a simple nudge in terms of how disease data is presented help
mitigate EGPB?

We ran an incentivized, data-collection survey on Amazon’s Me-
chanical Turk, an online platform, with participation from people in 43
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countries. The survey is not nationally representative, but since the
samples were collected on the same platform, they permit a relatively
clean comparison. More importantly, MTurk facilitates access to a global
pool of participants who reside in countries at different stages of the
disease. This approach provides a unique opportunity to study how
EGPB may vary with the stages of the disease progression. Examples of
Stage 1 countries in our sample include Netherlands, South Africa, and
Bangladesh; Stage 2 includes India, Mexico, and Turkey; and Stage 3
includes U.S., Italy, and Germany. The list of countries and the corre-
sponding stages are reported in Table Al.

Besides collecting data on prediction bias, we also asked participants
about their frequency of handwashing and the use of sanitizers and
masks, their willingness to pay for masks, their view about the social
appropriateness of others’ behavior; and their like/dislike of govern-
ment responses. Other demographic information was collected as well.
Using this information, we generated composite indices measuring in-
dividual attitudes regarding their i) own compliance, ii) appropriateness
of violation of WHO measures, and iii) satisfaction with the govern-
ment’s performance. Taken together, these indices give us a broad sense
of “compliance”. The prediction data was used to construct several
measures of EGPB and featured alongside the compliance measure as
regressors in a multivariate regression model.

Our main results are as follows. First, we document the presence of
EGPB as it pertains to forecasting the x weeks-ahead path of the disease.
Second, the “degree of convexity” reflected in the predicted path of the
disease is significantly and substantially lower than the actual path. (We
use the term “degree of convexity” to mean the rate of change of the
gradient of the data function.) This finding connects with the first result:
the source of the prediction bias is the “lower convexity” of the mental
model used. Pennycook et al. (2020) found that overall cognitive so-
phistication (the composite of four measures) was a strong negative
predictor of COVID-19 misperceptions. To the extent discriminating
between linear and exponential processes is correlated with cognitive
sophistication, our results are in sync with their findings. Strikingly
though, their measure of cognitive sophistication was not a reliable or
consistent predictor of COVID-19 risk perceptions or behavior change
intentions. Similarly, Stanley et al. (2020) found that “individuals less
willing to engage in effortful, deliberative, and reflective cognitive
processes were [...] less likely to have recently engaged in
social-distancing and handwashing.” Third, EGPB is significantly lower
for participants from countries at an early stage relative to those at a
later stage of the disease. Fourth, we find our measures of EGPB are
significant predictors of compliance: higher bias is associated with lower
own safety compliance, higher approval of a violation of safety mea-
sures, and greater satisfaction with the government’s policy response to
the pandemic.

Fifth, we find that providing disease trajectory-information using y-
weeks prior data in the form of raw numbers causally reduces EGPB more
than delivering the same via a graph. Like us, Wagenaar and Timmers
(1979), and more recently, Levy and Tasoff (2017), find “exponential--
growth bias is unlikely to be eliminated by simple “nudges” such as a
graphical intervention.”

How do our results connect to the literature? Our finding that EGPB
is a significant predictor of compliance is an important, practical
contribution to discussions of health policy (Bischoff et al., 2000; Call-
aghan T et al., 2019; Lyons et al., 2020). That EGPB in our sample is
significantly lower for participants from countries at an early (as
opposed to a later stage) stage of the disease suggests the bias is stub-
born; it does not go away once the raw numbers become bigger. If the
bias persists, and people comply less and less, the disease spreads faster,
and a vicious cycle is created. In this sense, our work showcases a per-
sonal, psychological dimension of epidemiology, one that can link itself
on to the forces of social epidemiology (Donovan and Blake, 1992;
Kawachi and Subramanian, 2018) and precipitate terrible outcomes.
Finally, our demonstration of the fact that data presented with raw
numbers (as opposed to graphs) causally reduces EGPB contributes to
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the field of health communication.

