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Abstract 

The entropy-driven monolayer assembly of hexagonal prisms and cylinders was studied under hard 

slit confinement. At the conditions investigated, the particles have two distinct and dynamically 

disconnected rotational states: unflipped and flipped, depending on whether their 

circular/hexagonal face is parallel or perpendicular to the wall plane. Importantly, these two 

rotational states cast distinct projection areas over the wall plane that favor either hexagonal or 

tetragonal packing. Monte Carlo simulations revealed a re-entrant melting transition where an 

intervening disordered Flipped-Unflipped (FUN) phase is sandwiched between a fourfold tetratic 

phase at high concentrations and a sixfold triangular solid at intermediate concentrations. The FUN 

phase contains a mixture of flipped and unflipped particles and is translationally and 

orientationally disordered. Complementary experiments were conducted with 

photolithographically fabricated cylindrical microparticles confined in a wedge cell. Both 

simulations and experiments show the formation of phases with comparable fraction of flipped particles 

and structure, i.e., the FUN phase, triangular solid, and tetratic phase, indicating that both approaches 

sample analogous basins of particle-orientation phase-space. The phase behavior of hexagonal prisms 

in a soft-repulsive wall model was also investigated to exemplify how tunable particle-wall 

interactions can provide an experimentally viable strategy to dynamically bridge the flipped and 

unflipped states. 

Keywords: Anisotropic colloids, re-entrant phase transition, monolayer confinement, self-

assembly 

 

I. Introduction 

Assemblies of colloidal particles have promising functional applications as active constituents of 

photovoltaic devices [1], optical films [2], and catalysts [3]. Recent advances in the synthetic and 

fabrication approaches of faceted sub-micron particles with different shapes have spurred interest 

in using these particles as basic building blocks for the assembly of targeted complex structures. 

The type of order and symmetry of these structures can be tuned by controlling such properties as 

particle geometry [4,5], interparticle interactions (e.g., chemical patchiness) [5], depletion 

forces [6–8], and external fields including hard/soft wall confinement [9–13]. Entropic and 
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external forces play a crucial role in the assembly of nanoparticles, and their interplay is being 

systematically delineated by studies that focus on the effects of each driving force separately. 

A large variety of superstructures arises when polyhedral colloidal particles are assembled at fluid 

interfaces [14] or inside confined geometries such as within parallel hard plate/wedge cell [10,15], 

spherical [16,17], or square cavities [18]. The confinement effects can drastically change the phase 

behavior of the system and be dominant when only a few particle layers can be accommodated 

along at least one direction. For hard spheres, for example, in contrast to the single isotropic to 

crystal phase transition in the bulk, a rich phase behavior was observed when confined between 

two parallel hard plates as the plate separation was varied to only accommodate one-to-a-few 

particle layers [9]. Numerous computational and experimental investigations have been carried out 

to explore the phase transitions in slit confinement with a variety of particle shapes, including 

members of the truncated cubes family [10], spherical or mushroom caps [12,19], hard 

rectangles [20], hard rods [18], hard platelets [21], and dimers [13,22,23]. The results from these 

studies have provided an understanding of the combined effects of particle anisotropy and 

confinement length. An interesting attribute associated with the parallel slit confinement model is 

that it allows access to the two-dimension (2D) and quasi-2D behavior by just altering the 

confinement separation: The phase behavior can drastically change depending on the particles’ 

accessibility to rotational and translational states across the gap.  

This work is focused on mapping the thermodynamic phase behavior of two anisotropic convex 

shaped particles; namely, hexagonal prisms (HPs), and cylinders (CYLs), under parallel slit 

confinement with hard and soft-repulsive walls. The geometry of these shapes is such that the 

flipped and unflipped particle orientations cast two different projected areas and shapes (Fig. 1) 

against the confinement wall. The flipped and unflipped orientations corresponds to the particle 

with its side parallel and perpendicular to the wall plane, respectively (see Fig. 1). Using the hard 

confinement model, this scenario imposes a hindrance to the different possible rotational and 

translational states that the particles can populate during self-assembly. By carefully choosing the 

confinement and the particle dimensions, we can create disconnected regions in the rotational 

phase space between the flipped and unflipped orientations that causes a non-ergodic dynamic 

behavior in the system. In simulations, we overcome this dynamic broken ergodicity by using 

unphysical specialized Monte Carlo (MC) moves that effectively sample all regions of phase 
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space. These MC moves allow particles to transition between flipped and unflipped states, akin to 

changing the “type” of particle in a two-component system, categorized by the projected 2D 

geometry: hexagon ↔ rectangle for the HPs, and disk ↔ rectangle for the CYLs. Crucially, the 

transition between these two orientations also provides a mechanism to switch between structures 

with different packing symmetry and/or lattice spacing. The hexagonal projections of unflipped 

HPs exhibit a KTHNY-type [24] phase transition with a continuous fluid-hexatic transition and a 

continuous hexatic-solid transition [25]. Likewise, the disk-shaped projections of the unflipped 

CYLs have a first-order fluid-hexatic transition and a continuous hexatic-solid phase 

transition [26]. In contrast, the rectangular projections of flipped HPs and CYLs exhibit a two-

stage KTHNY transition with the continuous fluid-tetratic and a continuous tetratic-tetratic solid 

transitions [27]. The tetratic and hexatic phases are partially ordered phases characterized by a 

short-range translational order and quasi-long ranged bond orientational order. The tetratic solid 

phase has long-range translational and bond orientational order. 

A challenge associated with the assembly of anisotropic particles in confinement lies in the ability 

to sample their equilibrated quasi-2D positions and orientations. A “soft” confinement model is 

proposed in this work as a way to overcome the broken ergodicity by allowing the system to 

dynamically (and experimentally) bridge the flipped and unflipped particle orientations, but 

tunable external fields could also be used to control the confinement forces. For instance, 

application of external electric fields has proven to be an effective approach to manipulate particle 

assemblies where the relative polarizability of the particle and the solvent medium controls the 

particle position, and the relative polarizability of each particle axis controls the particle 

orientations [28]. For bulk 3D system, a switching transition between the body-centered cubic 

crystal to a partially ordered plastic crystal structure was achieved for charged rod-like colloidal 

particles by tuning the electric field [29]. A wide range of structures with hexagonal and tetratic-

like symmetries and string fluids were obtained for platelets subjected to varying electric field 

strengths and confinement separations that allowed particles to access flipped and unflipped 

orientations [30].  

Our simulations predict a re-entrant transition for the HPs and CYLs in hard confinement where 

an intervening disordered phase occurs between two solid phases: a high-density tetratic phase and 

a low-density triangular solid (1∆) phase. We termed this disordered phase as the Flipped-
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Unflipped (FUN) phase due to the mixture of flipped and unflipped orientations, high particle 

mobility, and significant degree of disorder. Indeed, the FUN phase has local clusters of flipped 

and unflipped particles with incompatible footprint areas that are distributed randomly throughout 

the simulated domain. At narrow separations, we observed a first order transition between the 

tetratic phase and the 1∆ phase for both HPs and CYLs. In our athermal system, different phases 

result from the interplay between pressure × volume contributions to the free-energy, which 

generally favors denser structures at high pressures, and the particles’ rotational and translational 

contributions to the entropy which strongly depend on gap separation. By varying the density and 

confinement separation, we can tune regions of phase space accessible to the dispersion with our 

MC moves and experimental preparation (see below). MC simulations were also carried out for 

polydisperse CYLs in hard confinement to allow comparison of the predicted structures with 

tetratic, FUN, and 1∆ phases obtained experimentally by assembling fabricated CYLs in a wedge 

cell confinement. The consistency in the structural characteristics of the assembled phases obtained 

in experiments and simulations is attributed to both methods being able to comprehensibly sample 

the accessible orientational phase space. Particles in the wedge confinement cell are able to 

dynamically explore their flipped and unflipped states at wide separations, and as they migrate to 

the narrow separations, rearrange laterally to pack more densely; particles in the MC simulations 

are able to ergodically sample both orientational states through specialized moves at all conditions. 

