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Abstract: This paper presents a number of new findings about the canon-
ical change point estimation problem. The first part studies the estimation
of a change point on the real line in a simple stump model using the robust
Huber estimating function which interpolates between the ¢; (absolute de-
viation) and ¢z (least squares) based criteria. While the £ criterion has
been studied extensively, its robust counterparts and in particular, the ¢
minimization problem have not. We derive the limit distribution of the es-
timated change point under the Huber estimating function and compare it
to that under the 5 criterion. Theoretical and empirical studies indicate
that it is more profitable to use the Huber estimating function (and in
particular, the ¢; criterion) under heavy tailed errors as it leads to smaller
asymptotic confidence intervals at the usual levels compared to the ¢2 crite-
rion. We also compare the ¢1 and ¢ approaches in a parallel setting, where
one has m independent single change point problems and the goal is to con-
trol the maximal deviation of the estimated change points from the true
values, and establish rigorously that the ¢; estimation criterion provides
a superior rate of convergence to the f2, and that this relative advantage
is driven by the heaviness of the tail of the error distribution. Finally, we
derive minimax optimal rates for the change plane estimation problem in
growing dimensions and demonstrate that Huber estimation attains the
optimal rate while the f2 scheme produces a rate sub-optimal estimator
for heavy tailed errors. In the process of deriving our results, we establish
a number of properties about the minimizers of compound Binomial and
compound Poisson processes which are of independent interest.
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1. Introduction

In the canonical change-point or change-boundary estimation problem, one
posits a regression (or a classification) model in which the conditional distri-
bution of the response given the covariate(s) changes from a constant value on
one side of an unknown boundary in covariate space to another on the oppo-
site side. Within the genre of regime change problems, the canonical model is a
particularly convenient formulation for investigating the fundamentals of esti-
mation and inference, and the challenges involved therein. In particular, in the
one-dimensional case, this gives us the so-called ‘stump model’:

Y = aplx<dy + Bolxsa, + €
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with ag # By, where X assumes values in R. In the multidimensional scenario
with a p-dimensional covariate X, a natural extension is given by

Y = aolyx,do)<o + Boly(x,do)>0 + &,

where (X, dg) = 0 defines a low dimensional smooth surface in R?.

This paper deals with the estimation of change parameters in such models
under different estimating functions in both fixed and growing dimensions along
with the calibration of minimax optimal rates. The use of a variety of robust esti-
mating functions is necessitated by the fact that heavy-tailed errors frequently
drive data generating mechanisms associated with change-point problems in
applications pertaining to finance ([10]), hydrology ([5]), climate and environ-
mental science ([41]), internet data ([18]) and genetics ([37]). We show in this
paper that such robust criteria are essential for attaining optimal convergence
rates when the number of parameters diverges with sample size. We also show
that in the fixed dimension scenario the choice of the criterion function does not
affect the convergence rate but does affect the tails of the limit distribution of
the estimated change-point in a way that makes the use of robust criteria more
profitable for thick-tailed errors.

We next focus on the organization of the manuscript and articulate the
contributions of each section. But before that, we take a moment to intro-
duce the (scaled) Huber estimating function (HEF) ([21]) which is referred
to below and used throughout the manuscript. The scaled HEF is defined as
Hy(z) := ((k 4 1)/k)Hg(z) where:

2

Hy() = 5. if 2] <k
M k(lz|— %), otherwise .

The cost function corresponding to Hj in a generic statistical problem can be
written as Cx(Z,6) = Hy(g(Z) — h(Z,0)) where g(Z) is some functional of
the data vector Z (say, the real-valued response in a regression model) and
h(Z,0) is some known function of Z and the parameter 6 (say, the regression
function). Note that as k — 0, we have Hy(z) — || and for k — oo, Hy(z) =
x? /2, therefore C}, interpolates between the ¢; and ¢y cost functions via the
parameter k. The function Hy was introduced in the pioneering work of Peter
Huber [20] for the robust estimation of parameters in presence of outliers. The
key idea here is the observation that ¢; discrepancy is more robust to outliers
than the ¢y discrepancy, whereas ¢5 discrepancy has other attractive features like
differentiability with constant curvature. The Huber function seeks to combine
these two discrepancies and utilize the best of both worlds.

Section 2 presents a treatment of the canonical stump model with a one di-
mensional covariate under HEF optimization as well as its limiting incarnations
(the ¢; and the {5 criteria) and provides explicit statements of asymptotic dis-
tributions which are seen to be the minimizers of various compound Poisson
processes. While the limiting behavior under ¢ has been long known in the
literature, the study of the asymptotic properties under robust criteria is new.
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More interestingly, we are able to characterize the tail behaviors of the limit
distributions in terms of the tail-indices of the corresponding error distributions
which, to the best of our knowledge, was previously unknown. We demonstrate
that under the /5 criterion the tail index of the error adversely affects the tail
of the minimizer of the corresponding compound Poisson process: errors with
polynomial decay of tails lead to polynomially decaying tails for the limit; while
under HEF (including the ¢; criterion) the tail of the limit distribution is un-
affected by the tail of the error and is necessarily sub-exponential. This has
direct implications for the construction of asymptotic confidence intervals as we
discuss later.

Section 3 explores the canonical problem for a growing number of change-
point parameters. The first part pertains to situations where multiple change-
point parameters are estimated in parallel from separate data-sources, and this
number is allowed to grow with the total sample size. The second version is
the change-boundary problem alluded to at the beginning of our narrative. We
explore, specifically, the case of a linear boundary, i.e. a model of the form

Y =aglyrg,<o+ Bolxragy=o + &,

with ||dp|l2 = 1 (to enforce identifiability) and a p-dimensional covariate X.
This is the so-called change-plane model which captures the core features of the
change-boundary problem. Our motivation for studying change plane problems
stems from the recent use of change-plane models in personalized medicine and
related problems [40], [15], as well as the use of change-plane models in econo-
metrics (e.g. see [36], [27], [32] and references therein). We assume that n i.i.d.
observations are available from this model and that either p = o(n) or p > n
with the number of non-zero co-ordinates of dy constrained to be appropriately
small. We show that in both the parallel change point and high dimensional
change plane problems, the ¢5 criterion based estimator suffers from the curse
of dimensionality unlike its robust counterparts.

Section 4 presents a range of simulation studies in the 1-dimensional case
that compare the quantiles of the limit distributions under ¢; and {5 criteria
and discusses the observed patterns. Section 5 concludes, providing among other
things an exposition of future challenges in this area.

2. Robust change point estimation in one dimension

Summary: We analyze the canonical change point model (equation (2.1)) in
one dimension under the Huber estimating function Hy. The asymptotic dis-
tribution of the estimators are presented in Theorem 2.1 - Theorem 2.3. Fur-
thermore, in Theorem 2.4 we show that the tail of the limiting distribution of
the least squares estimator is affected by the tail of the error distribution, i.e. a
heavy tailed error distribution translates to a heavy tailed limiting distribution,
whereas for the least absolute deviation estimator, the limiting distribution has
sub-exponential tail irrespective of the tail of the error distribution.
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f(d) 1

< mid argmin

Fic 1. The mid-argmin of a piecewise constant function

In this section we analyze the following canonical change point model in one
dimension:

Y = aolx,<do + Bolx,>do +§, (2.1)

for 1 <7 < n. The least squares estimators of the parameters of this model have
been well-explored in the literature, but quite surprisingly, nothing is known
about its robust variant, and the trade-offs between the two approaches. To
understand the difference, consider an even simpler model:

}/:i = ]]-X1‘>do + gi .

where X; € R is a real covariate and &; is a mean 0 error independent of X;. Here
dy is the parameter of interest, i.e. the change point in the space of covariates.
Traditionally, one minimizes the squared-error loss to obtain an estimator of dy:

n

5 . ) 1 2
d® = mid argminge; — Zl (YV; = 1x,>q)
im

1 1
= mid argmindelﬁ Z <Y1- — 5) 1x,<q

i=1
:= mid argmingc; f(d).

for some compact interval I C R. Note that the function f(d) is a right continu-
ous step function with respect to d, therefore its minimizer is not unique, in fact
it is an interval. By mid argmin, we denote the midpoint of the corresponding
interval. (See Figure 1 for an illustration.) The statistical properties of this es-
timator are well-known; e.g. see Chapter 14 of [25] or Proposition 1 of [26] and
its preceding discussion. For example, if X is compactly supported with density
bounded away from 0 and oo on its support, then:

n (cie2 - d@) = mid argmin, e M (t)

where M (t) is a two-sided compound Poisson process with drift described thus:
Let N(t) be a homogeneous Poisson process with intensity parameter fx(dp)
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on [0,00) where fx(-) is the density of X. Define two independent stochastic
processes VT (t) on [0,00) and V™ (¢) on (—oc, 0] as follows:

Ni(t)
AUED> (u;)

Na(—1) .
GUEDY (52-—5)

where {&i};cz) oy are Li.d. from the distribution of £ and Ny (t), Na(t) are i.id
copies of N(t), and are independent of the &;’s. Then

M(t) =V ()0 — V™ (H) <o,

is a two sided compound Poisson process on the real line (we denote it by
CPP(£+1/2, fx(do)) that drifts off to co on either side, and is minimized almost
surely on an interval of points. Taking the mid-argmin of this process ensures
symmetry of the limiting distribution under the symmetry of the distribution
of &.

The asymptotics above require only a second moment for the errors and there-
fore are valid for many heavy-tailed errors. However, heavy tailed errors enlarge
the spread of the limit distribution, resulting in wider confidence intervals for
the change-point parameter. This is because the compound Poisson process is
closely related to the two sided random walk on Z with step distribution given
by (€ + 1/2) to the right of 0 and (—§ + 1/2) to its left. We quantify later in
this section how the tail of the distribution of the minimizer of this compound
Poisson process depends on the tail index of the error distribution with heavy
tailed errors corresponding to a heavier tail for the minimizer which, in turn,
implies a wider asymptotic confidence interval.

The natural question, then, is what happens if one were to compute dy via
the robust HEF, in particular, say the ¢, criterion, and whether asymptotic
efficiency relative to the /5 criterion would accrue as a result in the case of
heavy-tailed errors. So, consider:

; : R
d“* = mid argmin . — Y — 1x,>4 -
" E >
i=1

For consistency of d“ we need the assumption that med(¢) = 0. Since the o
criterion requires E(£) = 0, the rest of the paper will be developed for symmetric
errors which simplifies the discussion without compromising conceptual issues.
We show later (see Theorem 2.2) that

n (cizl - do) = mid argmin, . Mp(t)
where Mg(t) is, again, a two sided compound Poisson process with intensity

parameter fx(do) and the step-distribution given by that of |e + 1| — |¢|. Ob-
serve that the random variable |e + 1| — |¢| is bounded in absolute value by 1
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irrespective of the tail index of the error and consequently sub-gaussian. This
translates to a sub-exponential tail for the asymptotic distribution, resulting in
a tighter asymptotic confidence interval than the one obtained via minimizing
squared error loss.

We next present our main results for more general stump model described in
equation (2.1). Minimizing the Huber estimating function yields the following
estimator:

o 1 < -
(dk, Bk,dk) = mid argmina’ﬁ,dﬁ ZHk (Y —alx,<qa — Blx,>a) (2.2)
i=1

where, as mentioned earlier, we consider the midpoint of the minimizing interval
of dy. We next present the asymptotic distributions of (&*, 3*,d*) upon proper
centering and scaling.

Theorem 2.1. Suppose 0y = (g, Bo,do) € I for some compact subset I C R3.
Assume that the density of X is continuous and strictly positive at dy. Then the
estimators (&, Bk, (fk) obtained in equation (2.2) are asymptotically independent
and satisy:

2
N Z Ok
Vn(@® —ap) = N(O, 4MiFX(dO)> )

Ak £ oi )
n(d* — do) L mid argmin,cs, CPP (i (6 + loo = fol) = Hx(€), fx (d))

where the parameters puy and oy are:

pe="TIR (k< e <h)

k+1)2
0']% = (T) (E [52]1716353]6] + 2k>P (f > k)) .
where Fx is the distribution of X and Fx is 1— Fx is the tail of the distribution
and fx is the density of X.

Note that if k& — 0, then u, — p = 2f¢(0) and 07 — (0©)? = 1. One
the other hand, if k¥ — oo, then u; — 2 = 1 and of — (0¥2)? = 0’?, as long
as F(€2) is finite, which is a requirement for the ¢ based estimation strategy
to work. The following two theorems present the asymptotic distribution of the
estimated parameters (upon proper centering and scaling) for these special cases:
¢1 and /5 criteria, where we see that the limiting parameters are indeed p‘t, ot
and p2, 0% respectively. We note that the proofs do not directly follow by
taking the limit of k£ in the proof of Theorem 2.1, but rely on similar techniques.

Theorem 2.2. Consider minimizing the £1 criterion function to obtain:

. 1<
2 .
0 = argmlng E Y — aly,<qa — Blx,>adl
ocl .
i=1
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Then, under the assumptions of Theorem 2.1, we have:

N a A 1
V(e —a) = N (O’ 4f§<0>Fx(do>> |

o 2 -
V(B - o) = N(“ 4fg(o)FX(do)> ’

n(d —do) == mid argmin,eg CPP (1€ + |ao — Bol| — €], fx (do)) ,

and the estimates of the parameters are asymptotically independent.

Theorem 2.3. Consider minimizing the {5 criterion function to obtain:

n

- 1 2
gtz = in— Y, —alx,<q — flx,
argér)mn - ZEZI ( alx,<a— Blx,>a)

Then, under the assumptions of Theorem 2.1, we obtain:

2
N7 a Z O¢

2
Aly Z 9¢
\/ﬁ(ﬂ BO) — N <0a FX(dO)> )

n(d — 6y) = mid argmin,cp CPP <§ + %Tﬂd,fx(do)) ,

and the estimates of the parameters are asymptotically independent.

Observe from the above results that the asymptotic distributions of \/n(a& —
ap) and /n(3 — By) are normal irrespective of the estimating function used for
estimation, but the asymptotic variance depends upon the estimating function.
Minimax lower bound: It is evident from Theorem 2.1 - Theorem 2.3 that
the rate of convergence of the change point estimator dis always n~!, regardless
of the tail of the error distribution and estimating function. Moreover, this rate
is minimax optimal, i.e.

. A 2 3 2 5 K
infsupE |(@ — ag)? + (3= fo)? + |d — dol| = =
0 Py n
for some universal constant K, where Py the collection of all distribution such
that X and £ are independent and Y follows equation (2.1). This result is well-
known in the literature and can be found, for example, in [22] or [33].

The more interesting part is how the asymptotic distributions of n((f —do)
changes from the ¢; to the /5 estimating function. In either case, the asymp-
totic distribution is characterized as the minimizer of a compound Poisson pro-
cess, but the step-size is sensitive to the criterion. This has a bearing on the
tail-behavior of the minimizer when ¢ is heavy-tailed as articulated below in
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Theorem 2.4. For notational simplicity, define Fj, as the limiting distribution of
n(d — dp) under the ¢; estimating function for ¢ € {1,2}:
Fi, () = P (mid argmin,eg CPP (|§ + a0 — fol| = €], fx (do)) < ) .
Fy,(z) =P (mid argmin, g CPP (§ + M, fX(dO)) < 33) :
As we are working with the mid argmin, both Fy, and Fj, are symmetric around
0 [e.g. see the discussion in Section 4.2 of [26]].

To compare the tail properties of Fy, and Fp, in presence of heavy tailed
error, we assume the following distribution of £ in our subsequent analysis:

P(lgl > z) = (2.3)

1+ a7
and ¢ is symmetric around 0. This ensures that E[[£]77"] < oo for all 0 <
v <. We next present a theorem which quantifies the tails of the asymptotic
distribution of n(d — dy) under the ¢; and ¢5 estimating functions for the above
heavy-tailed errors.

Theorem 2.4. In our change point model equation (2.1), under the error dis-
tribution specified in equation (2.3), we have for all x > kq:

= Co _
Fy(x)=1-Fp (z) > ————x7 7.

for some constants kg, co, o explicitly mentioned in the proof. On the other

hand, we have for all x > 0:

*

Ffl(x) =1- F@l(x) S ;%exp(—xfx (do) (1 — e_s(aou—oﬁo)f)> .

o
e8(ap—80)2 — 1

where p* = P (mim<i<oo iy (1€ + lao = ol - 1&]) > 0) > 0.

From Theorem 2.4, it is immediate that the asymptotic distribution of n(czf2 —
dp) is affected by the tail index of the error distribution of &: it can not decay
faster than =7, whereas the asymptotic distribution of of n(d* — do) has a
sub-exponential tail'. Therefore for all large =, we have:

P(~z <Dy, <2)<P(-z <Dy <a).

where Dy, (resp. Dy,) is the limit of n(d® — dy) (resp. n(d* — dy)). Therefore,
it is preferable to use the change point estimator d“ to d% for constructing an
asymptotic confidence interval for all large enough levels of confidence. To the
best of our knowledge, this is the first result characterizing the tail behavior of
limiting compound Poisson processes, and can be expected to be of independent
interest. More detailed empirical comparisons are presented in Section 4.

ISome of the constants involved in the sub-exponential tail bound of course depend on the
distribution of &.
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Proof idea: We now present a brief sketch of the proof of Theorem 2.4. In
Theorems 2.2 and 2.3, we established the limiting distribution of n(d’* — do)
and n(cié2 —dp) respectively. Both distributions are compound Poisson processes
but with different step distributions: for the limit of the ¢5 estimator, the step
distribution is £ + 1/2 and for the ¢; estimator, the step distribution is |€ +
|ao — Boll — |€]- Hence, if £ is heavy-tailed (resp. light tailed), so is the step
distribution of the limit of the ¢y estimator, whereas the steps of the limit of
the ¢; estimator are bounded (and therefore sub-gaussian) irrespective of the
tail of £&. As a compound Poisson process is closely related to the random walk
corresponding to its step-size, we first establish that the tail of the minimizer
of the random walk depends on that of the error distribution. In particular,
in Lemmas A.2 and A.3, we show that if £ has a power tail structure, i.e.
P(|¢] > t) ~ t~7 for some v > 0, then the tail of the minimizer of the random
walk is also lower bounded by x~7. This lower bound can be translated to a
lower bound on the minimizer of the compound Poisson process. On the other
hand, for the limit distribution of the ¢; estimator of the change point, the step
distribution is sub-gaussian. Therefore, we first establish an exponential upper
bound on the tail of the minimizer of a random walk with bounded steps and
use it to obtain an exponential tail bound for a compound Poisson process with
bounded steps. Details of the proof of Theorem 2.4 can be found in Appendix A.

Remark 2.5. Although we have assumed a specific distribution for £ to estab-
lish our results, an inspection of the proofs shows that the only fact essential
to the calculations is the power tail structure of &, i.e. P(|§| > x) ~ =7 for
some v > 0. Our assumed functional form simply facilitates some routine com-
putations and can be easily extended to the more general case. Therefore, the
first conclusion of Theorem 2.4 is valid as long as & has power tail with index
v. We present a proof for this general tail structure in Subsection B.9 of the
supplementary document. The second conclusion of Theorem 2.4 is agnostic to
the tail index of £ and continues to hold for any &, as long as it has finite vari-
ance. In fact, the broad conclusions of the above theorem are true for any Huber
estimating function Hy, for 0 < k < co: any such Huber function based estimate
yields a sub-exponential tail for the limiting minimizer.

Remark 2.6. By using similar arguments to the proof of the above theorem,
we can show that for a sub-gaussian &, both €1 and ly criteria yield the sub-
exponential concentration bound. Therefore, there is no significant gain in using
robust criteria in comparison to the £y criterion in the presence of sub-gaussian
errors.

3. Estimation in multidimensional change-problems

Summary: This section deals with change point/plane problems in growing
dimension. In Subsection 3.1, we establish that in a parallel change point esti-
mation problem, where the number of parameters grows with the sample size, the
rate of convergence of the mazximal estimation error of the least square estima-
tors is affected is by the tail of the error distribution, whereas the rate remains
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agnostic for the least absolute deviation estimator, which is further shown to
be minimaz optimal. In Subsection 3.2, we analyze the change plane model in
growing dimension both when p/n — 0 and p > n. It is also established that,
the rate of convergence of the least square estimator is affected by the tail of
the error distribution, whereas any estimator obtained via minimizing Hy, with
0 < k < oo achieves the minimaz optimal rate regardless the tail of the error.

In the previous section, we have seen that with one-dimensional change point
estimation, the advantage of using the more robust ¢; estimating function is ex-
pected to confer efficiency in terms of the spread of the limiting distribution (i.e.
the length of the asymptotic confidence interval), but the rate of convergence is
invariant to the estimating function used. In fact, this rate can be shown to be
minimax optimal, i.e. one cannot get a better rate without any further assump-
tions. However, the effect of using a robust estimating function is more striking
when the number of change points to be estimated grows with increasing sample
size.

In this section, we present two scenarios: one with many one-dimensional
change points and the other with a high dimensional change-boundary, in both
of which we estimate a diverging number of parameters and establish that it is
possible to achieve faster rates of convergence in these situations in the presence
of heavy-tailed errors using robust criteria, and in particular, the ¢; criterion.

3.1. Parallel change point estimation

Suppose we have m parallel processes of one-dimensional change point mod-
els, with each process having n independent observations. Specifically, the "
process carries n pairs of covariate-response pairs from the following model:

}/i,j = ]lXi,j>d0,i =+ Ei,j )

for1 < j <nandl <1i<m.Here, as before, we assume that {(Xi7j7§i,j)}i,j are
iid., &; L X;; and & ; is symmetric around 0. Furthermore, we assume that
all nm pairs of observations are independent. The {d07i}21’s are free parameters
to be estimated from the data. Due to the independence among the samples,
do,; is estimated only from the n observations for the i*" problem. Define d**
and 6252 to be the smallest argmin estimators obtained for the ¢’th problem
by minimizing the ¢; and ¢y criteria respectively. We would like to control the
estimation errors across the different problems simultaneously, hence the natural
metric to consider is the maximal loss over the m problems. Specifically, we want
to quantify the order of

max ’Cifk—doﬂ' s k:1,2

1<i<m

We prove below that, for an appropriate growth rate of n relative to m, the
maximal error only inherits the slow factor logm for the robust estimators (i.e.
{a?,fl}izl,m,p) irrespective of the tail of the error, whereas a factor of m'/7 in
unavoidable with the ¢5 estimates when P(|¢| >t) ~ t7.
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We now present our theorem. As before, the distribution of £ is assumed to
be symmetric and [¢] is distributed as:

>t
PEI20) =
for all ¢ > 0. Echoing Remark 2.5, the core arguments of our proof only require
the power tail structure of &, i.e. P(|¢] > t) ~ ¢t~7. The following theorem high-
lights the disparity between the rates of convergence of the maximal deviations
of the ¢5 and ¢; based estimators.

Theorem 3.1. Suppose the change point estimator sz for the it" problem is
obtained by minimizing the squared error loss. If n/ml/“Y — o0, then for any
t>0:

di* = do;

lim inf P ( max

n— 00 1<i<m ml/

>t) >c(t) >0,

where c(t) is some positive constant depending on t and other model parameters.
On the other hand, if we obtain dfl by minimizing the £y estimating function,
then we have:

max ‘dfl —dp;
logm 1<i<m ’

)

1) ¢ g2 e
T 1l—ec€

as long as n/logm — 0 for some constant ¢ explicitly mentioned in the proof.

