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A B S T R A C T   

Objective: We define prediction bias as the systematic error arising from an incorrect prediction of the number of 
positive COVID cases x-weeks hence when presented with y-weeks of prior, actual data on the same. Our 
objective is to investigate the importance of an exponential-growth prediction bias (EGPB) in understanding why 
the COVID-19 outbreak has exploded. To that end, our goal is to document EGPB in the comprehension of disease 
data, study how it evolves as the epidemic progresses, and connect it with compliance of personal safety 
guidelines such as the use of face coverings and social distancing. We also investigate whether a behavioral 
nudge, cost less to implement, can significantly reduce EGPB. 
Rationale: The scientific basis for our inquiry is the received wisdom that infectious disease spread, especially in 
the initial stages, follows an exponential function meaning few positive cases can explode into a widespread 
pandemic if the disease is sufficiently transmittable. If people suffer from EGPB, they will likely make incorrect 
judgments about their infection risk, which in turn, may lead to reduced compliance of safety protocols. 
Method: To collect data on prediction bias, we ran an incentivized, experiment on a global, online platform with 
participation from people in forty-three countries, each at different stages of progression of COVID-19. We also 
constructed several indices of compliance by surveying participants about their frequency of hand-washing and 
use of sanitizers and masks; their willingness to pay for masks; their view about the social appropriateness of 
others’ behavior; and their like/dislike of government responses. The prediction data was used to construct 
several measures of EGPB. Our experimental design permits us to identify the root of under-prediction as EGPB 
arising from the general tendency to underestimate the speed at which exponential processes unfold. 
Results: Respondents make predictions about the path of the disease using a model that is substantially less 
convex than the actual data generating process. This creates significant EGPB, which, in turn, is significantly and 
negatively associated with non-compliance with safety measures. The bias is significantly higher for respondents 
from countries at a later stage relative to those at an early stage of disease progression. A simple behavioral 
nudge that shows prior data in terms of raw numbers, as opposed to a graph, causally reduces EGPB. 
Conclusion: Behavioral biases concerning the comprehension of disease data are quantitatively important, and act 
as severe impediments to effective policy action against the spread of COVID-19. Clear communication of future 
infection risk via raw numbers could increase the accuracy of risk perception, in turn, facilitating compliance 
with suggested protective behaviors.   

1. 1 Introduction 

The COVID-19 outbreak is a global pandemic, adversely affecting the 
lives of millions of people around the world. Not a lot is yet known about 
the virus and how it operates. With considerable uncertainty about the 
arrival of a vaccine, there is complete agreement on the need for people 

to strictly follow WHO guidelines regarding frequent washing of hands, 
use of hand sanitizers and face masks, social distancing, and if needed, 
self-quarantine. Of course, unsurprisingly, not everyone complies with 
these guidelines, at least not with the seriousness with which they need 
to be followed (Cummins, 2020; Lunn et al., 2020; Pinsker, 2020; van 
Bavel et al., 2020). This sort of (non)compliance is an active decision 
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predicated upon, at least, one influential variable, the accuracy with 
which an individual perceives her likelihood of getting infected (loosely, 
her risk perception). All else the same, if her risk perception is high, she 
is more likely to show compliance. This point was noted in a classic 
article about the 1918 influenza pandemic in Science “People do not 
appreciate the risks they run” (Soper, 1919). 

A large body of work in behavioral psychology and economics has 
documented how the accuracy of risk perception may be compromised 
by a whole host of behavioral biases (such as optimism, overconfidence, 
and so on). This study focuses attention on one such bias: exponential- 
growth prediction bias (EGPB), the “pervasive tendency to linearize 
exponential functions when assessing them intuitively,” which leads to 
“a systematic tendency to underestimate a future value given a present 
value” (Goda et al., 2019; Stango and Zinman, 2009). Existing analysis 
of the exponential growth bias relies on quantifying the difficulty most 
people have with compound interest rates (Levy and Tasoff, 2016). 
General difficulty with discriminating linear from non-linear processes 
is documented in Cordes et al. (2019) and shows up even as early as in 
pre-kindergarten students (Ebersbach et al., 2010). Wagenaar and 
Timmers (1979) make an early and influential attempt at understanding 
the relative importance of numerical versus non-numerical (e.g., 
graphical) means of data delivery and its effect on the perception of 
exponentiality. Why is a study of this bias critical to our understanding 
of the current pandemic? Prior epidemiological studies (see Keeling and 
Rohani (2011); Thomas (1996), and more recently, Li et al. (2020) for 
Wuhan, China) document how the spread of infectious diseases, espe
cially in the initial stages, often follows an exponential function. This 
information means a few positive cases, initially can explode into a 
pandemic if the disease is sufficiently contagious. To illustrate this point 
in the current context, focus attention on Figure A1, which plots the time 
trajectory of reported cases for four countries, Germany, the United 
States, France, and Spain. In each case, it is apparent that the growth 
trajectory is exponential. But do humans see it that way? Pinsker (2020) 
argues, no: “[t]he human brain can have trouble keeping pace with such 
rapid growth” and that “people tend to underestimate the speed at 
which exponential processes—such as a disease outbreak—unfold.” 
This, in other words, is EGPB, a behavioral failure to “read the tea 
leaves” correctly, which may lead to inaccurate infection risk percep
tion. Ours is a first attempt at documenting EGPB in the comprehension 
of disease data, to study how it evolves as the epidemic progresses, and 
to connect it with compliance with personal safety guidelines. 