There is a small yet burgeoning literature studying the role of biases
in the context of the COVID-19 outbreak. Our study was designed
concurrently and independently of this literature and is closest in spirit
to an important contribution by Wise et al. (2020) who, like us, use an
online sample (but only of U.S. households) between March 11, the day
when the WHO declared COVID-19 a pandemic, and March 16. Their
primary focus is on deciphering to what extent individuals are aware of
their risk of contracting the disease, their chance of passing it on, and the
extent to which their perception of risk predicts protective behaviors.
We do not directly elicit peoples’ risk perception as it may be contam-
inated by the simultaneous presence of multiple, cognitive biases (such
as optimism or overconfidence; see Wise et al. (2020) and Stanley et al.
(2020)). Our measure of EGPB is, arguably, better. First, we use actual
data from a real, unnamed country, one different from the one where the
subject resides to avoid confounds such as local knowledge, perceived
efficiency of administration, etc. in the estimate of EGPB. Our subjects,
instead, make predictions based on data from a country other than that of
their residence. Also, our measures of EGPB are composite in nature.
While composite, summary measures are useful to policymakers, the
benefit of the granular measures in Wise et al. (2020), capturing own
risk of getting infected versus the risk of infecting others, is also high.
Second, our measure of perception bias, EGPB, is rooted in the linear vs.
exponential heuristic literature with a clear theoretical underpinning.
And third, our measures of prediction bias are less likely to be “pure
noise” since they are the result of an incentivized elicitation process.

A related paper by Fetzer et al. (2020) is devoted to unearthing
prediction bias in the context of a fictitious disease over several days
under several formulaic scenarios. We depart from their work in several
ways. First, our design is not aimed at understanding whether partici-
pants can “do the math” and possess enough cognitive ability to figure
out where a hypothetical series is headed. Instead, it seeks to detect bias
in realistic environments with actual data on the disease growth, where
general cognitive sophistication may play a role (Pennycook et al., 2020;
Stanley et al., 2020). Second, we go beyond detecting exponential
growth prediction bias and identify how the bias can affect an important
health outcome, namely, compliance behavior. Third, our results sug-
gest participants do not seem to have a linear model in mind, but a
model whose curvature is less than that of the growth path of the actual
data.

A final note on our contribution to the literature is in order. Extant
macro-finance research on EGPB focuses exclusively on the inability of
laypeople to comprehend the power of compound interest rates and its
implication on lower savings, lower net worth, and so on. Our contri-
bution, focused entirely in the health/epidemiology domain, is to show
that the inability to foresee the future path of the disease correctly can
have negative implications for compliance and that, in and of itself, may
raise the future growth rate of the disease.

2. Method

We show our participants data on the actual number of COVID-19
(same as in Figure Al from four countries majorly affected by the
virus as of March 21, 2020, namely, Germany, the U.S.A., France, and
Spain. In our experiment, participants perform four prediction tasks
using data from two randomly chosen countries out of these four;
country names are not revealed. More precisely, if a participant belongs
to any of the four countries, say X, she is not be shown numbers from X;
instead, she is shown numbers from two countries randomly chosen
from the set W, Y, and Z. This approach ensures any prior information
she has about disease progression in her country, X, does not contami-
nate her prediction. This strategy also prevents other confounds (such as
perceived efficiency of the government and quality of general health
care infrastructure) in one’s country to enter the prediction calculus. In
each task, they are shown three, actual weekly data points of COVID-19
cases. Subsequently, they are asked to predict the number of cases for
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Weeks 4 and 5, the actual numbers of which are known to us, the re-
searchers. This means, we, the researchers, have full knowledge of the
true, underlying data-generating process and participants know that we
know. Participants are paid $0.55 as a participation fee, and the pre-
diction task is accuracy-rewarding: two of the four prediction tasks are
randomly picked, and if the participant’s prediction is within 5% of the
actual number, she is paid an additional $0.25 for that task. Participants
can earn a maximum of $1 for the entire experiment, which lasted for
about 7 min. The research was conducted through oTree, a web-based
experimental platform (Chen et al., 2016).