Thus, experiments and simulations produce assembled phases that have similar fraction of 

flipped/unflipped particles although not necessarily at the exact same confinement conditions (i.e., 

concentrations), hence providing comparable access to a variety of otherwise disconnected regions 

of phase space. The re-entrant FUN phase was also observed for HPs simulated in a soft 

confinement model where a finite transition barrier allows dynamic switching between flipped and 

unflipped orientations.  

The outline of this paper is as follows. Section II details the hard and soft confinement models, 

simulation method, and the experimental protocol to fabricate the CYL colloids and assembling 

them in the wedge cell confinement. Section III describes various order parameters used to 

characterize the phase transitions. Sections IVA/IVB present summary/detailed description of the 

phase behavior of HPs and CYLs under hard wall confinement, Section IVC discusses the effect 

of size dispersity and a comparison between the simulated and experimental structures, and Section 
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IVD presents simulation results for HPs under the soft confinement model. Finally, Section V 

presents closing remarks and an outlook of our study.  

 

II. METHODOLOGY 

 
A. Simulation model and protocol 

Simulations of N hard anisotropic particles under parallel plate confinement were carried out using 

the standard Metropolis Monte Carlo algorithm in an isothermal-isobaric (NPT) ensemble. Figure 

1 shows the hard wall and soft confinement models that corresponds to a case without and with a 

soft layer of varying thickness, a*=a/σ, where σ is the height of the particle. The scaled plate 

separation is H*= H/σ, where H is the distance between the hard walls. We simulated a range of 

H* values (imposing periodicity in XY plane) that accommodates only a single particle layer. The 

aspect ratio of the particles, R= b/σ is fixed by varying the characteristic length b, where b = 2s for 

HPs and b= d for CYLs. s is the edge length of the hexagonal face in the HP and d is the diameter 

of the circular face in the CYL. The R values chosen for the hard confinement model are 2 for HPs 

and 1.574 for CYLs and the phase behavior was mapped for H*= 1.0-1.9 for HPs and H*= 1.582-

1.61 for CYLs. We observed a quasi-2D phase behavior at H* > 1.74 for HPs and H* > 1.574 for 

CYLs, where the plate separations are such that the particles can access both flipped and unflipped 

orientations. The range of H* values chosen is such that the flipped and unflipped orientations are 

dynamically disconnected (see Sec. I in the supplementary information, SI). The two orientations 

are distinguished based on the |𝑢⃗ . 𝑧 | values where 𝑢⃗  is the principal orientation unit vector of the 

particle and 𝑧  is the unit vector in z direction (see Fig. S1 in the SI). When flipped the 𝑢⃗  is parallel 

to the wall and perpendicular to the wall when unflipped (see Fig.1). For the soft confinement 

model, we set R= 1.82 and H* = 1.95 to allow for the dynamic (or continuous) rotation of the HPs 

between the flipped and unflipped orientations. These R values are chosen such that they satisfy 

two geometric constraints: (i) The particles can access both flipped and unflipped orientations at 

the confinements that only allow formation of monolayers; (ii) The unflipped orientation projects 

a larger hexagonal/circular area than the rectangular area projected by the flipped orientation. The 

R values chosen for our study are just representative, but we expect similar trends in phase behavior 

for HPs and CYLs with other R values that satisfy both geometric constraints.     
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Fig. 1. Schematic of slit-confinement simulation model with (a,b) hard and (c) soft-repulsive walls. 

H* is the separation between the hard walls scaled with respect to the height of the particle σ. The 

flipped (in red) and unflipped (in green) orientations and 2D projected geometries are shown for 

(a) HPs, and (b) CYLs. The particle’s principal orientation unit vector, 𝑢⃗ , is parallel/perpendicular 

to the XY plane when flipped/unflipped. s is the edge length of the hexagon face in HP, d is the 

diameter of the circular face in CYL. In (c) a* is the thickness of the soft layer scaled with respect 

to σ.  

 

We consider excluded volume interaction with the pair potential between the particles, U(rij), given 

as, 

𝑈(𝑟𝑖𝑗) = {
∞, if 𝑟𝑖𝑗 <  𝑟𝑖𝑗

𝑚𝑎𝑥

0, otherwise
                  (1) 
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where, rij is the distance between the particle center of mass, 𝑟𝑖𝑗
𝑚𝑎𝑥 is the maximum rij distance 

beyond which overlap cannot occur. The overlap between the particles is checked using the 

Gilbert-Johnson-Keerthi (GJK) algorithm [31]. The hard and soft repulsive potentials, U(ri), 

between the particle and the hard walls and between the particle and a soft-grafted layer is given 

by, 

     𝑈(𝑟𝑖) = {

∞,    if   𝑉𝑜,ℎ𝑤(𝑟𝑖) ≠ 0 

𝛽𝑉𝑜,𝑠𝑤,    if   𝑉𝑜,𝑠𝑤(𝑟𝑖) ≠ 0

0,    otherwise

               (2) 

where, ri is the particle center of mass position, Vo,hw and Vo,sw are the volumes of the particle that 

overlap with the hard walls and soft grafted layer. In this simple soft repulsive potential model, a 

presumed grafted layer exists with tunable hardness modulus, β*= β𝜎3, and thickness a*. Because 

of the particle shape anisotropy, the wall-particle interaction potential will depend in a complex 

way on not only the particle-wall distance but also the particle orientation. Model (2) above can 

be seen as a first approximation to a soft repulsive potential where the energy required to deform 

the soft grafter layer is proportional to the particle volume that overlaps with (and pushes out) the 

soft layer. The 3D simplices was constructed to compute Vo,sw using the particle vertices and 

centroid [32]. The overlap between each particle and the hard walls was detected using separating 

axis theorem [33].  

For the hard confinement model, stepwise expansion/compression runs were carried out at each 

H* value by equilibrating the system at each pressure step. These runs were used to map the phase 

behavior along the solid and liquid branches to detect any hysteresis present between expansion 

and compression. For the soft confinement model, we studied the phase behavior for HPs at H*= 

1.95 for varying a* and β by performing compression runs and following the same procedure used 

for the hard confinement model. The dimensionless pressure is P*= Pσ3/kbT, where T is 

temperature and kb is Boltzmann’s constant. The equation of state was mapped by varying P* and 

calculating the volume fraction, ϕ= NVp/V, where Vp is the volume of each particle, N is the number 

of particles and V is the system volume. To minimize finite size effects, we choose the initial 

system size to have a minimum of 15-35 particles per layer along X and Y dimensions. For the 

hard confinement model, 1254 and 1352 HPs were used for compression and expansion runs, and 

1024 CYLs for both compression and expansion runs. For the system with soft confinement, 1254 



9 
 

HPs were used. We mapped the high-density solid branch of the phase diagram with the expansion 

runs and the intermediate and lower density branch with the compression runs. At any H*, the 

initial configuration for the compression runs is the isotropic phase and for the expansion runs is 

the densest crystal phase simulated using Floppy Box Monte Carlo algorithm [34].  