We define prediction bias as the systematic error arising from under 
or over -prediction of the number of COVID-19 positive detections x- 
weeks hence when presented with y-weeks of prior, actual data on the 
same. We call it EGPB if the actual data follows an exponential function, 
and the predictions fail to appreciate the extent of the true convexity. 
Our analysis works off the premise that those who suffer from EGPB will 
significantly underestimate how quickly a disease spreads, fail to 
perceive the onrushing infection risk, and hence, show low compliance 
with safety measures. 

We use data from an online experiment to investigate three pressing 
questions of significant policy relevance:  

1. How much of individual-level compliance with WHO guidelines can 
be explained by the bias associated with predicting the number of 
COVID-19 cases, after controlling for demographic and cultural 
variables?  

2. We identify three distinct stages a country can be in: Stage 1 with less 
than 100 positive detections, Stage 2 with between 100 and 999, and 
finally, Stage 3 with 1000 or more as of March 21, 2020. Does EGPB 
diminish as a country moves through different stages of the disease?  

3. Does a simple nudge in terms of how disease data is presented help 
mitigate EGPB? 

We ran an incentivized, data-collection survey on Amazon’s Me
chanical Turk, an online platform, with participation from people in 43 

countries. The survey is not nationally representative, but since the 
samples were collected on the same platform, they permit a relatively 
clean comparison. More importantly, MTurk facilitates access to a global 
pool of participants who reside in countries at different stages of the 
disease. This approach provides a unique opportunity to study how 
EGPB may vary with the stages of the disease progression. Examples of 
Stage 1 countries in our sample include Netherlands, South Africa, and 
Bangladesh; Stage 2 includes India, Mexico, and Turkey; and Stage 3 
includes U.S., Italy, and Germany. The list of countries and the corre
sponding stages are reported in Table A1. 

Besides collecting data on prediction bias, we also asked participants 
about their frequency of handwashing and the use of sanitizers and 
masks, their willingness to pay for masks, their view about the social 
appropriateness of others’ behavior; and their like/dislike of govern
ment responses. Other demographic information was collected as well. 
Using this information, we generated composite indices measuring in
dividual attitudes regarding their i) own compliance, ii) appropriateness 
of violation of WHO measures, and iii) satisfaction with the govern
ment’s performance. Taken together, these indices give us a broad sense 
of “compliance”. The prediction data was used to construct several 
measures of EGPB and featured alongside the compliance measure as 
regressors in a multivariate regression model. 

Our main results are as follows. First, we document the presence of 
EGPB as it pertains to forecasting the x weeks-ahead path of the disease. 
Second, the “degree of convexity” reflected in the predicted path of the 
disease is significantly and substantially lower than the actual path. (We 
use the term “degree of convexity” to mean the rate of change of the 
gradient of the data function.) This finding connects with the first result: 
the source of the prediction bias is the “lower convexity” of the mental 
model used. Pennycook et al. (2020) found that overall cognitive so
phistication (the composite of four measures) was a strong negative 
predictor of COVID-19 misperceptions. To the extent discriminating 
between linear and exponential processes is correlated with cognitive 
sophistication, our results are in sync with their findings. Strikingly 
though, their measure of cognitive sophistication was not a reliable or 
consistent predictor of COVID-19 risk perceptions or behavior change 
intentions. Similarly, Stanley et al. (2020) found that “individuals less 
willing to engage in effortful, deliberative, and reflective cognitive 
processes were […] less likely to have recently engaged in 
social-distancing and handwashing.” Third, EGPB is significantly lower 
for participants from countries at an early stage relative to those at a 
later stage of the disease. Fourth, we find our measures of EGPB are 
significant predictors of compliance: higher bias is associated with lower 
own safety compliance, higher approval of a violation of safety mea
sures, and greater satisfaction with the government’s policy response to 
the pandemic. 

Fifth, we find that providing disease trajectory-information using y- 
weeks prior data in the form of raw numbers causally reduces EGPB more 
than delivering the same via a graph. Like us, Wagenaar and Timmers 
(1979), and more recently, Levy and Tasoff (2017), find “exponential-
growth bias is unlikely to be eliminated by simple “nudges” such as a 
graphical intervention.” 