Proof idea: We document the main ideas behind the proof of Theorem 3.1. The
first part of the theorem establishes a lower bound on the rate of convergence
of the {o, error of all estimated change points across all the problems. The
main idea of the proof is that, for a finite sample of size n, the distribution
of n(d® — d; ) (for any 1 < i < m), is given by that of the minimizer of a
compound binomial process defined as below:

N, (1) N, ()

n (d? do z) = mid argmin, Z (Ek + ) Ti>0 + Z <<€k + ) 1,<0,

k=1

where the binomial processes N,, + and NN,, _ are defined as:

t
Ni L (t) Zﬂdmx”% 4+ ~ Bin (n Fx (dOz ;) —FX(t)) VY t>0,
=1

. n ) t
N;L,—(t) = Z]ldo,rl‘%ﬁxi.jﬁdo,i ~ Bll’l (n,Fx(t) — FX <d07i + E)) V t< 0,

i=1

and then {e;} are the & ;’s corresponding to the X ;’s satisfying dy < X ;
do—i—% and the {&;} are the —¢; ;’s corresponding to the X; ;’s satisfying do—i—%
Xz J S dO

The distribution of n(d —d; o) is closely related to a random walk with step
distribution £ + 1/2, where the number of steps is derived from the binomial

INIA
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processes. Therefore, we first establish a lower bound on the tail of the minimizer
of the random walk and then translate that lower bound to the tail of the
distribution of n|cff"‘ — doi| (see Lemma A.5). Finally, we use the fact for any
set of independent random variables Z1,..., Z,,:

P ( max Z; > t) =1- H;ilei(t) =1- H;’il (1 —IP)(Zz > t)) .
1<i<m

Hence, any lower bound on the tail of Z; yields a lower bound on the tail of
maxi<i<m Z;. laking Z; = n|ch2 —d; 0| and converting the lower bound on the
tail of n\de —d; o] to the tail of maxi<;<m n\cffZ —d; | concludes the first part
of the proof.

The proof of the second part is similar to the first, where instead of the lower
bound we establish an upper bound on the tail of the n|ch1 — dp,;|. Note that,
in case of /1 criterion:

. 4 No 4 (1)
n (df = do;) £ mid argmin, (1€ + 1] = |&]) Liso

=1
Ny, _(t

)
+ > (& +1 =& Lico
=1

The steps now are uniformly bounded and therefore sub-gaussian. Following
the same line of arguments as in the first part of the proof, we first establish
an upper bound on the tail of the minimizer of the random walk with bounded
steps which is then translated to an upper bound on the tail of the n|dAf1 —d; o]
(see Lemma A.6) and finally to the tail of maxi<i<m 71|ch1 —dp ;| using a union
bound. The detailed proof can be found in Appendix A.

Remark 3.2. The above theorem shows the detrimental effect of the £y esti-
mating funciton under heavy-tailed errors owing to the growing number of es-
timated parameters. The {1 based estimator is only marginally affected (by the
logm factor). While we don’t establish this in the paper, the HEF based estima-
tor used in the previous section will also yield the same rate of convergence as
the £1 based estimator. Further, the results are easily generalizable to the generic
stump model with unknown levels on either side of the change-point with some
standard technical modifications to our current proof.

Finally we show that the rate obtained above (i.e. n/logm) cannot be im-
proved in general, even in the case of the zero error situation, i.e. this rate
is minimax optimal, provided that we don’t have any background information
about the spread of the change points {do i}, ., -,,-

Theorem 3.3. Consider the above scenario of m independent change point
problems where for the i’th problem the observations are generated from the
following stump model:

YviJ = ]lXi,j>d0,i + gi,j .
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Denote by Py, ,, the joint distribution of (X,Y) or equivalently (X,&) of the
observations in it" problem which satisfies the conditions € 1L X and € has
symmetric distribution around origin. Then we have:

lim inf inf sup E [ max cfl - di,OH >C>0,

— 7. 3 1<i<
n—00 1ogm {d%}lgiS'm, ®?I:1Pdi0 <i<m

for some universal constant C'.

3.2. Estimation of a change plane in growing dimensions

As described in Section 1, a multi-dimensional version of the canonical stump
model is the so-called ‘change-plane’ problem:

Yi = aolxrg,<0 + Bolxmays0+&i (3.1)

where X;,dy € RP and p is assumed growing with n. As dy is only identifiable
up to its scale, we assume dy € SP~!. As before, we assume that {(X;, &)},
are i.i.d and that &; is independent of X; with a symmetric distribution around
the origin. We analyze the above canonical change plane model in two regimes:
(i) when p/n — 0 (Subsection 3.2.1) and (ii) when p > n (Subsection 3.2.2).
In both regimes, the dimension of d; is increasing with sample size, but with
one fundamental difference: when p/n — 0, we have many more samples than
parameters and should therefore be able to estimate dy consistently, whereas
when p > n, the problem is ill-posed and as is customary in the high dimensional
literature, we need to impose a sparsity assumption on dy: i.e. an upper bound
on the number of its non-null entries. Mathematically speaking, we assume that
lldollo < s for some unknown s which satisfies (slogp)/n — 0. Our aim is
to recover the non-zero signals in dy consistently. We show that the rate of
convergence of the change plane estimator obtained by minimizing the HEF
(apart from k = oo, i.e. the squared error loss) is minimax optimal in both the
scenarios and is independent of the tail of the error distribution, whereas the {5
criterion based analysis (i.e. k = co) yields a slower convergence rate for heavy
tailed errors, which depends on the tail index of the error.

3.2.1. When p/n — 0

In the change plane estimation problem, we consider the semi-metric:

dist ((al, Bl, Cll)7 (OZQ, 62, dg))
= (@1 —02)? + (81 — fa)? + P (sign(X Tdy) # sign(X Tdy))

which is motivated by the one used by [23] (see Chapter 14), with the only
difference being that instead of considering the Euclidean distance between two
candidate change-plane vectors d; and dy we use the mass of the wedge bounded
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by the two corresponding corresponding hyperplanes to define a metric. This
particular metric is geometrically convenient to analyze in the change-plane
problem as will be seen in our subsequent computations and can be easily related
to the ¢ distance under an additional condition which is satisfied under various
distributional assumptions on the covariate X.

Define 6§ = (o, 8,d). In the growing dimension regime, the rates of conver-
gence of the estimates are affected by the underlying dimension. We show later
in this section (see Theorem 3.6) that for HEF with 0 < k < oo (i.e. excluding
squared error loss), the corresponding Huber estimator satisfies:

g <logg>_l dist? (éﬁo) = 0,(1). (3.2)

The above rate can be converted to a rate of convergence of the /5 estimation
error ||cz —dpl|2 of the change plane parameter via Assumption 3.5 stated below.
In contrast, the rates for the least squares estimators are found to be slower and
are non-trivially affected by the tail of the error distribution. Although the rate
in equation (3.2) is shown to be minimax optimal for the change plane estima-
tor (Theorem 3.7), the rate of convergence of the one dimensional parameters
(a0, Bp) can be further boosted to y/n provided that the estimation error of the
change plane estimator is smaller than n=/2 (i.e. p < /n/log (n/p))using the
following two step procedure:

1. Get initial estimates of (ayg, 5p) and an estimate of dy as follows:

Ak pk o Tk
(Ginits Binie- d”) = argmin E Hk( —alxric0— 51de>o) ‘
(a>p)eQ,desSr—1

2. Update the estimates of ag, By obtained in the previous step as follows:

( 7/Bk) = a‘rgmln ZH]C ( XdeAkSO - 6]]-X1"rdhk>0> .

(a>B)e

where as before, we assume that (ag, ) €  for a compact subset QO C R?
for technical simplicity. The assumption «g > Sy is for identifiably as one can
reverse their order simply by changing the sign of d. The intuition for this rate
acceleration is the following: if d* converges to dy at a faster rate than /n, then
we can re-estimate (g, 8y) at y/n - rate from the following surrogate model:

Y; = O‘O]leTjkgo + BOILX%T(Zk>O + €i7

where we simply replace dy by its estimate d*. If the estimation error of d* is
larger than n~1/2, it is not possible to recover the parametric convergence rate
for estimates of («v, Bo)-

We now state our assumptions and the theorems.:

Assumption 3.4. Our parameter space ) for (o, 3) is a compact subset of R?
such that for any (a, B) € Q, a > B. The hyperplane parameter dy € SP~1.
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Our next assumption (henceforth referred as wedge assumption) relates the
probability of X lying in between two hyperplanes to the angle between those
two hyperplanes.

Assumption 3.5. We assume there exists some § > 0 such that:

P (sign(X " d) # sign(X "do)) > cl|d — dol2
P(XTdAXTdy>0)>C
P(XTdvXTdy<0)>Cs

for all ||d — dp||2 < &, where the constants ¢,Cq,Ca,6 do not depend on n.

The first condition can be interpreted as saying that if we choose two hy-
perplanes X 'd = 0 and X 'dy = 0 the probability of X falling in between
these hyperplanes is bounded below, up to a constant, by the angle between the
hyperplanes. This assumption can be thought as an analogue of the restricted
eigenvalue assumption frequently used in the analysis of the high dimensional
linear model (especially LASSO, see e.g. [6]) to obtain the estimation error
from the prediction error and was also used in earlier work by the authors [31],
where it was shown that the condition is satisfied by several classes of distri-
butions (e.g. under elliptical symmetry (Lemma B.1), log-concavity of densities
(Lemma C.9)). The second and third inequalities are weak assumptions, which
ensure that the support of X is not restricted to the one side of the hyperplane.

We next state our theorems for this regime:

Theorem 3.6 (Rate of convergence). Suppose we estimate g = (o, Bo,do)
using the two-shot approach described above, i.e. by minimizing the scaled HEF
and then re-estimating («o, Bo). Then, under Assumptions 3.4-3.5, we have for
0<k<o0:

<\/EA g <log Z)l) (6% — ap) = 0,(1),

<\/ﬁ/\ % <log g>_1> (Bk - 50) = 0p(1),

n
D
which along with Assumption 3.5 yields:

<log %) - P (sign(XTcZk) + sign(XTdo)> = 0,(1),

5 (0a5) -, =0n0)

For k = oo, i.e. under squared error loss we have under further assumption
E [maxlgign |§z|] < 00!

-1
T ! h V2 — ap) = 0,(1
veh plEl,. L, (ngllélln,h (6% —a0) = Op(1)
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-1
n n Ay _
T (lng ||s||n,L1> (3 =) =00

-1
n n 3
PlET 1, ( pneun,Ll) ol

where ][, 1, = E[maxi<i<n [&]]-

Like the results of the previous subsection, Theorem 3.6 shows that in a
growing dimension setting the rate of convergence of the Huber estimator for
any 0 < k < oo is faster than using the standard squared error loss: the rate of
the least squares estimator of dy suffers from an additional factor [|£[|,, , , which
depends on the tail of the distribution of £&. We note that this is not that an
isolated phenomenon, e.g. in non-parametric regression, the rate of convergence
of the least square estimators is similarly affected by the tail of the error, e.g.
see [17]. Note that in the fixed p regime this factor can be ignored via a different
maximal inequality which, when used in growing dimensional regime, yields the
rate n/p?. More specifically, consider Lemma 2.14.1 of [38], which we state here
for the ease of our readers:

E \/ﬁﬁugl(]?nfp)fl SE[T(On, F)Fl2n] S T (1, F)VE[F?],
€

where F' is the envelope of F and J quantifies the complexity of F as follows:

5
J(6,F) = sup/ V1+10gN(e|Fllg2 F.Lx(Q)) de.
Q Jo

and 0, = supscr [|f/F ||, (with the convention 0/0 = 0). The rate of conver-
gence of the least squares estimator in Theorem 3.6 is obtained via a modified
version of the first inequality (details can be found in the proof), whereas one
may also use the weaker second inequality which, in this case, yields the rate
(n/p?). Combining this with the rate obtained in Theorem 3.6 leads to the
following modified rate of convergence:

R 2
dez - dOH _ Op p”anLl log n A Pf )
2 n PlEll L,

When p is fixed, the second weaker inequality yields a better rate of convergence
as the factor p? is a constant. In the growing dimension regime, the VC dimen-
sion of the underlying function class is growing with the sample size, hence the
interplay between the ambient dimension p and the tail of the error distribution
starts affecting the rate of convergence of the least squares estimator. However,
the tail factor |||z, does not appear in the rate of the other Huber estimators,
as the criterion function becomes bounded irrespective of the thickness of tail
of the distribution.
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To summarize, we have established in Section 2 that the robust Huber es-
timators (for any 0 < k < 00) yield a more concentrated limiting distribution
than the squared error loss, whereas in the growing dimension regime, the effect
is more prominent: robust Huber estimators yield a faster rate of convergence,
which is also minimax optimal as shown in our next theorem. This underscores
the necessity of using robust estimators in high dimensional change plane prob-
lems, especially in presence of heavy tailed errors.

Theorem 3.7 (Minimax lower bound). Suppose P = {P;:d € 5P~} is the
collection of all change plane models such that the distribution Py of (X,Y) or
equivalently the distribution of (X, ) satisfies the following:

Y =1xv450t¢§

where X is independent of & and £ is symmetric around the origin. Then we
have: .

inf sup Eg (distz(d, d)) > K2 (1 + log Q) ,

d Py n n

where K is a universal constant and the semi-metric dist is defined as:

dist(dy, dy) = /B (sign(X Tdy) # sign(X T dy)).

Hence, the change plane estimator obtained in Theorem 3.6 via the Huber esti-
mating equation Hy, for 0 < k < oo (i.e. excluding squared error loss) is minimaz
optimal.

Remark 3.8. Notice that we restrict our minimaz calculation only to the change
plane parameter dy assuming we know («g, Bo) (in fact, without loss of generality
we assume oy = 0,89 = 1), as the minimazity of the rate of convergence of
(v, Bo) is immediate and not interesting. Theorem 3.7 indicates that any Huber
estimator for 0 < k < oo is minimaz optimal. The proof of this theorem relies
on a clever construction of the local alternatives and an application of Fano’s

inequality (e.g. see [42]).

3.2.2. Whenp>n

In this section, we present our analysis of the change plane estimator in the
regime p > n, i.e. the HDLSS (high dimension low sample size) setting. As is
true for any high dimensional model, consistent estimate of dg is not information
theoretically possible without further restrictions on the parameter space. A
typical condition frequently imposed on the parameter space is that of sparsity:
there exists some (unknown) s such that only s many elements of dy are non-
zero, where s may also increase with the sample size. We summarize this in the
following assumption:

Assumption 3.9. The true change plane direction dy is sparse, i.e. there exists
s such that ||do|lo < s where s may slowly grow with n, satisfying (slogp)/n — 0.
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To estimate dy under this sparsity constraint, we follow the structural risk
minimization method, an idea originally from [39] and later implemented in a
series of work (e.g. [29], [3], [4] and references therein). The key idea is to use
a penalty function to balance the bias-variance trade-off. To understand this,
consider our stump model:

Yi=aolxrg,<0 + fBO]lX,de0>O +&i

Define F,,, to be set of all hyperplanes with sparsity at-most m, i.e.:

Fm ={fo(X) =alxrgco+ Blxaso : (a,8) € Q,||d||, < m} ,

for 1 < m < p, where as before, we denote by § = («, 3,d), the collection of all
the parameters. Now for each m, we define the empirical minimizer 6%, := Qfmn
as:

1 o= -
an argmin — Hi (Y, — fo(X;
0:fo€EFm T ; ( (Xi))

R Ry .
= S“}%g;f - ; [Hk (Y = fo(Xi)) — Hi (Yi — fo, (Xi))}

= argmin l Z [Hk (Y: — fo(X5)) — ﬁk (fz)}

0:fo€EFm n i=1
for 0 < k < 0o. The corresponding population minimizer is defined as:

6F — argmin E [Hk (Y — fo(X)) — H, (g)} .
d:fa€EFm

Note that, the larger the m, the more complex is the function class F,, (as
Fmy C Fm, for any my < ms), and consequently, the variance starts dominating
the bias for large values of m. In other words, é,’fn has smaller training error,
but larger generalization error for large values of m. Therefore, to choose an
optimal model m, we add a penalty pen(m) (which quantifies the complexity
of the model F,, and is increasing in m) to the training error of é’ﬁn and choose
the one which minimizes the penalized training error:

n

m* = argmin 1 Z []:Ik (Yl — féi“n (Xl)) — ﬁk(@)} + pen(m).

1<m<p n i=1

and set the final estimator as éﬁl «- The penalty function should be chosen care-
fully depending on the complexity of the underlying function class to balance
the bias-variance tradeoff. We quantify the complexity of F,, using its VC di-
mension. It follows from Lemma 1 of [1] that the VC dimension of F, is,

Vi = VO (F) < mlog % . (3.3)
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Based on the above notion of complexity, we use the following penalty function:

pen(m) = x (M) . (3.4)

n

for some constant x independent of n, while using HEF Hy, for 0 < k < co. For
k = oo, i.e. while using the least squares estimator, we use a slightly different
penalty (see Theorem 3.14 for more details). Therefore, our pen function is
the VC dimension of the model under consideration (up to a constant and a log
factor). Finally, we can accelerate the rate of convergence of («g, By) by following
the same procedure as prescribed in Subsection 3.2.1): i.e., first estimate dy by
minimizing the penalized criterion function, then re-estimate (g, So) using dfn i
as a proxy for dy. Henceforth, we denote by (&*, Bk, chk) as these final estimators
obtained via the two-shot procedure.

Our next theorem presents the rate of convergence of the above estimates for
0<k<oc:

Theorem 3.10. Under Assumptions 3.4, 3.5 and 3.9 and using the penalty
introduced in (3.4) we have:

(\/ﬁ/\ VSIL"> (&% — o) = 0, (1),

Ogvg
" Y (pk _
(ﬁ/\ Vs 108?%) (ﬁ BO) Op(1),
o |gE _
AT dt d0H2 0,(1).

Remark 3.11. From equation (3.3), it is readily seen that the rate of conver-
gence of the change plane estimator d is:

[~ o], = 0 (£ os (o))

i.e. upto a log factor, the rate if slogp/n, which can be thought as the high
dimensional analogue of 1/n (the rate obtained for the change point estimator
in finite dimension) in presence of sparsity.

We now present our results regarding the minimax lower bound for this
change plane problem in this HDLSS scenario under the sparsity constraint.
As before, we restrict our attention to the parameter of interest dy and assume
we know ag, 5p, in particular setting ag = 0, 5y = 1.

Theorem 3.12. Assume P = {Pd :d € Sg’_l} is the collection of all change
plane models with SP~1 being the set of all unit vectors in dimension p with
sparsity at-most s, where the distribution Py of (X,Y) or equivalently the dis-
tribution of (X, €) satisfies the following:

Y =1xr450+6&,
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where X is independent of & and & is symmetric around the origin. Then we
have: )
A 1
i sup By (1 - ) > i (SEPED)
d Py n

Squared error loss: The rate of convergence of the least squares estimator
for this regime is also compromised by the tail of the error distribution, which is
in agreement with our findings in Subsection 3.2.1. To establish the theoretical
properties of the LSE, we slightly strengthen our sparsity assumption below:

Assumption 3.13. The true change plane direction dy is sparse, i.e. there
exists s such that ||dollo < s where s may slowly grow with n, satisfying

5(log p) €]l 2
n

—0

where ||€]|n2 = VE[maxi<;<n, £2], which is assumed to be finite.

Two comments on this modified sparsity assumption are in order: first note
that, we need a slightly higher power of logp in comparison to its counterpart
in Assumption 3.9. This is likely a technical artifact and possibly avoidable
with more tedious analysis. Next, we also have an additional term [|{||,, 2 which
captures the effect of the tail of the error distribution in the rate of the LSE,
similar to what we see in Theorem 3.6. This modified assumption necessitates
changing our penalty to:

o
Vi (log p)°||€] n,2 log n

n Vin

where, as before, V,,, is the VC dimension of F,,. The following theorem estab-
lishes the rate of convergence of the LSE.

pen(m) = (3.5)

Theorem 3.14. Suppose we estimate 0y = («o, Bo,do) using the two-shot pro-
cedure under squared error loss. Then under Assumptions 3.4, 3.5 and 3.13 we
obtain:

n

n -1 R
(\/ﬁ A 5(10g ) T[] 2 (10g 810gp> ) (& — ap) = Oy(1),

n n -1 A
<ﬁAs<logp><l+é>||s||n,2 <1°gslogp> >(ﬁ = fo) = 0p(1),

n

1
n A
lo Hd‘? —d H —0,(1).
S(logp)<1+5)|§|n,z( gslogp) e~ o], = Op(1)

Remark 3.15. A remark similar to Remark 3.8 is in order: Theorem 3.12
conveys a similar message as Theorem 3.7, i.e. any Huber-estimator for 0 < k <
o0 is minimazx optimal up to a log factor, whereas the least squares estimator
is not (as seen above), especially when the distribution of £ has a heavy tail.
Therefore, as in the previous subsection, robust Huber-estimators are preferable
to the least squares estimator in this high dimensional regime.
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Remark 3.16. In this paper we only dealt with the cases where p/n — 0 and
p > n, not when p/n — «a € (0,00). The primary reason why the latter requires
different techniques is as follows: analysis of both the regimes p/n — 0 and
p > n are similar to fized dimensional problem to some extent. When p/n — 0,
although the dimension is growing, but is much less than the sample size, per-
mitting the number of observations per co-ordinate of the underlying parameter
(here dy) goes to oo, which leads us to use similar techniques employed to deal
with finite dimensional problem, but with some important technical changes to
take care of the growing dimension. Similarly for p > n, a typical assumption
1s that of sparsity, which essentially dictates that the number of non-zero co-
ordinates of do is much less than the sample size. The extra difficulty here is
to detect which parameters are non-zero, for which we use a penalty based on
the complezity of the underlying function class (e.g. £1 penalty in LASSO) to
prevent overfitting and consequently identify the support of the parameter. In a
nutshell, the number samples per co-ordinate of the underlying parameter to be
estimated diverges in both the regimes.

However, when p < n and p/n — a (say with o = 1/2), then there is a-priori
no reason to assume sparsity and therefore the number of effective sample per
coordinate of the the unknown parameter to be estimated is 2 asymptotically.
In this case, all traditional statistical analysis for finite dimension or for high
dimension with sparsity assumption fails and often either a bias creeps in, or
variance of the asymptotic distribution is inflated. Problems in this regime are
extremely hard to analyze, require a completely different set of tools (e.g. AMP
introduced in [12] or the techniques used in [14]) and till date the regime has
been investigated only for the linear regression model and certain kinds of GLMS,
albeit under strong assumptions (e.g. gaussianity or subgaussianity). We believe
that a non-standard problem like the canonical change plane estimator in this
regime is currently insolvable in the p/n converging to a constant regime.