At each pressure step, we perform 3 ×107 MC cycles with the last 5 × 106 cycles used for 

production runs, where each MC cycle consisted of N translational, N rotational, N/10 flip, N/10 

two-particle in-plane rotation and 2 volume moves.  All move sets obey detailed balance and the 

step size for the translational, rotational, and volume moves are adjusted to have acceptance 

probabilities of 0.4, 0.4, and 0.2. We incorporated flip moves that attempt to randomly orient a 

chosen particle in a plane that is perpendicular to its current orientation. The flip move was 

particularly important for our hard confinement model having broken dynamic ergodicity, as it 

helps to access the flipped and unflipped orientations that are difficult to sample with standard 

rotational moves. The two-particle in-plane moves improve ergodic sampling for high-density 

solid phases and were implemented as follows. First, two particles are chosen, the first randomly 

and the second its closest neighbor. Next, these particles are rotated in the XY plane about their 

combined center of mass (using z-component unit vector) by 90° (clockwise/anticlockwise)  [22]. 

The move is accepted if: (i) the second particle is still the closest to the first one to maintain 

reversibility, and (ii) no overlap is incurred. Volume moves attempt changes in XY box area and 

shape (anisotropic moves) during the expansion runs, while only changes in XY area during 

compression runs.  

 

 

B. Experimental protocol for fabrication of colloidal CYLs 

We used a photolithographic procedure to fabricate colloidal CYLs from an epoxy-based negative 

photoresist, SU-8 2001 series, which provides high-throughput of different colloidal shapes within 

narrow size polydispersity [35,36]. The fabrication process includes three key steps: (i) Spin 

coating of the photoresist on top of a sacrificial Omnicoat layer on a 100 mm silicon substrate. The 

thickness of the photoresist layer controls the height of the particles, σ. (ii) Exposure of the 

photoresist to ultraviolet light (i-line) through a Cr photomask with round holes to control the 

diameter, d of the particles. (iii) Development of the photopatterned resist layer and release of the 
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particles by dissolution of the Omnicoat layer. The particles were then washed with DI water and 

suspended in an aqueous solution of Tergitol NP70, a non-ionic surfactant that adsorbs on the 

surface of the particles and provides a steric barrier holding the particles outside the vdW attraction 

regime to prevent irreversible aggregation [35,37]. The thickness of the NP70 layer and the zeta 

potential of the particles were estimated by Badaire et al. [37] to be 8.2 ± 3.3 nm and -21.0 ± 6.2 

mV, respectively. This route generated particles with d = 1.56 ± 0.08 μm and σ = 0.96 ± 0.06 μm 

and the suspension concentration ~ 4.5 × 108 particles/ml. The size dispersity, sd and sσ in diameter 

and height were measured using the SEM micrographs and estimated to be 0.05 and 0.06, 

respectively. A more detailed description of the fabrication procedure and particle characterization 

is given in Sec. II of the SI. The suspension was transferred to a 10 ml glass vial and mixed with 

a small amount of fluorescein dye (2 mg/ml) to enable confocal imaging. Finally, the CYLs were 

assembled in the wedge cell confinement to study the organization of the particles using fast 

confocal microscopy (see Sec. IID in the SI).  

 

 

III. Order parameters 

 

A. Cubatic orientation order parameter 

The global orientational order was measured using the cubatic order parameter, P4, which is 

defined as, 

〈𝑃4〉 =  max
𝒏

1

𝑁
 ∑𝑃4(𝑢𝑖⃗⃗  ⃗ . 𝑛⃗ )

𝑖

 

= max
𝒏

1

8𝑁
 ∑(35 cos4𝜃𝑖(𝑛⃗ ) − 30 cos2𝜃𝑖(𝑛⃗ )  + 3)

𝑖

          (3) 

 

where 𝑢𝑖⃗⃗  ⃗ is the principal orientation vector of the particle and the 𝑛⃗  is the director that maximizes 

〈𝑃4〉. 𝑛⃗  is found using the numerical recipe reported in [38] which yields two orthogonal directors, 
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𝑛1⃗⃗⃗⃗ , 𝑛2⃗⃗⃗⃗  and the corresponding values of 〈𝑃41〉, 〈𝑃42〉 in decreasing order of magnitude,  used to 

gauge the in-plane and out-plane alignment of the flipped and unflipped particles.  

 

B. Bond orientational order parameter 

 

The local n-fold bond orientational order, 𝛷𝑛(𝒓𝒌) for each k particle is given by, 

𝛷𝑛(𝒓𝒌) =  
1

𝑁𝑘
 ∑ exp(𝑖𝑛𝜃𝑗𝑘)               (4)𝑘

𝑗=1   

where i = √−1 and 𝜃𝑗𝑘 is the angle between the vector connecting particle k with its neighbor j 

and a fixed reference vector. 𝑁𝑘 is the number of nearest neighbors of particles k. For n= 6, 𝑁𝑘 

was calculated via Voronoi tessellation, while for n= 4, the four closest neighbors were used to 

avoid the degeneracy in the Voronoi construction [39]. Note that the 𝛷𝑛(𝒓𝒌) are evaluated 

considering the center of mass coordinates of the particles projected on the 2D plane of the slit 

confinement. 

To analyze the correlation length of the local bond order parameters, we compute the n-fold local 

bond orientational correlation function given by,  

            𝑔𝑛(𝑟) =  〈𝛷𝑛(0) 𝛷𝑛
∗(𝒓)〉                           (5) 

where * indicates the complex conjugate of 𝛷𝑛(𝒓) for the particle at a distance 𝑟 from the reference 

particle.  

C. Translational and rotational mobility analysis 

 

We tracked particle mobility by carrying out NVT ensemble simulations of the equilibrated phases 

at different densities with a fixed set of translation and rotation moves using fixed step size that 

yield acceptance probabilities between 85%-95% to mimic pseudo diffusive particle dynamics. 

The translational mobility coefficient, μm is defined as the mean square displacement over Ns MC 

cycles, 

𝑅𝑠 = 
∑ ∑ |∆𝑟(𝑗+𝑠,𝑗)

𝑖 |
2𝑁𝑀𝐶−𝑁𝑠

𝑗=0
𝑁
𝑖=1

𝑁(𝑁𝑀𝐶 − 𝑁𝑠)
                     (6) 
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where ∆𝑟(𝑗+𝑠,𝑗)
𝑖  is the center of mass displacement of the ith particle between the jth and (j+s)th MC 

cycles, and NMC is the total number of MC cycles in the simulation. μm quantifies the average in-

plane local translational fluctuations for the phases under study. The rotational mobility is gauged 

by the autocorrelation function of particle orientation vectors over the MC cycles, defined as,  

𝜃𝑠 = 
∑ ∑ 𝑢𝑗

𝑖⃗⃗  ⃗. 𝑢𝑗+𝑠
𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑁𝑀𝐶−𝑁𝑠

𝑗=0
𝑁
𝑖=1

𝑁(𝑁𝑀𝐶 − 𝑁𝑠)
                      (7) 

where, 𝑢𝑖⃗⃗  ⃗ is the principal orientation vector of particle i, and Ns is the number of MC cycles over 

which the axes alignment is measured.  As indicated later, we also implemented these calculations 

with a “Dynamic” MC method [40] to test for consistency in the resulting mobility trends.  