How do our results connect to the literature? Our finding that EGPB 
is a significant predictor of compliance is an important, practical 
contribution to discussions of health policy (Bischoff et al., 2000; Call
aghan T et al., 2019; Lyons et al., 2020). That EGPB in our sample is 
significantly lower for participants from countries at an early (as 
opposed to a later stage) stage of the disease suggests the bias is stub
born; it does not go away once the raw numbers become bigger. If the 
bias persists, and people comply less and less, the disease spreads faster, 
and a vicious cycle is created. In this sense, our work showcases a per
sonal, psychological dimension of epidemiology, one that can link itself 
on to the forces of social epidemiology (Donovan and Blake, 1992; 
Kawachi and Subramanian, 2018) and precipitate terrible outcomes. 
Finally, our demonstration of the fact that data presented with raw 
numbers (as opposed to graphs) causally reduces EGPB contributes to 

R. Banerjee et al.                                                                                                                                                                                                                                



Social Science & Medicine 268 (2021) 113473

3

the field of health communication. 
There is a small yet burgeoning literature studying the role of biases 

in the context of the COVID-19 outbreak. Our study was designed 
concurrently and independently of this literature and is closest in spirit 
to an important contribution by Wise et al. (2020) who, like us, use an 
online sample (but only of U.S. households) between March 11, the day 
when the WHO declared COVID-19 a pandemic, and March 16. Their 
primary focus is on deciphering to what extent individuals are aware of 
their risk of contracting the disease, their chance of passing it on, and the 
extent to which their perception of risk predicts protective behaviors. 
We do not directly elicit peoples’ risk perception as it may be contam
inated by the simultaneous presence of multiple, cognitive biases (such 
as optimism or overconfidence; see Wise et al. (2020) and Stanley et al. 
(2020)). Our measure of EGPB is, arguably, better. First, we use actual 
data from a real, unnamed country, one different from the one where the 
subject resides to avoid confounds such as local knowledge, perceived 
efficiency of administration, etc. in the estimate of EGPB. Our subjects, 
instead, make predictions based on data from a country other than that of 
their residence. Also, our measures of EGPB are composite in nature. 
While composite, summary measures are useful to policymakers, the 
benefit of the granular measures in Wise et al. (2020), capturing own 
risk of getting infected versus the risk of infecting others, is also high. 
Second, our measure of perception bias, EGPB, is rooted in the linear vs. 
exponential heuristic literature with a clear theoretical underpinning. 
And third, our measures of prediction bias are less likely to be “pure 
noise” since they are the result of an incentivized elicitation process. 

A related paper by Fetzer et al. (2020) is devoted to unearthing 
prediction bias in the context of a fictitious disease over several days 
under several formulaic scenarios. We depart from their work in several 
ways. First, our design is not aimed at understanding whether partici
pants can “do the math” and possess enough cognitive ability to figure 
out where a hypothetical series is headed. Instead, it seeks to detect bias 
in realistic environments with actual data on the disease growth, where 
general cognitive sophistication may play a role (Pennycook et al., 2020; 
Stanley et al., 2020). Second, we go beyond detecting exponential 
growth prediction bias and identify how the bias can affect an important 
health outcome, namely, compliance behavior. Third, our results sug
gest participants do not seem to have a linear model in mind, but a 
model whose curvature is less than that of the growth path of the actual 
data. 

A final note on our contribution to the literature is in order. Extant 
macro-finance research on EGPB focuses exclusively on the inability of 
laypeople to comprehend the power of compound interest rates and its 
implication on lower savings, lower net worth, and so on. Our contri
bution, focused entirely in the health/epidemiology domain, is to show 
that the inability to foresee the future path of the disease correctly can 
have negative implications for compliance and that, in and of itself, may 
raise the future growth rate of the disease. 

2. Method 

We show our participants data on the actual number of COVID-19 
(same as in Figure A1 from four countries majorly affected by the 
virus as of March 21, 2020, namely, Germany, the U.S.A., France, and 
Spain. In our experiment, participants perform four prediction tasks 
using data from two randomly chosen countries out of these four; 
country names are not revealed. More precisely, if a participant belongs 
to any of the four countries, say X, she is not be shown numbers from X; 
instead, she is shown numbers from two countries randomly chosen 
from the set W, Y, and Z. This approach ensures any prior information 
she has about disease progression in her country, X, does not contami
nate her prediction. This strategy also prevents other confounds (such as 
perceived efficiency of the government and quality of general health 
care infrastructure) in one’s country to enter the prediction calculus. In 
each task, they are shown three, actual weekly data points of COVID-19 
cases. Subsequently, they are asked to predict the number of cases for 

Weeks 4 and 5, the actual numbers of which are known to us, the re
searchers. This means, we, the researchers, have full knowledge of the 
true, underlying data-generating process and participants know that we 
know. Participants are paid $0.55 as a participation fee, and the pre
diction task is accuracy-rewarding: two of the four prediction tasks are 
randomly picked, and if the participant’s prediction is within 5% of the 
actual number, she is paid an additional $0.25 for that task. Participants 
can earn a maximum of $1 for the entire experiment, which lasted for 
about 7 min. The research was conducted through oTree, a web-based 
experimental platform (Chen et al., 2016). 

