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Abstract

The entropy-driven monolayer assembly of hexagonal prisms and cylinders was studied under hard
slit confinement. At the conditions investigated, the particles have two distinct and dynamically
disconnected rotational states: unflipped and flipped, depending on whether their
circular/hexagonal face is parallel or perpendicular to the wall plane. Importantly, these two
rotational states cast distinct projection areas over the wall plane that favor either hexagonal or
tetragonal packing. Monte Carlo simulations revealed a re-entrant melting transition where an
intervening disordered Flipped-Unflipped (FUN) phase is sandwiched between a fourfold tetratic
phase at high concentrations and a sixfold triangular solid at intermediate concentrations. The FUN
phase contains a mixture of flipped and unflipped particles and is translationally and
orientationally ~ disordered. = Complementary  experiments  were  conducted  with
photolithographically fabricated cylindrical microparticles confined in a wedge cell. Both
simulations and experiments show the formation of phases with comparable fraction of flipped particles
and structure, i.e., the FUN phase, triangular solid, and tetratic phase, indicating that both approaches
sample analogous basins of particle-orientation phase-space. The phase behavior of hexagonal prisms
in a soft-repulsive wall model was also investigated to exemplify how tunable particle-wall
interactions can provide an experimentally viable strategy to dynamically bridge the flipped and

unflipped states.

Keywords: Anisotropic colloids, re-entrant phase transition, monolayer confinement, self-

assembly

I. Introduction

Assemblies of colloidal particles have promising functional applications as active constituents of
photovoltaic devices [1], optical films [2], and catalysts [3]. Recent advances in the synthetic and
fabrication approaches of faceted sub-micron particles with different shapes have spurred interest
in using these particles as basic building blocks for the assembly of targeted complex structures.
The type of order and symmetry of these structures can be tuned by controlling such properties as
particle geometry [4,5], interparticle interactions (e.g., chemical patchiness) [5], depletion

forces [6-8], and external fields including hard/soft wall confinement [9—13]. Entropic and



external forces play a crucial role in the assembly of nanoparticles, and their interplay is being

systematically delineated by studies that focus on the effects of each driving force separately.

A large variety of superstructures arises when polyhedral colloidal particles are assembled at fluid
interfaces [14] or inside confined geometries such as within parallel hard plate/wedge cell [10,15],
spherical [16,17], or square cavities [18]. The confinement effects can drastically change the phase
behavior of the system and be dominant when only a few particle layers can be accommodated
along at least one direction. For hard spheres, for example, in contrast to the single isotropic to
crystal phase transition in the bulk, a rich phase behavior was observed when confined between
two parallel hard plates as the plate separation was varied to only accommodate one-to-a-few
particle layers [9]. Numerous computational and experimental investigations have been carried out
to explore the phase transitions in slit confinement with a variety of particle shapes, including
members of the truncated cubes family [10], spherical or mushroom caps[12,19], hard
rectangles [20], hard rods [18], hard platelets [21], and dimers [13,22,23]. The results from these
studies have provided an understanding of the combined effects of particle anisotropy and
confinement length. An interesting attribute associated with the parallel slit confinement model is
that it allows access to the two-dimension (2D) and quasi-2D behavior by just altering the
confinement separation: The phase behavior can drastically change depending on the particles’

accessibility to rotational and translational states across the gap.

This work 1s focused on mapping the thermodynamic phase behavior of two anisotropic convex
shaped particles; namely, hexagonal prisms (HPs), and cylinders (CYLs), under parallel slit
confinement with hard and soft-repulsive walls. The geometry of these shapes is such that the
flipped and unflipped particle orientations cast two different projected areas and shapes (Fig. 1)
against the confinement wall. The flipped and unflipped orientations corresponds to the particle
with its side parallel and perpendicular to the wall plane, respectively (see Fig. 1). Using the hard
confinement model, this scenario imposes a hindrance to the different possible rotational and
translational states that the particles can populate during self-assembly. By carefully choosing the
confinement and the particle dimensions, we can create disconnected regions in the rotational
phase space between the flipped and unflipped orientations that causes a non-ergodic dynamic
behavior in the system. In simulations, we overcome this dynamic broken ergodicity by using

unphysical specialized Monte Carlo (MC) moves that effectively sample all regions of phase



space. These MC moves allow particles to transition between flipped and unflipped states, akin to
changing the “fype” of particle in a two-component system, categorized by the projected 2D
geometry: hexagon < rectangle for the HPs, and disk « rectangle for the CYLs. Crucially, the
transition between these two orientations also provides a mechanism to switch between structures
with different packing symmetry and/or lattice spacing. The hexagonal projections of unflipped
HPs exhibit a KTHNY-type [24] phase transition with a continuous fluid-hexatic transition and a
continuous hexatic-solid transition [25]. Likewise, the disk-shaped projections of the unflipped
CYLs have a first-order fluid-hexatic transition and a continuous hexatic-solid phase
transition [26]. In contrast, the rectangular projections of flipped HPs and CYLs exhibit a two-
stage KTHNY transition with the continuous fluid-tetratic and a continuous tetratic-tetratic solid
transitions [27]. The tetratic and hexatic phases are partially ordered phases characterized by a
short-range translational order and quasi-long ranged bond orientational order. The tetratic solid

phase has long-range translational and bond orientational order.

A challenge associated with the assembly of anisotropic particles in confinement lies in the ability
to sample their equilibrated quasi-2D positions and orientations. A “soft” confinement model is
proposed in this work as a way to overcome the broken ergodicity by allowing the system to
dynamically (and experimentally) bridge the flipped and unflipped particle orientations, but
tunable external fields could also be used to control the confinement forces. For instance,
application of external electric fields has proven to be an effective approach to manipulate particle
assemblies where the relative polarizability of the particle and the solvent medium controls the
particle position, and the relative polarizability of each particle axis controls the particle
orientations [28]. For bulk 3D system, a switching transition between the body-centered cubic
crystal to a partially ordered plastic crystal structure was achieved for charged rod-like colloidal
particles by tuning the electric field [29]. A wide range of structures with hexagonal and tetratic-
like symmetries and string fluids were obtained for platelets subjected to varying electric field
strengths and confinement separations that allowed particles to access flipped and unflipped

orientations [30].

