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ABSTRACT: Polymer networks with brush-like (comb or bottlebrush) strands can
have mechanical properties similar to biological tissues and can swell to larger volumes
than their linear chain counterparts. We use a combination of the Flory−Rehner
approach, scaling analysis, molecular dynamics simulations, and experimental data for
poly(n-butyl acrylate) (PBA) networks swollen in toluene to elucidate the effect of
brush strand architecture on the equilibrium swelling ratio, Qeq, the modulus of the
swollen gel, Ggel(Qeq), and its relationship with the nonlinear modulus of the dry
network, G(Qeq). Analysis of simulation data and experimental results for PBA gels
demonstrates that the gel shear modulus monotonically decreases with increasing
equilibrium swelling ratio as Ggel(Qeq) ∝ Qeq

−3, which is consistent with a θ-solvent-like
swelling behavior. There is a significant effect of the degree of polymerization nsc and
grafting density 1/ng of the side chains on the gel modulus that manifests as
mechanically diverse gels with the same solvent content. This unique behavior is
explained by the architecture-controlled stiffening of the brush strands due to the swelling of the side chains in the gel state. In the
framework of a scaling model, the effective Kuhn length of the swollen strands, bK,s, can be expressed in terms of the Kuhn length in
the dry state, bK, and the ratio of shear modulus calculated in the framework of the Flory−Rehner approach, Ggel

FR(Qeq) = G(Qeq)/
Qeq

1/3, to the gel modulus Ggel(Qeq) such that bK,s ≈ bKGgel
FR(Qeq)/Ggel(Qeq). The Kuhn length obtained from this analysis highlights

different mechanisms of swollen brush rigidity.

1. INTRODUCTION
The swelling of polymer networks in selective solvents is a
macroscopic manifestation of the interactions between the
solvent and individual network strands.1−7 The amount of
solvent encapsulated within a swollen network (gel) is a result
of the fine interplay between network strand elasticity and
polymer/solvent interactions.1,2 It is characterized by the gel
swelling ratio Q = Vs/V0, expressed in terms of the volume of
the gel, Vs, and the dry network, V0. For networks of linear
chains (Figure 1a), the swelling ratio rarely exceeds a factor of
20 due to the enhancement of network mechanical strength by
trapped entanglements.3 A larger swelling ratio Q ∼ 100 was
shown to be theoretically possible in polyelectrolyte gels made
of linear chains with ionizable groups in a salt-free aqueous
solution (Figure 1b).8−10 In such gels, the swelling is promoted
by the osmotic pressure of free counterions localized within
the gel volume due to the Donnan equilibrium.8−20 However,
salt-free conditions are rare in practical applications where salt
concentrations are usually high, 0.1−1.0 M.8,21,22 The presence
of salt ions results in an exponential screening of the
electrostatic interactions and a significant reduction of the
osmotic effect of free counterions, suppressing polyelectrolyte
gel swelling ability.10,12−20

These swelling limitations are overcome in gels made by
cross-linking brush (comb or bottlebrush) strands (Figure 1c).
It was shown recently that by changing the grafting density
1/ng or degree of polymerization nsc of the side chains, one can

achieve swelling ratios Q ≈ 30−40.23,24 The large swelling
ratios were demonstrated to be due to two effects of grafting
side chains to the load-bearing backbones: (i) the disentangle-
ment of the network strands25,26 and (ii) the enhancement of
the backbone/solvent affinity.23 Thus, by changing the
network strand architecture, it is possible to control the degree
of network swelling and use this in the design of super-
absorbing materials. To further explore the effect of strand
molecular architecture on the properties of gels with brush-like
strands, we use a combination of theory and coarse-grained
molecular dynamics simulations to study equilibrium swelling
and elasticity of such gels. The rest of the paper is organized as
follows. We begin with a brief overview of the Flory−Rehner1,2