Formally, denote the actual and the predicted number of COVID-19 
cases in Week i by Ni and Pi, respectively, for i = 1, 2, 3, 4, 5. As noted 
earlier, the participants observe three data points on the number of 
COVID-19 cases in three consecutive weeks (N1, N2, N3) and are asked 
to make their predictions for Week 4 and Week 5. Since the actual 
number of infected individuals at any point is unknown, we go by the 
official statistics on reported cases. Interestingly, respondents in our 
sample report that their belief about the true infection rate is, on 
average, 10% higher than the official statistics. To make sure the biases 
are comparable, we represent them relative to the maximum possible 
error a participant can make. For example, the bias for Week 4 is defined 
as the difference between the actual number (N4)and the predicted 
number in Week 4 (P4), relative to the difference between the actual 
number in Week 4 (N4) and the actual number in Week 3 (N3). In other 
words, the actual prediction error relative to the maximum possible 
error in Week 4 may be interpreted as the Bias for Week 4 with respect to 
Week 3 i.e., Bias43 ≡ N4−P4

N4−N3
. Similarly, we define Bias for Week 5 with 

respect to Week 3 as Bias53 ≡ N5−P5
N5−N3

. Finally, we analyze the results in 
terms of Biasavg, which is the average of Bias43 and Bias53. In addition to 
the afore discussed measures of bias arising from the incentivized pre
diction task, we also obtain a measure of bias relating to one’s ability to 
predict the actual number of cases in one’s country a week hence – 
OwnBias. For a summary of the different definitions, refer to Table 1. 

We survey three parts, restricting each piece to only those partici
pants who are registered in countries belonging to a particular stage. 
MTurk facilitates participation restriction based on specific geograph
ical criteria, the I.P. address, and the initial registration information. 
Since our inferences are at a stage-level, we have no country-specific 
restrictions within each stage. Consequently, while the number of par
ticipants in each stage is balanced, the number of participants from 
countries within a stage is not. 

Notice, from Figure A1, the early phases of the spread of COVID-19, 
is described by notably less convexity than the later phases. To under
stand whether prediction accuracy varies with phases of the disease, we 
implement a within-subject variation in the four prediction tasks. In two 
consecutive tasks, the participants are shown data either from the early 
or late phases from two randomly selected countries. Asking them to 
respond to both early and later phases ensures that their home country 
experience is mimicked in at least one of the tasks. If, in the first two 
tasks, a participant is shown data from two countries at an early phase, 
in the next two tasks, they are shown numbers from the later phases of 
the same two countries. 

We implement this design so that we can explore whether the nature 
of representation (graphical or numeric) of the actual data helps miti
gate EGPB. To that end, some participants are randomly shown the exact 
number of COVID-19 cases graphically (as is the dominant form of 
representation of the data in print or online media). In contrast, others 
are shown the same in terms of raw numbers. We implement this method 
through a between-subject design, which allows us to estimate the causal 
effect of the nudge in mitigating the EGPB. Screen 5 of the experimental 
instruction given in online Appendix 2 presents an example of the two 
forms of data representation. 

Then, we administered a short survey to capture participants’ pro
tection behavior and compliance with the WHO guidelines. The survey 
details, along with the experimental instructions, are included in 
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Appendix 2. Participants are asked to report their frequency of hand
washing, use of sanitizers and masks, their opinion about the appro
priateness of public gatherings, their perception about the desirability 
and efficacy of their own government’s responses, and so on. Necessary 
demographic information is also collected. We categorize the questions 
into three broad headings, namely, Actual Realized Compliance, 
Appropriateness of Violation of Safety Norms, and Agreeableness with 
Government Performance; taken together, they offer a complete sense of 
participants’ compliance with safety guidelines. The definitions are 
given in Table 1. Besides, we randomize the order of whether a partic
ipant is shown the prediction part first or the survey part first to mitigate 
experimenter demand effects. The overview of the experimental design 
appears in Table A6. 

In sum, the experimental design allows us to answer the three main 
research questions in this study: 1) Do people exhibit EGPB in the 
context of the COVID-19 spread? 2) Is this bias a significant predictor of 
lax attitude towards COVID-19 related safety norms? 3) Can a simple 
nudge in the way the data is presented help mitigate the bias? 

3. Results 

Our first set of results documents the existence of the afore discussed 
prediction biases. Fig. 1A presents the number of COVID-19 cases in 
early and later phases, for all the five weeks, along with the mean, 
median, and interquartile range of the predicted number of cases in 
Weeks 4 and 5, averaged over all the four countries. We present the 
country-specific predictions on the log-transformed data for each of the 
four countries separately in Fig. 1B. The mean prediction in the early 
phase panel of Fig. 1 exceeds the actual number because of outliers. 
Except for the one case, the medians and the means of the predictions lie 
well below the actual numbers of COVID-19 cases. To avoid outlier- 
driven distortions, we rely on the median measure in all subsequent 
analyses. The actual numbers, averaged across all four countries, are 
1540 in Week 4 and 9189 in Week 5 for the early phase; the respective 
medians are 521 and 1081. The corresponding numbers in Week 4 and 
Week 5 are 17450 and 55934, while the median predictions are 9500 
and 18000, respectively. 