4. An empirical study of the quantiles of the limiting distributions

In this section we present tables of quantiles of the limit distributions of change
point estimator under both the ¢; and /5 criteria. In Section 2, we established
theoretically (Theorem 2.2 and 2.3) that in the presence of heavy tailed errors,
the limiting distribution of the change point estimator under ¢; criterion has
a thinner tail (i.e. more concentrated asymptotic confidence interval) than the
change point estimator under /5 criterion. We provide some illustrations of this
phenomenon in our simulations below.
We generate data from the following stump model:

Yi=plx,>q, +&i-

where we have assumed dy = 0, X; ~ N(0,1). Recall that the limiting distribu-
tion of d“ is (see Theorem 2.2):

n(d" —do) == mid argmin,zCPP (|€ + | — [€], fx(do))
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and the limiting distribution of d’? is (see Theorem 2.3):
"2 Z . . w
n(d? — dy) = mid argmin, ., CPP (f + 5 fX(d0)>

For £, we consider seven different distributions: standardized T3, Ty, T5, Tg, T10,
Ty5 (i.e. var = 1) and N(0, 1), while for the signal p we consider four different
values 1 = 0.1,0.5,1,2. We present here 8 different tables: two tables (¢ and £5
quantiles) for each value of u. Each table consists of five different one sided quan-
tiles (90%, 95%, 97.5%, 99%, 99.5%) for each of the five different distributions of
¢ (calculated using 10° monte-carlo iterations). Recall that as we compute the
mid argminchange-point estimator, the limit distributions are symmetric and
it suffices to report the upper quantiles. The percentages presented inside the
brackets following the quantiles in the even-numbered tables show the relative
change in the /5 based quantile as compared to the ¢ based counterpart.

TABLE 1
Quantiles of asymptotic distribution under £1 criterion using p = 0.1

Distributions  90% 95% 97.50%  99% 99.50%

T3 717.0 1152.3  1600.1 2100.3  2324.8
Ty 943.7 1470.5 1924.0 2308.9 2432.3
Ts 1062.0 1611.0 2045.6 2366.8  2460.7
Ts 1133.6 1690.1 2110.6 2389.5  2475.5
Tio 1247.8 1808.5 2196.3 2419.7  2489.5
Tis 1294.4 1859.2  2229.8 2433.0  2499.5
Normal 1381.6 1944.1 2278.8 2449.6  2509.1
TABLE 2

Quantiles of asymptotic distribution under £y criterion using u = 0.1

Distributions ~ 90% 95% 97.50% 99% 99.50%
T3 1045.7(+45.8%)  1584.7(+37.5%)  2029.7(+26.8%)  2358.3(+12.3%)  2457.6(+5.7%)
Ty 1050.1(+11.3%)  1598.2(+8.7%)  2034.3(+5.7%)  2355.6(+2%) 2456.3(+1%)
Ts 1055.6(-0.6%) 1600.9(-0.6%) 2040.0(-0.3%) 2364.6(-0.1%) 2461.0(+0.01%)
Te 1056.2(-5.1%) 1601.2(-5.3%) 2043.0(-3.2%) 2366.0(-1%) 2461.1(-0.6%)
Tio 1052.5(-15.6%)  1593.9(-11.9%)  2038.0(-7.2%) 2363.0(-2.3%) 2460.05(-1.2%)
Tis 1054.8(-18.5%)  1601.0(-13.9%)  2046.2(-8.2%) 2366.1(-2.75%)  2461.0(-1.5%)
Normal 1051.4(-24%) 1600.9(-17.6%)  2044.5(-10.3%)  2363.9(-3.49%)  2460.0(-2%)
TABLE 3

Quantiles of asymptotic distribution under £1 criterion using p = 0.5

Distributions  90%  95% 97.50%  99% 99.50%

T3 28.5 46.8 67.7 98.1 122.5
Ty 38.2  62.7 89.9 129.7  162.2
Ts 44.5 73.1 104.8 150.7 188.1
Ts 48.3  78.9 113.5 163.3  203.6
Tho 55.7  90.7 130.6 187.4 2334
Tis 59.0 97.0 139.7 200.5  250.0

Normal 66.1 108.3 155.7 224.8  279.9
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TABLE 4
Quantiles of asymptotic distribution under £o criterion using u = 0.5

Distributions ~ 90% 95% 97.50% 99% 99.50%

T3 45.8(+60.7%)  7T7.3(+65.2%)  113.5(+67.6%)  166.9(+70.1%)  207.7(69.5%)
Ty 47.3(423. 8%) 78.3(4+24.9%)  113.3(+26%) 163.5(4+26.1%)  204.5 (+26.1%)
Ts 48.1(+8.1%)  78.9(+7.9%)  113.0(+7.8%)  163.3(+8.4%)  202.7(+7.8%)
Ts 48.3(+0%) 79.0(+0.1%)  113.5(+0%) 162.8(-0.3%) 203.1(-0.25%)
Tio 48.6(-12.7%)  79.1(-12.8%) 113.3(-13.2%) 162.6(-13.2%)  202.4(-13.3%)
Tis 48.8(-17.3%)  79.3(-18.2%)  113.7(-18.6%)  162.8(-18.8%)  203.2(-18.72%)
Normal 48.8(-26.2%)  79.4(-26.7%)  113.8(-27%) 163.0(-27.5%)  202.7(-27.6%)

TABLE 5

Quantiles of asymptotic distribution under ¢1 criterion using p = 1

Distributions  90% 95% 97.50% 99%  99.50%

T3 8.4 13.5  19.2 276 344
Ty 10.5 169 24.0 34.3  42.7
Ts 11.7 18.7 26.8 38.2 475
Ts 12,5 20.2 28.9 41.2  51.3
Thio 14 227 324 46.4 57.8
Tis 14.7  23.9 34.1 48.9  60.9
Normal 16.1 26.2 37.2 53.7  66.7
TABLE 6

Quantiles of asymptotic distribution under f2 criterion using p = 1

Distributions  90% 95% 97.50% 99% 99.50%
T 11.8(+40.5%)  20.3(+50.4%)  30.7(+59.9%)  46.1(+67.0%)  59.3(-+T72.4%)
T 127(421%)  21.0(+24.3%)  30.5(+27.1%)  44.6(+30.1%)  56.0(+31.1%)
T 13.0(+11.1%)  21.3(+14%)  30.5(+13.8%) 44.0(+15.2%)  55.0(+15.8%)
Ts 13.1(+4.8%)  2L.4(+5.9%)  30.6(+5.9%)  44.0(+6.8%)  55.0(+7.2%)
Tio 13.4(-4.28%)  21.5(-5.29%)  30.7(-5.25%)  43.8(-5.6%)  54.1(-6.4%)
Tis 13.4(-8.8%) 21.6(-9.6%) 30.7(-10%) 43.9(-10.2%) 54.0(-11.3%)
Normal 13.5(-16.1%)  21.7(-17.2%)  30.6(-17.1%)  43.5(-19%) 54.0(-19%)
TABLE 7

Quantiles of asymptotic distribution under €1 criterion using p = 2

Distributions  90% 95% 97.50% 99%  99.50%

Ts 1.7 4.8 7.5 11.1  13.8
Ty 2.7 5.7 8.5 12.3 15.3
Ts 3.1 6.1 9.0 13.0 16.0
Te 3.3 6.3 9.3 13.2 164
Tio 3.6 6.7 9.8 14.0 17.2
Tis 3.8 6.9 10.0 14.3 176
Normal 4.0 7.2 10.3 14.7 18.1
TABLE 8

Quantiles of asymptotic distribution under £y criterion using p = 2

Distributions  90% 95% 97.50% 99% 99.50%

Ts 2.2(+29.4%)  5.9(+23%)  9.5(+26.7%)  15.0(+35.1%)  19.8(+43.5%)
Ty 20(+7.4%)  6.2(+8.8%) 10.0(+17.6%) 14.3(+16.3%) 18.2(+19%)
T 3.2(+3.2%)  6.4(+3.3%) 9.6(+6.7%)  14.2(+9.2%)  17.8(+11.25%)
T 3.3(+0%) 6.4(+1.6%)  9.6(+3.2%) 14.0(+6.1%) 17.5(+6.7%)

Tio 3.5(-2.8%) 6.6(-1.5%) (-1%) 14.0(+0%) 17.4(+1.2%)
Tis 3.6(-5.3%) 6.6(-4.3%)  9.7(-3%) 13.9(-2.8%) 17.3(-1.7%)
Normal 3.7(-7.5%) 6.7(-7%) 7(-5.8%) 13.9(-5.4%) 17.1(-5.5%)
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From the above tables, it is immediate that if the error distribution has heavy
tails, say, T3, T4, it is preferable to use d% to d’> as the former has tighter limiting
confidence interval for any of the levels presented in our tables. On the other
hand, if the error distribution is normal, then the ¢ estimator is more efficient
in terms of the width of the asymptotic confidence interval, as it is maximum
likelihood estimator of dgy. In fact, the ¢5 estimator starts becoming efficient for
T distributions with higher degrees of freedom as is already evident from the
above tables where we see a reduction is some of the ¢ quantiles for certain
values of p with Ty error, and a systematic reduction with 719 and T35 errors.

Remark 4.1. We have added a section (Section C) to the supplementary doc-
ument, where we have extended the experiments for several intermediate values
of k € {0.1,0.5,1,2,5,10} and for the same four signals and same seven distri-
butions as in this main paper. The intermediate values of k exhibit an expected
monotone trend with respect to quantile behavior: for heavier tailed distribu-
tions e.g. Tz, Ty, smaller values of k correspond to smaller quantiles (narrower
confidence regions), whilst, for the light-tailed normal distribution, the quantiles
decrease with increasing k.

5. Conclusion

In this paper, we have analyzed various estimators in the standard change point
model and its multi-dimensional analogue by minimizing HEFs, especially in
the presence of heavy tailed errors. We note that the robust Huber-estimators
show varying degrees of advantage over the least squares estimator, depending
on the dimensionality of the problem.

1. In one dimension, all estimators achieve the same rate of convergence,
whereas the limiting distributions for the robust criteria based estimators
are more concentrated around 0 than that of the least squares estimator.
This effect diminishes as the tail of the error distribution becomes lighter:
in particular, for normal errors the least squares estimator has a narrower
asymptotic confidence interval in comparison to the robust estimators. We
believe a similar phenomenon will arise in the change-plane problem for
fixed p (where again, all the Huber estimators and the LSE will converge
at rate n), but the limit distributions in the multidimensional case are
expected to be multidimensional analogues of compound Poisson processes
with extremely involved characterizations. Almost nothing is known about
these objects and their study constitutes a highly non-trivial project in its
own right.

2. In growing dimensions, the robust estimators attain faster rates of conver-
gence than the least squares estimator, in particular attaining the minimax
rate which does not depend upon the tail of the error, whilst the rate of
convergence of the least squares estimator is dampened by the tail of the
error distribution.
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We now briefly discuss some variants of the problem considered above as well
as possible directions for future research.

5.1. Binary response model:

A natural variant of the change plane model analyzed in Subsection 3.2 is the
following binary response model:

X~P PY=1|X)=0alx7g,<0+ BolxTay>0-

where 0 < ag # By < 1. One may minimize the squared error loss to estimate
the unknown parameters:

A 7 : 1 - 2 ]
(&, B,d) = argmin — Z (Yi —alxri<o— B]led>o) = argmin P, fo 5.4 -
a,B,d n i=1 ‘ ‘ a,B,d

As in Subsection 3.2, the change plane parameter dy here is also identified up to
its direction and the level parameters (g, fp) are identified up to their order, so
we assume ||dp|| = 1 and e < So. The loss function f, 3.4 is uniformly bounded
by 1, hence the techniques used to prove the first part of Theorem 3.6 yield:

(ﬁ A g (1og g) ) (& — ap) = Op(1)

(ﬁA g (log %)j (B - Bo) = Op(1),

-1
L <10g n> P (sign(XTti) # sign(XTdo)) = 0p(1).
p p

Furthermore, the rate obtained above can be shown to be minimax optimal
(up to a log factor) by following a similar line argument as in the proof of
Theorem 3.7.

5.2. More general regression functions:

We have analyzed in this paper a stump based change point model: The model
analyzed in this paper can be easily generalized to one where the levels (o, o)
on either side of the boundary are replaced by some unknown functions of X.
As an example, one may fit the following non-parametric model:

Y, = f(Xi)]lXiSdo + g(Xi)]lXi>do + fl

where both f, g are smooth and f(dy) # g(dp). One may estimate f, g, dy using
the following HEF:

O 1 5
(f* 9" d*) = argmin > H (Vi — f(Xi)lx,<a — 9(Xi)1x,5a) ,
29, i=1
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with (f, g) restricted to an appropriate class of functions (depending upon the
underlying application). This model is well investigated in the literature using
the squared error loss (e.g. see [28]), however the properties of the robust esti-
mators (i.e. estimators obtained by minimizing HEF) are still largely unknown
and worthy of investigation in the presence of heavy tailed errors.

5.3. Smoothed change plane problem:

The change plane estimators analyzed in Subsection 3.2 are NP-hard to compute
as HEF is discontinuous at the change boundary. One may replace the indicator
function involved in HEF by a smooth sigmoid function to estimate the unknown
parameters as follows:

- R e eXi do/on

(%, 5%, %) = argmnin =3 i | Yi == (8 — o) e
for some bandwidth parameter o,, — 0 as n — oo. The sigmoid function con-
verges to the indicator function as n — oo and is differentiable with respect to
(a, B, d), therefore one may employ gradient descent to estimate the parameters
(e.g. similar to [19], [36] or [32]); however, as the loss function is non-convex,
there is no guarantee that gradient descent type techniques initiated from a
random point on the parameter surface will converge to a global minimum.
One way to address this issue is to replace the indicator function by a convex
surrogate (i.e. logit function as in logistic regression, exponential function as
in adaboost), but as the convex function does not converge to the indicator
function, it is unclear whether this method will lead to a consistent estimator
of dy. However, such methods merit deeper investigation as they may facilitate
efficient computation of the change plane estimator.

Appendix A: Proofs of selected Theorems

For all proofs below and in the supplement we will assume «g > Sy for simplicity
of presentation. The derivations all go through for the reverse inequality upon
minor adjustments of the proofs presented in the paper.

A.1. Proof of Theorem 2./

We divide the whole proofs into few supplementary lemmas, whose proofs can
be found in Supplementary document. Our first lemma provides a lower bound
on the the probability of a random walk staying always positive. We believe that
this lemma has been proved before, but we were unable to find a proper source
to cite. Hence we will provide our own proof in Supplementary document.
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Lemma A.1. Suppose {Si}ti>0 is a positively drifted random walk (i.e. S; =
S (Xi+ ), E(X) =0,u>0) with Sy = 0. Then we have:

=1

1
P(max Si<0> > —P (S, <0).
n

1<i<n

The compound Poisson process is essentially a two sided random walk where
are number of steps till time ¢ follows a Poisson process. Therefore, we start by
establishing tail bound on the minimizer of the random walk and then relate
it to the tail of minimizer of the compound Poisson process. Our next lemma
establishes that if the step distribution of a random walk follows a Pareto dis-
tribution, then the minimizer of the random walk is also heavy-tailed:

Lemma A.2. Suppose £1,&s, ... i.i.d. random variables with the following dis-
tribution:

P(El> 1) = 15

and P(§ > t) =1 —P(& < —t) for allt > 0. Define X; = & + p for some > 0
and a random walk based on X;’s, i.e S, = ZLI X;. Suppose M denotes the
minimizer of the random walk on Z*. Then we have:

creap®
0

1
P(M>k)> X o =k

for all k > ko := 1V [p=/ =D, where:

1.pr=P(S;, >0 V ieN)=P(M =0).
1

&= S

x—1
9. ¢y = infys (1 - ﬁ) .

The previous lemma indicates that the minimizer of the random walk with
a heavy tailed step distribution is also heavy tailed. As the compound Poisson
process is a two sided process (i.e. supported on entire real line), we next extend
our lower bound on the tail of the minimizer of random walk obtained in previous
lemma for a two sided random walk in the following lemma:

Lemma A.3. Under the same structure as of Lemma A.2, we consider a two
sided random walk with independent component on the either side. Define by M
as the minimizer of the two sided random walk and by M,s as the minimizer of
one-sided random walk. Then we have:

P(|Ms| > k) > 2p*cok™

for all k > ko, where p*, ko, co are same as defined in Lemma A.2.

Finally, we translate the lower bound on the tail of the minimizer of the two-
sided random walk to the two sided compound Poisson process in the following
lemma:
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Lemma A.4. Consider a two sided independent compound Poisson process with
increment independent of the steps. More specifically, let {X;}ien be same as
defined in Lemma A.2. Suppose {X/}ien be an independent copy of {X;}ien.
Also suppose Ni(t) and Nao(t) are two independent Poisson process on R with
some intensity function A(t). The two sided independent compound Poisson
process on R is defined as:

SMO X ift>0
X(t) =0 x1 0 ift <o
0, ift=0.

Let M be the mid-argmin of X (t) over R. Then we have for all x > (ko + v+
log 2)/ fx(do):

Co _
P (M, >3)> a7,
( ts,CPP )_ 2f;((d0)

where ¢y, ko are same constants as defined in Lemma A.2.

Combining Lemma A.2, A.3 and A.4, we conclude the proof of of lower bound
on Fy,.

Now to prove the upper bound for Fy, we modify our arguments in the previ-

ous lemmas. Note that Fj, is the distribution of the minimizer of the following
compound Poisson process:

N (b) N_(-t)

CPP(t)= > (& +mo)Liso+ . (€ +p0)Lico

i=1 i=1

with CPP(t) =0, Ny and N_ are two independent Poisson processes as before
and:

£ {I€+ (a0 = Bo)| = €]} = E[I€ + (@0 — Bo)| — [€]]

with o =E[|£ 4 (a0 — So)| — |€]] > 0. Before going into the details of the proof,
we state Hoeffding’s inequality bound:

P (S, <0) <Z§ < nu())

nu
=P (gn < H“O) <e - 8Geo- /30)2 :

Here we will highlight the steps where a modification is needed. First note that,
in case of one sided random walk (same situation as in Lemma A.2) we obtain
the upper bound as follows:

P (Mo > k) => P (Mos = j)
>k

=p ZIP’(maXS <0)

7>k
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<p") P(S;<0)

Jjzk
_ v
<ptY e Seoar
Jjzk
p* ___kug
S M T (A1)

1 — e 8ag—B0)?

‘We now translate the tail bound on the minimizer of the one sided random walk
to the minimizer of the two sided random walk as below:

P(Myy=k)=P(Sk <SiV0<i<k—18<SVk+1<i< oo,
Sk<inf5j>
Jj=1

<P(Sk<S;VO0<i<k—15,<SVk+1<i<oo)
=P (Mos =k) .

This, along with the upper bound on the tail of the one-sided random walk
implies:
p* _ kud
P(My>k)<—L ¢ 5mo-mr
n
1—¢ 8(060*0/30)2

Next, we translate the bound for the minimizer of a one-sided random walk to
a one-sided compound Poisson process with steps £* + pyo:

P(Mos,cpp > 1) = Z]P os,cpp > T | Ni(z) = k)P (N1 (z) = k)

Z]P’ <argm1n5 > k) P (Ny(x) = k)

k=0 >0

(k+1)u0
Ze oo 0 P (Ny () = )

1—e" s(ao 50)2 k=0

| /\

* kuo z)A
= p—e 8(‘10 ﬁo) E e 8(ag— ﬁ0)2 ( )
Mg k!
1 —e 80—50)?
g F
p* _ ;ng > e 8eo=po)? A(l‘)
= = e 8(ap-80)? e_A(I) E
g k!
1 — e 8(@p—B0)? k=0
p* _LQ
=——QF———exXp —A(x) [1—e 30=ho)
0
e8leo—B0)% — 1

p* ___
2 —exXp (—a?fx (do) (1 — e 8(eg—B0)? )) ,
0

68(@0—[30)2 —1
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and consequently for the two sided compound Poisson process:

Fgl(x):P(Mts,Cpp > x):ZP(Mts,CPP >x ‘ N1($) = k) P(N1<.’E) = k/’)
k=0

=Y P (M > k) P(Ny(z) = k)
k=0

giP(MOS > k) P(Ny(x) = k)
k=0
:IP(MOS,CPP > -T)

* 2

— Ko
e aof et (1)),
0]

e8(ap—80)2 — 1

A.2. Proof of Theorem 3.1

Proof of lower bound: The following lemma, which is a finite sample ana-
logue of the first conclusion of Theorem 2.4, is essential to establish the lower
bound of Theorem 3.1:

Lemma A.5. Suppose, for a fized n, F, ;, denotes the distribution of n(cff"‘ —
do ;). Then we have for all 2/ fx(do) < |x| < (01 A d2)n (for some constants
01,02 independent of n defined explicitly in the proof):

*\2 -
_ — 7y N> > Clc?(p ) fX,max —y
it ] 22) 2 S (L)

where fx max @5 the mazimum value of the density of X and ci,co,p* are same
as defined in Lemma A.2.

The proof of the Lemma can be found in Appendix B. For notational sim-

plicity, set:
C = 0102(p*)2 « fX,maX -7
y27+2 1 — Fx(do) -

Using the above lemma we have:
P | max i >t] =1—P| max o
1<i<m ml/v 1<i<m m1/7
m
=1 (Fuu(tm'/))

1— (1 ~ Foy, (tml/V))m

- (1 - C(tml/V)—V)m

70 7€
di2 - dO,i diz — d07i

)

Y
—_
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=1-(1-Cm )"
s 1—e

Note that Lemma A.5 is applicable here as for any fixed ¢, tm!/7 < n because
m'/7 < n and as m 1 oo, tm'/7 > 2v/fx(dy) for all large m. This completes
the proof.

Proof of upper bound: The proof of upper bound relies on the following
Lemma, which is a analogue of Lemma A.5, where we establish an upper bound

on the finite sample distribution of n(d; — d; o) with bounded supported error
distribution &:

Lemma A.6. Let F, o, denotes the distribution of ’n(cffl —do,;) ‘ Then we have
for 0 < |z| < ndy (for some constant 61 defined explicitly in the proof):

- 2e~¢ —c
1 — Fn,ll ($) —P (‘n(dfl _ dO,i) > 1‘) < e o fxédo)(l—e )

T 1l—ec

)

where ¢ = p?/4b%, = E[|€ + (o — Bo)| — |€|] and b is the range of the random
variable (1€ + (o — Bo)| — [€]) — p-

Using the above lemma we have:

m
e o~ - v
“Cdy < o _ g
P(lg%l ogm d —do; >t) 72@ n|d —do;| > tlogm
i
2e”° me—tlogm—fxédo)(l—efc)
“1l—ec€
2e”° ei1ogm(t7fxgd0)(1fe—°)71).
~1l—ec©

This completes the proof.