 

 

IV. Results and discussion 

 

A. Brief overview of the phase diagram under hard confinement 

 

Figure 2 shows the quasi-2D behavior of HPs and CYLs that was mapped by tracking ϕ for 

different phases found at 1.74 < H* < 1.9 for HPs and 1.581 < H* < 1.61 for CYLs, where the 

available space only allows the formation of a monolayer. At these plate separations both HPs and 

CYLs can access the flipped and unflipped orientations that have distinct projected footprints on 

the confinement planes. The flipped HPs and CYLs cast a smaller rectangular area and hence at 

the highest concentrations pack into the tetratic solid (TS) and partially ordered tetratic phase 

which are structurally similar to those of hard rectangles at 2D-close packing [27]. The forbidden 

region encloses inaccessible state points at higher packing fractions due to wall overlap (see Figs. 

2a and 2b) and the boundary between the TS and the forbidden region represents the packing 

fraction of the densest structure predicted from the Floppy Box Monte Carlo algorithm [34]. The 

TS is classified into Uniaxial (Uni-TS) and Biaxial (Bi-TS), based on the alignment of the 

orientation 𝑢⃗  of the flipped particles. At intermediate concentrations, the unflipped orientations 

project a larger hexagonal and circular areas for the HPs and CYLs, respectively, thus forming 2D 
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phases consistent with the assembly of hard hexagons [25] and hard disks [26]. At 1.8 < H* < 

1.865 and 0.375 < ϕ < 0.535 for HPs and at 1.581< H* < 1.605 and 0.458 < ϕ < 0.614 for CYLs, 

we observed an interesting re-entrant melting transition where the intervening disordered FUN 

phase occurs between the tetratic phase at high concentrations and the 1∆ phase at the intermediate 

concentrations. We observed a continuous tetratic→FUN phase transition and a first order FUN 

phase →1∆ phase transition. The FUN phase has local clusters of flipped and unflipped particles 

that are randomly distributed throughout the system and the particles have relatively high 

translational and rotational mobility. At H* > 1.865 for HPs and H* > 1.605 for CYLs, the 1∆ 

phase disappears and the FUN phase transitions to the isotropic (I) phase upon expansion, where 

any ordering signature disappears as the flipped particles reached ~30% at the lower 

concentrations. The FUN phase is hence an extension of the I phase but with higher concentration 

of flipped particles and forms a continuous boundary with the I phase at 1.865 < H* < 1.9 for HPs 

and at 1.605 < H* < 1.61 for CYLs (see Fig. 2). Figure 3 show the equilibrated snapshots, 2D 

structure factor plot, and 𝑢⃗  distribution plot of the tetratic, FUN, and 1∆ phases for the HPs at H*= 

1.84 and CYLs at H*= 1.595. The change in the structural symmetry from fourfold to disorder to 

hexagonal symmetry can be observed with the concentration of the flipped particles. The 2D 

structure factor was defined as, 𝑆(𝒌) =  
1

𝑁
〈[∑ cos(𝒌. 𝒓𝒊)

𝑁
𝑖=1 ]

2
+ [∑ cos(𝒌. 𝒓𝒊)

𝑁
𝑖=1 ]

2
〉, where k= (2п 

nx/Lx, 2п ny/Ly) with integers nx and ny chosen so that the wave vector k corresponds to the Bragg 

peak for the particles position ri.  
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Fig. 2. Quasi-2D phase diagram for (a) HPs and (b) CYLs under hard wall confinement for varying 

H* and ϕ. The dashed black line indicates a continuous boundary between the FUN and I phases. 

In (a) the dotted black line marks boundary between the Uni-TS and Bi-TS phases. Symbols: 1∆ 

= triangular solid phase, I = isotropic phase, Bi-TS = biaxial tetratic solid, Uni-TS = uniaxial 

tetratic solid, FUN = disordered phase with the mixture of flipped and unflipped particles, and 

coex= two-phase coexistence region. The forbidden region encloses inaccessible state points.     

 

For the HPs, the hexatic and 1∆ phases occurred at H* > 1.74 and 0.35 < ϕ < 0.48, where the phase 

regions narrow with increasing H* and disappear at H* ~ 1.865. For the CYLs, the 1∆ phase region 

was observed for 0.46 < ϕ < 0.53 and H* < 1.605. The HPs exhibit a 2D phase behavior for H* < 
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1.74 and is discussed in Sec. III of the SI. We expect the CYLs to also exhibit the 2D phase 

behavior associated with hard disks  [26] for H* < 1.574.  

 

Fig. 3. Equilibrium structures of (a-c) HPs at H* = 1.84 and (d-f) CYLs at H* = 1.595 under hard 

confinement over different ranges of ϕ. Representative snapshots are shown with insets for the 

structure factor and 𝑢⃗  distribution plots. Flipped particles are colored red or blue if most or least 

aligned with the in-plane P4 director. Unflipped particles are colored green. Single particle 𝑢⃗ ’s are 

also depicted in x axis.    

 

The following section IV.B provides a more detailed description of the characterization and 

properties of the different phases in Fig. 2. 
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B. Phase behavior of HPs and CYLs in hard confinement model 

 

B.1 The (Uni- and Bi-) TS phases form at the highest densities 

For the HPs at ϕ > 0.6 and 1.74 < H* < 1.9 shown in Fig. 2a, we observed two sub-phase TS 

regions: Uni-TS and Bi-TS phases. The transition boundary between these phases was determined 

using the cubatic orientational order parameters P41 and P42 [defined in Eq. (3)]. Figure 4a shows 

the equation of state with P* vs. ϕ for HPs at H*= 1.84 (filled circles for compression and filled 

squares for expansion), where the Uni-TS phase formed at the higher concentration transitions into 

the Bi-TS phase upon expansion at ϕ~ 0.662 and P*~ 12.4. We observed a sharp drop in the values 

of P41 from 1.0 and a rise in the P42 from 0.375 that flattens to 0.66 < P41 < 0.71 and 0.62 < P42 < 

0.63 as the system transitions from the Uni-TS to the Bi-TS that was observed at 0.576 < ϕ < 0.662. 

This drop indicates that the percolating network of the orientationally aligned cluster of the flipped 

particles present in the Uni-TS dissolves into the Bi-TS where the size of clusters is about a few 

particles across and are randomly distributed along the two XY perpendicular directors (see Fig. 

S11 in the SI). The varying length scales of the coexisting clusters having perpendicular alignment 

along the XY plane suggests that the Uni-TS Bi-TS transition is continuous. The analysis using 

the positional pair-correlation, g(r*), and fourfold local bond orientational correlation functions, 

g4(r
*) [defined in Eq. (5)], shows that both Uni-TS and Bi-TS have long-range translational and 

fourfold bond orientational order (see Fig. S12 and Sec. ID in the SI describing the associated 

square lattice structure construction). We note that the mixed bi-orientational states in the Bi-TS 

is stabilized by the transition between degenerate in-plane orientations of the flipped particles 

(sampled by the two-particle MC moves) that increases the mixing entropy, with grain boundaries 

contributing to increase the local free-volume. At higher ϕ, the free energy is minimized by 

enhancing the packing efficiency (manifested as PV < 0) that drives the system to the more 

uniformly aligned columnar structure of the flipped particles in the Uni-TS. 
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Fig. 4. Equation of state, P* vs. ϕ, showing the compression and expansion runs for (a) HPs at H* 

= 1.84 and (b) CYLs at H* = 1.595. Dotted lines mark approximate phase boundaries. The 

variation of cubatic order parameters P41 and P42 with ϕ is also shown. Phase symbols as in caption 

of Fig. 2.  