Formally, denote the actual and the predicted number of COVID-19
cases in Week i by N; and P;, respectively, fori = 1, 2, 3, 4, 5. As noted
earlier, the participants observe three data points on the number of
COVID-19 cases in three consecutive weeks (N7, N2 Ns3) and are asked
to make their predictions for Week 4 and Week 5. Since the actual
number of infected individuals at any point is unknown, we go by the
official statistics on reported cases. Interestingly, respondents in our
sample report that their belief about the true infection rate is, on
average, 10% higher than the official statistics. To make sure the biases
are comparable, we represent them relative to the maximum possible
error a participant can make. For example, the bias for Week 4 is defined
as the difference between the actual number (Ns)and the predicted
number in Week 4 (P,), relative to the difference between the actual
number in Week 4 (N4) and the actual number in Week 3 (N3). In other
words, the actual prediction error relative to the maximum possible
error in Week 4 may be interpreted as the Bias for Week 4 with respect to

Week 3 i.e., Biasss = I’\‘,’::I{’,‘; . Similarly, we define Bias for Week 5 with
respect to Week 3 as Biasss = gg:ﬁz Finally, we analyze the results in

terms of Biasay,, which is the average of Biasss and Biasss. In addition to
the afore discussed measures of bias arising from the incentivized pre-
diction task, we also obtain a measure of bias relating to one’s ability to
predict the actual number of cases in one’s country a week hence —
OwnBias. For a summary of the different definitions, refer to Table 1.

We survey three parts, restricting each piece to only those partici-
pants who are registered in countries belonging to a particular stage.
MTurk facilitates participation restriction based on specific geograph-
ical criteria, the I.P. address, and the initial registration information.
Since our inferences are at a stage-level, we have no country-specific
restrictions within each stage. Consequently, while the number of par-
ticipants in each stage is balanced, the number of participants from
countries within a stage is not.

Notice, from Figure Al, the early phases of the spread of COVID-19,
is described by notably less convexity than the later phases. To under-
stand whether prediction accuracy varies with phases of the disease, we
implement a within-subject variation in the four prediction tasks. In two
consecutive tasks, the participants are shown data either from the early
or late phases from two randomly selected countries. Asking them to
respond to both early and later phases ensures that their home country
experience is mimicked in at least one of the tasks. If, in the first two
tasks, a participant is shown data from two countries at an early phase,
in the next two tasks, they are shown numbers from the later phases of
the same two countries.

We implement this design so that we can explore whether the nature
of representation (graphical or numeric) of the actual data helps miti-
gate EGPB. To that end, some participants are randomly shown the exact
number of COVID-19 cases graphically (as is the dominant form of
representation of the data in print or online media). In contrast, others
are shown the same in terms of raw numbers. We implement this method
through a between-subject design, which allows us to estimate the causal
effect of the nudge in mitigating the EGPB. Screen 5 of the experimental
instruction given in online Appendix 2 presents an example of the two
forms of data representation.

Then, we administered a short survey to capture participants’ pro-
tection behavior and compliance with the WHO guidelines. The survey
details, along with the experimental instructions, are included in
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Table 1
Summary statistics.
Variable Definition Median Mean
Absolute
Deviation
from Median
Bias43 Difference between the log of 0.42 0.35
actual and predicted number
in Week 4, relative to the
change in log of actual
number of COVID-19 cases
between Week 3 and 4
. Ny — Py
Biasss = Na N
Bias53 Difference between the log of ~ 0.46 0.29
actual and predicted number
in Week 5, relative to the
change in log of actual
number of COVID-19 cases
between Week 4 and Week 5
Biass; = Ns - is
AverageBias Average of %iasﬁs and Bias53  0.43 0.31
OwnBias Difference between the log of
actual and predicted number
of COVID-19 cases one week
later in one’s own country
Own Country Difference between the log of ~ 0.001 0.1
Information Bias actual and perceived number
of COVID-19 cases on the day
of response in one’s own
country
Variable Definition Median  Standard
Deviation
Actual Realized First Principal Component of 0.12 1.68
Compliance Questions 1a-1g in Screen 13
Appropriateness of First Principal Component of -0.14 1.53
violation of safety Questions 2a-2d in Screen 14
norms
Agreeableness with First Principal Component of —0.05 1.35
government Questions 3a-3b in Screen 14
performance
Female = 1, if gender is Female 0.27 0.44
Age age in years 34.19 9.15
Education = 0, if highest educational 1.12 0.65
level is up to class 12
= 1, if highest education level
is bachelor’s degree
= 2, if highest education level
is master’s degree or above
Income Log of monthly family income  8.39 1.79
(PPP USD)
Health Health condition on a scale of ~ 4.12 0.75
0-5
[0 if very poor health, 5 if very
good health]
Health Insurance = 1, if the person has health 0.71 0.45
insurance
Perceived Perceived effectiveness of the 4.3 0.92
effectiveness safety measures being
proposed to counter the
spread of COVID-19
Sample Size 334
N — Stage 1 Sample size from countries 121
with COVID-19 cases less than
100, as on 21st March
N - Stage 2 Sample size from countries 108
with COVID-19 cases between
100 and 999, both numbers
included, as on March 21
N — Stage 3 Sample size from countries 105
with COVID-19 cases more
than 999, as on 21st March
Countries Number of countries 43