As discussed earlier and shown in Figure A1, the underlying data 
generating process for the actual spread of COVID-19 is convex. An 
interesting question is, is the prediction model used by the median in
dividual also convex, or is it linear? To test this, we compute the ratio of 
the slopes of the line segment connecting N4 and N5 and that connecting 

N3 and N4

(

i.e., η ≡
slope(N4 ,N5)

slope(N3 ,N4)
). We compare η with the ratio of slopes of 

the line segment connecting P4 and P5 and that connecting 

N3 and P4

(

i.e., ρ ≡
slope(P4 ,P5)

slope(N3 ,P4)

)

Column (3) in Table A2 reports η − ρ. We 

test Ho : η − ρ = 0and find it is significantly different from zero for all 
the countries, for both phases (except in one case). This finding indicates 
that the underlying prediction model used by the median individual is 
significantly “less convex” than the underlying data generating process. 
We further test if the participants’ prediction model is linear by 
comparing slopes of the individual linear pieces connecting N3, P4, P5 

with the slope of the best linear fit of N1, N2, N3 (β̂).The null is that the 
piece-wise slopes, N3, P4 and P4, P5re indeed equal to the slope of the 
linear fit. The non-parametric equality-of-median-test rejects the null. 
Further, we statistically compare the Euclidian distance between the 
median prediction and the linear fit, and the median prediction and the 
actual data. We find the prediction model to be significantly closer to the 
linear fit. These results are not reported but are available upon request. 

How does the “degree of convexity” of the predictions vary with 
stages of the disease a participant witnesses? We find that participants 
from Stage 3 countries (relative to those from Stages 1 and 2), for all our 
bias measures, make predictions that are closer to the best-fit linear 
model, while predictions of those from Stage 1 countries are closer to the 

Table 1 
Summary statistics.  

Variable Definition Median Mean 
Absolute 
Deviation 
from Median 

Bias43 Difference between the log of 
actual and predicted number 
in Week 4, relative to the 
change in log of actual 
number of COVID-19 cases 
between Week 3 and 4 

Bias43 ≡
N4 − P4

N4 − N3  

0.42 0.35 

Bias53 Difference between the log of 
actual and predicted number 
in Week 5, relative to the 
change in log of actual 
number of COVID-19 cases 
between Week 4 and Week 5 

Bias53 ≡
N5 − P5

N5 − P3  

0.46 0.29 

AverageBias Average of Bias43 and Bias53 0.43 0.31 
OwnBias Difference between the log of 

actual and predicted number 
of COVID-19 cases one week 
later in one’s own country   

Own Country 
Information Bias 

Difference between the log of 
actual and perceived number 
of COVID-19 cases on the day 
of response in one’s own 
country 

0.001 0.1 

Variable Definition Median Standard 
Deviation 

Actual Realized 
Compliance 

First Principal Component of 
Questions 1a-1g in Screen 13 

0.12 1.68 

Appropriateness of 
violation of safety 
norms 

First Principal Component of 
Questions 2a-2d in Screen 14 

−0.14 1.53 

Agreeableness with 
government 
performance 

First Principal Component of 
Questions 3a-3b in Screen 14 

−0.05 1.35 

Female = 1, if gender is Female 0.27 0.44 
Age age in years 34.19 9.15 
Education = 0, if highest educational 

level is up to class 12 
1.12 0.65  

= 1, if highest education level 
is bachelor’s degree    
= 2, if highest education level 
is master’s degree or above   

Income Log of monthly family income 
(PPP USD) 

8.39 1.79 

Health Health condition on a scale of 
0–5 

4.12 0.75  

[0 if very poor health, 5 if very 
good health]   

Health Insurance = 1, if the person has health 
insurance 

0.71 0.45 

Perceived 
effectiveness 

Perceived effectiveness of the 
safety measures being 
proposed to counter the 
spread of COVID-19 

4.3 0.92  

Sample Size 334 
N – Stage 1 Sample size from countries 

with COVID-19 cases less than 
100, as on 21st March 

121 

N – Stage 2 Sample size from countries 
with COVID-19 cases between 
100 and 999, both numbers 
included, as on March 21 

108 

N – Stage 3 Sample size from countries 
with COVID-19 cases more 
than 999, as on 21st March 

105 

Countries Number of countries 
represented in our sample 

43  
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actual, exponential data. This has the prima facie implication that 
people in advanced stages of the disease outbreak may perceive the 
growth path as less, not more, “convex”. 

We carry out the rest of the analysis on log-transformed data with 
median as the primary statistic. In Fig. 2, we analyze whether differences 
between predictions and actual numbers, when transformed as biases, 
are significantly different from zero. Median Bias43 is positive and 
significantly different from zero at 0.42 (Wilcoxon signed-rank test, 
p < 0.01), meaning the median participant exhibits 42% under- 
prediction. Similarly, Bias53and the AverageBias are positive and signif
icant at 0.46 and 0.44(Wilcoxon signed-rank tests, ps < 0.01).The par
ticipants exhibit substantial prediction bias. Interestingly, Bias43is 
significantly smaller than Bias53 (non-parametric median test, p < 0.01),

suggesting that the size of the bias increases with time. This is a 
consequence of the fact that people use a prediction model that has a 
smaller “degree of convexity” than the actual growth path of the disease. 
How does EGPB vary with gender and education levels? While we do not 
find any evidence of gender differences in EGPB, we find, on average, 
those with education levels bachelors or above are significantly more 
biased than those with lower education levels (t-test, p = 0.03). The 
main focus of the study is on EGPB arising from the incentivized pre
diction, but we also elicit participants’ beliefs about the number of 
COVID-19 cases on the day of the experiment in their own country and 
their prediction about the same seven days hence. As Fig. 2 indicates, 
participants’ (non-incentivized) prediction about the number of cases in 
their own country, seven days hence, reveals a 49% under-prediction. 