A.3. Proof of Theorem 3.3

To prove the lower bound, we consider a simple model: Assume that, for each
problem, the true change point is 0 (i.e. d; o = 0 for all 7), the covariates X{Vjs
are all i.i.d. Uniform (—1,1) and error distribution is normal. We first observe
that for any estimator czl of d; o we have:

d; — di,O‘ > min |X;; —d;ol,
1<j<n

i.e. we can’t estimate a change point better than its closest order statistic. Note
that when d; o = 0, we have:

d;

> min |X; ;| = min U;
1<j<n ' " 1<i<n
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ivi.d.
where Uy,...,U, '~

is that:

U(0,1). Hence to prove the theorem, all we need to show

lim inf E [ max nZim] >C>0
n,m— oo logm 1<i<m

where Z;.,, are i.i.d with the common distribution being that of the minimum
of n uniform (0, 1) random variables. Note that for any 0 <t < n:
. t
P(nZyp,>t)=P ( min U; > —)
t n
(-
n
= P(nZin <t)=1- (1 — ) =Fphz,,(t).
n

Therefore we have:

1
E [ max nZim} =

]P’( max nZ., > t> dt
logm [1<i<m

logm 1<i<m

{1 - P < max nZi., < t>] dt
logm 1<i<m

logm [17 o ()] dt

[ B ()T s

Next using the following inequality:

t\" t2
1+—) >e'(1——) V¥ [t <n,
n n

we obtain from equation (A.2):
1 . A2\
E | max nZ;.,| > 1—(1—e"+e "— dt
logm [1<i<m logm n
m 2\ ¢
m it _p\m—i
logm [1 Z <e g) (1—ec) ]

[1 —(1=e™"] at

- logm

_ 1og1m Oi (T) (wi)i (1= )™t
/OOO [1—(1—e)"] dt
_loglm /:O 1 (1-c )™ dt

- logm
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‘= 0m,1 — Am,2 — Am,3 (A3)

We next show that ay,2,am3 — 0 and a,,, 1 — 1 as m — oo, as long as
n > 2m. We start with a, 3:

1 "< (m
am’gilogm/o Z i

A
2|
3
=
uMg

IA
8|~
3
1]

1 i": m\ 1 (2i)!
7logmi:1 i Jint %
1 i(m—i+1)---m(i—|—1)~~~(i+i)
~ logm P it 1t
1 i(m—z—i—l) m
logmi:1 z(%) i
1 &K /2m\" 1 1 1
= —0
logm ;( n ) it~ logm Z il
For the other term ay, o:
|an.2| = L h [1—(1764)”1} dt
N logm J,
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1 zm: m\ e™™
~ logm i i

i=1
_ gl [X ~ Bin(n, p)]
~ logm x =t P
om ef2mX
< E 1 n> 2
~ logm { X le} [ > 2m]
2m
< E [e‘QmX] [ n > 2m]
logm
o (1 ~2m n\"
~ logm 26 2
1 m
= (e?™+1)" —0.
logm

Now the calculation of a, ; is similar by replacing n with 0. We have:

(1t
Qp,1 = logm/ 1 1 e ) ]dt

where the last equality follows from the representation of Harmonic number.
Therefore from equation (A.3) we conclude:

lim inf E { max nZim] >1.
m,;n—oo logm  |1<i<m

This concludes the proof.
A.4. Proof of Theorem 3.6
A.4.1. Case 1: 0 < k < o0

We first establish the rate of convergence of (&init, ﬁmm ) Towards that direc-
tion, we use the following semi-metric over the parameter space O:

dist(01,02) = \/ (a1 — a2)? + (B — fa)* + P (sign(X T d) # sign(X T do))

The curvature of the population score function M(f) around the its value at
minimizer M(6y) is obtained via the similar calculation as in in the proof of
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Theorem 2.1 (specifically equation (A.16) in the supplement). Consider all § € ©
such that dist(0,6) < ¢ where § is such that |ag — Bo| > 2. For such that 6 we
have:

M(@)-M(eo)zﬁ[(ﬁk & +ag —a) — Hy gzﬂP(XT v XTdy <0)

Hi (& +a0—B) — P(X"dy<0<X"d)

(

+E|( 1€)) | (

+E[(ﬁk(&+ﬂofa w(&)) | P(XTd <0 < XTdo)

+]E[<f[k (& + Bo — B) — )]]P’ (XTdAXTdy > 0)
)

C
> 7k [(ap —a)’P(XTdVXTdy<0
+ (Bo— B)’P(XTdAXTdy > 0)
+P (sign(X "d) # sign(X "do)) {2(a0 — Bo — 6)*}]
> C [(ao — oz)2 + (Bo — B2+ P (51gn(XTd) # sign( X dp) ) |]
= Cydist®(6,6p) . (A.4)
Consistency: We use argmin continuous mapping theorem (Theorem 3.2.2 of
[38]) to establish the consistency of the initial estimator. As the parameter space
is bounded, our estimates are by default tight. As the process M(0) — M(6y) is

continuous with respect to # and has a clear minima at # = 6y all we need to
show for any compact subset K C O:

sup |(My, (6) — M (60)) — (M(6) — M(60))| = 0p(1) .

0K

Consider a collection of functions F = {fy : 6 € ©} where the individual func-
tions fp(X,€) is defined as:

fo(X,§) = (ﬁk (E+ap—a)— Hk(f)) LxTauxTdo<o
(Hk E+a—p)— ﬁk(f)) Ixra,<0<x7d
+ (ﬁk (§+Bo—a) — ffk(f)) TxTa<o<xTd,

+ (Hk &+ Bo—p) — ﬁk(ﬁ)) TxTarxTdy>0

with:
gé(f) = (ﬁk (E+ap—a)— I:[k(f)) ) hé(X) =1xTavxTde<0>

9(&) = (Hn (€ +a0—B) = H(®) . h3(X) = Lxraoexra,
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93(&) = (Hu(€+fo—a) = Hu(©),  h}(X) = Lyracocxa,
938 = (An (€ + 80— B) = Hx(©) . h§(X) = Lyranxra>0-

As the Huber function Hy is Lipschitz with Lipschitz constant k, our criterion
function Hy, is Lipschitz with Lipschitz constant (k-+1). As our parameter space
is compact, the functions { gé, hg}lgig are uniformly bounded, and has constant
envelope, say F. That the functions {g}}gco for i = 1,2,3,4 has finite VC
dimension v (i.e. does not grow with n or p) is immediate. On the other hands,
as all the p-dimensional hyperplanes passing through origin has VC dimension
p. Hence the functions {h}}gco has VC dimension p. Define F,; = {g : 0 € ©}
for1 <i<4and Fp,; = {hzg :0 € O} for 1 <4 < 4. Combining these we obtain:

4
Sup N(el[FllQ.1: F; In(Q)) < SgpN <6||F||Q,1»ng,ifh,i,Ll(Q)>

i=1

<y, sup N(el|Fll@,1: Fg,iFn,ir L1(Q))

< KVO(Fy ) VC(Fni)(16e)V O Fo) TV OFn)
( 1 > (VC(Fg,:)+VC(Fn,i)—2)
X

€
(v+p—2)
< I}, Kup(16e)""? (—)
€

1 4(v+p—2)
= K*(16¢)*(v+P) (_)

€
4(v+p)
16e

€

This along with the fact p/n — 0 implies:

Liog (supmenF Q,l,f,m(@)))) .
n Q

Therefore F is Glivenko-Cantelli class of functions and using Theorem 2.4.3 of
[38] we conclude that:

sup |(ML,(0) — ML, (60)) — (M(0) — M(60))| = [[(Pr — P)| 7 = 0p(1).

This establishes the consistency of (Gip;s, Binit, cf)

Rate of convergence of initial estimators: So far we have established
the quadratic curvature of M(6) around its unique minimizer 6, and also the
consistency of Ginit = (Ginit, Binit, d). In this section we show that:

n n ~3 o
\/; <log;> dist(Ginit, o) = O, (1)
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which (along with Assumption 3.5) implies:

% <1og %) N |:(é<init - 040)2 + (Binit - /30)2 + Hd— dOM = Op(l)-

To establish the rate, all is left to do is to find a bound on the modulus of
continuity of the empirical process M, (6), i.e we need to find ¢,,(d) such that:

E l sup |(M,, — M)(fy) — (M, — M)(0)|1 < n(9) ) (A.5)
d(6,00)<6 Vn

Towards that end, define a local collection of functions Fs = {fp : d(6,6p) < 0}.
Note that when d(6,60) < § we have:

max {|a — ao|. |6 — fol, /P (sign(X Td) # sign(xwo))} <.
For any such 6 we have:
E[fo(X,€)%] = E (i (€ + a0 — a) = Hi(¢ )2]1@ (XTdv X Tdy <0)

E (Hk (E+ap—B) — Hk(g)) P(XTdy <0< X'd)

+E(Hk(§+ﬁo—a )2P (XTd<0<X"do)
+E(Hk(§+ﬂo— - §)>2P (XTdAXTdy>0)
SOy [ +P (51gn(XTd) # Slgn(XTdo))}
< Co? (A.6)

Hence applying Theorem 8.7 of [35] we conclude:

1 1
(M~ M)(80) — (v~ M)O)]| S /2o log v Elog ;
d(6,00)<6s n 6 n 0

Therefore a valid choice of ¢, in equation (A.5) is:

E

dn(8) = \/pdy/log - \/\/ﬁlog%.

Using this ¢,, in Theorem 3.4.1 of [38] we conclude that:

n n A
\/; <1og p) d(Oinit, 00) = Op(1) .

Finally, as the function class under consideration F = {fy : € Q x SP71} is
uniformly bounded, an application of Theorem 2 of [30] yields:

-1
P <E <10g E) d(éinih 90) Z t) S Cke_ckt (A?)
p b
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for some constants Cy,cr > 0 which depends on k. This in particular implies
that:

E

-1
L <log ﬁ) P (Sign(XTd) # sign(XTdo))] < Cy (A.8)
p p
for some constant Cj > 0 depends on k.

Rate of convergence of the final estimators: We now present the proof
that the rate of convergence of the final estimator. The proof for & and B are
similar and therefore we only the present the proof for &. Before delving into
the technical details, we introduce some notation:

ZHk i — ﬂde<0

R, (a,dy,dg) = ZHk (]IXTd1<O ]lX,L.TdQSO)
M(a, d) = E[My(a,d)] = E [A(Y = a)lxTaco|
From Lemma A.8 we have for all |a — ap| < 7 (for some small enough n > 0):
M(Ot, do) — M(Oéo, do) Z C’k(oz — Oéo)2

In terms of the processes introduced above, we can write our final estimator &
as:

& = argmin — H 1.+
g §1 k(Y —a) X d<0
1=

= argmin M, (a, d)
= argmin {Mn (ar, do) + Ry (v, d, do)} (A.9)

Consistency of the above estimator follows from the similar calculation as of its
previous incarnation, hence we skip it here for brevity. The remainder term R,
can be bounded as:

. ko
| sup <5 Rn(a> d7 dO) (O{Q, d dO ‘ > Z ]ISIgn(XTdﬁéSlgn(X do)
o|la—ag|< i

= kapnfg
= kb [(P, — P)f;+ Pf]

Fix € > 0. Previously, we have established that:
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Therefore we can find tg such that for all ¢ > ¢g:
P (Pfgz > o2 1ogﬁ) <e.
noop

Next we bound the fluctuation of the centered empirical process.

P (% (log g) - (P, — P)f; > t)

-1
<P ( sup g (log g) [(Pr. = P) fall > t) +e

d:Pfa<to £ log &

-1
1
<2 (10s) x;u«:[ sp (B P)fll| ¢

d:Pfa<to £ log »

X +e€
t

Vio ¢ log (n/p) — log (tolog (n/p)) ., 1log (n/p) ~ log (tolog (n/p))  _

Tt log (n/p) t log (n/p)

n) 1 Vi, flog Blog fops v Blog ot

where the second last inequality follows from Theorem 8.7 of [35]. Therefore we

have: )
B t 1
limsupIP’(E (logﬁ) (IP’n—P)fd>t> Sﬁ\/¥+e,
p p

n—oo0 t

which implies that for any fixed € > 0, we can t large enough to ensure that:

n—o00 p

-1
lim sup P (f <log‘ 3) (P, — P)f; > t) < 2
p
Hence we have:

sup ‘Rn(a,(i do) — Rn(ao,ci, do)‘ =dx0, (%log%) .

[a—ap|<8

Again fix € > 0 and choose ty > 0 such that:

-1
limsup P (ﬁ (log 2) sup ‘Rn(a,d, dp) — Rn(ao,d, do)’ > 5150) <e.
n—00 p p la—ap|<d

Also note that this ¢y only depends on ¢, not §. Henceforth define r,, = v/n A
(n/p)(log (n/p))~!, the desired rate of convergence for the second stage estima-
tor for notational simplicity. Further, by an application of Lemma 2.14.1 of [38]
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we have for any § > 0:

E sup |(M,, — M)(a,dp) — (M,, — M) (g, do)|| <

la—ao|<d

(A.10)

-

Using a shelling type of argument, we have for any ¢ > 0:

P(rn|& — aol > t)

<P(rala — ool > t,]& — aol < n) +P(|&— aol > n)

<P(rpléd— a0l >t |6 — a0l <n) +¢€

<P ( sup M, (e, do) + Ry (cvo, sz do)
aitry P <|a—ag|<n

—M,, (e, do) — Ry (v, d, do)} > O) +e

<P < sup M., (o, do) + Ry (cxo, d, do)

itry T <|a—ag|<n

—M,(a, do) — Ry (a, d, do)} >0,P,f; < toL log 9)
n p
+]P’(1Pnfd~>to£10gz) + €
n p

<P < sup {Mn(ao,do) + Rn (a0, d, do)

a:tr;1<|a—a0|§n

—M (@, do) = Ro(at,dydo) | > 0, P fy < to 2 log %) +2e

logy (nrn /t) .
< > P sup M., (o, do) + Ry (cxo, d, do)
j=1 a:2j*1t'r;1<\ozfao|§2jtr;1
~ p ’rL
~Ma (0, do) — Ra(a,d, do) } > 0,Pnfy < toP log ™ ) + 2¢
n o °p
logy (nra/t)
< Y P sup {M,, (a0, do) — Min (cv, do)}
j=1 a:2-7_1tr;1<\a—ao|§2-7tr;1
~ ~ p n
n sup Rn(a,d,do)—Rn(ao,d,do)‘ >0,Pnf; < tollog 2~ | +2¢
2j*1t’r';1<\a7ao|§2jt7';1 n p
logy (nrn /t)
< > P sup {Mn (a0, do) — Min(cv, do)}
j=1 a:2j*1t'r;1<\ozfao|§2jtr;1
127t 40 L 1og X > 0) + 2
n °p
logo (nra/t)
< Y P sup {M,, (a0, do) — Min (cv, do)}
j=1 a:2-7_1tr;1<\a—ao|§2-7tr;1

127t 0 L log > 0) + 2
n "p
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logy (n7n /t)
<y P( sup {(Mo — M)(a0,do) — (Mo — M) (o, do) }
j=1 a:2j*1tr.;1<\a—a0\§2jtr;1
+2jtr;1t0£ log n > inf (M(a) — M(awo)) | + 2¢
n p a:2j*1tr;1<\a—a0|§2jtr;1

logs (n7n/t) [ E [Supy_ltr;lﬂa_ao‘Swgl {(M,, — M)(aw, do) — (M,, — M)(a, do)}]
(M(a) — M(aw))

IN

j=1 lnfa:ijltrgl<|o¢70¢0|§2jt7‘;1
Vtr Lo Llog 2

(M(er) — M(ex))

+ + 2¢

inf

a:21*1tr;1<|a7(x0\§2jtr;1
logs (17 /0) [ [Suplaiao‘ coitrt {M — M)(ao, do) — (M, — M)(a, do)}]
(M(a) — M(av))

IA

j=1 L B
Jip =14, P n
27tr,, “to L log o

(M() — M(e))

+ + 2¢

inf

a:\afao\EQJ'*ltT;l

loga (17 /9) [ [suplaﬂo‘ artret {M — M)(ao, do) — (M — M)(a, do)}]

IA

j=1 lnfa:\a—ao\Zﬂ_ltr;l (M(a) - M(ao))
ttor, 2
+- + 2¢
lnfa:|a—ao\221—1tr;1 (M(a) - M(Oco))

logs (nrn/8) [ [supla_%‘gm;l {(Mi, — M) (a0, do) — (M., — M)(a, do)}]

22G-Dt2p;, 2

IN

j=1
W ittor,?

22(i—1)¢2p 2

logs (N7n /t) & [sup‘a_aolgj”;l {(M,, — M)(cwo, do) — (M,, — M)(e, do)}] to

]—1—26

< i
< 2 22622 + r + 2¢
i=
logy (nrn /t) i1
23t7“ to

< — 4+ = 42 From equation (A.10
<Y et [From equation (A.10)]

1 to
< =+ — 4 2.
=7 + 7 + 2¢

Taking t large enough we conclude:

limsup P (r,|& — ag| > t) < 3¢

n—oo
This completes the proof.
A.4.2. Case 2: k = 0o, i.e. squared error loss

The proof for £k = oo is similar to that of 0 < k£ < oo, the only difference is
that the collection of functions F defined in the proof of the previous part is no
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longer bounded. Hence we need to modify some parts of the proof carefully to
take care of that.

Consistency: Consider the same function class F as in paragraph A.4.1. Note
that now any individual function fy is:

fo(X,8) = (5(040 —a)+ %(OKO — a)2) Tx7avxTdy<o

(5(040 - B)+ l(CYO - 5)2> Txrgy<0<xTd

[\

+ <5(5O —a) + %(50 - 04)2) Txra<o<xTd,
+ (f(ﬂo - fB) + %(50 - 5)2) TxTarxTdy>0

The envelope function F' of F is as follows:

sup | fo(X, &) < sup [|¢| max {|a — ao|, |a — Bol, |8 — aol, |8 — Bol}
0cO (o,B)€Q

+ %(maxﬂa — aol, la = Bol |8 — ol .18 — Bol})?

02
< Ole|+ 75 = F(X.8)

The envelope function is integrable and following same analysis as of para-
graph A.4.1 we conclude:

16e

v+p
<K — :
sup ¥ (¢ [Pl 7. 1u(@) < 5 (1)

Hence F is a Glivenko-Cantelli class of functions and consistency follows from
Theorem 2.4.3 of [38].

Rate of convergence of the initial estimate: To control the modulus
of continuity, we can no longer apply Theorem 8.7 of [35] directly here as the
functions are not uniformly bounded. Here we use the following modified version
of Theorem 1 of [17]:

Proposition A.7. Suppose {&1,...,&,} are independent of random variables of
{X1,..., X} and moreover {X1,...,X,} are permutation invariant. Assume
further that there exists a non-decreasing concave function ¢, : Ry — Ry with
©n(0) = 0 and constant b, > 0 such that for 1 < k < n:

k

> ef(Xi)

i=1

E < n(k) + by,

F
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for some i.i.d Rademacher random variables €1, ..., €,. Then we have:

< 4/0 ©n (;P(|&| >t)> dt + 2b,E ng%@} .

The proof of this proposition can be found in the Section B of the supple-
mentary document. To apply the above proposition, we define

fo(Xi, &) = & fo1(Xa) + fo,2(Xs)

F

where:

Jo1(Xs) = (a0 — @)l x7ayxTae<0 + (0 — B)LxTago<0<xTa
+ (Bo — @)L xTi<ocxTay T (Bo = B)LxTanxTde>0

1 1
Jo. (Xi) = 5(040 —a)*Lx7guxTag<o + 5(040 = B)*Lx7ay<0<xTd
1 1
+ 5(50 — )’ LyrgcoexTdy + 5(50 = B)*Lx7anxTdy>0
Both the collections F1 = {fg1 : d(6,60) <} and Fo = {fp2 : d(0,6p) < 6} are

uniformly bounded with VC dimension of the order p. It is also immediate that
Pf; < 6% for all 6 : d(6,6) <4, for j € {1,2}. Hence we have from Theorem

8.7 of [35] for any 1 < k < n and €y, ....€, i.i.d Rademacher random variables:
k
A A
E| sup Zeifo,j(Xi) < L | 6Vky/plog AU + pU log AU (A.11)
d(6,60)<6 |1 6 0

= on(k) + by,

for some constants L > 0, A > e? and U is the uniform bounds on the individual

functions and ¢, (k) = Lévk+/plog (AU/5) and b,, = pU log (AU/$). Therefore

using Proposition A.7:

(A.12)

Fi1

<4/ on (NP (|&1] > t)) dt + 2b, E{max |§Z]
0

<4L5\/_leog / VP(|&1] > t) dt + 2pU log <A6U)E Lrila<x| @

AU AU
=A4L|[¢]ly, 0v/ny[plog + 2pU log E | max |&] (A.13)
KR 5 1<i<n
For the collection F» we can directly use equation (A.11) for k = n we obtain:

AU pU AU) (A1)

E{H( )f92||f2}<L<f plog —— + —log —
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Therefore combining equation (A.12) and (A.14) we conclude:

AU
E| sup [(Pn— P) fol 5

5
< L(4[€lly; +1)—=1/plog
d(6,00)<5 n

7

Jrzﬂlogﬂ <1+2E{m X |§Z]>
n (5 i <n

1<q
(A.15)

Ignoring constants (as they won’t effect the rate of convergence) we can take
@n(0) is Theorem 3.4.1 of [38] as:

1 p 1
¢n(0) = 64/ plog 5V NG log SE nglgxn |€z|] :

Finally solving the equation the equation 72¢,(1/r,) < y/n we conclude the
rate of convergence.

Rate of convergence of the final estimators: The calculation is exactly
same as in Paragraph A.4.1 and hence skipped.

A.5. Proof of Theorem 2.1

To establish the rate of convergence and the asymptotic distribution of the
change point estimators obtained via Huber loss, we first need to establish a
curvature of the population loss function around its unique minimizer. The
following lemma is imperative to that end:

Lemma A.8. If ¢ follows a symmetric distribution around the origin with with
continuous density fe satisfying fe(0) > 0, then for any k > 0,|u| < 2k, we
have:

B[+ — Fil©)] > LB (k< <k—pw > EP(ck<<0).

For k = 0, if we choose 6 such that for all |z| < 0, fe(x) > fe(0)/2, then we

have for |u| < §:
2

E[f(+ ) — Hu()] > - 1e(0).

The proof of the above lemma can be found in Appendix B. Now set § > 0
such that Sy 4+ & < ag. Define the empirical stochastic process M, () as:

M., (0) = M, (v, 8, d)

1~
= E ZHk (}/z - Ol]lXigd - 61X11>d)
=1

1 < -~
- Z Hy (& + aolx,<d, + Bolx,>dy — 0l x,<a — Blx,>a)

i=1
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1~ -

EZH (& + a0 —a)Lx,<dond + — ZHk (& + a0 — B) La<x,<do
i=1 i=1

1 n

EZ (& +Bo— ) Layex,<d + — ZHk (& + Bo — B) Lx,>avdo
i=1 i=1

This implies the centred empirical stochastic process is:

0) — M (60)]

k(& +ag—a)— ﬁk(&)) 1x,<dond

M, (0) — M,,(6p) =

Mz?
?A

S|

.
Il

+
S =

(Hk (§i +ao—B) — ﬁk(&)) Ta<x,<do

1

~

+

SRS

i (ﬁk (& +Bo—a) - ﬁk(fi)) Lay<x;<d
2 2} (A (& + o = ) = Hi(&) Lx.sava,
and the corresponding population deterministic process:
M(0) — M(6p) = E [(Hk (& + a0 — a) — ﬁk(gi))} P (X <dAd)

+E [(Hk (& +ao—fB) — ﬁk(@-))} P(d< X < do)

+E [(Hk (& + Bo — ) — ﬁk(gi))} P (dy < X < d)

+E [(H (6 + 6o — B) = Hul&)) | P(X > dv do)

> T [(og — 0)B (X < d A do) + (B0 — BB (X > dV do)
+|d — do| {2(c0 — Bo — 6)*}]
> Cr [(o — )+ (Bo — B)? + |d — dol] (A.16)

for all |a — ap| <6, |8 — Bo| < §, where the penultimate inequality follows from
Lemma A.8. Also note that the definition of CY is different in the last two lines,
but as they are constant, we refrain ourselves from using different notations in
each line.