 

For CYLs, the tetratic phase precedes the Uni-TS (see Fig. 2b) instead of the Bi-TS whose inherent 

square lattice structure cannot be realized with the CYL aspect ratio adopted here. The Uni-TS and 

the tetratic phase occurred at 0.66 < ϕ < 0.768 and 0.565 < ϕ < 0.674, respectively for 1.582< 

H*<1.61. For the H*= 1.595 case shown in Fig. 4b, the Uni-TS transitions into the tetratic phase 

at ϕ ~ 0.663 and P* ~ 7.88. However, the tetratic phase in the range of 0.627 < ϕ < 0.663 close to 

the Uni-TS→tetratic transition boundary has P41 and P42 characteristics similar to those of the Bi-

TS. For the HPs, the tetratic phase occurred at 1.77 < H* < 1.9 and 0.466 < ϕ< 0.612, where a 
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continuous transition from the Bi-TS to the tetratic phase was observed upon expansion. To 

distinguish the tetratic phase from the Uni-TS and Bi-TS, we examined g4(r
*) and g(r*) selecting 

the −¼ exponent value as threshold to align with the KTHNY theory prediction for the scaling 

parameter lower-bound for the fluid to tetratic phase transition [25]. For the tetratic phase 

occurring at (H*= 1.84, ϕ = 0.534) for HPs and at (H*= 1.595, ϕ = 0.627) for CYLs, g4(r*) reveals 

a long-ranged order with the exponent value > −¼, while g(r*) shows short range translational 

order with a quick decay of peak amplitude with distance (see Figs. 5 and S13). The long-range 

translational order in the tetratic phase is disrupted by the delocalized defects created by the weaker 

alignment of the local flipped particle clusters hence lowering the values of P41 < 0.66 and P42 < 

0.63 compared to the Bi-TS for HPs and the Uni-TS phase for CYLs (see Fig. 4). This 

misalignment of the flipped particles and associated grain boundaries between fourfold clusters 

with biaxial orientation creates more free volume for the unflipped particles to occupy. Upon 

expanding the tetratic phase to ϕ = 0.507 for HPs and to ϕ = 0.576 for CYLs, P41 and P42 drop to 

moderate values in the range 0.44-0.52 as more particles attain the unflipped orientations, further 

destroying the translational order and the orientational alignment of the flipped particles, while 

still retaining the quasi-long ranged g4(r
*) order.  
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Fig. 5. Bond orientational correlation functions g4(r*) and g6(r*) of different phases for (a,b) 1352 

HPs at H*= 1.84 and (c, d) 1024 CYLs at H*= 1.595 under hard confinement. r* is the scaled 

radial distance. Phase symbols as in Fig. 2. The black dashed lines indicate algebraic decay of the 

orientational correlation with exponent −¼ corresponding to the KTHNY theory prediction for 

the tetratic phase.  

 

 

B.2 The FUN phase reenters into the 1∆ solid on expansion 

As the tetratic phase transitions to the FUN phase, the P41 shows an inflection at (ϕ = 0.507, H*= 

1.84) for HPs and at (ϕ = 0.576, H*= 1.595) for CYLs (see Fig. 4). After the inflection point, P41 

(or P42) in the FUN phase continues to increase (or decrease) with decreasing ϕ as more particles 

attain the unflipped orientation that disrupts the orientational order of the flipped particles. This 

indicates that the disorder observed in the FUN phase occurs due to the presence of clusters of 

flipped and unflipped particles randomly distributed throughout the system. On further expanding 

the FUN phase to ϕ < 0.43 for HPs and to ϕ < 0.510 for CYLs, the concentration of unflipped 
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particles increases thus forming local solid-like clusters having sixfold bond orientation order that 

eventually nucleate the 1∆ phase. The distribution plots of 𝑢⃗  shown in Fig. 3 indicate that the 

concentration of the particles with unflipped orientation increases upon expansion. To rule out the 

possibility that the FUN phase is a two-phase mixed state that lies within a two-phase coexistence 

region having metastable tetratic and 1∆ phases with incomplete melting of solid clusters, we 

performed an NVT ensemble interfacial simulation at H*= 1.84 and ϕ ≈ 0.45 with N = 9600 HPs. 

The initial configuration for this simulation consisted of a well-separated two-phase state within 

an elongated box, with the high-density Bi-TS at ϕ ≈ 0.60 at one side, and the I phase formed at 

low-densities at the other side. We found that regardless of the initial conditions, the interface 

between the two phases vanished and the system ended up forming the FUN phase (see Movie 1). 

The FUN phase showed short-range orientational order in g4(r*) and g6(r
*), and short-range 

translational order in g(r*) that transitions to the 1∆ phase with long range g6(r*) and pronounced 

peaks persisting over long distances for g(r*) which is indicative of solid-like behavior (see Figs. 

5 and S13). The g(r*) function also shows an increase in the lattice spacing for the 1∆ phase 

compared to the tetratic phase at higher concentrations.  

 

B.3 The FUN and 1∆ phases have distinct pseudo dynamical signatures. 

To analyze and compare the dynamical properties of the FUN phase with the tetratic and 1∆ 

phases, we carried out the “pseudo dynamic” Monte Carlo simulations in the NVT ensemble (see 

Sec. IIIc for details). We thus obtained the translational mobility coefficient, μm and the rotational 

autocorrelation function of the particle orientation 𝑢⃗  for the tetratic, FUN, and 1∆ phases at 

different ϕ values for HPs at H*= 1.84 and CYLs at H*= 1.595 (see Fig. 6). The μm values for 

different phases were estimated from the mean square displacement plots shown in Fig. S14 in the 

SI. As the system transitions from the tetratic to the FUN phase, μm increases and the rotational 

autocorrelation function of 𝑢⃗  changes from a roughly linear to a fast exponential decay. The higher 

mobility in the FUN phase can be attributed to the incompatible footprint area between the flipped 

and unflipped particle that precludes efficient packing between local clusters. Overall, we observed 

that the μm for the FUN phase and the tetratic phase closer to the tetratic-FUN phase boundary was 

higher for HPs than those for CYLs, likely due to the HP facets creating more local free volume 

for the particles to both translate and rotate. As the FUN phase transitions to the 1∆ phase, μm drops 
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as expected, indicating that the 1∆ phase has low XY translational mobility. The particles have 

higher μm in the I phase compared to the FUN phase for both HPs and CYLs. To compare the 

pseudo dynamical properties at different ϕ, we rescaled the MC step with the acceptance rates and 

the maximum step sizes and observed a higher translational and rotational mobility of the HPs and 

CYLs in the FUN phase compared to the tetratic and 1∆ phases (see Fig. S14). We note that by 

fixing the maximum translational and rotational step sizes in the pseudo dynamic simulations we 

approximately probe differences in the local free volume available for the particle in different 

phases. Similar dynamic behavior for different phases (see Fig. S15) was observed by performing 