Fig. 1. Actual and predicted number of COVID-19 cases pooled across four countries. Note. Panel A above plots the actual number and the predictions of COVID-19 
cases in the linear scale, while Panel B plots the same data on a logarithmic scale. Both the panels use data pooled across the four countries. The predictions for early 
(later) phase cases are given on the left (right). Each graph presents participants’ 25th percentile, mean, median, and 75th percentile prediction of the number of 
COVID-19 cases on Week 4 and Week 5. 
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Our Amazon-mTurk participant pool comprises people from 43 
countries from different stages of COVID-19 spread at the time of data 
collection, which gives us a unique opportunity to examine how EGPB in 
our sample compare across people from countries at different stages of 
the disease. Fig. 3 compares the biases across Stage 1, Stage 2, and Stage 
3, and separately plots the regression coefficients of the stage dummies 
for each definition of bias. While the incentivized-bias measures are not 

different between Stage 2 and Stage 1, the OwnBias is significantly 
higher in Stage 2 than in Stage 1 (p = 0.02). Fig. 3 shows that Bias43,

Bias53, AverageBias and OwnBiasare significantly higher in Stage 3 than 
in Stage 1 (ps < 0.05 for all the specifications). The pattern is less clear 
wh Stage 3 is compared with Stage 2, but AverageBias is significantly 
higher in Stage 3 compared to Stage 2 in the most stringent specification. 
These results suggest that biases, as per our different measures, are 
considerably higher for countries at Stage 3 than those in Stage 1 or 2. 
Relatedly, participants from Stage 3 countries use a prediction model 
that is closer to the best-fit linear model than the actual, exponential 
data relative to those from Stages 1 and 2. (The results, not reported, are 
available upon request.) Table A3 reports estimates and standard errors. 
The regression results in Model (2), (4), and (6) control for age, gender, 
health condition, health insurance, education level, income, and log 
number of reported COVID-19 cases as of March 21. 

Having established the presence of a significant EGPB, we ask if it is a 
significant predictor of near-contemporaneous (one-week past) 
compliance with safety measures. We create compliance indices based 
on responses to a menu of questions asked of the participants. Appendix 
2 presents the entire experimental protocol, along with the survey 
questions used. We categorize the questions into three indices: Actual 
Realized Compliance, Appropriateness of Violation of Safety Norms, and 
Agreeableness with Government Performance. The indices are con
structed by taking the first principal component of the relevant set of 
variables. Table 1 lays out the summary statistics of the compliance 
indices. Next, we regress these indices on our EGPB measures. Each 
column of Fig. 4 corresponds to each of the compliance indices and plots 
the estimated regression coefficient for each definition of prediction 
bias. Models 1 and 2 run the regression without and with control 

Fig. 2. Prediction bias. Note. The figure reports the median values of different 
measures of biases. The error bars represent the 95% confidence intervals from 
Kendall’s τ test for the hypothesis that the median is zero. 

Fig. 3. Variation of prediction bias between countries at different stages of COVID-19 spread. Note. This figure plots differences in median EGPB across countries in 
Stages 1, 2, and 3 of COVID-19 spread for each of the four measures of bias. Model 1 (Model 2) shows the pairwise differences in EGPB between the three stages 
estimated from a median regression without (with) controls. The control variables include age, gender, health, health insurance, education level, income, treatment 
and log of reported COVID-19 cases as on March 21 (fixed for each country). The specification in Model 2 for OwnBias in (iv), additionally controls for an individual’s 
information bias. The error bars show 95% confidence interval. *p < 0.10, **p < 0.05, ***p < 0.01. 

R. Banerjee et al.                                                                                                                                                                                                                                



Social Science & Medicine 268 (2021) 113473

7

variables, respectively. As the figure illustrates and Table A4 confirms, 
EGPB is a negative predictor of Actual Realized Compliance, indicating 
that the higher the bias, the lower is the self-reported measure of 
compliance with safety norms. Note, Actual Realized Compliance is an 
index constructed from the following seven components: frequent 
washing of hands, use of sanitizers, staying at home, avoiding social 
gathering, maintaining a meter distance, minimizing contact, and 
wearing masks. To delve deeper, we further regress EGPB on each of 
these components and plot the coefficients in Figure A3 in the Appendix. 
The results show that EGPB is negatively correlated with Staying at 
home, Minimizing contact, and Avoid social gathering; however, sur
prisingly, it is positively correlated with Wearing masks. The latter may 
be a result of the combination of our finding that staying at home in
creases with EGPB and the near-universal policy mandate on mask 
usage. In other words, those who are disinclined to stay at home may be 
more likely to require a mask to access public transport or public places. 