represented in our sample
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Appendix 2. Participants are asked to report their frequency of hand-
washing, use of sanitizers and masks, their opinion about the appro-
priateness of public gatherings, their perception about the desirability
and efficacy of their own government’s responses, and so on. Necessary
demographic information is also collected. We categorize the questions
into three broad headings, namely, Actual Realized Compliance,
Appropriateness of Violation of Safety Norms, and Agreeableness with
Government Performance; taken together, they offer a complete sense of
participants’ compliance with safety guidelines. The definitions are
given in Table 1. Besides, we randomize the order of whether a partic-
ipant is shown the prediction part first or the survey part first to mitigate
experimenter demand effects. The overview of the experimental design
appears in Table A6.

In sum, the experimental design allows us to answer the three main
research questions in this study: 1) Do people exhibit EGPB in the
context of the COVID-19 spread? 2) Is this bias a significant predictor of
lax attitude towards COVID-19 related safety norms? 3) Can a simple
nudge in the way the data is presented help mitigate the bias?

3. Results

Our first set of results documents the existence of the afore discussed
prediction biases. Fig. 1A presents the number of COVID-19 cases in
early and later phases, for all the five weeks, along with the mean,
median, and interquartile range of the predicted number of cases in
Weeks 4 and 5, averaged over all the four countries. We present the
country-specific predictions on the log-transformed data for each of the
four countries separately in Fig. 1B. The mean prediction in the early
phase panel of Fig. 1 exceeds the actual number because of outliers.
Except for the one case, the medians and the means of the predictions lie
well below the actual numbers of COVID-19 cases. To avoid outlier-
driven distortions, we rely on the median measure in all subsequent
analyses. The actual numbers, averaged across all four countries, are
1540 in Week 4 and 9189 in Week 5 for the early phase; the respective
medians are 521 and 1081. The corresponding numbers in Week 4 and
Week 5 are 17450 and 55934, while the median predictions are 9500
and 18000, respectively.

As discussed earlier and shown in Figure Al, the underlying data
generating process for the actual spread of COVID-19 is convex. An
interesting question is, is the prediction model used by the median in-
dividual also convex, or is it linear? To test this, we compute the ratio of
the slopes of the line segment connecting N4 and N5 and that connecting

N3 and N4 (i.e., n= %). We compare 1 with the ratio of slopes of
the line segment

N3 and P4 (i.e.7 p= M)

connecting P;and Ps and that connecting

Sope(N-Py) Column (3) in Table A2 reports 5 — p. We

test H, : §— p = Oand find it is significantly different from zero for all
the countries, for both phases (except in one case). This finding indicates
that the underlying prediction model used by the median individual is
significantly “less convex” than the underlying data generating process.
We further test if the participants’ prediction model is linear by
comparing slopes of the individual linear pieces connecting N3, P4, Ps

with the slope of the best linear fit of N1, N2, N3 ($).The null is that the
piece-wise slopes, N3, P4 and P4, Psre indeed equal to the slope of the
linear fit. The non-parametric equality-of-median-test rejects the null.
Further, we statistically compare the Euclidian distance between the
median prediction and the linear fit, and the median prediction and the
actual data. We find the prediction model to be significantly closer to the
linear fit. These results are not reported but are available upon request.