Dynamic Monte Carlo (DMC) simulations where the ratio between the translational and rotational 

step sizes were adjusted such that 𝛿𝑡/𝛿𝑟= 𝜎/3 √𝑎𝑟/𝑎𝑡  where ar and at are the acceptance rates of 

the translational and rotational moves, respectively [40]. Although the DMC simulations provide 

an approximate way to study the dynamic behavior of our systems, more detailed, rigorous analysis 

would be required to compare the MC time scale with the Brownian time scale that couples both 

translational and rotational trajectories and accounts for the effects of monolayer confinement on 

the rotation of our biaxial particle shapes  [40–43].    
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Fig. 6. Dynamic properties of the simulated phases. (a) Variation of translational mobility 

coefficient, μm with ϕ and (b) 𝑢⃗  rotational autocorrelation function vs. rescaled Monte Carlo (MC) 

cycles for 1352 HPs at H*= 1.84 and 1024 CYLs at H*= 1.595. In (a) the coexistence region is 

shown as a solid black line, and the tetratic is represented with filled and open blue diamonds for 

the HPs and CYLs, respectively. The FUN phase is shown as cyan crosses and the 1∆ phase as 

green circles. The dotted black line represents the isotropic phase. In (b) the tetratic (blue), FUN 

(cyan), and 1∆ (green) phases are shown as solid lines for HPs at ϕ= 0.564, 0.478, 0.405, and as 

dashed lines for CYLs at ϕ= 0.627, 0.515, 0.484, respectively. 𝛿𝑟 and ar are the rotational step size 

and acceptance probability, respectively.  

 

Interestingly, the HP 1∆ phase at ϕ= 0.405 reveals an exponential decay of the orientation 𝑣  

(parallel to the hexagonal face) with simulation time, albeit the 𝑣  distribution shows discrete 

sixfold clustering due to the rotational symmetry of the hexagonal facets (see Fig. S16 in the SI). 

This suggests that through local coordinated motions, HPs are able to dynamically explore all the 
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sixfold rotational states despite being connected by low probability intermediate states. 

Accordingly, the HP 1∆ phase can also be classified as having  discrete rotator-like characteristics 

given the dynamic particle rotations (connecting a discrete set of orientations) which are similar 

to the slow hopping motions observed in the 1∆ phase for corner-rounded hexagons [44]. We note 

that, in our confinement model with perfect HPs, the 1∆ phase formed at intermediate ϕ having 

significant free volume to allow collective rotational and translational motions. 

 

B.4 Greater confinement increases fraction of flipped particles. 

To understand the effect of confinement on the relative proportion of flipped and unflipped 

particles, we computed the variation of the fraction of flipped particles, ff, with ϕ for different H* 

values (see Fig. 7). ff is the average fraction of particles that satisfies the criterion |𝑢⃗ . 𝑧 |< 0.7 (see 

Sec. I in the SI). As expected, the tetratic phase has the higher proportion of flipped particles with 

ff > 0.84 for HPs and ff > 0.75 for CYLs for all plate separations. At H*= 1.8 and 0.535 < ϕ < 0.585 

for HPs and at H*= 1.582 and 0.614 < ϕ < 0.646 for CYLs, the tetratic → FUN phase transition 

disappears, and a direct tetratic→1∆ phase transition occurs upon expansion (see Sec. IVD in the 

SI for more details). The lower density 1∆ phase, having higher fraction of the unflipped particles 

with ff ranging between 0.01-0.1, must be stabilized by gains in translational entropy along the z-

axis (i.e., the z-translational entropy) to overcome the loss in packing entropy. In our athermal 

system, the associated pressure × volume (PV) “enthalpic” contribution to the free energy acts as 

a knob that controls the strength of the packing entropy that optimizes local packing arrangement 

of the particles. At higher pressures, the free energy is minimized by enhancing the P∆V< 0 effects 

with the tetratic phase whose tightly packed flipped particles have low entropy associated with 

their restricted translational and orientational degrees of freedom. Note, however, that an efficient 

packing does allow gains in particle vibrational motion (and associated) entropy compared to dense 

but jammed configurations. The tetratic phase disappears at H* ~ 1.77 for the HPs and a direct Bi-

TS to 1∆ phase transition occurs for 1.74 < H* < 1.77 (Fig. 2a). At higher plate separations, more 

free volume is available for the flipped and unflipped particles, and the FUN phase is observed for 

H* ~ 1.84 with 0.48 < ff < 0.85 for HPs and for H*~ 1.595 with 0.44 < ff < 0.76 for CYLs. We 

posit that the FUN phase engenders when there is a competition between the z-translational entropy 

that favors the presence of unflipped particles and the entropic packing that favors “flipped-
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flipped” and “unflipped-unflipped” contacts, resulting in clusters of both flipped and unflipped 

particles randomly distributed throughout the system. We observed a drop in the ff values on 

expanding the FUN phase since the unflipped particles have then more z-translational and 

rotational degrees of freedom which take over the packing entropy and result in the 1∆ phase at 

lower density. Figure S24 in the SI shows the increase in the spread of the z-particle distribution 

functions during the expansion run as the system undergoes tetratic→FUN and tetratic→1∆ phase 

transitions. At H*= 1.9 for HPs and H*= 1.61 for CYLs, the FUN phase transitions directly into 

the I phase upon expansion at ff ~ 0.3 without crossing the stable 1∆ phase regions, with the 

persistent high fraction of flipped particles impairing the formation of the 1∆ phase. At lower 

concentrations, we observed a slight increase in the fraction of flipped particles in the HP hexatic 

phase which eventually transitions to the I phase (see Fig. 7a).   

 

  

Fig. 7. Variation of the fraction of flipped particles ff with ϕ for (a) HPs and (b) CYLs at different 

H*. Solid and dashed black lines represent the coexistence region and the I phase, respectively. 
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The tetratic, FUN, hexatic, and 1∆ phases are represented by blue diamonds, cyan crosses, red 

triangles, and green circles, respectively. 

 

C. Size polydisperse CYLs in hard confinement: Model and experiment 

C.1 Size polydispersity can suppress 1∆ monolayer phase and reentrant behavior. 

In this section, we explore the effects of size polydispersity on the re-entrant phenomenon of CYLs 

using MC simulations under the hard confinement model, and compare these results with 

experimental structures obtained from assembling the fabricated CYLs in a wedge cell 

confinement. The wedge cell allows us to access phases with varying concentrations of flipped 

particles occurring at different confinement heights. Compression runs were carried out to obtain 

the phases at different ϕ and H* values for different degrees of polydispersity (see Sec. IC for 

simulation details). We fixed sσ = 0.06 and sd = 0.01 and 0.02 to probe whether the 

tetratic→FUN→1∆ phase transition is resilient to size imperfections. Note that the phase behavior 

at narrow plate separations is sensitive to the variation in sd since the diameter dimension affects 

the fraction of particles that can access the flipped orientation observed in the FUN and tetratic 

phases. For sd= 0.02 and sσ = 0.06, the re-entrant phenomenon disappears and the tetratic → FUN→ 

I phase transition persists (see Fig. S25 in the SI). Although the nominal sd estimated using SEM 

micrographs is 0.06, the actual sd estimated from the confocal images for the FUN phase at ϕ~ 

0.50 was about 0.026 (see Fig. S6a). This decrease in the size dispersity is likely due to the 

fractionation process that occurs as the particles sediment into the narrower monolayer 

confinement separations.  