Consistency: We have established that M(#) has local quadratic curvature
with respect to (a, ) in a §— neighbourhood around the truth. Now to establish
the rate of convergence, we first need to establish the consistency of our estima-
tor. To that end, we use Theorem 3.2.2 of [38]. That the process M(6) — M(6,)
is continuous with respect to 6 and has a clear minima at § = 6 is immediate
from the definition. Also the tightness of the minimizer 6 = (&, B,az) follows
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directly from our assumption of the compact parameter space ©. Therefore, all
we need to show is that for any compact subset K C ©:

sup | (ML, (6) — ML, (60)) — (MI(0) — M(60))| = 0p(1)-

Towards that direction, define the function fp(X,¢) as:

Jo(X,€) = (Hi (€ + a0 = @) = Ak(€)) Lx<apna
(£ (€ + a0 = B) = Hu(©) Luex=a,
+ (ffk (€+Bo—a)— ﬁk(f)) Tay<x<d
+ (Hk €+ Bo—B) — ﬁk(f)) T x>dvd,
It is immediate from the definition of fy(X, &) that the collection of functions:
Fx={fo:0€ K}
has finite VC dimension. Furthermore, as K is compact, there exist ¢ such that:
max {|af , |6],[d[} < ¢.

Note that the Huber function Hj is Lipschitz with the Lipschitz constant being
k. Therefore we have for any p > 0:

(e + ) — (@) = T2 et ) - @I <Hul. (A7)

This implies that the function of F are uniformly bounded. Hence using Gli-
venko-Cantelli theorem (e.g. see Theorem 2.8.1 of [38]) we conclude that:

sup |(ML, (6) — ML, (60)) — (M(0) — M(60))| = [[(Pn — P)| 7 = 0p(1).

This establishes the consistency.
Tightness upon proper scaling: We next show that:
max{\/ﬁ(d—ao),\/ﬁ(,é’—ﬁo) ,n(d—do)} = 0,(1).

Here we apply Theorem 3.2.5 of [38]. Define a semi-metric on O as:

d(61,02) = \/(a1 — )’ + (B — B2)? + |dy — do
From (A.16) we have M(0) — M(6y) > Crd?(0,0y). To establish asymptotic

equicontinuity of the process we need to bound:

E l sup  |M,(0) — M, (6p) — (M() — M(QO))]
d(0,00)<é
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=E| sup |[(Pn—P)fol
d(0,00)<s
=E [”Pn - P”_Fé]

where we define the collection Fs as F5 = {fs :d(0,00) < 0}. The envelope
function of Fs is defined as:

G:d(sel,lGE)SS ( (ka (€+ag—a)— ﬁk(é)) ’ Lx<dond

’(I:Ik (E+ap—B) — Hk(g)) ’ T x<as
+ ’(Hk (E+Bo—a) — ﬁk(g)) ’ Ty

+ ‘(ﬁk (4 Bo—B) — f{k(f)) ) LIx>dvd,

< Cr (20 + Tge x<dy + Lag<x<d)
<204 (20 V Lge x<dy + Lag<x<a) = F5(X,§)

Hence the Lo(P) norm of the envelope function:

PF? <20, (25\/ VP <X <d)+P(d< X < do)) < 4CLE = 6, (5).

Hence an application of Theorem 3.2.5 of [38] yields /n d (é,&o) = 0p(1),

which completes the proof.

Asymptotic distribution: In the final paragraph we establish the asymp-
totic distribution of \/n (& — ag),v/n (B — 50> and n (d — d0>. Towards that

end, we largely follow the approach of Subsection 14.5.1 of [23]. For any h :=
(h1,h2,h3) € R? define a paramter vector 0,1, = ag + %,50 + %,do + %

Define a stochastic process Q,, on R? as:

Qn(hlahQah3) =nxP, (fen,h - fao)

- ZZ:; (ﬁk (gi - %) - f{k(fi)) Ix,<dond

n

. ho .
+ <H (€i+a - ——)-H(é}-))]l ha ¥,
; k 0 0 vn k do+23 <X;<do

] h ~
+ ; <Hk (& + Bo — ag — \/%> - Hk(fi)) Ly < xi<dos B

n

+ ; <I:[k (fz + %) - ﬁk(fi)) x,>dvd,
= Qn,l(h) + Qn,Q(h) —+ Qn’g(h) + Qn,4(h) .
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Tt is immediate from the definition of @, (h) that:
h, = (\/ﬁ (& — ap),v/n (B - /3’0) N (ci - do)) = mid argminy,psQ, (h).

We next show that there exist a stochastic process Q on R? such that for any
compact rectangle I = I} x I, x Is C R:

Quli = Q.

where the process Q is defined as:
hi
Q(h) = (hlak Fx(do) X Z1+ 7/,%Fx(d0))
- B2
+ <h20'k Fx(do) x Zs + fﬂkFx(do)>

+ CPP (Hk (& + (a0 — Bo)) — Hi(&), fX(90)) :
with Z1, Zs i N(0,1) and CPP is (as defined in the main paper) compound
Poisson process. Note that the stochastic process Q,, is continuous with respect
to its first two co-ordinates and cadlag (right continuous with left limit) with
respect to its third co-ordinate. Hence to establish the convergence of {Qy |1},
we need to use Skorohod topology. We mainly use Theorem 13.5 of [7] to estab-
lish the convergence result. Towards that end, define:

o)) (e ) )]
Einy = (ﬁk <§i + %) - Hk(fi)) -E |:<I:[k (fi + %) - ﬁk(&)ﬂ

and another stochastic process @n(h) as:
n
@n(h) = ZfthlllXiSdo/\doﬁ-h?S

i=1

+ Z (E[k‘ (gz + (OLO - BO)) - I:Ik(gz)) Ild0+h7?<Xi§do
=1
+Y (gk (& + (Bo — o)) — ﬁk(fi)) L <X, <dota
i=1

n
+ E :gi’h2ﬂxi>dg\/d0+};—§
i=1

= Qu+ (h)1py50 + Qp— (h)1py<o.

Hence we have the following decomposition:
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(ﬁk (Q‘ + (a0 — Bo) — %) — Hy (e; + (o — ﬁo))) L yy4ha < x,<do

+Z (E[k <6¢ + (Bo — a0) — %) — Hy (e + (8o — ao))) Ly xi<dotts

¢, (h) = E [(Hk <£i+%> Hy (& )} Z Xy <dondo+ 2
+E K (fz 7—) Hy (& )} Z Xi>doVdo+ 13

We next show R,,(h) is 0,(1) uniformly over a compact set:

R ()]

n ~ ho
E Hj, (&-F(Olo—ﬁo)— —) — Hj, (& + (00 — Bo) ) Ly ks ox <dg
i=1 ( v s

+Z(Hk <£i+(60_040) \f/b1_>_}~[( (Bo — @) )ﬂd0<Xi<do+f;d

=1

<£i—|—(040 —50 — %) Hk 040_60))‘ d0+hTS<Xi§d0
<§z’ + (Bo — o) — 7%)

(k T 1)hy & (k+1)hy
< vn Z]ld +22 <X, <do + Jn Z do<X;<do+12

Now suppose h € I. There |hi|V |he|V|hs| < K for some K > 0. Hence we have:

Hy ( Bo — Oéo))’ Lio<xi<dor s

k+1
sup |£Rn(h)\ < % [Z ]ldo——<X <do + Z]ld0<X <d0+—]

hel i=1 =1

k:+1
Z]ldoff@( <do+ £

as we know: .
A .
Y Lay-ox,<ae s = Pois (K fx(do))
=1

we conclude that:

sup R, (h)| = 0, (n~Y/2) = 0,(1) . (A.19)

hel
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We now establish the convergence of &(h):

¢,(h)=E [(Hk (gi + %) Hi (& )} Z Xi<dondo s 1
( (51 \/—> Hk (&) )} Z]IX,>d0vdo+—1

:m{h_%ﬂm<_kgggk_g)

k 2n Vvn

hy
(G P R
h,1 n
} Z ]lXiSdo/\dmLhTB
i=1

ﬂ

2
1
+E|; (§+T+k> Lmcecs

2
+M{%p<k§£§km>

| S

E\2n vn
+E [(%k — h—\/Z—ﬁ - % (= ’f)2> ]lk\h/%<£<k:|
+E 3 < Tt "7) ﬂ_k—%gg—k] } Zn;]lxpdovdﬁ%”*
= n

% E<E<k i
P ( ¢ ‘ﬁ)
hy
N [CIN T
1 l —
2( +_+k> T, m T <e<— k] Ezﬂxigdomﬁ%

i=1

2

nFEL [ hap k<§<k72
k \2n NG

ORI I,

1
5 < + = +k> ]l_k_%gg_k] } E ;]lX,i>dovdo+h7}
kA1 [R2 ha
—7{7 (—kﬁéﬁk—ﬁ)
hl
E =S (€K ) 1,y

ha 2 1
(§+T+k> IL_ h1<§< k E

3

+ nlE 1

@
||M:;-
I

X;<doAdo+3
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k+1 (h3 ha
+T{ P(—kﬁfﬁk—%>
ho
+ EK\/_ \/—5—5(5 k)) _ha <§<k]
h 2 -
(5+\/2—+k> ]l—k—%éfé—k]} Z Xi>doVdo+ 52

From strong law of large numbers we have:

+ nE

n

1

n Z ]lXiSdo/\doJrhTf‘ L5 P(X < dp), (A.20)
=1

1 & v

E Z ]l)(i>do\/d0—‘,-hﬂ—/3 — ]P)(X > do) 9 (A21)

i=1

For the other terms in the expectation:

h—%IP’ —k<g<k—ﬂ —>h—%IP’(—k<e<k;) (A.22)

2 =s=" 2 ==t '

2 2

%P(—kgggk—ﬁ>—>%m—kgegk). (A.23)
n

For the other terms:

h h 1
nk [(\/%k - 7% -5 (€= k)2> ]lkf}%<§<k:|

=nx0Mn3?) =0(1). (A.24)

and
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h3
= otz lelk) +o(1) = o(1). (A.25)

Similar calculation holds for the terms involving h;. Hence we conclude com-
bining equations (A.20) - (A.25) we conclude:

1 [h? 2 _
¢, (h) 2 k% %P(—k <e<k)Fx(do) + %P(—k < e < k) Fx(do)

(A.26)

Finally we show the weak convergence of Qn(h) to Q(h), for which we need
to show that the collection {Qn(h)},en is tight with respect to appropriate
topology and every finite dimensional projection of @, (h) converges to that of

Q(h). We embark on by showing that for any fixed h, Q, (h) converges to Q(h)
in distribution. Towards that direction, fix hz > 0:

E {exp (it@n(h))} —E {E {exp (it@n(h)) | X1, XnH
—E [Ex [exp (z’t@n(h)>”

We start with analyzing the inner expectation Ex {exp (zt@n(h))} :

n
exp { (it Z i Ix, <do
1=1

+> (ﬁk (& + (@0 — Bo)) — f{k(fi)) L <xi<do+ts
i=1

i=1
>t Ix,<dg Yl hy
= (¢, ®) S CO)

n
A |}
(t))ZM do<Xido+ 5

Ex [exp (zt(@n(h))} =Ex

X <¢ﬁk(5i+(ao—ﬁo))—gk(§i)

nx YT Ix<dg LRS- D IS I hg
- (¢£h,1 (t)> X (fbghg (t)) Tt
>

nq N
=1 Tdg<X;<do+ 2

% (@114 6+ @00 ne0 ®)
(A.27)

To show the convergence of the characteristic function of &n, (and similarly for
&n,) we first note that the variance of &, for hy > 0 is:

@ 1) )

—E (Hk (&- + %) —~ Flk(&)>2

+0(n™?)
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h2
(\/—f‘i' ) ]1k<6<kf)1;]
1 ST
3 <§+ ) - %k ]lfkf%ggifk

1 2 hi \?
5 kﬁ) ﬂk—%ssgk
kE2h

n% {P(£>k)+IP’<§< k—%>}+0(n2)}

_ <T> <h1E 1 icea] + T P (e> b)+ (¢ < —k>}> +o(nt)

= (%) <h1E (€21 _p<e<n] + thlP(g > k)) +o(n™)

where the variance parameter a,% is defined as:

2
(%) (E [£21_p<e<k] +2K°P (€ > k)) .

Similar calculation holds for h; < 0 and for hy. Hence going back to equa-
tion (A.27) we have:

o) - (1§ )

A § h
- - =1 Tap<X;<dg+ 52
% (#6000 (e @) e

1 n
2 nXo i 1 hg
x (1= t_h2‘7k —i—o(n_l) X >do+ 5
n

1<
- > lx,<ay = Fx(do)
=1

1 . a.s.
E Z 1Xi>d0+%; - FX(dO)

i=1

we conclude:

x13? 1x.<q 2,22

12 h252 3 NX 5 24i=11X;<dg N

<1—§ Lk 4 o(nt) L5 em 2 Fx(do)
n
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XE3r 1 h 2,2,2

2 h252 Co\NEEim iy aeis 26302

(1_5ﬂ+0(n n woasy —SI2E Py (do)
n

Also we know: .

z .
Z ]ldo<Xigd0+%3 = Pois (fx(do)hs)

i=1
which further implies:

n

i=1 1 _ hy
<¢f1k(£i+(agfﬁo)),gk(£i)(t)) dg<X; <dg+ '

f )POiS(fX (00)}13)

== (¢ﬁk (Ei+(ao—Bo))—Hr (&) t

Hence combining these we conclude:

- nx+ Y Ix,< nxiyr o1 .

Ex [exp(itQu(h))| = (¢¢, (1)) FEE (0, ) a2
noq .\

=1 Vg <X; <dg+ 2
X <¢Hk §i+(a0*ﬁo))71~{k(£i)(t)> o= Fisdo

2 _2
Z thakF (do)

th
= e 2kF(d°)

X e
Pois(fx (do)hs)
x <¢ﬁk(fi+(ao—ﬂo))—ﬁk(5i) ¢ )

Applying DCT and taking expectation on the both side we conclude:

t h2

2202 2302
3 x(do) y o~ Fx (do)

E [exp(itQu(h))| — ¢~

This concludes that Q,, (h) =, Q(h). The proof of the fact that for any finite
collection (hy, ..., h;):

(@uh), -, Qulhy)) = (@(h)..... Qk1) (A.28)

is similar (same analysis of characteristic function) and hence skipped for bre-
vity. Interested readers can take a look at the proof of Lemma 3.2 of [26] or the
proof of Theorem 5 of [24] for more details of this type of calculations. We next

establish the tightness of the process. Define another process @n(h) as:

Qn Zgz hl]lX <dop

+ Z (Hk (fz + (ao - /80)) - gk(gl)) I[d0+h—f<Xi§do
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n

+ Z (Hk (fz + (aO - ﬁo)) - Hk(gz)) ]ld0<xi§d0+h73

=1

n
+ E iho 1 X, >do

=1
= Qu.a(h) + Qua(h) + Qn3(h) + Qua(h) (A.29)

We now show that @n(h) uniformly approximate @, (h) over compact sets:

B sup |3 ) - Q. (h)]

hel

<E lsup {
hel

+

n

Z&’hl []lxz‘ﬁdo - ]lxigdoAdw’;—?}
i=1

n
E &ioha |:]]'X7',>d0 - ]lxi>d0vd0+h73}
i=1

|

n

< 2E |sup Z§i7hl |:]1Xi§d0 - ]IXi<dg/\do+hf3:|

hel |52 B "’

n ~
+ 2E |sup Z&,hz []lxigdo - 1X->d0vd0+h—3}
hel Py T n

n L
<2k lZ [Simn Ly 5 < x,<ay | +2E Z |§ivh2|ﬂdo<Xi§do+%]

i=1 i=1

< 2nE [|5h1@ P (do - % <X< d0> + 2nE [|£h2@ P (do <X <do+ I;)
< 2n X [ var (f,“) X (%fx(do) + o(n_1)> (A.30)

+m X <%fx(do) + 0(n1)>

— 91 x Khl"‘“ +0(n_1/2)) x (%fx(do) +o(n‘1)>

vn
+ <h\2/%k + o(n_l/z)) X (%fx(do) + o(n_l))]
=0n Y% =o(1). (A.31)
Hence from equation (A.31) we conclude:
sup Qu(h) = @u ()| = 0,(1). (A.32)

Therefore it is immediate from equation (A.28) that:

(@utn),-. Qub)) & @Mb)..... QM) - (A.33)
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Next, we show that tightness {@n(h)} . As evident from equation (A.29),
ne

it is enough to show tightness of {@nl(h)} N for i =1,2,3,4. For i = 1, the

ne
process @n’l (h) only depends on hy and hence have continuous paths. Therefore
to establish tightness, it is enough to show:

n
limlimsup E sup E
640 n—oo |h1,1| V|1 2| <K 527
|[h1,1—h1,2]<0

fi;hl,l - §i7h1,2 I[Xiﬁdo =0

Towards that end, define a collection of functions:
Fis = {fnirhis i [hia| Vo] < K |hig — heg| <6},

where the individual functions fp, , »,, is defined as:

Triah o (X €) = {(Hk (& + %) — Hy <€i * %))

(YA R eS| o

Clearly Fi 5 has finite VC dimension. Also from equation (A.17) we have:

‘H’“(&+W>_Hk<&+\/ﬁ>‘

E+1 lhig —hial 1 (hiy —hip)? |hi,1 — b1 ?
< Ak ) ) - ) B > LIRNDY
=% iz w U

1)
< e
—C’“ﬁ

Therefore, the envelope function can be taken as:
206
vn o

Hence using Lemma 2.14.1 of [38] we conclude:

FL(;(X, 6) =

n

limsupE sup gi,hl,l - fi,hl,z ]lXiSdo S o
n—o0 [h1,1|VIh 2| <K 525
[h1,1—h1,2]<6

which established tightness of @n’l(h). The proof of tightness of @nA(h) is sim-
ilar and hence skipped. Finally we show the tightness of Q, 23(h) = Q, 2(h) +

@n73(h). As these terms only depend on hz which has cadlag paths, we use
equation (13.14) of Theorem 13.5 from [7] with 8 =1/2, « =1 and F(z) = Cx
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for some constant C. Fix hs1 < 0 < hgao < hs3. The other cases (i.e. say
0 < hg1 < hg2 < h33) are similar and hence skipped.

E H@n,ZS(hS,l) - @n,23(h3,2)‘ ‘@n,QB(hB,Z) - @n,QB(hS,B)H

n

> (Hk (& + (a0 — Bo)) — ﬁk(fz‘)) []ld0+’“:7;1gxi<do - ]ldosxi<do+h%2}

|

[]ldo+"37’1§xi<do T ]ldogxi<do+"3'2}

n

=E

n

7 (B 6+ (@0 = B0)) = Hi(€)) [T, o cpmse = Ly o ey s

i=1

S |+ (a0 — o) — x(&)

i=1

X Z: ‘ka (ﬁz + (040 — ﬂo)) - gk(éz)

X

=E

hg2 T+ 1

n

1 5
[ do<X;<do+ do<X;<do+-2:2

SkJrl

£2 (400 = Gu)k + 3w — fo)? + (fan — f0) A 20)°) »

n n
E E 1 h h X E 1 h h
— d0+%ﬁxi<do+% — do+%ﬁxi<do+%
= i=

= E , 30 X 1 , ,
Crto 2_E [ﬂdw—hi’;l SXi<dot"52 T ot TR <X <dot Ty }
i

h: h
<C’k7g0xn2xIP><d0+ﬁ<X<do+ﬁ)
n n

h
><IP’<do+h3’2§X<do+3’3>
n n
< Crp,C? x (hzg —h31) % (hag —hsza) [C= max fx ()]
< Ch,0,C? x (h33 — h31)?

This completes the proof of tightness of @n Hence using equation (A.33) we
conclude: - P

Qn|ﬂ - Q|H
which, along with equation (A.32) implies:

~ £

Finally, from the decomposition in equation (A.18) and combining our conclu-
sions from equation (A.19), (A.26) and equation (A.34) we have:

Qnln =4 Qlr- (A.35)

Next and last step is to invoke argmin continuity mapping theorem to say that:

h, = (\/ﬁ (& —ap),vn (B - /30) ,n (az - do)) =< mid argming crsQ(h) .
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This will complete the proof. Following the proof of Lemma 3.2 of [26], all we
need to establish the joint asymptotic tightness of {(Qn(h),J,(h))}, oy where
J.(h) is the jump process corresponding to Q,(h), i.e.

n

Tn(b) = sign(hs) 3 [Ty o om — Txizan
i=1
As we have already established the tightness of {Q,,(h)}, we only need to estab-

lish the tightness of {J,(h)}. The proof is very similar to the proof of Lemma
3.2 of [26] and skipped here for the brevity.

A.6. Proofs of Theorem 2.2 and 2.3

The proofs of Theorem 2.2 and 2.3 are similar to that of Theorem 2.1 by re-
placing Hy with ¢; loss function and ¢y loss function respectively and hence
skipped.

A.7. Proof of Theorem 3.7

Here we assume a9 = 0, 8g = 1 is known and derive the bound on the d. When
o, PBo is not known, then the problem becomes harder and rate of convergence
obviously can not be faster. Our proof is based on the proof of Theorem 5 of
[30]. Consider &7 to be the set of all half-spaces, i.e.

o ={xTd >0}, o1 -

Our model is X ~ P and:
Y =1x7gq50+¢

where £ ~ N(0,1). Now the class of hyperplanes & has VC dimension p. From
the properties of the hyperplane we know that, given any N > p (not to be
confused with sample size n) there exist x1,...,xy € RP such that o shatters
all subsets of {z1,...,2ny} with cardinality k¥ < [p/2] := V (e.g. see [13]).
Define ©y v to be the collection of all such d € SP~! which shatters all subsets
of length V' of {z1,...,2n}. Hence we have:

{(Loasor -+ Lgaso) }de% =B

where: Ny
B={0,1}y, = {b e {0, 1}V b = V} .
i=1
Henceforth for any d € Oy, we denote by by to be the corresponding unique
b € B. Define  to be the uniform measure on {z1,...,zy} and forany d € On v
define:
Y =T1x1450+¢.
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The loss function we use here is the squared error loss defined as:

0(d,do) =E[(Y = Lx7gs0)> — (Y = Lx7450)°]
=Ex [[Tx7450 — Lx74y>0l]
= ||11XTd>0 - ]1XTd0>O||L1(p) .

The minimax risk is defined as:

R, =inf sup Eq [E((;l, d)]
d desSr—1

>inf sup E4 [E(ci, d)}
d deenv

=inf sup Eq4 [H]IXTJ>O - ]IXTd>0HL1(u)]

d deON, v
1 N

= —inf sup [E4 1+ ,—1_ A.36
N dEON v L_Zl z] d>0 z] d>0 L1(u)1 ( )

Now for any d € SP~!, define dpew as:

Cinew = ireg(gl;r‘i “HXTJ>O - ILXTd*>OHL1(,u) :

Then we have for any d € Oy v:

Lyrs: —o—lxrg H :H]l PP SR (R P ‘
>0 T T T X Td>0
H XTdpew >0 L) XTdpew>0 " EXTd>0 T LXTd>0 L)

< H]IXTJHCW>0 —Lyriso H

Li(p)
+H]]'XTdA>O_]]'XTd>O||L1(M)

<2 H]lXTci>0_]lXTd>0HL1(M) :

Putting this bound in equation (A.36) we obtain:

N
1
R, > —inf sup E4 1 +5;.,—1_1
" N d deON, v ; z:d>0 @ d>0 Li(p)
1 N
> inf sup Ey 1r: =T+ ‘
2N i acony Lz_; 1 tnew>0 KR PN

1
=— inf sup Ey4
2N deOn,v d€On,v

N
i=1

]lmjri>0 - ]lmde>0‘L1(u)] (A.37)

Next note that:

Ilz;rti>0 - ﬂzjd>0‘ = dH (ch’ bd)

N
i=1
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where dp is the Hamming distance. As ©x y has a bijection with B we can
write equation (A.37) as:

R, > % irgf igg E, {dH (l;, b)} > % Biglf) SggEb [dH (B,b)} (A.38)

for any subset D C B. We now choose D carefully. Note that for any N > 4V
(i.e. N > 2p), we can choose D such that (Lemma 8 of [34]):

1. dy (b,1) > ¥ for all b £ € D.
2. log |D| > pV log (%) with p = 0.233.