How does the “degree of convexity” of the predictions vary with
stages of the disease a participant witnesses? We find that participants
from Stage 3 countries (relative to those from Stages 1 and 2), for all our
bias measures, make predictions that are closer to the best-fit linear
model, while predictions of those from Stage 1 countries are closer to the
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Fig. 1. Actual and predicted number of COVID-19 cases pooled across four countries. Note. Panel A above plots the actual number and the predictions of COVID-19
cases in the linear scale, while Panel B plots the same data on a logarithmic scale. Both the panels use data pooled across the four countries. The predictions for early
(later) phase cases are given on the left (right). Each graph presents participants’ 25th percentile, mean, median, and 75th percentile prediction of the number of

COVID-19 cases on Week 4 and Week 5.

actual, exponential data. This has the prima facie implication that
people in advanced stages of the disease outbreak may perceive the
growth path as less, not more, “convex”.

We carry out the rest of the analysis on log-transformed data with
median as the primary statistic. In Fig. 2, we analyze whether differences
between predictions and actual numbers, when transformed as biases,
are significantly different from zero. Median Biass3 is positive and
significantly different from zero at 0.42 (Wilcoxon signed-rank test,
p<0.01), meaning the median participant exhibits 42% under-
prediction. Similarly, Biasszand the AverageBias are positive and signif-
icant at 0.46 and 0.44(Wilcoxon signed-rank tests, ps < 0.01).The par-
ticipants exhibit substantial prediction bias. Interestingly, Biasasis
significantly smaller than Biass; (non-parametric median test, p < 0.01),

suggesting that the size of the bias increases with time. This is a
consequence of the fact that people use a prediction model that has a
smaller “degree of convexity” than the actual growth path of the disease.
How does EGPB vary with gender and education levels? While we do not
find any evidence of gender differences in EGPB, we find, on average,
those with education levels bachelors or above are significantly more
biased than those with lower education levels (t-test, p = 0.03). The
main focus of the study is on EGPB arising from the incentivized pre-
diction, but we also elicit participants’ beliefs about the number of
COVID-19 cases on the day of the experiment in their own country and
their prediction about the same seven days hence. As Fig. 2 indicates,
participants’ (non-incentivized) prediction about the number of cases in
their own country, seven days hence, reveals a 49% under-prediction.



R. Banerjee et al.

NAANNE

Bias43 Bias53
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L
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Early Phase Later Phase

Fig. 2. Prediction bias. Note. The figure reports the median values of different
measures of biases. The error bars represent the 95% confidence intervals from
Kendall’s 1 test for the hypothesis that the median is zero.

Our Amazon-mTurk participant pool comprises people from 43
countries from different stages of COVID-19 spread at the time of data
collection, which gives us a unique opportunity to examine how EGPB in
our sample compare across people from countries at different stages of
the disease. Fig. 3 compares the biases across Stage 1, Stage 2, and Stage
3, and separately plots the regression coefficients of the stage dummies
for each definition of bias. While the incentivized-bias measures are not
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different between Stage 2 and Stage 1, the OwnBias is significantly
higher in Stage 2 than in Stage 1 (p = 0.02). Fig. 3 shows that Biasss,
Biasss, AverageBias and OwnBiasare significantly higher in Stage 3 than
in Stage 1 (ps < 0.05 for all the specifications). The pattern is less clear
wh Stage 3 is compared with Stage 2, but AverageBias is significantly
higher in Stage 3 compared to Stage 2 in the most stringent specification.
These results suggest that biases, as per our different measures, are
considerably higher for countries at Stage 3 than those in Stage 1 or 2.
Relatedly, participants from Stage 3 countries use a prediction model
that is closer to the best-fit linear model than the actual, exponential
data relative to those from Stages 1 and 2. (The results, not reported, are
available upon request.) Table A3 reports estimates and standard errors.
The regression results in Model (2), (4), and (6) control for age, gender,
health condition, health insurance, education level, income, and log
number of reported COVID-19 cases as of March 21.