Figure 8 shows the simulated snapshots, S(k) plots, and the experimental confocal images for the 

tetratic, FUN, and 1∆ phases for the CYLs at different densities. The structure factor pattern 

changes from fourfold tetratic order → no order → sixfold order as the system transitions from 

tetratic → FUN→ 1∆ phase.  The simulated and experimental confocal images of the different 

phases occurred at the conditions indicated by the square and star markers in Fig. 9a that shows 

the variation of ff with ϕ for CYLs with sd = 0.01 and sσ = 0.06 at different H*.  The H* values in 

the simulations were chosen such that with our MC moves more than 80% of the particles can 

attain the flipped orientation at higher densities thus forming the tetratic phase. The tetratic phase 

was observed at ff > 0.75 for 1.646 H* 1.670 (see Fig. 9a). At H*= 1.646, the re-entrant FUN 
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phase occurs at ϕ < 0.576 and ff < 0.75 and was stable up to ϕ = 0.48 and ff = 0.3 before transitioning 

into the 1∆ phase with ϕ = 0.46 and ff =0.08. For H* > 1.646, the 1∆ phase disappears at lower 

densities and the FUN phase transitions directly to the I phase. The experimental ff values reported 

in Fig. 8 were obtained by manually counting the flipped and unflipped particle orientations from 

the confocal images with 38.6 μm × 37.6 μm field area. The two orientations were distinguished 

based on the difference in the projected area and geometry. We estimated a total count of about 

720, 620, and 540 particles in the tetratic, FUN and 1∆ phases, respectively. The volume of each 

particle was calculated using <d> and <σ> obtained from the SEM micrographs. The 

experimental ϕ were roughly estimated by using the average particle diameter <d> as the gap size; 

since the true experimental confinement gap is likely greater than the <d>, the reported ϕ values 

can be seen as an upper bound for the tetratic and FUN phases. The experimental values thus 

estimated are ϕ~ 0.60 and ff ~ 0.94 for the tetratic phase, ϕ~ 0.50 and ff ~ 0.74 for the FUN phase, 

and ϕ~ 0.44 and ff ~ 0.06 for the 1∆ phases. Note that the ff value obtained for the FUN phase lies 

very close to the predicted tetratic-FUN phase boundary in Fig. 9a. Unflipped  flipped transitions 

through thermal fluctuations are crucial in the experiments to access the FUN and tetratic phases. 

For the fabricated CYLs with dimensions <d> and <σ> and density mismatch ∆ρ between the 

solvent and the particle, we indeed estimated a barrier for unhindered unflipped→flipped rotation 

to be less than kbT (i.e., ∆Ug ~ 0.4 kbT as shown in Sec. IIC and Fig. S6b in the SI).  
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Fig. 8. Simulated (left) and confocal (right) images for CYLs under hard confinement exhibiting 

tetratic, FUN, and 1∆ structures with the indicated  and ff values. Insets show the structure factors. 

Simulated phases have N= 1254 and polydispersity sd = 0.01 and sσ = 0.06. Flipped and unflipped 

particle are colored red and cyan. (Right) The flipped and unflipped particles have different 

projected geometry and area. The yellow dashed lines show the local column clusters. The tetratic, 

FUN, and 1∆ phases have 740, 620, and 540 particles within a 38.6 μm × 37.6 μm field area. 

Lateral schematics represent how sampling of flipped↔unflipped states is accomplished in MC 

simulations via flip moves (left) and in the wedge confinement cell via migration of flipped and 

unflipped particles from wide to narrow separations (right).  
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Fig. 9. (a) Variation of ff with ϕ for CYLs with sd = 0.01 and sh = 0.06 at different H* values. Black 

lines represent the coexistence (solid) and I phase (dashed) regions. The tetratic, FUN, hexatic, 

and 1∆ phases are represented by blue diamonds, cyan crosses, red triangles, and green circles, 

respectively. The star (red) and square (blue) markers indicate the experimental and simulated state 

points for the tetratic and FUN phases. (b,c) Percentage of column clusters having different number 

Nc of flipped particles in column stacks.  
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C.2 Simulation and experimental phases have similar structural signatures 

To investigate the similarities between the experimental and simulated phases, we analyzed the 

static and dynamic structural properties of the tetratic and FUN phases. The static properties were 

examined using the local orientational clustering order parameter, Pi (rc) =  
1

𝑛
 ∑ cos 𝜃𝑖𝑗

𝑛
𝑗 , where j 

identifies flipped particles within the distance cutoff, rc ~ 1.25σ from the position of the flipped 

particle i, n is the number of nearest neighbors, θij is the angle between the orientations  𝑢⃗ 𝑖 and 𝑢⃗ 𝑗. 

We set the threshold for Pi (rc) as 0.7 and identified the number of particles, Nc, forming a 

continuous network of flipped column clusters. The length of the column clusters in the confocal 

images were estimated by visual counting. Figure 9b and 9c show the percentage of columns 

having Nc values ranging between 2 and 7 for the tetratic and FUN phases. To compare with 

experimental phases having similar ff values, we used the simulated tetratic phase at ϕ = 0.587 and 

ff = 0.90 and the FUN phase at ϕ = 0.577 and ff = 0.73. The column length distributions from 

experiment and simulation agree within 10%. The tetratic/FUN phase has about 16%/8% of Nc= 4 

columns and 9%/3% of Nc= 5 columns. The tetratic phase also has a higher percentage of longer 

columns with Nc > 5 and a smaller percentage of short columns with Nc< 3 than the FUN phase. 

This indicates that as ff decreases from 0.90 to 0.73 the long columns found in the tetratic phase 

break up into shorter columns in the FUN phase, destroying the fourfold features in the system. 

To probe the dynamic properties of the tetratic and FUN phases, we carried out pseudo dynamic 

NVT simulations and observed a slower decay in the rotational correlation function for the tetratic 

phase compared to the FUN phase (see Fig. S26 in the SI). Movie 2 in the SI shows the 

experimental tetratic phase with a well packed bi-orientational structure having more restricted 

rotational movement than the FUN phase shown in Movie 3, where the particles have more local 

free volume to rotate and translate. Note that the assemblies in Movies 2 and 3 the particle’s motion 

exhibits Brownian characteristics.   

Although the experimental and simulated structures of the FUN phase have similar static and 

dynamical properties, the experimental ϕ is lower, which could partially be due to the additional 

interparticle repulsive force created by the particle coating’s negative zeta potential as reported in 

Sec. IIB. Moreover, it is likely that the experimental structures examined had not reached the 

(denser) equilibrated ϕ and could be kinetically arrested. Indeed, both the ‘equilibrium’ FUN and 

tetratic phases found in simulation are only reproducibly attainable regardless of history if the 
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particles’ flipped and unflipped states are ergodically accessed, which could not have happened at 

the corresponding wall separations in the experiments. This indicates that the FUN and tetratic 

structures we observe in experiments originated when the flipped and unflipped particles occurring 

at wider wall separations (and lower ) migrated to the narrower separations where the particles’ 

rotational states were trapped but still had in-plane translational degrees of freedom to form more 

compact structures (see schematics in Fig. 8).  Hence both MC simulations (with its unphysical 

flip moves) and the wedge-cell experiments (with its gradual narrowing and migration of large 

particle ensembles) provide an extensive sampling of possible particle “initial states” which can 

then seed dense structures that “fall” into different basins of phase space. 