Our simulations predict a re-entrant transition for the HPs and CYLs in hard confinement where
an intervening disordered phase occurs between two solid phases: a high-density tetratic phase and

a low-density triangular solid (1A) phase. We termed this disordered phase as the Flipped-



Unflipped (FUN) phase due to the mixture of flipped and unflipped orientations, high particle
mobility, and significant degree of disorder. Indeed, the FUN phase has local clusters of flipped
and unflipped particles with incompatible footprint areas that are distributed randomly throughout
the simulated domain. At narrow separations, we observed a first order transition between the
tetratic phase and the 1A phase for both HPs and CYLs. In our athermal system, different phases
result from the interplay between pressure X volume contributions to the free-energy, which
generally favors denser structures at high pressures, and the particles’ rotational and translational
contributions to the entropy which strongly depend on gap separation. By varying the density and
confinement separation, we can tune regions of phase space accessible to the dispersion with our
MC moves and experimental preparation (see below). MC simulations were also carried out for
polydisperse CYLs in hard confinement to allow comparison of the predicted structures with
tetratic, FUN, and 1A phases obtained experimentally by assembling fabricated CYLs in a wedge
cell confinement. The consistency in the structural characteristics of the assembled phases obtained
in experiments and simulations is attributed to both methods being able to comprehensibly sample
the accessible orientational phase space. Particles in the wedge confinement cell are able to
dynamically explore their flipped and unflipped states at wide separations, and as they migrate to
the narrow separations, rearrange laterally to pack more densely; particles in the MC simulations
are able to ergodically sample both orientational states through specialized moves at all conditions.
Thus, experiments and simulations produce assembled phases that have similar fraction of
flipped/unflipped particles although not necessarily at the exact same confinement conditions (i.e.,
concentrations), hence providing comparable access to a variety of otherwise disconnected regions
of phase space. The re-entrant FUN phase was also observed for HPs simulated in a soft
confinement model where a finite transition barrier allows dynamic switching between flipped and

unflipped orientations.

The outline of this paper is as follows. Section II details the hard and soft confinement models,
simulation method, and the experimental protocol to fabricate the CYL colloids and assembling
them in the wedge cell confinement. Section III describes various order parameters used to
characterize the phase transitions. Sections IVA/IVB present summary/detailed description of the
phase behavior of HPs and CYLs under hard wall confinement, Section IVC discusses the effect

of size dispersity and a comparison between the simulated and experimental structures, and Section



IVD presents simulation results for HPs under the soft confinement model. Finally, Section V

presents closing remarks and an outlook of our study.

II. METHODOLOGY

A. Simulation model and protocol

Simulations of N hard anisotropic particles under parallel plate confinement were carried out using
the standard Metropolis Monte Carlo algorithm in an isothermal-isobaric (NPT) ensemble. Figure
1 shows the hard wall and soft confinement models that corresponds to a case without and with a
soft layer of varying thickness, a*=a/o, where o is the height of the particle. The scaled plate
separation is H*= H/o, where H is the distance between the hard walls. We simulated a range of
H* values (imposing periodicity in XY plane) that accommodates only a single particle layer. The
aspect ratio of the particles, R= b/o is fixed by varying the characteristic length b, where b = 2s for
HPs and b= d for CYLs. s is the edge length of the hexagonal face in the HP and d is the diameter
of the circular face in the CYL. The R values chosen for the hard confinement model are 2 for HPs
and 1.574 for CYLs and the phase behavior was mapped for H*= 1.0-1.9 for HPs and H*= 1.582-
1.61 for CYLs. We observed a quasi-2D phase behavior at H* > 1.74 for HPs and H* > 1.574 for
CYLs, where the plate separations are such that the particles can access both flipped and unflipped
orientations. The range of H* values chosen is such that the flipped and unflipped orientations are
dynamically disconnected (see Sec. I in the supplementary information, SI). The two orientations
are distinguished based on the [u. Z| values where U is the principal orientation unit vector of the
particle and Z is the unit vector in z direction (see Fig. S1 in the SI). When flipped the  is parallel
to the wall and perpendicular to the wall when unflipped (see Fig.1). For the soft confinement
model, we set R=1.82 and H* = 1.95 to allow for the dynamic (or continuous) rotation of the HPs
between the flipped and unflipped orientations. These R values are chosen such that they satisty
two geometric constraints: (i) The particles can access both flipped and unflipped orientations at
the confinements that only allow formation of monolayers; (ii) The unflipped orientation projects
a larger hexagonal/circular area than the rectangular area projected by the flipped orientation. The
R values chosen for our study are just representative, but we expect similar trends in phase behavior

for HPs and CYLs with other R values that satisfy both geometric constraints.
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Fig. 1. Schematic of slit-confinement simulation model with (a,b) hard and (¢) soft-repulsive walls.
H* is the separation between the hard walls scaled with respect to the height of the particle o. The
flipped (in red) and unflipped (in green) orientations and 2D projected geometries are shown for
(a) HPs, and (b) CYLs. The particle’s principal orientation unit vector, i, is parallel/perpendicular
to the XY plane when flipped/unflipped. s is the edge length of the hexagon face in HP, d is the
diameter of the circular face in CYL. In (c) a* is the thickness of the soft layer scaled with respect

to o.

We consider excluded volume interaction with the pair potential between the particles, U(r;), given

as,

oo, ifr;; < rmax
Ulr;:) = { ’ Y ) 1
(r” ) 0, otherwise (1



where, 75 is the distance between the particle center of mass, 7" is the maximum ry distance
beyond which overlap cannot occur. The overlap between the particles is checked using the
Gilbert-Johnson-Keerthi (GJK) algorithm [31]. The hard and soft repulsive potentials, U(r:),
between the particle and the hard walls and between the particle and a soft-grafted layer is given

by,

o, if Vypw(i) #0
UG = {BVosw if Vosw(r) # 0 2)
0, otherwise
where, r; is the particle center of mass position, V, i and Vs are the volumes of the particle that
overlap with the hard walls and soft grafted layer. In this simple soft repulsive potential model, a
presumed grafted layer exists with tunable hardness modulus, f*= o2, and thickness a*. Because
of the particle shape anisotropy, the wall-particle interaction potential will depend in a complex
way on not only the particle-wall distance but also the particle orientation. Model (2) above can
be seen as a first approximation to a soft repulsive potential where the energy required to deform
the soft grafter layer is proportional to the particle volume that overlaps with (and pushes out) the
soft layer. The 3D simplices was constructed to compute V, . using the particle vertices and
centroid [32]. The overlap between each particle and the hard walls was detected using separating

axis theorem [33].

For the hard confinement model, stepwise expansion/compression runs were carried out at each
H* value by equilibrating the system at each pressure step. These runs were used to map the phase
behavior along the solid and liquid branches to detect any hysteresis present between expansion
and compression. For the soft confinement model, we studied the phase behavior for HPs at H*=
1.95 for varying a* and S by performing compression runs and following the same procedure used
for the hard confinement model. The dimensionless pressure is P*= Po’/kyT, where T is
temperature and k5 is Boltzmann’s constant. The equation of state was mapped by varying P* and
calculating the volume fraction, g= NV,/V, where V), is the volume of each particle, N is the number
of particles and V is the system volume. To minimize finite size effects, we choose the initial
system size to have a minimum of 15-35 particles per layer along X and Y dimensions. For the
hard confinement model, 1254 and 1352 HPs were used for compression and expansion runs, and

1024 CYLs for both compression and expansion runs. For the system with soft confinement, 1254



HPs were used. We mapped the high-density solid branch of the phase diagram with the expansion
runs and the intermediate and lower density branch with the compression runs. At any H*, the
initial configuration for the compression runs is the isotropic phase and for the expansion runs is

the densest crystal phase simulated using Floppy Box Monte Carlo algorithm [34].