A higher EGPB also predicts a higher Appropriateness of Violation of 
Safety Norms as the plotted coefficients in the second column of Fig. 4 
reveals. This means an individual who shows EGPB is also likely to view 
violations of safety norms, such as the avoidance of public gatherings, 
working from home, and so on, as not very alarming. Finally, EGPB is 
also a significant predictor of Agreeableness with Government Perfor
mance, implying, higher bias is associated with greater satisfaction with 
the performance of the government concerning the measures taken vis- 
a-vis COVID-19. The regression results appear in Table A4, where col 
(2), (4), and (6) controls for age, gender, health, health insurance, ed
ucation level, income, treatment, and log of reported COVID-19 cases as 
of March 21. In addition to these variables, the results for OwnBias also 
controls for own-country information bias, defined as the difference 

between the log of the actual and perceived number of COVID-19 cases 
on the day of response in one’s own country. 

Our analysis, thus far, suggests that people make predictions about 
the disease using a model that is substantially less convex than the true 
data generating process. This creates significant prediction biases, which 
in turn, are significantly associated with non-compliance with safety 
measures. Given this link, we ask: could a simple, perceptual nudge help 
reduce the prediction bias? To that end, we use a randomized experi
mental design in which some randomly chosen participants are shown 
N1, N2, N3in terms of raw numbers, while the rest are shown the same in 
graphical form. 

The median biases across graphical and numerical treatments are 
presented in Fig. 5. Presentation of the past data in a numerical form 
significantly decreases the bias, however defined, relative to the 
graphical representation. The treatment effects from ordinary least 
square regressions are reported in Table A5. This result holds with and 
without a set of controls. The treatment effect is negative and significant 
at the 1% level when the regression controls for age, gender, health, 
health insurance, education level, and log number of COVID-19 cases as 
of March 21 (fixed for each country). The regressions, when separately 
run for the early and later phases, reveal the same pattern. We do not 
find any heterogeneity in the additional robustness checks we run to see 
if the treatment effect varies with age, education levels, and phases. 
These are not reported in the paper but are available on request. 

4. Discussion 

The critical question, of course, is why do we see early-stage par
ticipants show more EGPB than late-stage ones (see Fig. 3)? We 

Fig. 4. EGPB and COVID-19 compliance. Note. This figure plots the coefficients estimated from OLS regressions between EGPB and compliance, measured via three 
indices: Actual realized compliance, Appropriateness of violation of safety norms, and Agreeableness with government performance. Model 1 (Model 2) shows the 
estimates from specification without (with) controls. The control variables include age, gender, health, health insurance, education level, income, perceived 
effectiveness of the safety measures, treatment, and log of reported COVID-19 cases as on March 21 (fixed for each country). The specification in Model 2 for OwnBias 
in (iv), additionally controls for an individual’s information bias. #p = 0.11, *p < 0.10, **p < 0.05, ***p < 0.01. 
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speculate there are two opposing, informational forces at work. One, 
people in late-stage countries may know more about the underlying data 
generating process, and that may reduce their EGPB. Two, people in 
early-stage countries may be overly (possibly, irrationally) scared about 
the disease (presumably due to limited and/or incorrect information), 
and that makes the disease hyper salient in their minds. One possible 
explanation on the flip side is behavioral or caution fatigue. In our 
setting, this possibility could afflict people who diligently followed 
safety protocols early on, got tired or stressed after a while, and subse
quently resumed their pre-COVID course of life (Brooks et al., 2020). 
This phenomenon can raise EGPB in late-stage countries. Which of these 
two forces dominate is ultimately an empirical question. Surprisingly, it 
turns out that, in our sample, the second force dominates, meaning 
people in later-stage countries demonstrate larger EGPB relative to those 
at early stages. 

Do we see evidence of such behavioral fatigue? While we do not have 
a direct measure of behavioral fatigue, we have a proxy relating to 
awareness: information bias, the difference between the log of actual 
and log of the perceived number of cases. It turns out participants from 
countries in stage 1 and 2 have significantly lower information bias 
relative to those from countries in stage 3 (t-test ps < 0.01). This evi
dence is merely suggestive that behavioral fatigue or caution fatigue 
may have affected the later stage countries, which may, in turn, have led 
to the larger EGPB observed. 

Of course, the aforementioned second force may not always domi
nate the first one. For instance, if a sustained public health campaign 
manages to maintain the salience of the disease in late-stage countries, 
EGPB in those countries will likely be lower. Relatedly, it is well known 
that, often in a pandemic, the infection spread comes in waves. We 
conjecture that EGPB will be lower in subsequent waves if there is a 
sudden spike in infections, and the disease returns to becoming salient. 