Using this we modify equation (A.38) as follows:

1 .
Ry > — inf supE [d (b,b)}
2N jep beg b
1 .
— _— inf ]E[d (b,b)ly }
o i [ (51) 1
V. . .
> — inf supP, (b # b) [From point 1. above]
AN pepveD
Vv .
= — inf su (1—IP (bzb))
AN jeppen
— Vit (1 - minP, (6 — b) (A.39)
4N beD beD

Now to further bound the above equation, we use the following lemma (see [8]):

Lemma A.9. Let m > 1, (B;)o<i<m be a family of probability distributions
and (A;)o<i<m be a family of disjoint events. Let a = ming<;<m P;(A;). Then
setting:
_ 1 &
= =N (P, P
DOWALRS

where J& is the Kullback-Liebler divergence, we have:

“<“V<Ei§ia>'

where o = 0.71.

We now use this bound in equation (A.39). Fix any by € D. Define A; =
{l; = bi} for all b; € D which are disjoint events. Hence using Lemma A.9 we

obtain: 7
inP, (b=10) < S A4
ggg b (b b) saV (log |D|) (A-40)
where:
_ 1 " n n
%=|D|—_1 > (B ’P’%):|D|—1 > A (P, Py) .
bED,b£bg beD,b£by
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Now note that for any dy,ds we have:
H (Pay, Pay) = Ex [ (Pg, (Y | X), Py, (Y | X))]

2
=Ex [(]1X7d1>0 —Tx74,50) }

=Ex [[Tx7a,50 — Lx7d,50l]
1 N
s
=1

1
= NdH(b(h ) bdz) :

ﬂw;rdl >0 Ila:?d2>0)

Also by definition for any two b,b’ € D we have dg(b,b’) < 2V. Hence we have:

~ 2Vn
iy A —
- N

This bound along with equation (A.40) modifies the bound of equation (A.39)
as:

V N
> —inf ([1—minP =
R, > g int (1-minp, (3=b)

>V (1 (av 2"
4N Nlog|D|

_ao) (A1)
when,
o> 2Vn
~ Nlog|D|"
which holds if:
P —
NpVlog (N/V)
ie. if:
N log (%) > 2—7; . (A.42)

which is satisfied, if for example:
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as V = |p/2]. We finally need to verify N > 4V and that it satisfies equa-
tion (A.42). The first one is obviously true for all large n as n/p — oo. For the
second one, lets forget the |-] in the definition of N for the time being as it will
not affect asymptotically. Then:

N 2
vos(7) 2 5

N——
W
¥

4n o ( 4n
o (1+log ()) 8 Vpa (1 +1log (%))

N =

1 dn
¢$uﬂ%@»m<wwuma%ﬂz
@@[log(‘/)—i—log( ) 1og(1+1og( ))}2%

As n/V — oo, LHS converges to 1 and eventually > 1/2. Therefore the choice
of N is valid for all large n.

A.8. Proof of Theorem 3.10

We first assume that Assumption 3.5 holds globally and our parameter space
Q =Q, x Qg for (ap, fo) is such that:

mln |a Bol A mln |8 —ap| >0>0.
el

This is just to avoid the issue of consistency. One can relax this assumption
with an additionally showing that the estimators are consistent. To prove Theo-
rem 3.10 we use Theorem A.3 of [31]. To match our notation with that theorem,
here our loss function (6, -) is:

Y(0,(X,€)) = Hi (6 + a0l xgo<0 + BolxTay>0 — @l x7a<o — BlxTaso)
— Hi(§)
= (ﬁk (€+ap—a) — Hy(§)
(ﬁk (€+ao—B)— Hk(é)) LxTay<o<xTd
+ (ﬁk £+ Bo—a) — ﬁk(f)) IxTa<0<xTdo
+ (Hi (6 + Bo = B) = Hr(©)) L anx™ ay>0

It is immediate from the definition that (6o, (X,£)) = 0. Also from equa-
tion (A.17) we know (6, -) is uniform bounded by some constant only depend-
ing on k and the width of €. Following similar arguments used in the proof of
Theorem 3.6, we obtain:

€6, 60) = E[1(6, (X, )] > ci dist?(6,6) (A.43)

T x7avxTdy<o

N———
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for some constant ¢ (independent of n), where the dist function is:

dist(6,69) = 1/ (a — a0)? + (8 — o)? + P (sign(X Td) # sign(X " do)).
Moreover, from equation (A.17) we have:
var (7(9’ (X7 E))) < E[’YQ(ea (Xa 5))] < Ck diSt2(0, 00) :

Hence this semi-metric dist satisfies conditions of Theorem A.3 of [31] with
w(x) = z. Next we need to bound the modulus of continuity:

ViE | sup (P — P) (7(0, (X, €)) = v(0m, (X, )]
0:fo€EFm
dist(0,0.,,)<e

Note that another application of equation (A.17) yields:

sup B[ (7(6,(X.€) = 10, (X, )] S €.
0:fo €EFm
dist(0,0,,)<e

Hence applying Theorem 8.7 of [35] we have:

VAE | s B0 P) (0. (5.0) =10 (LD | (A0
dist (6,0, ) <e

1 m 1
Se/Vnlog—Vv V—log—
e Jn e
= %n(ﬁ) : (A45)

So a value of €, that satisfies \/ne2, > ¢ (€,) is:

_Vn log "
em = logy—
Therefore we can take z,, = V,, log (n/V,,) and as w(z) = x we have b(n) =1
(see Theorem A.3 of [31] for the exact expression of w(z),b(n)). Note that, as we
are assuming (slogp)/n — 0 (Assumption 3.9), it is sufficient to search among
the models with 1 < m < C|(n/logp)] for any constant C'. We take C = 1/4
here. With these choices, the value of ¥ (as defined in Theorem A.3 of [31]) is:

iloss
N Z e Vilog v+
=1
1loes)
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Hence, an application Theorem A.3 of [31] yields:
. c, L,
P(£(0,60) > Cpen(s) +t— | < e .
n

This along with the value of pen(s) from equation (3.4) of the main paper and
the lower bound equation (A.43) completes the first part of the proof, i.e.

. . A 5 Vs n
d|5t2 ((ainita /Binita d)a (OCO, ﬁ07 do)) = Op (_ log _) -
n Vs
The acceleration of the rate of &, B via replacing dy by d in the model equation
is exactly same as that of Theorem 3.6 and hence skipped.

A.9. Proof of Theorem 3.1/

Here again we assume for technical simplicity that the wedge assumption (As-
sumption 3.5) is valid on entire SP~!, although all our arguments can be ex-
tended to the case where the assumption is valid only locally along with a sep-
arate argument for the consistency of the estimator. We use the same notations
as of Theorem 3.10 through out the proof. Define

|| ‘ 2

2 i'rn é n n
— 2 > 1

Ym K n og ‘rm

for all m € M, where V;, is the VC dimension of model m. For any such model
m we obtain 6,, as:

0,, = argmin P, {(Y —alyrg<o — Blxtaso)’ — 52}
0exSE!

= argmin P, {& (aolxray<o + BolxTay>0 — alxTa<o — BlxTas0)
0eQxSE !

2
= argmin P, fy
0eQx Sh

argmin Py, (fo1 + fo,2)
6eQxSE!

1 2
+= (a0l xTgo<0 + BolxTde>0 — Al xTa<o — BlxTas0) }

where the functions fq1, fq,2 are defined as:
foa =& (aolxray<o+ BolxTays0 — alxTa<o — BlxTaso)
fo2 = % (0l x7ay<0 + Bol xTay>0 — ¥lxTaco — »3]1)(Tol>0)2 .
The loss function used here is:

€6, 60) = Pfy  dist*(6,6,),
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for all § € Q € SP~! via the global version of Assumption 3.5. From the definition
of m we have:

Pnféﬁ, + pen(m) S Pnfés() + pen(so)
< P fo,, + pen(so) := pen(so) .
Using this we can bound the loss function:
U0y, 00) = Pf,.

m

=P-P )fé +Pnfs + pen(m) — pen(rn)

< (P-"P,) f; +pen(sy)— pen(in)

— —(P —Pn) £, 0 n(s en(m
_Z(ém,ﬁo)—&-yfh( )+pe 0) — pen(r)

< sup [ = Pn) fo] (f(ém,do) + y;) + pen(sog) — pen(r)

peaxse—1 ((0:00) +yz,

For the rest of the calculation, define:

(P —Py) fo
Fm = sup L 2o/ ert
peaxsz—1 £(0,00) +y7,
—  sup (P —Py) (fo,1 + fo2)l
9cx SE €0, 00) + 7,
[(P—Pp) fol |(P—Pp) fo,2]
< sup ———————2>-+ Sup
pcaxset L0,00) Y un  geaysrr £0,00) +up,
= F'rn,l + Fm,? .

Next we try to bound I';,. More specifically, we bound I',, for all m and then
use a union bound to bound I'j;. Note that, as the function class under the
consideration of I', o is bounded we can use similar as of the proof of Theorem
A3 of [31] (i.e. applying Talagrand’s inequality and then bound the expectation
and variance) to conclude:

P (D > 1/4) = o(1). (A.46)

For Iy, 1, we first decompose it as follows:

'y < sup (B =Pn) (o1 = fon,.)l + sup —I(P —Pn) fo,..1]
7 desp €(0,60) + y7, fexSn ! 0o, 60) +ya,
< sup [P —Pn) (fo1 — fo,,,1)] n |(P = Pn) fo,.1
feQxse ! 6(9790) +y72n f(am,eo) +y%

=T +Tma2.
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Bounding E[I',,, 1] is straight-forward:

var (fg,. 1)
B[l 12] < V1 (00, 00) + 2,

[[€|2dist(6rm, 6o)
- \/ﬁ(dist2(9m,9o) + y?ﬂ)
1€]]2 x €l 1
< .
Vi a0y T 2 Ny

IA

To bound E[I',, 1] we use the maximal inequality of the weighted empirical
process (see Lemma A.5 of [30]), which is a variant of peeling argument. First
of all note that, by symmetrization and applying Theorem 8.7 of [35], we have
forany 1 < k <n:

k
E :& (O‘mﬂXJdmgo + 5m]lxjdm>o —alxrico— 5]1de>0)
i=1

E sup
fexspt
dist(6,0,m)<e

1 1
< (06 kVy,log — VvV V,, log —) .
V O Oc

where the wimpy variance o2 is defined as:

2
2 2
o= sup o E [(Oémllxjdmgo + Bmlxra, >0 — lxraco — mlxjdx)) }
9:f9€fm
dist(0,0.,,)<e

<€,

This, along with Proposition A.7 implies:

E sup [P —Pn) (fo,1 — fo,..1)|
0:foEFm
dist (0,0, )<e

k

Zfi (amﬂxjdmgo + Bmlxra,,>0
i=1

=K sup
0:foEFm
dist(6,0,m)<e

—alyraco — 5]1de>0) H

v, 1 LV 1
< _m Z -m - )
S el e/~ 10g<6) +2- log(€>ELr§iaSXn|€zl}
— P (€)
=
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An application of Lemma A.5 of [30] yields:

< Um(2v2yn)

Bl S =

which, in turn, yields:

Elm) < NN T

~ Aom(2V26n) | [€ll2 [y
T Vmem 2V0Ym | YR

8\/§¢m(em)+ 1l (02, (Ym)

2
< 8v/2€, n 2 @2, gem)
Ym \/ﬁym €m
L8, Nl bmlen)
T Ve 2Vnym  €em
< i + ||€||2€m < 8+\/§
T VE 2ym VK
which can be made arbitrarily small by making x arbitrarily large. Next, we
bound the fluctuation of V,,, ; around its mean using Chebychev inequality:

IA

(A.47)

var(T'py 1)

P (|Fm,1 - E[Fm,l]‘ > t) < 2

To bound the variance we use Theorem 11.17 along with Theorem 11.1 of [9].
To match with their notation for the ease of the readers, we have:

X 1| & (Oém]ledmgo + Bmlxrg,>0 —olxTaco = 5]1de>o)
o €(6.90) + v2,

3 (O‘m]lXIdeO + Bl xra, >0 — lxraco — 5]lxjd>o)
€0,60) +ya,

11& (am]lxjdmgo + Bmlxra, >0 = lxrico — ﬂ]lX?d>0)
n 6(05 60) + y’r2n

where the last equality follows from the fact that E(¢) = 0. That X, ¢ is sym-
metric follows from the symmetry of £. We define M as:

2
maXxi<;< f
max sup X2, < ———==N0 . )

; 2,4
1Sisnpequsrt Y
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and the wimpy variance:

= 202 U6, 60)
sup E(X?,) < = m
oeQxsh ! Zzz:l ( 79) n (U(Om,00) +y2,)?

AN
wn
VA=
go]

An application of Theorem 11.17 and Theorem 11.1 of [9] yields:
var(Ty1) < 02, + 64y/E[M,|E[T,, 1] + 18°E[M,,,] . (A.48)

Note that we set V;, = m(logp)'*? (which is slightly larger than the VC dimen-
sion) and choose y2, as:

LmHé”g n
2 n

m

As per Assumption 3.13, we confine the model selection in
1< m < (1/4)|n/(logp)?]

To facilitate the union, we next show that 2?21 var(Vi,1) — 0 as n — oo. We
bound each terms on RHS of equation (A.48):

M 2 M
o 1
2 §
D=
i=1 4 =1 Wm

n O, 2
U? /(4(logp)*) 1

B 4||€||n,2 ; Vin IOgVLm

2 n/4(logp)?

g _
£
<%}
= dlogdllélln: = Vi
n/(4(log p)?)

2
O¢ 1

< -
~ 4log 4(log p)®/2(|]|n.2 Z m(logm)1+4/2

=1
oo

o2 1
£ 2 :
<
= 4log4(logp)?/2[|¢]ln,2 = m(logm)'+9/2

i=1

— 0 as n — oo.

Now for the second summand:

M
64> VE[Mp|E[l 1] < 16/E[M,,]
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E[maxi<i<n &)
n2ys,

[1€]ln.2

< nyn,

N
(0]

@
Il
s

||
Mz

-
Il

< 8 Z 1
~ 4log4(logp)®/? < m(logm)4/2

— 0 as n — oo.

And similarly for the third summand:

M
182 Y E[M,,] —1822 maXKK"g]
i=1

< 182 Z 1
~ 4log4(logp)? Pt m?2(logm)2+o

— 0 as n — oo.

Hence taking ¢ = 1/8 and using the fact that E[[';, 1] < 1/8 for all m for our
choice of k, we have:

1
Therefore, combining equation (A.46) and (A.49) we conclude:
1
P (Fm > 5) —0
Hence, on its complement event, we have

(0, 00) < % (g(ém,do) + y?n) + pen(so) — pen(r)

1 .
iﬁ(ém, dop) + pen(sp),

which further implies,
f(émﬁo) < 2pen(sp) .

This, along with equation (A.43) indicates:

_ so(log p) A+ €], n
it (s i ). 20 o o)) = 0, (20ELE e (1))

n

The boosting of the rate of &,B by replacing dy by d in the model equation is
exactly same as that of Theorem 3.6 and hence skipped.
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A.10. Proof of Theorem 3.12

For the proof of this theorem we follow the techniques of proof of Theorem
2.18 of [31]. Recall Fano’s inequality: if © C SP~! is a finite 2¢ packing set, i.e.
for any two d;,d; € ©, we have ||d; — d;|| > 2e with |©] < oo, then based on
n i.i.d. observations z1,..., 2, we have the following minimax lower bound in
estimating dy:

o] 2 (1 e e en K1
a log (|6] — 1)

infsupE

Py;) +log?2
d Pa

Next recall Gilbert-Varshamov Lemma: if dy is the Hamming distance, i.e.
dp(z,y) = Zgzl 1(x; # y;) with d being the ambient dimension. Then given
any v with 1 < v < p/8, we can find wy,...,wy € {0,1}F which satisfy the
following:

1. dH(OJi,OJj) > % Vi#j € {1,...,m}.

2. logM > Zlog (1+ ).

3. ijHo =v Vj € {1,...,M}.
We choose the appropriate € later. First, for a fixed 0 < € < 1, we construct the
set © as follows: applying Gilbert-Varshamov Lemma in dimension p — 1 with
sparsity v = s — 1, we choose Q = {w1,...,wy} € {0,1}P~1 which satisfies the
above conditions (a) - (c). Then, for each w; € €2 set d; as:

(i)
N

It is immediate that ||d;|2 = 1 and ||d;|lo = s. Set © = {d; : w; € Q}. From
condition (c) above we have:

s—1 p—1
=M > 1 1+—].
©l - 8 og( Jrs—l)

Further note that for any d; # d; € ©:

Id; — d;lI3 =

which proves that © is a €/2 packing set of SP~1. On the other hand, from
condition (c) above it is immediate that, for any w; # w; € Q, we have
dp(wi,w;) < 2s. This implies that for any d;,d; € ©:

2

d; —d;||2 = <
|| ]”2 (3_ 1)(1 +€2)

dH(wi,wj) § 262 .
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Now for each d; € © define the distribution Py, of (X,Y) as: X ~ N(0,1,),& ~
N(0,1), X is independent of ¢ and:
d
Y =1xvq,50+¢€.
Hence for any d; # d; € O, the Kullback-Liebler divergence between P, and

de is:

1
KL(Py||Pa;) = §]EX |:(]lXTdi>0 - ﬂXde>o)2]
=P (sign(X " d;) # sign(X " d;))

§C||dz_d]||2§€ 202.

for some universal constant C'. Hence applying Fano’s inequality we obtain:

R 2 €2 % Ez iid; d; €O KL(PdiHde) + ]ogQ
infsupE Hd—d‘”z_ 1 Jididg
d Pf { 16 log (6] — 1)
>i 1_ ne vV2C? + log 2
=16 log(s§1 log (1+%>71)

Taking € = (slog (1 4 p/s))/n we conclude the proof.

Appendix B: Proof of supplementary lemmas
B.1. Proof of Lemma A.8

As ¢ has symmetric distribution around origin, without loss of generality we
can assume f > 0. Hence we have to establish the result for 0 < pk. Note that
difference Hy (€ + pu) — Hy(§) can be decomposed into five terms, depending
where £ lies:

Verw -], ksesko
ek -%), i —k-p<E<—k
Hy(§ +p) — H(§) = ;(|€+M‘_§)_§72 ifk—p<&<k
K (|€4 ul = 18D fE>kor{<—k—p
(B.1)

Now we inspect the regions individually. Note that when —k — pu < £ < —k, we
have:

H(E+ 10~ H(©) = 56+ 07 =k (1€l - 5 )

—gerwrrk(erg)  bld=—g
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52
5 Tt ke

1
§(£+u+k)2—uk

u2+k2
2

When k —p <€ <k:

Hi(etn) - € =k (e ul - § ) - &

Zk((§+u)—§)—§

2 k.2
Z—?-I-k;&—?—l—lw

1
=—5 (6= k)" +kp

Also, we have:

kp, &>k
k(l$+u||€){_l;w ;fgi—k—u-

Hence we can modify equation (B.1) as:

u§+%2, if —k<&<k-—p

Lebptk)?—pk, if —k-p<&<—k
Hy(€+p) — Hi(6) = § —3 (6= k)* + kp, ifk—p<e<k (B.2)

k., if &>k

—kp, f&<—k—p.

Note that the term —uk is active on the region £ < —k and pk is active on the
region £ > k — p. From the symmetry of the distribution of £, this effect of —uk
and pk on the region (—oo, —k) and (k, co) will cancel each other upon taking
expectation and the effect of pk on (k — p, k) will remain. Hence we have:

E[Hy(§ + 1) — Hi(8)]

2
= %P (—k<E<k—p)+pE 1 pce<np]

(1 1
+E §(§+H+k)2]1—k—/téﬁé—k +E 2(51@)2]1,6_/459}

i ]
%P (—k<E<k—p)— pE [l <e<i]

(1 i [ 1
+E 3 E+p+k)° 1 g pceci| +E (Mk —-3 (&— k)Q) ﬂk—ugggk]

12

= 7P(—k <ELZk—p)+E Kuk — pé — % (€ - k)2> ﬂk—ué&ék]
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1
+E [5 (E+p+k) ]lk#<5<k]

2

> %P(—kéﬁék—uHE [(uk—uf—%(f—kf) ]lku<£<k]
2
>EP(-k<g<k—p)

where the last inequality follows from the fact:

1
f(&):uk—uéﬁ(&fk)%o Vo ocelk— k.
observing the fact that:

— %E [Hi (€ + p) — Hi(6)]

> E[Hi(§ + p) — Hi ()]

E |Hp(€ + p) — Hi(€)

we complete the proof for all £ > 0. Now for £k =0 for 0 < p < 4,

E (1€ + u| — €]
= —pP(§ < —p) + pP(§ > 0) + E[(2€ + p)1 - <e<o]

=pP0 <& <) +E[(—28 + p)lo<e<,
=E[(—2¢ + 2u)Lo<e<,]
=2 [ a)few) do
o 3
m
> fe(0 —x)d
> Je(0) [ (=) do
2
= 5 1e(0).
This completes the proof.
B.2. Proof of Lemma A.1

Proof. Although we assume continuous steps, our proof can be certainly ex-
tended to the case when S,, takes value 0 with positive probability. The proof
critically uses Theorem 4 of Chapter 12 of Volume 2 of [16]. To keep the nota-
tional similarity with the book, define:

Gn =P (1@?<Xn Si < O)
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and the corresponding generating function ¢(s) as

5>:1+an%~

Then from equation (7.22) of Theorem 4, Chapter 12, Vol. 2 of [16] we have:
s
logg(s) = =P (S, <0) = qls) =, B.3
ogq(s 25 = [(s) qs) = e (B.3)

Now we need a lower bound on g,,. Note that from the property of the generating
function we have:

gn = nlg™(0).
On the other hand from Faa di Bruno’s formula:

q"(0)

dn
— & ()
ds™ €

s=0

| m
) n n €2 ’
N {e Z mq!llm2my121m2 ..., Inlmn i (f ’ (s)) ] (
() mi
_ f(s) n f (8)
- [ ZmllmQ IHJ 1( 4!
s=0

n! N FOO)N\™
:Zm“( ~ ) (B.4)

J!
where the sum runs over all the sequences {m;}’/_; such that:

n
E m; =n.
i=1

Note that f(j)(O) is non-negative for j. Hence using only one sequence with

my =---=mp_1 =0 and m, = 1, equation (B.4) can lower bounded as:
dTL
ef () > () () .
& 20

On the from the expression of f(s) from equation (B.3) it is immediate that:
£ (0) = niP (S, <0)
Combining our findings we have:

nlgn = ¢ (0) = Lot

zf(’”( 0)

This immediately implies g, > P (S, > 0) /n which completes our proof. O
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B.3. Proof of Lemma A.2

From the definition of distribution of £ we have:

1
= 4+t
Fe(t) =2 t>
D=1 1=
and 1
Fe(—t)=1—-Fe(t) = —.
(1) =1~ Felt) = 5
Hence it is immediate that for any ty; > 0:
———— <su t’YF(t)—suL<1 (B.5)
2141ty7) e TSR0 T2 '
For any fixed k > 1:
P(M>k)=> P(M=j)
Jj=k
=Y P(Si>8V0<i<j—1,8>8Vi>j+1)
>k
:P(Sl>O7S2>O,.“)Z]P<lr£ia§}<j5i<0)
jzk
=p Z]P’(mlaé(ij<O> p*=P(S1>0,5>0,...)]
ji>k
1
>p*y =P(S;<0) (B.6)
>k

where the last inequality uses Lemma A.1. From the symmetry of the distribu-
tion of £ we have:

J J
P(S; <0)=P (ij < —ju> =P (ij > Jﬂ) :
i=1 i=1
Set a; = j'/7. Define the event A; as:

Ai={&>jp+ (G —Day, & € [—a;,ju) V1<1#i<j}

Clearly {A;}'s are disjoint events and
j .
P (Z & > jM) >P (nglAi)
i=1
J
> P(A;)
i=1
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=JF (ju+ (j — Day) (Fl—a;, jp))’ " |
GF (Gu+ (j — Day) (1 - F(ay) — F(jw)’ ™" (B.7)

Next note that, ju+ (j — 1)a; > p for all j > 1. Therefore from equation (B.5)
we have for all j > 1:

F it (G- 1)) > U2 ;(fﬁﬂl_)f;) :

which further implies:
Jx Pt = a) 2 et
214 p=) (ju+ (5 — Day)
1 J
2L+ 177) (ju+ (G = 1)51/=)"
1 J
214 p77) jy+1 (j—l/m + (1 - %))7
! 1 1
S 2+ ) (j—l/wﬂ+ (1 — %))W

1 1 1 cy

G720+ pm) (1) g

>

Next observe that (ju)Y > j for all j > 1if g > 1 or for all j > p=/O0—1 if
1 < 1. Using this in equation (B.24) we have for all j > 1V [p=/0=1]:

; (Z 6> ju) > (1= Flay) - FGm) |

> a x (11— 1 — L "
A 21+af) 201+ (p)™)

=—_ (B.8)
Using this in equation (B.23) we obtain:

P(M =K =5 Y P (S <0
j>k
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o3 (S )

i>k i=1

> cire2 X pt X ij(wl)
Jjzk
o0

> cicg X p* x/ 2~ Ot gy
k

> * —_—
Z Ci1C2 X p ka“f

This completes the proof of lower bound.
B.J4. Proof of Lemma A.3

We have, by symmetry:
P(|Mis| > k) =P (Mys > k) + P (Mg < —k) = 2P (M5 > k) .
Hence, by virtue of Lemma A.2, all we need to show is:
P(Mys = k) = p"P(Mos = k).