At each pressure step, we perform 3 x10” MC cycles with the last 5 x 10° cycles used for
production runs, where each MC cycle consisted of N translational, N rotational, N/10 flip, N/10
two-particle in-plane rotation and 2 volume moves. All move sets obey detailed balance and the
step size for the translational, rotational, and volume moves are adjusted to have acceptance
probabilities of 0.4, 0.4, and 0.2. We incorporated f/ip moves that attempt to randomly orient a
chosen particle in a plane that is perpendicular to its current orientation. The flip move was
particularly important for our hard confinement model having broken dynamic ergodicity, as it
helps to access the flipped and unflipped orientations that are difficult to sample with standard
rotational moves. The two-particle in-plane moves improve ergodic sampling for high-density
solid phases and were implemented as follows. First, two particles are chosen, the first randomly
and the second its closest neighbor. Next, these particles are rotated in the XY plane about their
combined center of mass (using z-component unit vector) by 90° (clockwise/anticlockwise) [22].
The move is accepted if: (i) the second particle is still the closest to the first one to maintain
reversibility, and (ii) no overlap is incurred. Volume moves attempt changes in XY box area and
shape (anisotropic moves) during the expansion runs, while only changes in XY area during

compression runs.

B. Experimental protocol for fabrication of colloidal CYLs

We used a photolithographic procedure to fabricate colloidal CYLs from an epoxy-based negative
photoresist, SU-8 2001 series, which provides high-throughput of different colloidal shapes within
narrow size polydispersity [35,36]. The fabrication process includes three key steps: (i) Spin
coating of the photoresist on top of a sacrificial Omnicoat layer on a 100 mm silicon substrate. The
thickness of the photoresist layer controls the height of the particles, o. (i) Exposure of the
photoresist to ultraviolet light (i-line) through a Cr photomask with round holes to control the

diameter, d of the particles. (iii) Development of the photopatterned resist layer and release of the



particles by dissolution of the Omnicoat layer. The particles were then washed with DI water and
suspended in an aqueous solution of Tergitol NP70, a non-ionic surfactant that adsorbs on the
surface of the particles and provides a steric barrier holding the particles outside the vdW attraction
regime to prevent irreversible aggregation [35,37]. The thickness of the NP70 layer and the zeta
potential of the particles were estimated by Badaire et al. [37] to be 8.2 £ 3.3 nm and -21.0 £ 6.2
mV, respectively. This route generated particles with d = 1.56 + 0.08 um and ¢ = 0.96 + 0.06 um
and the suspension concentration ~ 4.5 X 10® particles/m/. The size dispersity, s; and s, in diameter
and height were measured using the SEM micrographs and estimated to be 0.05 and 0.06,
respectively. A more detailed description of the fabrication procedure and particle characterization
is given in Sec. II of the SI. The suspension was transferred to a 10 ml glass vial and mixed with
a small amount of fluorescein dye (2 mg/ml) to enable confocal imaging. Finally, the CYLs were
assembled in the wedge cell confinement to study the organization of the particles using fast

confocal microscopy (see Sec. IID in the SI).

III. Order parameters

A. Cubatic orientation order parameter

The global orientational order was measured using the cubatic order parameter, P4, which is

defined as,
P,) = LN b i
(P = max > PyCE. )

1
= max— 2(35 cos*0;(1) — 30 cos?6;(7) + 3) 3)
n 8N -

where 1, is the principal orientation vector of the particle and the 7 is the director that maximizes

(P,). 1 is found using the numerical recipe reported in [38] which yields two orthogonal directors,
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n,, n, and the corresponding values of (P,;), (P,,) in decreasing order of magnitude, used to

gauge the in-plane and out-plane alignment of the flipped and unflipped particles.

B. Bond orientational order parameter

The local n-fold bond orientational order, @,,(r) for each k particle is given by,

Pu(ri) = 5~ Zfos exp(ind) )

where i =v—1 and Bji is the angle between the vector connecting particle & with its neighbor j
and a fixed reference vector. N, is the number of nearest neighbors of particles k. For n= 6, N
was calculated via Voronoi tessellation, while for n= 4, the four closest neighbors were used to
avoid the degeneracy in the Voronoi construction [39]. Note that the @,(r,) are evaluated
considering the center of mass coordinates of the particles projected on the 2D plane of the slit

confinement.

To analyze the correlation length of the local bond order parameters, we compute the n-fold local

bond orientational correlation function given by,

gn(1) = (Pn(0) Pp(1)) )
where * indicates the complex conjugate of @, () for the particle at a distance r from the reference

particle.

C. Translational and rotational mobility analysis

We tracked particle mobility by carrying out NV'T ensemble simulations of the equilibrated phases
at different densities with a fixed set of translation and rotation moves using fixed step size that
yield acceptance probabilities between 85%-95% to mimic pseudo diffusive particle dynamics.
The translational mobility coefficient, u» is defined as the mean square displacement over Ny MC

cycles,

=1 ZNMC NS|Ar(ij+s,j)|2

ST T N(Nwc—Ny)

(6)

11



where Ar(ijﬂ' j) is the center of mass displacement of the i particle between the j and (j+s)" MC

cycles, and Ny is the total number of MC cycles in the simulation. w, quantifies the average in-
plane local translational fluctuations for the phases under study. The rotational mobility is gauged

by the autocorrelation function of particle orientation vectors over the MC cycles, defined as,

N Nmc—Ns 7
i=1 Zj=0 u;

9. =
° N(Nyc — Ns)

2
' u]+S

(7)

where, ul is the principal orientation vector of particle i, and Ny is the number of MC cycles over
which the axes alignment is measured. As indicated later, we also implemented these calculations

with a “Dynamic” MC method [40] to test for consistency in the resulting mobility trends.