 

D. Bridging rotational phase space using soft-repulsive wall model 

 

The re-entrant melting transition observed for the HPs and CYLs under the hard confinement 

model is associated with the broken ergodicity that results by the disconnected rotational phase 

space between the flipped and unflipped orientations. As an approach to dynamically bridge the 

gap between the two rotational states and transform the intermediate forbidden states into low-but-

finite probability states, we implement a soft confinement model with a soft repulsive layer coating 

at the bottom wall (see Sec. IIA for details). By tuning the softness and thickness of a repulsive 

layer coating, we can control the positional penalty of the particles along the z-axis to find 

conditions where the reentrant phenomenon observed for the hard confinement scenario can be 

practically realized. We studied the phase behavior of HPs with R= 1.82 at H*= 1.95 which allows 

for dynamic flipping of the particles. The phase transitions were mapped for varying values of the 

soft layer thickness, a*, and its modulus parameter, β*. 

Figure 10a shows the phase transition sequences observed for the soft confinement model at 

different values of soft layer parameters, β* and a*. The different types of phase transition 

sequences were identified by mapping them onto the global phase diagram for the hard wall 

confinement at varying H* values shown in Fig. 2a (whose HPs have R= 2):  
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(i) For a*= 0.72 and β* < 6.5, we observed the phase sequence corresponding to the 

tetratic→ FUN→ I  transition. By decreasing a*, the β* required to attain the tetratic→ 

FUN→ I transition expectedly increases.  

(ii) For any value of a*, increasing β* pushes the phase behavior into  tetratic→ FUN→ 

1∆ phase transition  

(iii) Further increasing β* leads to a direct tetratic →1∆ transition. Figure S27 shows the 

equation of state and the correlation functions for a*= 0.45 and β*= 17.3, where the 

FUN phase occurred within the range of 0.421 < ϕ < 0.467.  

(iv) Further increasing β* leads to the 1∆→ hexatic phase transition, having 2D phase 

behavior since then the soft layer is rather “hard” and the effective wall separation 

effectively corresponds to the hard confinement model having 2D phase behavior.  
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Fig. 10. (a) Different types of phase transition sequences observed using soft confinement model 

for varying β* and a*. (b) Rotational free energy FR at different rotational states for the FUN phase 

with ϕ= 0.439 at H*= 1.84 under hard confinement and ϕ= 0.432 at H*= 1.95, β* = 17.3 and a* 

= 0.45 under soft confinement. 𝑢⃗  is the unit vector perpendicular to the flat particle face and 𝑧  is 

the unit vector in the z direction.  

    

To gauge if the FUN phase is experimentally viable with the soft confinement model, we estimated 

the transition barrier between the unflipped and the flipped rotational states by calculating the 

rotational free energy, FR = -kbT ln(P(|𝑢⃗ . 𝑧 |)), where P(|𝑢⃗ . 𝑧 |) is the probability of occurrence of 

the indicated rotational state, kb is the Boltzmann constant and T is the temperature. We compared 

the FR between the hard and soft confinement models at the conditions where the intermediate 

FUN phase was observed; namely at ϕ= 0.432 and H*= 1.84 (see Sec. IVB Fig. 3) for the hard 

confinement model and at ϕ= 0.440, β* = 17.3 and a* = 0.45 for the soft confinement model. 

Figure 10b shows the estimated flipped ↔ unflipped particle transition barrier as 8.6 kbT indicative 

of events with infrequent but experimentally accessible time scales of the order of 1 hr (estimated 

by correcting the unhindered rotational tumbling time of microparticles in water [45]). The 

interaction between the particles and walls and the ensuing particle-rotation barrier can be 

manipulated based on the soft layer material, e.g., by tuning the grafting density and the length of 

grafted polymers [46,47].  

 

E. Final Remarks and Outlook 

 

In summary, we explored the quasi-2D (monolayer) phase behavior of hard HPs and CYLs in slit-

pore confinement where the flipped and unflipped orientational states of the particles are 

dynamically disconnected. Phases with diverse structural order can be realized by coupling the 

anisotropy associated with particle shape with the restriction of the entropic degrees of freedom of 

these particles imposed by external potentials like slit confinement. Through specialized MC 

moves that ergodically sample both orientational states, our simulations mapped out the 

thermodynamic phase behavior. By varying the separation of the plates, one can effectively tune 

the z-translational entropy of the particles and hence control the fraction of particles that can access 
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the flipped or unflipped orientations. The chosen particle shapes are such that their footprint 

changes significantly in area and packing symmetry (i.e., from hexagonal to tetratic) as they go 

from unflipped to flipped orientations. This unique combination of confinement effect and 

particle’s orientation creates an interesting re-entrant transition where an intervening disordered 

FUN phase occurs between two solid phases, namely, a tetratic phase (favored by hard rectangles) 

and a 1∆ phase (favored by hexagons). The FUN phase has randomly distributed local clusters of 

flipped and unflipped particles whose incompatible footprint areas create more free volume for the 

particles to rearrange. The tetratic → FUN phase transition is continuous while the FUN phase → 

phase transition is first order. At narrow separations, a first order transition is observed between 

the tetratic phase and the 1∆ phase for both HPs and CYLs. Fast confocal image analysis of 

fabricated CYLs assembled at different densities inside a wedge-cell was used to identify 

structures consistent with the FUN phase, the 1∆ phase and the tetratic phase found by simulating 

particles with 1% and 6% dispersity in diameter and height, respectively. The comprehensive 

sampling of the accessible orientational phase space afforded by the simulations and experiments 

resulted in phases having similar fraction of flipped/unflipped particle states and structure, albeit 

at slightly different conditions. Importantly, our approaches are relevant to practical (often non-

equilibrium) processes used to form materials: our simulations were able to unveil near equilibrium 

states that actually emerged at the end of the non-equilibrium process of filling a wedge cell with 

a colloidal dispersion. To illustrate alternative, close-to-equilibrium approaches that overcome the 

broken dynamic ergodicity inherent to the hard confinement, we also proposed a soft confinement 

model wherein the barrier for the flipped ↔ unflipped transition is large enough to allow the 

formation of the same phases seen for hard confinement, but not so large to preclude such 

transitions from occasionally taking place.  

An alternative approach to control the flipped ↔ unflipped transitions rates and experimentally 

bridge the flipped and unflipped orientations would be to use a pre-programmed hard wall actuator 

that periodically increases and restores the original confinement gap. This time-dependent position 

of the hard walls could be tuned such that the fraction of time in the large separation is small 

enough to avoid large structural changes (like bilayer formation) but long enough to allow particle 

flips. Yet another approach to externally control spatial confinement is by using external 

electric/magnetic fields that allows for micro-manipulation of positions and orientations of 

electrically/magnetically active particles to drive the complex assembly of 
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macrostructures [28,48]. The tunable external potential in the above systems allows control of the 

fraction of flipped/unflipped particles and can hence provide similar conditions to reproduce the 

intriguing re-entrant phase behavior observed in our models. The re-entrant phase behavior 

unveiled in this work for the HPs and CYLs stems from the duality in the projected geometries 

when the orientation of a particle changes its flip state. In this context, it would be interesting to 

investigate how the different entropic forces responsible for the re-entrant behavior are affected 

by varying the aspect ratio of the particles. A re-entrant phase behavior akin to the one described 

in this work is likely to be associated with concomitant changes in optical properties that could be 

leveraged to devise photonic band gap crystals [49–51] and optical switches [52]. This unique 

phase behavior can also provide a template for designing reconfigurable colloidal materials where 

an external stimulus is used to change the confinement gap and allow the particles to access the 

flipped and unflipped orientations on command [53,54]. Such an actuator would allow to modulate 

the structure in the system to have sixfold, fourfold or no symmetry.  
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