Towards that end:
P(Mtszk:):IP(SKSSiVOSiSk—l,SkSSiViZk+1,SkSiI;fiSj)
Ji>
=P<SK<SiVO<i<k—1,Sk<iI>1f15j>]P’(SZ->0Vi>1)
Jz
p*]P’(SKSSiVOSigk1,Sk§ir>1f1S_j>
J>
2p*]P><SKSSiVOSiSk—l,SkSinfS_j|infS_j>0>
j=1 j=1
xIP(inf S_j >0>
i>1
:p*P<II;£SJ>0)P(SKSSZVO§Z§]€—1)
Ji>

=P <1r>1f1 S_j > O> P(M,s = k)
=p'P(Mos = k) .
where the last equality follows from the fact:
P(Mys=k)=p'P(Sxk <S; VO<i<k-—1)

This completes the proof.
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B.5. Proof of Lemma A.4

Using same line of arguments as in Corollary 1:

P(Mys.cpp = )

=Y P (Mysopp = | Ni(z) = k) P(Ny(2) = k)

k=0

= B (M = PN (@) = B)
k=0

>p* Z]P’ )P(N1(z) = k)

=P (MOS,CPP - LL’)

Hence to establish Corollary A.4, all we need show:

€o _
P (M. > "
Woscrr =) 2 5"

for all large =, where M is the argmin of one sided compound Poisson process,
namely the minimizer of the following:

Ny (t)
Xi(t)=> X;, teR".

=1

Now we have:

P(Mos,CPP>x ZP osCPP>$‘N1( )—k)IP(Nl(x):k)

—ZP(argmlnS >k)1P(N1( ) =k)

i>0

>0

Z P (argmmS > k> P (N (z) = k)

> Co Z kTP (N1(.13) = ki)

k=ko
& —A(ac)A
=¢ Z T
k= ko

2 ‘0 Z I( k:+1)(k+2)...(k+7)
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el 7A(z)A k
COA(x)i’Y Z £ k' (1:)

k=ko+a
= co\(z) 7P (N () > ko + «)
Co _ Co _
> —Az2) "= ————27"

where the last inequality is valid as long as med (N1(X)) > ko + . From [2], we
know as Ny(z) ~ Poisson(zfx(dy)), we have med (N1(z)) > xfx(dy) — log2.
Hence the inequality is valid as long as « > (kg + v +1og2)/fx (do). From This
completes the proof.

B.6. Proof of Lemma A.5

Proof. As per our model description, all the parallel change point processes are
i.i.d. Therefore n(d; — do ;) has same distribution across 1 < ¢ < m. Therefore,

we henceforth define F, to be the distribution of n(d — do) and drop i from
subscript. From the definition of change point estimator, we have:

5 . R 1
n(d — dp) = mid argmin, Z <§i + 2) {ﬂdo<xi§do+%}

=1

n
. . 1
+ mid argmin, Z <—§i + 5) {1do+%<Xi§do}
N1 (1) Nn,—(8)
= mid argmin, Z (& ) Li>o + Z ( ) Lico-

i=1
Here the count processes N, 4 (t) and N,, () are defined as follows: For ¢ > 0,
Np 1 (t) Z]ld0<X <do+t NBln(n Fx (d0+ >—Fx(t))
=0
and for ¢ < 0,
Np,—(t) = Zo]ldﬁ_%éxisdo ~ Bin <n,FX(t) — Fx (do 4 E)) )

These processes can be though as finite sample approximation of Compound
Poisson Process, where we have approximated the Poisson random variables by
Binomial random variables. It is immediate that:

N, 4+ (t) == Pois (tf(do))
No_(t) == Pois (—tf(do)) .
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We name the process as compound Binomial process and henceforth denote by
CBP:

N'!L,Jr(t)

N, (1)
CBP(t) = Z (éi + ;) Li>0 + Z (&‘ + ;) Li<o (B.9)
i=1

i=1

Hence we work with the smallest argmin instead of mid-argmin just for some
technical simplicity, but all of the following analysis is valid for mid-argmin
also. As will be evident later, the thickness of the tail of the distribution Fj,
(the distribution of n(d — dy)) is closely related to the tail of the minimizer of a
random walk with finitely many steps. Therefore, we start by establishing a lower
bound on the tail of a n-step random walk {S;}7, with the usual convention

So = 0 and step distribution X; 4 & +1/2. Let Z,, be the minimizer of this
random walk. The random variable Z,, is supported on {0,1,...,n}. Then for
any 0 < k<n-1:

P(Z, > k)

I
g
=
N

I
=

= > P(Si>SV0<i<j—1,8>8Vj+1<i<n)
j=k+1
n

= Y P(Si<OVI<i<jP(S;>0V1<i<n—j)
j=k+1

n
>P(S;, >0V1i<i< P max S; <0
> B ( ) 3 7 s <o)

P<max_5j<0) [p*:[?’( min Si>0>}
1 1<i<y 1<i<o0o

P(5; <0) (B.10)

ko:

Using the above bound in equation (B.10) we conclude:

1
P(Zy>k)>p" > =P(S;<0)
Jj=k+1

% - 10102
sy Y Lao

-
j=k+1 JJ
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- CICQP § ’Y+1

Jj= k+1

n+1
> creap” / z~0*Y dg [Riemann integral lower bound]
k41

_creep” 1 _ 1
= [(k+1)’¥ CESE (B.11)

Now we go back to the random variable of interest n(dfdo). Let X ;) denotes the
ith order statistics of {X;}i<p. If X)) < do < X(i41), then from the definition

of n(cZ — dp), we have a random walk with ¢ steps on the negative axis and a
random walk with n — i steps on the positive axis. Therefore the number of
steps of random walk on either side of origin is equal to the number of X/s on
the corresponding side of dy. Denote by R,, (and respectively L,,), the number
of X!s greater than dy (respectively less than dy). Hence R,, ~ Bin(n, Fx(do))
and L, ~ Bin(n, Fix(dy)) with R,, + L, = n. Then we have for any = > 0:

P(n((i—do)>x)
—ZZ{ ( (d—do) > x| Ry =1, Npy () = k)

r=0 k=0
(N, +(2) = k| Ry = r)B(R, = 1)}

Given R,, = r, we have a two sided random walk, with r steps on the positive
real line n— r steps on the negative real line. Therefore, the event n(d—dg) > =
given N,, +(z) = k and R,, = r is equivalent to the event that in a two sided
random walks with r steps on the right and n — r steps on the left, the argmin
is on the right and it happens after k steps. More precisely, if we denote by
S0 =0,51,...,S5, to be the random walk on the right side with step distribution
(§+1/2) and Sy = 0,51,...,5/,_, to be random walk on the left with step
distribution (—¢ + 1/2), then the above event corresponds that this two sided
random walk is minimized at S; for some k& + 1 < j < r. Therefore we write:

]P’(n d—d0)>x)

- [IP’ (n(ci— do) > x| Ry =1, Ny i (2) = k) (B.12)
r=0 k=0
XP(Np+(z) =k | Ry =r)P(R, =1)]
= [P (argmin of twosided RW > k) (B.13)
r=0 k=0
XP(Ny, () =k | R, =r)P(R, =71)] (B.14)

Next, we obtain a lower bound on the tail of the minimizer of the two sided
random walk. Note that, we have already established a lower bound on the
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tail of the minimizer of a one sided random walk in equation (B.11), which we
exploit here to get a lower bound on the tail of the minimizer of this two-sided
incarnation:

P (argmin twosided RW > k)

Z P (argmin twosided RW = j)
j=k+1

=y P(Sj<SO,...,Sj<Sj_1,Sj<Sj+1,.. S; <S8, 8; < min S’)

. 1<i<n—r
j=k+1
r

= > P<sj<so, ,S; < 81,5, < min S>P(51>0,...,srj>0)

. 1<i<n—r
Jj=k+1

> Y P<sj<so,...,sj<sj1,s < min S| min S>O>

. 1<i<n—r 1<i<n—r
j=k+1

P( min S, >0>]P’(Sl>0,...,57_j>0)

1<i<n—r

> p* Zp<sj<so,.. ,S; < Sj-1,8; < min S/| min s'>0>

. 1<i<n—r 1<i<n—r
j=k+1

]P)(Sl >0,...,Sr_j >O)

=p* Z (S; < Sp,...,8; < S;_1)P(8; >0,...,5,_;>0)
j=k+1

= p*P (argmin one-sided RW with length r > k)

S ciea(p*)? [( 1 1

5 S - o 1)7] [From equation (B.11)].

For the rest of the calculation we assume v (the number of finite moments of
the error distribution £) is an integer, as all our calculation is valid by replacing
v by |v]. Define a success probability p, , as:

Fx (do + £ do) Fx (do)
1- FX(dO) '

T
P n—P(XE (do-‘rg,do) |X>d0) =
Therefore it is immediate that:
Nn,Jr(x) | Rn =r ~ Bin (Tapz,n) .

As per our assumption F'x has continuous density fx with fx(do) > 0. There-
fore, there exists d; > 0 such that fx(¢) > fx(do)/2 for |t — do| < 1. Hence,
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for any 0 < x < ndy, we have:

T fx(do)
Pon 2 X 5 (B.15)

1— Fx(do)) "

On the other, let fiax be the upper bound on fx on the entire R. Then, again
from the mean value theorem, we have:

x fmax
D <X B.1
=y % 2(1 — Fx(do)) ( 6)

Therefore combining equations (B.15) and (B.16), we have:

fX(dO) » fmax
2(1 — Fx(do)) —omn 2(1 - Fx(do)) ’

We will use the above relations in our rest of the calculation. Going back to
equation (B.13) we have:

T <Zx (B.17)
n n

P (n(d —dp) > x)

= [P (argmin twosided RW > k)

r=1 k=0
XB(N, 1 (z) = & | R = r)B(Ry = 7))
= Z Z [P (argmin twosided RW > k)
r=ko k=ko
XP(N, 4 (2) = | Ry = 1)P(Ry = 1))
>0162(p*)2 L. {[ 1 1
Z T L2 Gr ) Grp
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- anf [ZZ s () = (R, = )

r=ko k=ko

Y= _:UWIP(Rn - ﬂ] (B.18)

where the last inequality is obtained by replacing 1 — p, , by its upper bound
1. The inner sum of the above equation can be analyzed as follows:

- 1 (7"> k r—k
pw,n(l _p$7n)
2w
1 7!

(k+ 1) ki(r /.c)lpm(lfpzv")rfk

1 rl

GG 2 s R mien (P

Bl =
i S i 5
o T
(=) o

Prn (r+7)! e
SR G (e o ey D SR e ot O

Pen :
- ’ P(B y Mr,n Zk .
DG +2). () P pen) 2 Fo+7)

Putting this back into equation (B.18) we obtain:

P (n(cz —dp) > x)

6102 Bln r+77pz n) > ko +7)
> - E P Rn =
- ~ [ ~ r+D(r+2)...(r+7) ( )
—pwn R,=7) (B.19)

Now from the properties of the inverse moments of the binomial distribution
(see e.g. [11]) we have:

~ 1
Z (r+ 1)‘YP(R

r=1

=7r) < C (nFx(do))”' [Recall R, ~ Bin(n, Fx(do))].
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On the other hand we have for all 7 > nFx(dp):

fx(do)

(1 +Y)Pan = (nFx(do) +7) X % X [Equation (B.15)]

(
> (Fx(do)+%> XIX%

- fx (do)
> Fx(d —_— k
> Fx(do) x x x 2(1— Fx(dy)) >+ Ko
for all x > 2(y+ko)/ fx(do). Now we know that the median of Bin(n,p) is [np|
r [np]. For simplicity, we will use the bound here P(Bin(n,p) > np) > 1/2 as
it will be valid simply replacing np by |np| and this will not alter any of our
subsequent analysis. Therefore we have:

n

P(BIH(T+Vapx,n) > 7+k0)
Z (r+1)(r+2)...(r+~)

P(R, =T)

T:k?()
n . >
- Z - ((Ijli(lﬂ)'("rﬁl;f)”) ZTT:_ ;CO)P(RTL =7)
r=nF(do) o v
- 1
Tz%(j)?(r—kl)(r—i—@...(r—&—y) (B =)

1 n
2 m A +2). () T_%:(%)P(Rn =)

1
> .
T 4n+1)(n+2)...(n+7)
Going back to equation (B.19) we have:
P (n(czf do) > x)

ciea(p*)? —

n

3 P (Bin(r +v,pzn) > )

P(R, =)

T & D42 ()
0 Y ﬁP(Rn = 7“)1
clcg(p*)Q — 1 Y CV(FW(dO))irY
=Ty P {4<n+1><n+2>...<n+v> Pon ™ ]
( n’

Vv

ac ) (1?;”;2&0))7 {4(n+1)(n+2)-~-(”+7)
T

Y

o i Lt
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. (1 f)%i“(?’ézo))_v [4(;) . ( - f;;%o))w c(Ffj))—v]

fX,max 1 62fX,max

=T 2”””(1Fx<do>)_7 [4(27)_<C(1FX(d0))2)7] ¥ < Oam)]
(

*) 2 -
. 1
> c1c2(p ) % ( fX7mdx )) « < =7

5 1— Fy(do 27+3
*) 2 -
:Clc2(pr) > fX,max XI_’Y.
y27+3 1 — Fx(do)

where the last inequality is valid for small enough ds, i.e. we choose do which
satisfies:

1 _ 52fX,max 7 > 1
27+2 C(l—Fx(dp))?) — 293~
Therefore we have established that for any 2v/fx(dp) < x < (§1 A d2)n:

7 0102(]3*)2 fX,max 7 —
P(n(d—do) >x) S =g X (1_Fx(d0) Xz (B.20)

The calculation for the negative x is similar. As introduced before, L,, denotes
the number of X!s on the left of dy and L, ~ Bin(n, F(dy)). Given L, = I,
define Sy = 0,57,...,5] to be random walk on the left of origin and Sy =
0,51,S52,...,5,—; on the right of origin. Given L,, =, N,, _(x) = k’, the event
n(d —dp) < —u is equivalent to the event that in a two sided random walk with
[ steps on the left and n — [ steps on the right, the minima occurs on the left
and it occurs at one of the steps among {SJ,, |, 5}/ 15, ..., 5] }. Using the similar
logic as above we obtain for any 2v/fx(dp) < z < (§1 A d2)n:

. 6102(p*)2 fX,rnax - -
P (n(d —do) < _93) =z 72743 % <1 — Fx(do) e

Finally, from equation (B.20) and (B.21) we conclude for any 2v/fx(dp) < x <
((51 A\ (52)n:

7 0102(10*)2 fX max 7 _
_ > : v
P(‘n(d do)‘ >x) B R X (1—Fx(d0) X

(B.21)

This completes the proof. O

B.7. Proof of Lemma A.6

We use the same notations as used in the proof of Lemma A.5. As &;’s are
bounded by b with mean p > 0, by applying Hoeffding’s inequality, we have for
any j € N:
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with ¢ = pu2/4b%. As in Lemma A.5, we start with establishing an upper bound
on the tail on the minimizer of random walk. Let {S;};=0.... » denotes a n-step

random walk and let Z,, denotes its minimizer supported on {0,1,...,n}. We
then have:
P(Z, > k) Z P(Z
j=k+1

= Z P(Sj<0,...,Sj<Sj,1,Sj<Sj+1,...,Sj<Sn)
j=kt1

Z P(Sj<0)

j=k+1

Y PG <—n)

j*k+1

IN

c(k+1)

g efcj—ie .
1—e¢

j=k+1
Going back to distribution of n(d — dy), as in the proof of Lemma A.5 we have:
P ( 1 — dy) > m)

T

n(
zn: {]P) (n(&_ do) >z | Ry =7, Ny - (2) = k)
=0 k=0

<3

XP(Np 4 (z) =k | R, = 7r)P(R, =7)]

<

[P (argmin twosided RW >k | R, =7, N, y(z) =k)

I
NE

ﬁ
Il
o
=~
I
<

XP(Ny, 1 (z) =k | Ry = r)P(Rn = 1)]

3

[P (argmin twosided RW >k | R, =)

[
NE

%
Il
=
~
Il
=

XP(Np +(2) =k | Ry =7)P(R, =7)] (B.22)
Upper bounding the argmin of two-sided random walk is relatively easier:
P (argmin twosided RW >k | R, =)
= Z P (argmin twosided RW =j | R, =1)
J=k+1

= Z <S < mln Sl,S < mln Sl,S < min S>

+1<i< 1<i<n—r
j—k+1 J

efc(k:Jrl)

<Z S<0 1—46_('

j=k+1
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Using this bound in equation (B.22) we obtain for any 0 < x < nd; (where d;
is same as defined in the proof of Lemma A.5, i.e. we choose §; > 0 such that
fx(t) > fx(do)/2 for all |t — do| < 61):

P (n(az —dp) > x)

= Z Z [P (argmin twosided RW >k | R, =)

r=0 k=0
XP(Np4(2) =k | Ry = r)P(Ry = 7)]
oI e—elk+D)
<IN T P(Nas (@) = k| Ry = 1)P(Ry =)
r=0 k=0
e v —ck - o .
< 1_e-c ZZ@ P(Np,1(z) =k | Ry =7)P(R, =71)
r=0 k=0
e — o
= ZO (1= pns +Duwe ®) P(R, =7)
e ¢ _ _ .,
i (1= F(do) + F(do) (1 — pw + Prce )"
e ¢ _ Cenn
T 1 (1= F(do)pn,=(1 —e))
< (1 e
I—e 2n
< ch eizw(liefc) .
T 1l—-ec

The calculation for ]P’(n(cf —dy) < —z) for > 0 is similar and hence skipped
for brevity. Therefore we obtain for 0 < |z| < ndy:

2e~¢

—x fXédO)(l_efc) ]
1—e"c¢

P(’n(d—do)‘ >:1:) < e

This completes the proof.

B.8. Proof of Proposition A.7

From proposition 5 of [17] we have:

iff(Xz‘) ]
i=1 F

where |77(1)| > }77(2)‘ > ... |n(n)| > |77(n+1)| = 0 are the decreasing order statis-
tics of {|&; — &;|};_, where {¢/}, ., are i.i.d copy of {§;},,<,,- Hence we have:

Zaﬂxz»)

k

> ef(Xi)

i=1

n

> (| = nwsn ) E

k=1

E <E

f

E

F
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o )
<E > (Inw] = [noan ) E D eif(X0) ]
Lk=1 =1 F
<E D (x| = Inwsn]) (on(k) +b2)
Lk=1

+ bl |0y ]

[n0x) |
=F / ) dt

M(k+1) |

SE/O on (i Imi] = }]) dt}mm[max & - 5;@

IN

/0 ©n (ZPO& &l > t)) + 2b,E Lrgaé(n |§l|} [By Jensen’s inequality]

i=1

[

/OOo ©n (2;P(|§i| > t/2)> + 2b,E {max |§Z|]
2 [ e (2?1@(@ >t>> 20, | max [
4/000% <§:P(|§i| > t)) +2b,E [max I@@

where the last inequality follows from the fact that ¢, (0) = 0 and ¢,, concave
which leads to ¢, (2z) < 2¢,(x).

IN

NE

® (6] > 1/2) + (€] > t/2>>> 2b,E [max a@

1

IN

B.9. Generalization of Theorem 2.4

In this subsection we prove a generalized version of Theorem 2.4 under the
following tail assumption on the error distribution:

P =t) ~t™7
as mentioned in Remark 2.5. More precisely, we assume the following:

L. sup;e(o.00) P (€] =2 1) < C,
2. SUPyehy,00) P ([E] = 1) = Cr(to) > 0 for all tg > 0 and Cr(ty) | 0 as
tod 0

As before, we are also assuming £ is symmetric. The proof of theorem is similar
to Theorem 2.4. We will highlight the main differences here. Recall that the
proof of Theorem 2.4 is based on four lemmas: Lemma A.1 - Lemma A.4. The
proof of Lemma A.1 will not change, as it does not depend on the tail of the
distribution of £. The proof of Lemma A.2 will be changed: The new version of
that Lemma will be following;:
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Lemma B.1. Suppose &1,&s, ... i.4.d. random variables with distribution sym-
metric around origin and satisfies the above mentioned tail conditions for some
exponent . Define X; = & + p for some > 0 and a random walk based on
X;’s, i.e Sp =1 X;. Suppose M denotes the minimizer of the random walk
on ZT. Then we have:

Y kY

P(M>k)>

for all k > ko := 1V [p=7/0=D] Vv [3Cy], where:

1.pr=P(S; >0V ieN)=P(M =0),
2. ¢ = —=5~

2c_u)ff*1,

3. ¢y = infy>r30,7 (1— 2%

Proof. For any fixed k > 1 we have:

P(M>k)=)Y P(M=j)

Jj>k
=3 P(S;>8V0<i<j—1,8>8Vi>j+1)
Jj>k
:P(Sl >O,SQ>O,)ZP(1IE?§{];5’1<O)
j>k
=p ZP(lrg?ngj<0> [p* =P (S1>0,5 >0,...)]
Jj>k
1
>p* Y ~P(S;<0) (B.23)
Jj>k

where the last inequality uses Lemma A.1. From the symmetry of the distribu-
tion of £ we have:

J J
P(S; <0)=P (ij < ju) =P (ij >ju> :
i1 i=1
Set a; = j'/7. Define the event A; as:

A ={&>ip+ (G —Daj, & € [—aj,jp) V1 <I1#i<j}

Clearly {A;}'s are disjoint events and
j '
P (Z & > jM) >P (nglAi)
i=1
J
=> P(A)
i=1
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= jF (ju+ (j — Day) (F[—az, ju))’ |
= jF (ju+ (j — Dag) (1 - Fla;) - FGp))’ ™" (B.24)

Next note that, ju+ (j — 1)a; > p for all j > 1. Therefore from equation (B.5)
we have for all j > 1:

F(jp+ (G —Dag) = Cr(p) Gu+ (G —1)ag) 7,
which further implies:

Jx F(ju+ (5 —1ag) > Cr(p) Gu+ (jj— L)a;)”
J

Jp+ (G — 1))

= CL(M)(

i j
— CL(M)j7+1 (j*l/er (1 - %))w
Cr(p) !