IV. Results and discussion

A. Brief overview of the phase diagram under hard confinement

Figure 2 shows the quasi-2D behavior of HPs and CYLs that was mapped by tracking ¢ for
different phases found at 1.74 < H* < 1.9 for HPs and 1.581 < H* < 1.61 for CYLs, where the
available space only allows the formation of a monolayer. At these plate separations both HPs and
CYLs can access the flipped and unflipped orientations that have distinct projected footprints on
the confinement planes. The flipped HPs and CYLs cast a smaller rectangular area and hence at
the highest concentrations pack into the tetratic solid (TS) and partially ordered tetratic phase
which are structurally similar to those of hard rectangles at 2D-close packing [27]. The forbidden
region encloses inaccessible state points at higher packing fractions due to wall overlap (see Figs.
2a and 2b) and the boundary between the TS and the forbidden region represents the packing
fraction of the densest structure predicted from the Floppy Box Monte Carlo algorithm [34]. The
TS is classified into Uniaxial (Uni-TS) and Biaxial (Bi-TS), based on the alignment of the
orientation U of the flipped particles. At intermediate concentrations, the unflipped orientations

project a larger hexagonal and circular areas for the HPs and CYLs, respectively, thus forming 2D

12



phases consistent with the assembly of hard hexagons [25] and hard disks [26]. At 1.8 < H* <
1.865 and 0.375 < ¢ < 0.535 for HPs and at 1.581< H* < 1.605 and 0.458 < ¢ < 0.614 for CYLs,
we observed an interesting re-entrant melting transition where the intervening disordered FUN
phase occurs between the tetratic phase at high concentrations and the 1A phase at the intermediate
concentrations. We observed a continuous tetratic—FUN phase transition and a first order FUN
phase —1A phase transition. The FUN phase has local clusters of flipped and unflipped particles
that are randomly distributed throughout the system and the particles have relatively high
translational and rotational mobility. At H* > 1.865 for HPs and H* > 1.605 for CYLs, the 1A
phase disappears and the FUN phase transitions to the isotropic (I) phase upon expansion, where
any ordering signature disappears as the flipped particles reached ~30% at the lower
concentrations. The FUN phase is hence an extension of the I phase but with higher concentration
of flipped particles and forms a continuous boundary with the I phase at 1.865 < H* < 1.9 for HPs
and at 1.605 < H* < 1.61 for CYLs (see Fig. 2). Figure 3 show the equilibrated snapshots, 2D
structure factor plot, and # distribution plot of the tetratic, FUN, and 1A phases for the HPs at H*=
1.84 and CYLs at H*= 1.595. The change in the structural symmetry from fourfold to disorder to

hexagonal symmetry can be observed with the concentration of the flipped particles. The 2D
structure factor was defined as, S(k) = %([Z’i\’zl cos(k. r,-)]2 + [ZX; cos(k. r,-)]z), where k= (2n

ny/Ly, 211 ny/Ly) with integers n, and n, chosen so that the wave vector k corresponds to the Bragg

peak for the particles position r;.
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Fig. 2. Quasi-2D phase diagram for (a) HPs and (b) CYLs under hard wall confinement for varying
H* and ¢. The dashed black line indicates a continuous boundary between the FUN and I phases.
In (a) the dotted black line marks boundary between the Uni-TS and Bi-TS phases. Symbols: 1A
= triangular solid phase, I = isotropic phase, Bi-TS = biaxial tetratic solid, Uni-TS = uniaxial
tetratic solid, FUN = disordered phase with the mixture of flipped and unflipped particles, and
coex= two-phase coexistence region. The forbidden region encloses inaccessible state points.

For the HPs, the hexatic and 1A phases occurred at H* > 1.74 and 0.35 < ¢ <0.48, where the phase
regions narrow with increasing A * and disappear at H* ~ 1.865. For the CYLs, the 1A phase region
was observed for 0.46 < ¢ < 0.53 and H* < 1.605. The HPs exhibit a 2D phase behavior for H* <

14



1.74 and is discussed in Sec. III of the SI. We expect the CYLs to also exhibit the 2D phase
behavior associated with hard disks [26] for H* < 1.574.
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Fig. 3. Equilibrium structures of (a-c) HPs at H* = 1.84 and (d-f) CYLs at H* = 1.595 under hard
confinement over different ranges of ¢. Representative snapshots are shown with insets for the
structure factor and u distribution plots. Flipped particles are colored red or blue if most or least
aligned with the in-plane P4 director. Unflipped particles are colored green. Single particle i’s are
also depicted in x axis.

The following section IV.B provides a more detailed description of the characterization and

properties of the different phases in Fig. 2.
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B. Phase behavior of HPs and CYLs in hard confinement model

B.1 The (Uni- and Bi-) TS phases form at the highest densities

For the HPs at ¢ > 0.6 and 1.74 < H* < 1.9 shown in Fig. 2a, we observed two sub-phase TS
regions: Uni-TS and Bi-TS phases. The transition boundary between these phases was determined
using the cubatic orientational order parameters P41 and Ps> [defined in Eq. (3)]. Figure 4a shows
the equation of state with P* vs. ¢ for HPs at H*= 1.84 (filled circles for compression and filled
squares for expansion), where the Uni-TS phase formed at the higher concentration transitions into
the Bi-TS phase upon expansion at ¢~ 0.662 and P*~ 12.4. We observed a sharp drop in the values
of P4 from 1.0 and a rise in the P4, from 0.375 that flattens to 0.66 < P41 <0.71 and 0.62 < P4, <
0.63 as the system transitions from the Uni-TS to the Bi-TS that was observed at 0.576 < ¢ < 0.662.
This drop indicates that the percolating network of the orientationally aligned cluster of the flipped
particles present in the Uni-TS dissolves into the Bi-TS where the size of clusters is about a few
particles across and are randomly distributed along the two XY perpendicular directors (see Fig.
S11 in the SI). The varying length scales of the coexisting clusters having perpendicular alignment
along the XY plane suggests that the Uni-TS «<>Bi-TS transition is continuous. The analysis using
the positional pair-correlation, g(*), and fourfold local bond orientational correlation functions,
24(r") [defined in Eq. (5)], shows that both Uni-TS and Bi-TS have long-range translational and
fourfold bond orientational order (see Fig. S12 and Sec. ID in the SI describing the associated
square lattice structure construction). We note that the mixed bi-orientational states in the Bi-TS
is stabilized by the transition between degenerate in-plane orientations of the flipped particles
(sampled by the two-particle MC moves) that increases the mixing entropy, with grain boundaries
contributing to increase the local free-volume. At higher ¢, the free energy is minimized by
enhancing the packing efficiency (manifested as PAV < 0) that drives the system to the more

uniformly aligned columnar structure of the flipped particles in the Uni-TS.
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Fig. 4. Equation of state, P* vs. ¢, showing the compression and expansion runs for (a) HPs at H*
= 1.84 and (b) CYLs at H* = 1.595. Dotted lines mark approximate phase boundaries. The
variation of cubatic order parameters P41 and P> with ¢ is also shown. Phase symbols as in caption
of Fig. 2.