Having established the presence of a significant EGPB, we ask if it is a
significant predictor of near-contemporaneous (one-week past)
compliance with safety measures. We create compliance indices based
on responses to a menu of questions asked of the participants. Appendix
2 presents the entire experimental protocol, along with the survey
questions used. We categorize the questions into three indices: Actual
Realized Compliance, Appropriateness of Violation of Safety Norms, and
Agreeableness with Government Performance. The indices are con-
structed by taking the first principal component of the relevant set of
variables. Table 1 lays out the summary statistics of the compliance
indices. Next, we regress these indices on our EGPB measures. Each
column of Fig. 4 corresponds to each of the compliance indices and plots
the estimated regression coefficient for each definition of prediction
bias. Models 1 and 2 run the regression without and with control
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Fig. 3. Variation of prediction bias between countries at different stages of COVID-19 spread. Note. This figure plots differences in median EGPB across countries in
Stages 1, 2, and 3 of COVID-19 spread for each of the four measures of bias. Model 1 (Model 2) shows the pairwise differences in EGPB between the three stages
estimated from a median regression without (with) controls. The control variables include age, gender, health, health insurance, education level, income, treatment
and log of reported COVID-19 cases as on March 21 (fixed for each country). The specification in Model 2 for OwnBias in (iv), additionally controls for an individual’s
information bias. The error bars show 95% confidence interval. *p < 0.10, **p < 0.05, ***p < 0.01.
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Fig. 4. EGPB and COVID-19 compliance. Note. This figure plots the coefficients estimated from OLS regressions between EGPB and compliance, measured via three
indices: Actual realized compliance, Appropriateness of violation of safety norms, and Agreeableness with government performance. Model 1 (Model 2) shows the
estimates from specification without (with) controls. The control variables include age, gender, health, health insurance, education level, income, perceived
effectiveness of the safety measures, treatment, and log of reported COVID-19 cases as on March 21 (fixed for each country). The specification in Model 2 for OwnBias
in (iv), additionally controls for an individual’s information bias. *p = 0.11, *p < 0.10, **p < 0.05, ***p < 0.01.

variables, respectively. As the figure illustrates and Table A4 confirms,
EGPB is a negative predictor of Actual Realized Compliance, indicating
that the higher the bias, the lower is the self-reported measure of
compliance with safety norms. Note, Actual Realized Compliance is an
index constructed from the following seven components: frequent
washing of hands, use of sanitizers, staying at home, avoiding social
gathering, maintaining a meter distance, minimizing contact, and
wearing masks. To delve deeper, we further regress EGPB on each of
these components and plot the coefficients in Figure A3 in the Appendix.
The results show that EGPB is negatively correlated with Staying at
home, Minimizing contact, and Avoid social gathering; however, sur-
prisingly, it is positively correlated with Wearing masks. The latter may
be a result of the combination of our finding that staying at home in-
creases with EGPB and the near-universal policy mandate on mask
usage. In other words, those who are disinclined to stay at home may be
more likely to require a mask to access public transport or public places.

A higher EGPB also predicts a higher Appropriateness of Violation of
Safety Norms as the plotted coefficients in the second column of Fig. 4
reveals. This means an individual who shows EGPB is also likely to view
violations of safety norms, such as the avoidance of public gatherings,
working from home, and so on, as not very alarming. Finally, EGPB is
also a significant predictor of Agreeableness with Government Perfor-
mance, implying, higher bias is associated with greater satisfaction with
the performance of the government concerning the measures taken vis-
a-vis COVID-19. The regression results appear in Table A4, where col
(2), (4), and (6) controls for age, gender, health, health insurance, ed-
ucation level, income, treatment, and log of reported COVID-19 cases as
of March 21. In addition to these variables, the results for OwnBias also
controls for own-country information bias, defined as the difference

between the log of the actual and perceived number of COVID-19 cases
on the day of response in one’s own country.