PRl <j71/wu+(17%>>7
Cr(p) 1 c1

AN PES VIR EE

Next observe that (ju)Y > j for all j > 1if g > 1 or for all j > p=7/(=1 if
< 1. Using this in equation (B.24) we have for all j > 1V [p=/0=D7v [3Cy]:

j ]
. c _ _ i
P (Z & > m) > = [(1=Fla) = F(Gw)’ ]
i=1 )
Cc1 [ _ . _ —
> = (1= Cu (a7 + G ™))
a | 1 1 ))j‘l
>—=|{1=-Cy | =+~
J ( v (J (Gp)
C1 2OU:|j_1
=l ]
rx—1
> inf (1 - @)
77 z>[3Cy] T
. ac
=5 (B.25)

Using this in equation (B.23) we obtain:

POM=F) =5 Y P (S <0
ji=k
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Y

Jjzk

J

1
J

1=

& > Jn
1

> cicg X p* X ij(wl)

Jizk

oo
> crea X ptox / 2~ Ot gy
k

> cico Xp* X

kY

This completes the proof of lower bound.
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The proofs of Lemma A.3, Lemma A.4 as well as the rest of the argument
remain unchanged. This completes the proof of the generalized version of The-

orem 2.4.

Appendix C: More simulations

In this section we present elaborate simulation results for various values of
k € {0.1,0.5,1,2,5,10} to complement the simulation in Section 4 of main
paper, where simulations for ¢; criterion (k = 0) and ¢y criterion (k = co) are
presented. Here also we conducted experiments for four different signal levels
(n € {0.1,0.5,1,2}).

TABLE 9
Quantiles of asymptotic distribution with u =1,k = 0.1

Distributions

90%

95%

97.50%

99%

99.50%

T3

Ty

Ts

Ts

Tho

Tis
Normal

8.3536987880812

10.4788884372948
11.6978692249975
12.4673379750485
14.0000855492778
14.6876914452795
15.9991878710632

13.5927682886652
16.9486681760718
18.8922281852943
20.1972893311096
22.7095710062678
23.8852566324027
26.1190617162937

19.3609171467853
24.1027899555334
26.8795756073259
28.8124291608022
32.5473987595816
34.0043421638412
37.3726341880332

27.6663592062195
34.6517407531914
38.5230842513588
41.3783772351445
46.5409929468191
48.6283574347637
53.5118731588664

34.5579382045799
43.0321781340036
48.094967379471

51.6753216947574
58.0397031493322
60.4413437466999
66.5764957196666

TABLE 10
Quantiles of asymptotic distribution with up =1,k = 0.5

Distributions

90%

95%

97.50%

99%

99.50%

Ts

Ty

Ts

Ts

Tio

Ti5
Normal

8.32493407718205
10.3475765957395
11.4586343013648
12.1908646105817
13.5602636080797
14.239221889277

15.403873209345

13.5405276438179
16.6841313019627
18.5353104327393
19.721295780556

21.9387825182329
23.0289587553665
24.8700967052205

19.3047074781908
23.7966698462179
26.3517929459007
28.0266082386693
31.2432135813082
32.8163191650782
35.3620562213101

27.5801370551298
34.0389358097088
37.7443111113224
40.127409557103

44.5313945212685
46.9208960085874
50.7334136469591

34.3754080746644
42.2652055393164
46.7821424347838
49.8162604852832
55.5778874062068
58.2658889881086
63.0498352682136
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TABLE 11
Quantiles of asymptotic distribution with u =1,k =1
Distributions  90% 95% 97.50% 99% 99.50%
K 8.62036825564386  14.0081909142818  19.9541673549796  28.5681359225452  35.524172881301
Ty 10.2990926166834  16.6203209925997  23.5039309935524  33.7036724352976  41.9678567620591
Ts 11.3276893731616  18.2469755527696  25.9557541469329  36.9843710045347  45.7497985547797
Ts 11.9135214024096  19.1984271121553  27.2774369123353  39.0181625769645  48.3123893082825
Tho 12.9998145790674  20.9518202195201  29.8029620277354  42.5882911278081  52.8099356616132
Tis 13.5241418961661  21.7777549923007  30.9538813220154  44.1251345928093  54.6843626784368
Normal 14.4150444145811  23.242553834748 33.0062982814038  47.335611181757 58.8616621356656
TABLE 12
Quantiles of asymptotic distribution with u =1,k =2
Distributions  90% 95% 97.50% 99% 99.50%
e 9.67668771770413  15.965777602917 22.9582079555854  32.8033850250549  40.944891675974
Ty 11.2541621802798  18.2141332407493  25.9528861199238  37.2196226574348  46.1626939615799
Ts 11.9529499925983  19.3573628081287  27.5154521525252  39.3285576062721  48.9183687173307
Ts 12.3009374477742  19.8598566733151  28.223223525972 40.3287408821538  49.9858703570862
Tho 13.013835672381 20.9861287337384  29.8783671274062  42.3566419472444  52.3859467595871
Tis 13.2017541203442  21.2354922665999  30.1620296088269  43.1616439990877  53.4856500437048
Normal 13.6328704116346  21.8011383314066  30.9358377012567  44.0613618414608  54.5118631397754
TABLE 13
Quantiles of asymptotic distribution with p =1,k =15
Distributions  90% 95% 97.50% 99% 99.50%
T3 11.2272610783194  18.9816731937737  27.9037725374461  40.8689145728618  51.2147878961961
Ty 12.4095320315674  20.4980446391945  29.6237376742403  42.7732713429297  53.338109787115
Ts 12.8480963235841  21.0545979913169  30.2147632457062  43.4445264556501  53.6409869173766
Ts 13.0869935601188  21.2716762920823  30.281581405516 43.2958191460236  53.9145395675979
Tho 13.3285370910218  21.5350755916879  30.6627492515443  43.6970533424286  54.455095165621
Tis 13.4417138370947  21.6328579001887  30.7494906092105  43.724874562948 54.2177605737277
Normal 13.5544750188985  21.7470304441407  30.7819392318713  43.6843110525953  53.8235614179449
TABLE 14
Quantiles of asymptotic distribution with p =1,k = 10
Distributions  90% 95% 97.50% 99% 99.50%
T3 11.6576668557376  20.0345314896088  29.7720008003837  44.4351920765485  55.8367073088179
Ts 12.6160178306568  20.869684341797 30.2766780259759  44.2424316961008  55.4957320207511
Ts 12.8851286373215  21.1813979715255  30.4191220480701  43.7844640867915  54.4545413832026
T 13.0882957766607  21.3174888193934  30.5260570501067  43.8159728436371  54.3507431127391
Tho 13.3530536086038  21.5328919607922  30.6639273685561  43.8038383653262  54.5911464163574
Tis 13.4434745691714  21.6310161127235  30.7537719788635  43.7295501273868  54.2240963710686
Normal 13.5544750188985  21.7470304441407  30.7819392318713  43.6843110525953  53.8235614179449
TABLE 15
Quantiles of asymptotic distribution with p = 0.5,k = 0.1
Distributions  90% 95% 97.50% 99% 99.50%
T3 28.532672412875 46.8706471694321  67.6041756789722  97.4930857962577  121.961700301769
Ty 38.2819193124782  62.552045362741 89.7837169542353  129.145932269432  161.477146552752
Ts 44.5091949682024  72.6717097294959  104.036589987155  149.905989438607  187.409833195342
Te 48.0901574047503  78.557305525532 112.843800505048  162.44555861772 201.816166904598
Tho 55.8897061168498  91.0822988352974  130.395778088274  187.299604893212  233.505708387893
Tis 59.306272284557 96.9668096977247  138.764385485374  198.429619389818  248.260823570918
Normal 65.8760109758601  107.818484039077  154.899858263991  223.055122634049  277.208421216919
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TABLE 16
Quantiles of asymptotic distribution with p = 0.5,k = 0.5
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Distributions  90% 95% 97.50% 99% 99.50%
T3 27.3750759298099  44.7722420183833  64.4808160016137  93.4515684758776  116.875208288023
Ty 35.9675925299576  58.4302111069793  83.9852525535933  120.403426488691  149.756837388405
Ts 41.1319246413426  67.0824127387807  95.9937750691976  138.233634035094  172.249968046942
Ts 44.5722648865697  72.4761304495912  103.806356433929  148.70427114392  185.244152286579
Tho 50.9981570910429  82.917143865562 118.96541900344 170.15068173747 212.360238214554
Tis 54.0748000455022  88.2001830220234  126.317788452529  181.187230372619  224.580722486573
Normal 59.6053563347309  97.0407453665941  139.468447475864  201.296446721351  250.769440088992
TABLE 17
Quantiles of asymptotic distribution with up = 0.5,k =1
Distributions  90% 95% 97.50% 99% 99.50%
T3 28.9535753413177  47.2595220674185  67.9211327501115  97.6801405963068  122.198394032872
Ty 35.7791257830564  58.2347028499178  83.8219937346199  119.892190456548  149.39017387062
Ts 39.8634886345531  64.9443023944148  93.0527076134776  133.266607169204  165.659528999383
T 42.310755074163 68.9720353361756  98.6544306915552  141.491380452853  176.840137099276
Tio 47.110656565438 76.5991835723628  109.399889920527  156.7377007216 195.203793533811
Tis 49.4154656052842  80.6729964074326  115.043039837822  164.671507525883  204.419235348596
Normal 53.414978588033 86.9810421233553  124.638214842517  178.620948305988  222.563969726123
TABLE 18
Quantiles of asymptotic distribution with p = 0.5,k =2
Distributions  90% 95% 97.50% 99% 99.50%
T3 34.3788217466515  56.2891673228673  81.0009868993164  117.25518597126 146.481873302119
Ty 40.0528201827162  65.7183707599371  94.2308521020519  135.271780061382  167.889272979153
Ts 42.8936146374266  70.09292397618 100.361912179339  143.917734529639  179.088695832393
Ts 44.5217857123843  72.4655849071026  103.753547851116  148.785176765578  184.378255284364
Tho 47.1852585876096  76.7860842088517  109.796238145931  156.734067877825  194.152986950608
Tis 47.9408520452537  78.0650540743987  111.257576889225  159.010498171202  197.846312495383
Normal 49.5079582470008  80.5396888348225  115.188154986851  164.835820260727  204.931241705677
TABLE 19
Quantiles of asymptotic distribution with p = 0.5,k =5
Distributions  90% 95% 97.50% 99% 99.50%
e 42.1220330307212  69.9598361767187  100.819915710102  146.102720595447  182.518546383375
Ty 45.9610219900353  75.4575607721563  108.831713066518  156.963383423823  195.394653994033
Ts 47.5979403918097  77.744069603015 111.308095761715  159.83139664115 198.68635726911
Ts 48.0353440259296  78.4929265937533  112.706744708086  161.978436676216  201.50718406659
Tho 48.7341339930379  79.2930128086947  113.404427574125  163.474496322987  202.546150712566
Tis 48.8095450833039  79.3327055867973  113.344432217353  162.621338606352  201.969247675431
Normal 48.8633478609145  79.3772893502566  113.306088433024  162.350810999429  202.504161072626
TABLE 20
Quantiles of asymptotic distribution with p = 0.5,k = 10
Distributions  90% 95% 97.50% 99% 99.50%
T3 45.224623872767 75.8003731357883  110.098123597561  158.793083024044  199.590840364891
T 47.2992606048524  77.9991235132896  112.372671292715  162.096966234746  203.457561666718
Ts 48.1957562353362  78.6848709763304  112.819291364713  162.453880135871  203.077921030432
Te 48.3308500398421  78.9263327959001  113.55342323937 162.65488272043 203.19345674427
Tio 48.6314926249916  79.4221080617119  113.708496414293  163.530535124679  202.618434071806
Tis 48.7490404141274  79.2849943678726  113.438820919391  163.023810987999  202.407042473259
Normal 48.8633478609145  79.3772893502566  113.306088433024  162.350810999429  202.504161072626
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TABLE 21
Quantiles of asymptotic distribution with p = 0.1,k = 0.1
Distributions  90% 95% 97.50% 99% 99.50%
K 691.585913275318  1116.80671170884  1551.34731818157  2060.33124492946  2297.91684597076
Ty 913.490253643434  1428.32138237031  1888.58345590786  2287.69275540892  2421.72559976642
Ts 1033.08671029929  1573.52184136739  2018.10390732023  2353.63360925043  2455.70422474729
Ts 1100.461189421 1655.67567035186  2082.16598588138  2379.49750165915  2467.72884756757
Tho 1226.93056184611  1792.60002082038  2184.5372973677 2418.6516997812 2491.82835831576
Tis 1272.06492206848  1832.83196545174  2212.64945013956  2427.91992104435  2497.35717079279
Normal 1361.47359182986  1923.19294206175  2269.04708309755  2446.66140280472  2508.42377451608
TABLE 22
Quantiles of asymptotic distribution with u = 0.1,k = 0.5
Distributions  90% 95% 97.50% 99% 99.50%
e 623.417244213784  1013.2800943545 1422.65670625147  1925.48034984088  2212.23204432912
Ty 817.27242623072 1292.72485278913  1741.37019765842  2196.23140048926  2378.24526951747
Ts 924.151195765237  1441.31438841089  1898.02088348303  2293.00276856422  2427.15444034888
Ts 988.749508377825  1515.6766410492 1966.56086889793  2332.38619298946  2442.80578417274
Tho 1098.63668719227  1649.78210170229  2082.25266840223  2381.96067963126  2471.48125740886
Tis 1151.17717379716  1709.43382876765  2122.86465647614  2395.42991168005  2478.2142350597
Normal 1231.93644908801  1794.26976272699  2187.6887314645 2420.59557912748  2493.24921520276
TABLE 23
Quantiles of asymptotic distribution with p = 0.1,k =1
Distributions  90% 95% 97.50% 99% 99.50%
T3 662.469748667074  1069.59641469967  1488.1893428298 1995.21729152715  2262.08257094163
Ty 809.85559864959 1280.564679245 1734.41158922081  2192.7478522624 2376.19658522409
Ts 889.329462387479  1390.84039160048  1853.67928413198  2273.44452384894  2415.50603357218
Ts 939.825901600757  1458.15510511643  1914.91329602495  2303.9339532509 2430.83310329224
Tho 1027.80326922858  1570.2907106716 2012.36886016401  2349.68903251833  2452.87904401359
Tis 1064.18152223244  1610.61586497468  2049.3864131254 2364.70555005751  2460.68987663165
Normal 1126.89287133307  1681.4575792726 2109.81898470445  2390.77800765456  2475.7154315963
TABLE 24
Quantiles of asymptotic distribution with p = 0.1,k =2
Distributions  90% 95% 97.50% 99% 99.50%
Ts 789.810105581448  1253.77149241333  1712.43147720877  2171.40442804131  2365.44782764469
Ts 902.445389003925  1408.08154990501  1866.31675019539  2274.07881727991  2415.92629873592
Ts 955.408443515265  1480.12080018515  1927.25293264727  2310.12102208929  2434.30120102033
T 978.157326702502  1506.62737045575  1958.87019152396  2325.92566934938  2438.93246572574
Tho 1022.21051199468  1559.49171459449  2002.88197334422  2347.65937521505  2452.51581183309
Tis 1042.76433420544  1582.68094761371  2027.68775812454  2356.86928670928  2456.90382075004
Normal 1057.53733624309  1602.02718256746  2042.2215940587 2360.34876901845  2457.72725708744
TABLE 25
Quantiles of asymptotic distribution with p = 0.1,k =5
Distributions  90% 95% 97.50% 99% 99.50%
T3 957.276051207347  1479.73804966541  1938.14356167367  2319.27497095394  2439.70112898844
Ty 1017.22085603425  1553.17756140914  2004.122746336 2346.99445905095  2451.51996412323
Ts 1039.51740811484  1578.76768211778  2017.75474590447  2353.92775663355  2455.06432557587
Te 1051.26536625162  1591.81114185629  2030.73341953253  2359.67710552763  2458.99170195467
Tho 1051.75513519349  1597.79865506523  2035.04944747562  2361.72996605265  2459.31613180123
Tis 1051.25308472394  1597.54447455308  2036.91506373065  2360.98420003756  2460.0376094193
Normal 1052.56465100535  1600.15783374558  2039.04719379446  2364.68752110372  2461.63108637474
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TABLE 26
Quantiles of asymptotic distribution with p = 0.1,k = 10
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Distributions  90% 95% 97.50% 99% 99.50%

T3 1020.45712422267  1558.69123832535  2008.17176344346  2350.1143551918 2455.14935360474

Ty 1045.17076588147  1590.18369073296  2033.37858852914  2357.32960146002  2458.80007064842

Ts 1050.20319301615  1591.4427771334 2033.22781529606  2360.43552714178  2459.37158936661

Ts 1054.27325275541  1594.86346079493  2033.57107565913  2358.17367243726  2458.13877824713

Tho 1053.86050126658  1599.37633115038  2035.55626325774  2362.82927301231  2459.52821139428

Tis 1050.67107411527  1597.29022112193  2036.88972466631  2360.59177260682  2460.01170680134

Normal 1052.59926213318  1600.20677260164  2039.11470855037  2364.76147570037  2461.66518805169
TABLE 27

Quantiles of asymptotic distribution with p =2,k = 0.1

Distributions  90% 95% 97.50% 99% 99.50%

T3 1.55427591730933  4.66329728625738  7.42349875218966  11.0539831418588  13.8497982832069

Ty 2.54447478495746  5.5560288545974 8.40747031617402  12.1779954637349  15.2398715214712

Ts 2.94182182123734  5.98112922689444  8.89651353275513  12.8663145685487  15.9074437543874

T 3.17370680665086  6.21384601113391  9.17803654033794  13.2855327616803  16.4779710510846

Tio 3.56632580724373  6.66844408727504  9.73996279978746  13.9221700001134  17.255837751101

Tis 3.70412367859872  6.80613024346193  9.93788472919249  14.1934767329633  17.5376574761972

Normal 3.95801814591642  7.1204641408512 10.331048755716 14.7277759318252  18.2281531850659
TABLE 28

Quantiles of asymptotic distribution with u = 2,k = 0.5

Distributions  90% 95% 97.50% 99% 99.50%

T3 1.58525426520645  4.70287937494892  7.43309614180873  11.0627373920382  13.8414193614277

Ty 2.52645189287737  5.52864069023889  8.36326543103941  12.2670827262151  15.2616532940261

Ts 2.90112257141207  5.92547388420335  8.86961063370793  12.8427354368825  15.9409529030012

Ts 3.14416432686496  6.17855580565703  9.15447016594051  13.1184280093813  16.3851692047376

Tho 3.51789575665061  6.59427235501635  9.65610554922482  13.8602174418393  17.1697151617247

Tis 3.62870965392304  6.71961868535226  9.83979744369365  14.1153561564069  17.5288354049719

Normal 3.87141746721187  7.00529689242012  10.1504135851152  14.4969219956899  17.9268002826894
TABLE 29

Quantiles of asymptotic distribution with p =2,k =1

Distributions  90% 95% 97.50% 99% 99.50%

e 1.56454142997244  4.69269752541939  7.44074198257859  11.0986984415153  13.8477690144218

Ty 2.5224111887514 5.5433839705459 8.41561535741103  12.2751341343976  15.2483299430723

Ts 2.88738725150022  5.92189370153633  8.87436889185247  12.8584581744366  15.9838012674835

Ts 3.09097803012668  6.13924522104549  9.10092522874141  13.1646658332534  16.36655599759

Tho 3.46026135619142  6.52784341934985  9.55722648164952  13.6973730031202  16.9801254211912

Tis 3.57516399900527  6.63944616656377  9.69556320407447  13.8832014179134  17.1606598058695

Normal 3.77564633142913  6.87011450797764  10.0348510106745  14.3186399200353  17.7781934348015
TABLE 30

Quantiles of asymptotic distribution with p =2,k =2

Distributions  90% 95% 97.50% 99% 99.50%

T3 1.74098381758006  4.96666468324748  7.84942023979826  11.7060098572495  14.7270442018646

T 2.5963730012743 5.70204336495744  8.64364221023573  12.6855503293643  15.776343897399

Ts 2.95422548241382  6.04290885413885  9.07342365078278  13.1366020086245  16.3310970145165

Te 3.15175835835109  6.23709313589106  9.25018421651132  13.3698992407219  16.6389753242163

Tio 3.42642481518157  6.48915398161272  9.52789378863859  13.6490634800389  16.8578922529491

Tis 3.55829926352428  6.60756704454375  9.60803550932904  13.7149496871267  16.9792927148309

Normal 3.73251802650301  6.77197360515593  9.7939009218535 13.9170081065767  17.1809967262489
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TABLE 31
Quantiles of asymptotic distribution with u = 2,k=25

Distributions  90% 95% 97.50% 99% 99.50%
T3 2.1126833976562 5.58062708411904  8.93192713966539  13.6521891674556  17.3472144354772
T 2.84957480202987  6.10157175982755  9.34800959375619  13.9547641402722  17.547950645855
Ts 3.10733663833669  6.32679322717114  9.52031208078865  13.967142616375 17.4126757056361
Ts 3.27307545220797  6.40815227181175  9.59182907385158  13.9425141513821  17.3794427574096
Tio 3.51639124107138  6.623312824866 9.73507323840116  13.9896348468686  17.3521699189524
Tis 3.581835769269 6.64932878743327  9.73100885700681  14.0103365846951  17.3162731750811
Normal 3.70041133579528  6.72991527356395  9.75483649073316  13.8292349748401  17.0074984099981
TABLE 32

Quantiles of asymptotic distribution with p = 2,k = 10
Distributions ~ 90% 95% 97.50% 99% 99.50%
T3 2.20826097242346  5.72123725896405  9.22079229374703  14.432918779651 18.7628631277345
T 2.87197941748629  6.1875014516893 9.53836253474882  14.3273558002239  18.2739382343264
Ts 3.13065012208848  6.37445273469656  9.61601462012811  14.1326437904448  17.7098321783359
Ts 3.30976886070275  6.48543857844941  9.68472717330602  14.083300810493 17.6512026395697
Tho 3.52374824364879  6.61361740990017  9.70135285982052  13.9793650927543  17.3477739282867
Tis 3.581835769269 6.64978368371662  9.7316939616228 14.0100410832258  17.3162731750811
Normal 3.70041133579528  6.72991527356395  9.75483649073316  13.8292349748401  17.0074984099981
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