For CYLs, the tetratic phase precedes the Uni-TS (see Fig. 2b) instead of the Bi-TS whose inherent
square lattice structure cannot be realized with the CYL aspect ratio adopted here. The Uni-TS and
the tetratic phase occurred at 0.66 < ¢ < 0.768 and 0.565 < ¢ < 0.674, respectively for 1.582<
H*<1.61. For the H*= 1.595 case shown in Fig. 4b, the Uni-TS transitions into the tetratic phase
at ¢ ~ 0.663 and P* ~ 7.88. However, the tetratic phase in the range of 0.627 < ¢ < 0.663 close to
the Uni-TS—tetratic transition boundary has P41 and P> characteristics similar to those of the Bi-

TS. For the HPs, the tetratic phase occurred at 1.77 < H* < 1.9 and 0.466 < ¢< 0.612, where a

17



continuous transition from the Bi-TS to the tetratic phase was observed upon expansion. To

distinguish the tetratic phase from the Uni-TS and Bi-TS, we examined g4(+") and g(+") selecting
the —% exponent value as threshold to align with the KTHNY theory prediction for the scaling

parameter lower-bound for the fluid to tetratic phase transition [25]. For the tetratic phase

occurring at (H*= 1.84, ¢ = 0.534) for HPs and at (H*= 1.595, ¢ = 0.627) for CYLs, g4(r") reveals

a long-ranged order with the exponent value > —%4, while g(r") shows short range translational
order with a quick decay of peak amplitude with distance (see Figs. 5 and S13). The long-range
translational order in the tetratic phase is disrupted by the delocalized defects created by the weaker
alignment of the local flipped particle clusters hence lowering the values of P41 < 0.66 and P <
0.63 compared to the Bi-TS for HPs and the Uni-TS phase for CYLs (see Fig. 4). This
misalignment of the flipped particles and associated grain boundaries between fourfold clusters
with biaxial orientation creates more free volume for the unflipped particles to occupy. Upon
expanding the tetratic phase to ¢ = 0.507 for HPs and to ¢ = 0.576 for CYLs, P41 and P4 drop to
moderate values in the range 0.44-0.52 as more particles attain the unflipped orientations, further
destroying the translational order and the orientational alignment of the flipped particles, while

still retaining the quasi-long ranged ga(r") order.
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Fig. 5. Bond orientational correlation functions g4(7*) and gs(r*) of different phases for (a,b) 1352
HPs at H*= 1.84 and (c, d) 1024 CYLs at H*= 1.595 under hard confinement. »* is the scaled
radial distance. Phase symbols as in Fig. 2. The black dashed lines indicate algebraic decay of the

orientational correlation with exponent —%4 corresponding to the KTHNY theory prediction for
the tetratic phase.

B.2 The FUN phase reenters into the 1A solid on expansion

As the tetratic phase transitions to the FUN phase, the P41 shows an inflection at (¢ = 0.507, H*=
1.84) for HPs and at (¢ = 0.576, H*= 1.595) for CYLs (see Fig. 4). After the inflection point, P4;
(or P42) in the FUN phase continues to increase (or decrease) with decreasing ¢ as more particles
attain the unflipped orientation that disrupts the orientational order of the flipped particles. This
indicates that the disorder observed in the FUN phase occurs due to the presence of clusters of
flipped and unflipped particles randomly distributed throughout the system. On further expanding
the FUN phase to ¢ < 0.43 for HPs and to ¢ < 0.510 for CYLs, the concentration of unflipped

19



particles increases thus forming local solid-like clusters having sixfold bond orientation order that
eventually nucleate the 1A phase. The distribution plots of # shown in Fig. 3 indicate that the
concentration of the particles with unflipped orientation increases upon expansion. To rule out the
possibility that the FUN phase is a two-phase mixed state that lies within a two-phase coexistence
region having metastable tetratic and 1A phases with incomplete melting of solid clusters, we
performed an NV'T ensemble interfacial simulation at H*= 1.84 and ¢ = 0.45 with N = 9600 HPs.
The initial configuration for this simulation consisted of a well-separated two-phase state within
an elongated box, with the high-density Bi-TS at ¢ = 0.60 at one side, and the I phase formed at
low-densities at the other side. We found that regardless of the initial conditions, the interface
between the two phases vanished and the system ended up forming the FUN phase (see Movie 1).
The FUN phase showed short-range orientational order in ga(r") and ge(+'), and short-range
translational order in g(r") that transitions to the 1A phase with long range go(7*) and pronounced
peaks persisting over long distances for g(r*) which is indicative of solid-like behavior (see Figs.
5 and S13). The g(r") function also shows an increase in the lattice spacing for the 1A phase

compared to the tetratic phase at higher concentrations.

B.3 The FUN and 1A phases have distinct pseudo dynamical signatures.

To analyze and compare the dynamical properties of the FUN phase with the tetratic and 1A
phases, we carried out the “pseudo dynamic” Monte Carlo simulations in the NVT ensemble (see
Sec. Illc for details). We thus obtained the translational mobility coefficient, u, and the rotational
autocorrelation function of the particle orientation % for the tetratic, FUN, and 1A phases at
different ¢ values for HPs at H*= 1.84 and CYLs at H*= 1.595 (see Fig. 6). The u, values for
different phases were estimated from the mean square displacement plots shown in Fig. S14 in the
SI. As the system transitions from the tetratic to the FUN phase, u, increases and the rotational
autocorrelation function of % changes from a roughly linear to a fast exponential decay. The higher
mobility in the FUN phase can be attributed to the incompatible footprint area between the flipped
and unflipped particle that precludes efficient packing between local clusters. Overall, we observed
that the ., for the FUN phase and the tetratic phase closer to the tetratic-FUN phase boundary was
higher for HPs than those for CYLs, likely due to the HP facets creating more local free volume
for the particles to both translate and rotate. As the FUN phase transitions to the 1A phase, w» drops
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as expected, indicating that the 1A phase has low XY translational mobility. The particles have
higher u, in the I phase compared to the FUN phase for both HPs and CYLs. To compare the
pseudo dynamical properties at different ¢, we rescaled the MC step with the acceptance rates and
the maximum step sizes and observed a higher translational and rotational mobility of the HPs and
CYLs in the FUN phase compared to the tetratic and 1A phases (see Fig. S14). We note that by
fixing the maximum translational and rotational step sizes in the pseudo dynamic simulations we
approximately probe differences in the local free volume available for the particle in different
phases. Similar dynamic behavior for different phases (see Fig. S15) was observed by performing
Dynamic Monte Carlo (DMC) simulations where the ratio between the translational and rotational
step sizes were adjusted such that §,/8,= a/3 \/m where a, and a; are the acceptance rates of
the translational and rotational moves, respectively [40]. Although the DMC simulations provide
an approximate way to study the dynamic behavior of our systems, more detailed, rigorous analysis
would be required to compare the MC time scale with the Brownian time scale that couples both
translational and rotational trajectories and accounts for the effects of monolayer confinement on

the rotation of our biaxial particle shapes [40—43].
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Fig. 6. Dynamic properties of the simulated phases. (a) Variation of translational mobility
coefficient, 1, with ¢ and (b) U rotational autocorrelation function vs. rescaled Monte Carlo (MC)
cycles for 1352 HPs at H*= 1.84 and 1024 CYLs at H*= 1.595. In (a) the coexistence region is
shown as a solid black line, and the tetratic is represented with filled and open blue diamonds for
the HPs and CYLs, respectively. The FUN phase is shown as cyan crosses and the 1A phase as
green circles. The dotted black line represents the isotropic phase. In (b) the tetratic (blue), FUN
(cyan), and 1A (green) phases are shown as solid lines for HPs at ¢= 0.564, 0.478, 0.405, and as
dashed lines for CYLs at ¢=0.627, 0.515, 0.484, respectively. §,- and a, are the rotational step size
and acceptance probability, respectively.