Our analysis, thus far, suggests that people make predictions about
the disease using a model that is substantially less convex than the true
data generating process. This creates significant prediction biases, which
in turn, are significantly associated with non-compliance with safety
measures. Given this link, we ask: could a simple, perceptual nudge help
reduce the prediction bias? To that end, we use a randomized experi-
mental design in which some randomly chosen participants are shown
Ny, N3, N3in terms of raw numbers, while the rest are shown the same in
graphical form.

The median biases across graphical and numerical treatments are
presented in Fig. 5. Presentation of the past data in a numerical form
significantly decreases the bias, however defined, relative to the
graphical representation. The treatment effects from ordinary least
square regressions are reported in Table A5. This result holds with and
without a set of controls. The treatment effect is negative and significant
at the 1% level when the regression controls for age, gender, health,
health insurance, education level, and log number of COVID-19 cases as
of March 21 (fixed for each country). The regressions, when separately
run for the early and later phases, reveal the same pattern. We do not
find any heterogeneity in the additional robustness checks we run to see
if the treatment effect varies with age, education levels, and phases.
These are not reported in the paper but are available on request.

4. Discussion

The critical question, of course, is why do we see early-stage par-
ticipants show more EGPB than late-stage ones (see Fig. 3)? We
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Fig. 5. Prediction bias across treatments. Note. Participants are randomized
into graphical and numerical treatments, where they are shown the data from
Weeks 1, 2, and 3 in the form of raw numbers and graphs, respectively. The
figure plots the median prediction biases for the graphical and numerical
treatments. The error bars represent the 95% confidence intervals from a
Kendall’s Tau test for the hypothesis that the median is zero. *p < 0.10, **p <
0.05, < 0.01.

speculate there are two opposing, informational forces at work. One,
people in late-stage countries may know more about the underlying data
generating process, and that may reduce their EGPB. Two, people in
early-stage countries may be overly (possibly, irrationally) scared about
the disease (presumably due to limited and/or incorrect information),
and that makes the disease hyper salient in their minds. One possible
explanation on the flip side is behavioral or caution fatigue. In our
setting, this possibility could afflict people who diligently followed
safety protocols early on, got tired or stressed after a while, and subse-
quently resumed their pre-COVID course of life (Brooks et al., 2020).
This phenomenon can raise EGPB in late-stage countries. Which of these
two forces dominate is ultimately an empirical question. Surprisingly, it
turns out that, in our sample, the second force dominates, meaning
people in later-stage countries demonstrate larger EGPB relative to those
at early stages.

Do we see evidence of such behavioral fatigue? While we do not have
a direct measure of behavioral fatigue, we have a proxy relating to
awareness: information bias, the difference between the log of actual
and log of the perceived number of cases. It turns out participants from
countries in stage 1 and 2 have significantly lower information bias
relative to those from countries in stage 3 (t-test ps < 0.01). This evi-
dence is merely suggestive that behavioral fatigue or caution fatigue
may have affected the later stage countries, which may, in turn, have led
to the larger EGPB observed.

Of course, the aforementioned second force may not always domi-
nate the first one. For instance, if a sustained public health campaign
manages to maintain the salience of the disease in late-stage countries,
EGPB in those countries will likely be lower. Relatedly, it is well known
that, often in a pandemic, the infection spread comes in waves. We
conjecture that EGPB will be lower in subsequent waves if there is a
sudden spike in infections, and the disease returns to becoming salient.

A key strength of our research, one that differentiates it from existing
work, is our use of incentivized prediction elicitation. Another is that
unlike existing computations of prediction bias using false information,
we show actual data from COVID infections and detect prediction bias,
not just a mathematical inability to compute exponential progression. In
Fetzer et al. (2020), for example, “participants were instructed to as-
sume that on day 1, one person has the fictitious disease. Furthermore,
they were told to assume that each day a newly infected person infects
two healthy people and then stops being contagious. Participants were
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further told that on day 2, 3 people would be infected by the disease as
the person who had the disease on day 1 spread it to two other people on
day 2. Participants were then asked to predict the count of total people
infected with the fictitious disease on days 5, 10, and 20.” In our tasks,
participants did not have to speculate. The numbers on which prediction
tasks were based were publicly available, and participants were
informed that the researchers knew the actual numbers. Also, the timing
of our survey was crucial: we wanted to know if the prediction biases
changed in real-time as a country moved from under a hundred in-
fections to over a thousand infections. By now, most countries have
moved on to Stage 3, but our data on biases from earlier stages may be
useful for a general understanding of the path of future epidemics. The
fact we detect EGPB, not only in early-stage countries but also in
countries in the thick of the pandemic, suggests such biases can help
explain the dramatic spike in cases in some countries.