A key strength of our research, one that differentiates it from existing 
work, is our use of incentivized prediction elicitation. Another is that 
unlike existing computations of prediction bias using false information, 
we show actual data from COVID infections and detect prediction bias, 
not just a mathematical inability to compute exponential progression. In 
Fetzer et al. (2020), for example, “participants were instructed to as
sume that on day 1, one person has the fictitious disease. Furthermore, 
they were told to assume that each day a newly infected person infects 
two healthy people and then stops being contagious. Participants were 

further told that on day 2, 3 people would be infected by the disease as 
the person who had the disease on day 1 spread it to two other people on 
day 2. Participants were then asked to predict the count of total people 
infected with the fictitious disease on days 5, 10, and 20.” In our tasks, 
participants did not have to speculate. The numbers on which prediction 
tasks were based were publicly available, and participants were 
informed that the researchers knew the actual numbers. Also, the timing 
of our survey was crucial: we wanted to know if the prediction biases 
changed in real-time as a country moved from under a hundred in
fections to over a thousand infections. By now, most countries have 
moved on to Stage 3, but our data on biases from earlier stages may be 
useful for a general understanding of the path of future epidemics. The 
fact we detect EGPB, not only in early-stage countries but also in 
countries in the thick of the pandemic, suggests such biases can help 
explain the dramatic spike in cases in some countries. 

5. Limitations 

A few caveats are in order. First, there are well-understood problems 
(representativeness and external validity) of conducting global surveys 
on Amazon’s MTurk that are pertinent to our study. In our defense, 
though, these problems are present in most online surveys that re
searchers are forced to rely on while the pandemic rages on. Not to 
mention, arguably, the quality of self-report data collected through 
online platforms is superior to those obtained through face-to-face in
terviews, as there is no social desirability confounds in the former. Of 
course, the MTurk environment is not perfect; for example, it cannot 
capture the importance of powerful emotions such as shame or guilt 
(from, say, not wearing a mask) on compliance behavior. We contend 
that such measurement errors in our compliance measure are unlikely to 
affect the high and the low EGPB participants differentially. 

It is interesting to note that EGPB has a flavor similar to the familiar 
Dunning-Kruger effect (Kruger and Dunning, 1999). The 
Dunning-Kruger effect captures the tendency for some people, mostly 
less competent, to overrate their skill, expertise, and performance and 
has been found to have significant public health implications, including 
attitude towards vaccination (Motta et al., 2018). By contrast, EGPB is 
concerned with a bias in judging a data generating process exogenous to 
the person being surveyed, one they had no hand in generating. It does 
not concern itself with the participants’ judgment about themselves, 
their ability, or their power to judge their ability. It is, of course, possible 
that the two biases may be present in the same person – a connection our 
study was not designed to explore. 

Our work was focused and designed to detect prediction biases and 
to see if they were significant predictors of compliance behavior (Fig. 4). 
It was not designed to make definitive causal statements connecting 
prediction bias or the nudge with compliance. In particular, one asso
ciation is a bit perplexing: why do participants from countries at a later 
stage of the disease show more substantial prediction biases and less 
“convexity”. We provide suggestive evidence this finding may be due to 
“behavioral fatigue”. It is reassuring that such prediction biases are 
causally reduced by health communication via raw as opposed to 
graphical data. This point suggests that data shown via raw numbers 
make quite an impact on people’s risk perception and should be pre
sented alongside familiar “flatten-the-curve” style graphics. This idea is 
likely true of any COVID-related data, say death or recovery rates, if they 
follow paths similar to that of infections. A related limitation of our 
study is the inability to answer the question, are people when presented 
with numeric (as opposed to graphical) data more likely to comply with 
safety protocols in the future? The issue again is, even though we 
observe EGPB decreasing in the raw-numbers treatment, that reduction 
does not causally imply higher compliance, since our compliance data 
capture past behavior. 

Fig. 5. Prediction bias across treatments. Note. Participants are randomized 
into graphical and numerical treatments, where they are shown the data from 
Weeks 1, 2, and 3 in the form of raw numbers and graphs, respectively. The 
figure plots the median prediction biases for the graphical and numerical 
treatments. The error bars represent the 95% confidence intervals from a 
Kendall’s Tau test for the hypothesis that the median is zero. *p < 0.10, **p <
0.05, ***p < 0.01. 
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6. Conclusions 

Our study documents evidence of exponential-growth prediction bias 
in the context of the spread of COVID-19. The results show that such 
biases are greater in the late-stage countries than in the early stage 
countries. We further show that such biases are negatively associated 
with WHO recommended safety compliance measures. A simple nudge 
related to presentation of data on COVID-19 positive cases in the form of 
numbers decrease EGPB relative to graphical presentation. 

Future work should examine whether simple nudges can reduce EGB 
and improve compliance. Illustrations of such nudges may be found in 
Banerjee and Majumdar (2020) and Lammers et al. (2020). If successful, 
they can generate enormous welfare gains and produce transformative 
implications for social science-based, medical research, and health 
communication. These gains can come in the form of infections and 
fatalities avoided. In turn, it may spur business investment, boost 
aggregate demand and hiring, healing lives, and preserving livelihoods 
in the process. To get a firmer sense of the magnitude of these gains 
would require a structural model with optimizing agents who make 
compliance decisions given their budgets and the infection risk they 
perceive (see for instance, Bhattacharya et al., 2020). While such a task 
is outside our current scope, it is worthy of future attention. 
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