Interestingly, the HP 1A phase at ¢= 0.405 reveals an exponential decay of the orientation ¥
(parallel to the hexagonal face) with simulation time, albeit the ¥ distribution shows discrete
sixfold clustering due to the rotational symmetry of the hexagonal facets (see Fig. S16 in the SI).

This suggests that through local coordinated motions, HPs are able to dynamically explore all the
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sixfold rotational states despite being connected by low probability intermediate states.
Accordingly, the HP 1A phase can also be classified as having discrete rotator-like characteristics
given the dynamic particle rotations (connecting a discrete set of orientations) which are similar
to the slow hopping motions observed in the 1A phase for corner-rounded hexagons [44]. We note
that, in our confinement model with perfect HPs, the 1A phase formed at intermediate ¢ having

significant free volume to allow collective rotational and translational motions.

B.4 Greater confinement increases fraction of flipped particles.

To understand the effect of confinement on the relative proportion of flipped and unflipped
particles, we computed the variation of the fraction of flipped particles, f; with ¢ for different H*
values (see Fig. 7). f;is the average fraction of particles that satisfies the criterion [i. Z|< 0.7 (see
Sec. I in the SI). As expected, the tetratic phase has the higher proportion of flipped particles with
fr>0.84 for HPs and f> 0.75 for CYLs for all plate separations. At H*= 1.8 and 0.535 <¢ <0.585
for HPs and at H*= 1.582 and 0.614 < ¢ < 0.646 for CYLs, the tetratic — FUN phase transition
disappears, and a direct tetratic— 1A phase transition occurs upon expansion (see Sec. IVD in the
SI for more details). The lower density 1A phase, having higher fraction of the unflipped particles
with frranging between 0.01-0.1, must be stabilized by gains in translational entropy along the z-
axis (i.e., the z-translational entropy) to overcome the loss in packing entropy. In our athermal
system, the associated pressure X volume (PV) “enthalpic” contribution to the free energy acts as
a knob that controls the strength of the packing entropy that optimizes local packing arrangement
of the particles. At higher pressures, the free energy is minimized by enhancing the PAV< 0 effects
with the tetratic phase whose tightly packed flipped particles have low entropy associated with
their restricted translational and orientational degrees of freedom. Note, however, that an efficient
packing does allow gains in particle vibrational motion (and associated) entropy compared to dense
but jammed configurations. The tetratic phase disappears at H* ~ 1.77 for the HPs and a direct Bi-
TS to 1A phase transition occurs for 1.74 < H* < 1.77 (Fig. 2a). At higher plate separations, more
free volume is available for the flipped and unflipped particles, and the FUN phase is observed for
H* ~ 1.84 with 0.48 < f;< 0.85 for HPs and for H*~ 1.595 with 0.44 < /< 0.76 for CYLs. We
posit that the FUN phase engenders when there is a competition between the z-translational entropy

that favors the presence of unflipped particles and the entropic packing that favors “flipped-
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flipped” and “unflipped-unflipped” contacts, resulting in clusters of both flipped and unflipped
particles randomly distributed throughout the system. We observed a drop in the f; values on
expanding the FUN phase since the unflipped particles have then more z-translational and
rotational degrees of freedom which take over the packing entropy and result in the 1A phase at
lower density. Figure S24 in the SI shows the increase in the spread of the z-particle distribution
functions during the expansion run as the system undergoes tetratic—FUN and tetratic— 1A phase
transitions. At H*= 1.9 for HPs and H*= 1.61 for CYLs, the FUN phase transitions directly into
the I phase upon expansion at f;~ 0.3 without crossing the stable 1A phase regions, with the
persistent high fraction of flipped particles impairing the formation of the 1A phase. At lower
concentrations, we observed a slight increase in the fraction of flipped particles in the HP hexatic

phase which eventually transitions to the I phase (see Fig. 7a).
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Fig. 7. Variation of the fraction of flipped particles frwith ¢ for (a) HPs and (b) CYLs at different
H*. Solid and dashed black lines represent the coexistence region and the I phase, respectively.
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The tetratic, FUN, hexatic, and 1A phases are represented by blue diamonds, cyan crosses, red
triangles, and green circles, respectively.

C. Size polydisperse CYLs in hard confinement: Model and experiment

C.1 Size polydispersity can suppress 1A monolayer phase and reentrant behavior.

In this section, we explore the effects of size polydispersity on the re-entrant phenomenon of CYLs
using MC simulations under the hard confinement model, and compare these results with
experimental structures obtained from assembling the fabricated CYLs in a wedge cell
confinement. The wedge cell allows us to access phases with varying concentrations of flipped
particles occurring at different confinement heights. Compression runs were carried out to obtain
the phases at different ¢ and H* values for different degrees of polydispersity (see Sec. IC for
simulation details). We fixed s, = 0.06 and ss = 0.01 and 0.02 to probe whether the
tetratic—FUN— 1A phase transition is resilient to size imperfections. Note that the phase behavior
at narrow plate separations is sensitive to the variation in s; since the diameter dimension affects
the fraction of particles that can access the flipped orientation observed in the FUN and tetratic
phases. For 5= 0.02 and s,= 0.06, the re-entrant phenomenon disappears and the tetratic - FUN—
I phase transition persists (see Fig. S25 in the SI). Although the nominal s4 estimated using SEM
micrographs is 0.06, the actual s estimated from the confocal images for the FUN phase at ¢~
0.50 was about 0.026 (see Fig. S6a). This decrease in the size dispersity is likely due to the
fractionation process that occurs as the particles sediment into the narrower monolayer

confinement separations.