5. Limitations

A few caveats are in order. First, there are well-understood problems
(representativeness and external validity) of conducting global surveys
on Amazon’s MTurk that are pertinent to our study. In our defense,
though, these problems are present in most online surveys that re-
searchers are forced to rely on while the pandemic rages on. Not to
mention, arguably, the quality of self-report data collected through
online platforms is superior to those obtained through face-to-face in-
terviews, as there is no social desirability confounds in the former. Of
course, the MTurk environment is not perfect; for example, it cannot
capture the importance of powerful emotions such as shame or guilt
(from, say, not wearing a mask) on compliance behavior. We contend
that such measurement errors in our compliance measure are unlikely to
affect the high and the low EGPB participants differentially.

It is interesting to note that EGPB has a flavor similar to the familiar
Dunning-Kruger effect (Kruger and Dunning, 1999). The
Dunning-Kruger effect captures the tendency for some people, mostly
less competent, to overrate their skill, expertise, and performance and
has been found to have significant public health implications, including
attitude towards vaccination (Motta et al., 2018). By contrast, EGPB is
concerned with a bias in judging a data generating process exogenous to
the person being surveyed, one they had no hand in generating. It does
not concern itself with the participants’ judgment about themselves,
their ability, or their power to judge their ability. It is, of course, possible
that the two biases may be present in the same person — a connection our
study was not designed to explore.

Our work was focused and designed to detect prediction biases and
to see if they were significant predictors of compliance behavior (Fig. 4).
It was not designed to make definitive causal statements connecting
prediction bias or the nudge with compliance. In particular, one asso-
ciation is a bit perplexing: why do participants from countries at a later
stage of the disease show more substantial prediction biases and less
“convexity”. We provide suggestive evidence this finding may be due to
“behavioral fatigue”. It is reassuring that such prediction biases are
causally reduced by health communication via raw as opposed to
graphical data. This point suggests that data shown via raw numbers
make quite an impact on people’s risk perception and should be pre-
sented alongside familiar “flatten-the-curve” style graphics. This idea is
likely true of any COVID-related data, say death or recovery rates, if they
follow paths similar to that of infections. A related limitation of our
study is the inability to answer the question, are people when presented
with numeric (as opposed to graphical) data more likely to comply with
safety protocols in the future? The issue again is, even though we
observe EGPB decreasing in the raw-numbers treatment, that reduction
does not causally imply higher compliance, since our compliance data
capture past behavior.
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6. Conclusions

Our study documents evidence of exponential-growth prediction bias
in the context of the spread of COVID-19. The results show that such
biases are greater in the late-stage countries than in the early stage
countries. We further show that such biases are negatively associated
with WHO recommended safety compliance measures. A simple nudge
related to presentation of data on COVID-19 positive cases in the form of
numbers decrease EGPB relative to graphical presentation.

Future work should examine whether simple nudges can reduce EGB
and improve compliance. Illustrations of such nudges may be found in
Banerjee and Majumdar (2020) and Lammers et al. (2020). If successful,
they can generate enormous welfare gains and produce transformative
implications for social science-based, medical research, and health
communication. These gains can come in the form of infections and
fatalities avoided. In turn, it may spur business investment, boost
aggregate demand and hiring, healing lives, and preserving livelihoods
in the process. To get a firmer sense of the magnitude of these gains
would require a structural model with optimizing agents who make
compliance decisions given their budgets and the infection risk they
perceive (see for instance, Bhattacharya et al., 2020). While such a task
is outside our current scope, it is worthy of future attention.
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