Figure 8 shows the simulated snapshots, S(k) plots, and the experimental confocal images for the
tetratic, FUN, and 1A phases for the CYLs at different densities. The structure factor pattern
changes from fourfold tetratic order — no order — sixfold order as the system transitions from
tetratic — FUN— 1A phase. The simulated and experimental confocal images of the different
phases occurred at the conditions indicated by the square and star markers in Fig. 9a that shows
the variation of fr with ¢ for CYLs with s;= 0.01 and s, = 0.06 at different H*. The H* values in
the simulations were chosen such that with our MC moves more than 80% of the particles can
attain the flipped orientation at higher densities thus forming the tetratic phase. The tetratic phase

was observed at fr> 0.75 for 1.646< H* <1.670 (see Fig. 9a). At H*= 1.646, the re-entrant FUN
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phase occurs at ¢ <0.576 and fy< 0.75 and was stable up to ¢ = 0.48 and f;= 0.3 before transitioning
into the 1A phase with ¢ = 0.46 and f=0.08. For H* > 1.646, the 1A phase disappears at lower
densities and the FUN phase transitions directly to the I phase. The experimental frvalues reported
in Fig. 8 were obtained by manually counting the flipped and unflipped particle orientations from
the confocal images with 38.6 um X 37.6 um field area. The two orientations were distinguished
based on the difference in the projected area and geometry. We estimated a total count of about
720, 620, and 540 particles in the tetratic, FUN and 1A phases, respectively. The volume of each
particle was calculated using <d> and <o> obtained from the SEM micrographs. The
experimental ¢ were roughly estimated by using the average particle diameter <d> as the gap size;
since the true experimental confinement gap is likely greater than the <d>, the reported ¢ values
can be seen as an upper bound for the tetratic and FUN phases. The experimental values thus
estimated are ¢~ 0.60 and f;~ 0.94 for the tetratic phase, ¢~ 0.50 and fy~ 0.74 for the FUN phase,
and ¢~ 0.44 and fr~ 0.06 for the 1A phases. Note that the f; value obtained for the FUN phase lies
very close to the predicted tetratic-FUN phase boundary in Fig. 9a. Unflipped <> flipped transitions
through thermal fluctuations are crucial in the experiments to access the FUN and tetratic phases.
For the fabricated CYLs with dimensions <d> and <¢> and density mismatch Ap between the
solvent and the particle, we indeed estimated a barrier for unhindered unflipped—{lipped rotation

to be less than &7 (i.e., AUy ~ 0.4 k»T as shown in Sec. IIC and Fig. S6b in the SI).
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Fig. 8. Simulated (left) and confocal (right) images for CYLs under hard confinement exhibiting
tetratic, FUN, and 1A structures with the indicated ¢and frvalues. Insets show the structure factors.
Simulated phases have N= 1254 and polydispersity s¢ = 0.01 and s, = 0.06. Flipped and unflipped
particle are colored red and cyan. (Right) The flipped and unflipped particles have different
projected geometry and area. The yellow dashed lines show the local column clusters. The tetratic,
FUN, and 1A phases have 740, 620, and 540 particles within a 38.6 yum X 37.6 um field area.
Lateral schematics represent how sampling of flipped<>unflipped states is accomplished in MC
simulations via flip moves (left) and in the wedge confinement cell via migration of flipped and
unflipped particles from wide to narrow separations (right).
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Fig. 9. (a) Variation of fywith ¢ for CYLs with s,=0.01 and s,= 0.06 at different /7* values. Black
lines represent the coexistence (solid) and I phase (dashed) regions. The tetratic, FUN, hexatic,
and 1A phases are represented by blue diamonds, cyan crosses, red triangles, and green circles,
respectively. The star (red) and square (blue) markers indicate the experimental and simulated state
points for the tetratic and FUN phases. (b,c) Percentage of column clusters having different number
N. of flipped particles in column stacks.
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C.2 Simulation and experimental phases have similar structural signatures

To investigate the similarities between the experimental and simulated phases, we analyzed the

static and dynamic structural properties of the tetratic and FUN phases. The static properties were
. . ) ) . 1 .
examined using the local orientational clustering order parameter, P; (r.) = - Z}l cos 6;;, where j

identifies flipped particles within the distance cutoff, 7. ~ 1.25¢ from the position of the flipped
particle 7, n is the number of nearest neighbors, 6; is the angle between the orientations ii; and #;.
We set the threshold for P; (r.) as 0.7 and identified the number of particles, N, forming a
continuous network of flipped column clusters. The length of the column clusters in the confocal
images were estimated by visual counting. Figure 9b and 9c¢ show the percentage of columns
having N. values ranging between 2 and 7 for the tetratic and FUN phases. To compare with
experimental phases having similar fr values, we used the simulated tetratic phase at ¢ = 0.587 and
fr=10.90 and the FUN phase at ¢ = 0.577 and f; = 0.73. The column length distributions from
experiment and simulation agree within 10%. The tetratic/FUN phase has about 16%/8% of N= 4
columns and 9%/3% of N.= 5 columns. The tetratic phase also has a higher percentage of longer
columns with N. > 5 and a smaller percentage of short columns with N.< 3 than the FUN phase.
This indicates that as fr decreases from 0.90 to 0.73 the long columns found in the tetratic phase
break up into shorter columns in the FUN phase, destroying the fourfold features in the system.
To probe the dynamic properties of the tetratic and FUN phases, we carried out pseudo dynamic
NVT simulations and observed a slower decay in the rotational correlation function for the tetratic
phase compared to the FUN phase (see Fig. S26 in the SI). Movie 2 in the SI shows the
experimental tetratic phase with a well packed bi-orientational structure having more restricted
rotational movement than the FUN phase shown in Movie 3, where the particles have more local
free volume to rotate and translate. Note that the assemblies in Movies 2 and 3 the particle’s motion

exhibits Brownian characteristics.

Although the experimental and simulated structures of the FUN phase have similar static and
dynamical properties, the experimental ¢ is lower, which could partially be due to the additional
interparticle repulsive force created by the particle coating’s negative zeta potential as reported in
Sec. IIB. Moreover, it is likely that the experimental structures examined had not reached the
(denser) equilibrated ¢ and could be kinetically arrested. Indeed, both the ‘equilibrium’ FUN and

tetratic phases found in simulation are only reproducibly attainable regardless of history if the
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particles’ flipped and unflipped states are ergodically accessed, which could not have happened at
the corresponding wall separations in the experiments. This indicates that the FUN and tetratic
structures we observe in experiments originated when the flipped and unflipped particles occurring
at wider wall separations (and lower ¢) migrated to the narrower separations where the particles’
rotational states were trapped but still had in-plane translational degrees of freedom to form more
compact structures (see schematics in Fig. 8). Hence both MC simulations (with its unphysical
flip moves) and the wedge-cell experiments (with its gradual narrowing and migration of large
particle ensembles) provide an extensive sampling of possible particle “initial states” which can

then seed dense structures that “fall” into different basins of phase space.

D. Bridging rotational phase space using soft-repulsive wall model

The re-entrant melting transition observed for the HPs and CYLs under the hard confinement
model is associated with the broken ergodicity that results by the disconnected rotational phase
space between the flipped and unflipped orientations. As an approach to dynamically bridge the
gap between the two rotational states and transform the intermediate forbidden states into low-but-
finite probability states, we implement a soft confinement model with a soft repulsive layer coating
at the bottom wall (see Sec. IIA for details). By tuning the softness and thickness of a repulsive
layer coating, we can control the positional penalty of the particles along the z-axis to find
conditions where the reentrant phenomenon observed for the hard confinement scenario can be
practically realized. We studied the phase behavior of HPs with R=1.82 at H*=1.95 which allows
for dynamic flipping of the particles. The phase transitions were mapped for varying values of the

soft layer thickness, a*, and its modulus parameter, £*.

Figure 10a shows the phase transition sequences observed for the soft confinement model at
different values of soft layer parameters, f* and a* The different types of phase transition
sequences were identified by mapping them onto the global phase diagram for the hard wall

confinement at varying H* values shown in Fig. 2a (whose HPs have R= 2):
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(1)

(i)

(iii)

(iv)

For a*= 0.72 and p* < 6.5, we observed the phase sequence corresponding to the
tetratic— FUN— I transition. By decreasing a *, the f* required to attain the tetratic—
FUN— I transition expectedly increases.

For any value of a*, increasing f* pushes the phase behavior into tetratic— FUN—
1A phase transition

Further increasing f* leads to a direct tetratic —1A transition. Figure S27 shows the
equation of state and the correlation functions for a*= 0.45 and f*= 17.3, where the
FUN phase occurred within the range of 0.421 < ¢ < 0.467.

Further increasing f* leads to the 1A— hexatic phase transition, having 2D phase
behavior since then the soft layer is rather “hard” and the effective wall separation

effectively corresponds to the hard confinement model having 2D phase behavior.
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Fig. 10. (a) Different types of phase transition sequences observed using soft confinement model
for varying f* and a*. (b) Rotational free energy Fr at different rotational states for the FUN phase
with ¢= 0.439 at H*= 1.84 under hard confinement and ¢= 0.432 at H*=1.95, f*=17.3 and a*
= 0.45 under soft confinement. U is the unit vector perpendicular to the flat particle face and Z is
the unit vector in the z direction.

To gauge if the FUN phase is experimentally viable with the soft confinement model, we estimated
the transition barrier between the unflipped and the flipped rotational states by calculating the
rotational free energy, Fr = -k»T In(P(|U. Z])), where P(|u. Z|) is the probability of occurrence of
the indicated rotational state, & is the Boltzmann constant and 7' is the temperature. We compared
the Fr between the hard and soft confinement models at the conditions where the intermediate
FUN phase was observed; namely at ¢= 0.432 and H*= 1.84 (see Sec. IVB Fig. 3) for the hard
confinement model and at ¢= 0.440, p* = 17.3 and a* = 0.45 for the soft confinement model.
Figure 10b shows the estimated flipped <> unflipped particle transition barrier as 8.6 k7 indicative
of events with infrequent but experimentally accessible time scales of the order of 1 hr (estimated
by correcting the unhindered rotational tumbling time of microparticles in water [45]). The
interaction between the particles and walls and the ensuing particle-rotation barrier can be
manipulated based on the soft layer material, e.g., by tuning the grafting density and the length of
grafted polymers [46,47].

E. Final Remarks and Outlook

In summary, we explored the quasi-2D (monolayer) phase behavior of hard HPs and CYLs in slit-
pore confinement where the flipped and unflipped orientational states of the particles are
dynamically disconnected. Phases with diverse structural order can be realized by coupling the
anisotropy associated with particle shape with the restriction of the entropic degrees of freedom of
these particles imposed by external potentials like slit confinement. Through specialized MC
moves that ergodically sample both orientational states, our simulations mapped out the
thermodynamic phase behavior. By varying the separation of the plates, one can effectively tune

the z-translational entropy of the particles and hence control the fraction of particles that can access
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the flipped or unflipped orientations. The chosen particle shapes are such that their footprint
changes significantly in area and packing symmetry (i.e., from hexagonal to tetratic) as they go
from unflipped to flipped orientations. This unique combination of confinement effect and
particle’s orientation creates an interesting re-entrant transition where an intervening disordered
FUN phase occurs between two solid phases, namely, a tetratic phase (favored by hard rectangles)
and a 1A phase (favored by hexagons). The FUN phase has randomly distributed local clusters of
flipped and unflipped particles whose incompatible footprint areas create more free volume for the
particles to rearrange. The tetratic — FUN phase transition is continuous while the FUN phase —
phase transition is first order. At narrow separations, a first order transition is observed between
the tetratic phase and the 1A phase for both HPs and CYLs. Fast confocal image analysis of
fabricated CYLs assembled at different densities inside a wedge-cell was used to identify
structures consistent with the FUN phase, the 1A phase and the tetratic phase found by simulating
particles with 1% and 6% dispersity in diameter and height, respectively. The comprehensive
sampling of the accessible orientational phase space afforded by the simulations and experiments
resulted in phases having similar fraction of flipped/unflipped particle states and structure, albeit
at slightly different conditions. Importantly, our approaches are relevant to practical (often non-
equilibrium) processes used to form materials: our simulations were able to unveil near equilibrium
states that actually emerged at the end of the non-equilibrium process of filling a wedge cell with
a colloidal dispersion. To illustrate alternative, close-to-equilibrium approaches that overcome the
broken dynamic ergodicity inherent to the hard confinement, we also proposed a soft confinement
model wherein the barrier for the flipped <> unflipped transition is large enough to allow the
formation of the same phases seen for hard confinement, but not so large to preclude such

transitions from occasionally taking place.

An alternative approach to control the flipped <> unflipped transitions rates and experimentally
bridge the flipped and unflipped orientations would be to use a pre-programmed hard wall actuator
that periodically increases and restores the original confinement gap. This time-dependent position
of the hard walls could be tuned such that the fraction of time in the large separation is small
enough to avoid large structural changes (like bilayer formation) but long enough to allow particle
flips. Yet another approach to externally control spatial confinement is by using external
electric/magnetic fields that allows for micro-manipulation of positions and orientations of

electrically/magnetically  active  particles to drive the complex assembly of
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macrostructures [28,48]. The tunable external potential in the above systems allows control of the
fraction of flipped/unflipped particles and can hence provide similar conditions to reproduce the
intriguing re-entrant phase behavior observed in our models. The re-entrant phase behavior
unveiled in this work for the HPs and CYLs stems from the duality in the projected geometries
when the orientation of a particle changes its flip state. In this context, it would be interesting to
investigate how the different entropic forces responsible for the re-entrant behavior are affected
by varying the aspect ratio of the particles. A re-entrant phase behavior akin to the one described
in this work is likely to be associated with concomitant changes in optical properties that could be
leveraged to devise photonic band gap crystals [49—51] and optical switches [52]. This unique
phase behavior can also provide a template for designing reconfigurable colloidal materials where
an external stimulus is used to change the confinement gap and allow the particles to access the
flipped and unflipped orientations on command [53,54]. Such an actuator would allow to modulate

the structure in the system to have sixfold, fourfold or no symmetry.
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