model of brush gels developed in ref 23. This is followed by
derivation of a scaling model27−32 of brush gels which accounts
for the renormalization of the Kuhn length of the brush strands
in selective solvents and the enhancement of the strands’
elastic response due to their finite extensibility. The model
predictions for gel shear modulus dependence on the
equilibrium swelling ratio are compared with the results of
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new coarse-grained molecular dynamic simulations and
experimental data for poly(n-butyl acrylate) (PBA) networks
swollen in toluene. The remarkable feature of brush gels
confirmed by computer simulations and experimental data is
that one can have gels with the same solvent content but
different values of the gel modulus just by varying the strand
architecture. Next, we demonstrate how to use the shear
modulus of a gel and the corresponding dry network to obtain
the Kuhn length of the swollen network stands by combining
results of the Flory−Rehner and scaling models and apply this
approach to elucidate the effect of the brush architecture on
the strand flexibility in the gel.

2. NONLINEAR STRAND DEFORMATION AND
NETWORK SWELLING

We begin our discussion with a brief overview of the
predictions of the Flory−Rehner model accounting for
nonlinear strand elasticity in swollen brush networks23 that
are essential for comparison with the results of the scaling
model developed below. Consider a network (Figure 2) with
initial dimensions L0,i and initial volume V0 in the dry
(reference) state which swells, reaching dimensions Ls,i and
volume Vs, where i = x, y, and z. In the framework of the
Flory−Rehner approach,1,2 the total free energy of a swollen
network is the sum of the elastic energy of the network strands
and the interactions between monomers expressed in terms of
the swelling ratio Q = Vs/V0.

= +F Q F Q F Q( ) ( ) ( )net elast int (1)

The elastic free energy of a swollen network with semiflexible
strands in the nonlinear deformation regime can be written
as23

= +F Q G V Q Q( )
1
2

(1 2(1 ) )elast dr 0
2/3 2/3 1

(2)

This expression is obtained from the general expression for the
network elastic free energy in terms of the first deformation
invariant I1(Q) = 3Q2/3.33,34 Equation 2 includes two
parameters that relate the network’s swelling ability to its
architecture: (i) the strand elongation ratio β and (ii) the
structural shear modulus in the dry state, Gdr. The strand
elongation ratio β = ⟨Rin

2⟩/Rmax
2 is defined as the ratio of the

mean-square distance between cross-links ⟨Rin
2⟩ in the

undeformed network and the square of the end-to-end
distance of a fully extended strand, Rmax

2 = nx2l2, with
monomer projection length l and the degree of polymerization
of network strands between cross-links nx. The structural
modulus of a dry network with monomer number density ρ0
(number of monomeric units per unit volume) made by cross-
linking brush strands with Kuhn length bK is equal to

=G Ck T
n

R
b Rx K

dr B
0 in

2

max (3)

where C is a numerical constant that accounts for the network
topology and cross-link functionality, kB is the Boltzmann
constant, T is the absolute temperature, and φ = ng/(ng + nsc)
describes the partitioning of monomers between the side
chains and the backbone. For linear chain networks φ = 1.0,
and eq 3 reduces to the standard expression for network

Figure 1. Schematic representation of gels of linear chains (a), polyelectrolyte gels (b), and brush gels (c). Brush strands have a degree of
polymerization between cross-links nx and a degree of polymerization of side chains nsc grafted every ng backbone monomers.

Figure 2. Swelling of dry brush network from volume V0 to volume Vs and the deformation of the gel at a constant volume V = Vs. Brush backbones
are shown in red and side chains are colored in blue.
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modulus in terms of monomer density. Thus, the properties of
the swollen network characterized by Gdr are assumed to be the
same as in the dry network with the swelling effects included
exclusively into the changes of the strand size and density.
In a swollen state with Q ≫ 1, we can approximate the

interaction part of the network free energy by a virial
expansion. In a θ-solvent for the polymer, the virial expansion
starts with a cubic term such that3,23

=F Q k T V
Q

( )
6int B 0 0

2

(4)

where the product ρ0V0 is the total number of monomers in
the system. In writing eq 4, we effectively smear all monomers
uniformly over the volume of the swollen network.
The equilibrium swelling ratio Qeq is obtained by minimizing

the free energy of the swollen network (eq 1) with respect to
Q, which is equivalent to minimization with respect to the gel
volume Vs

= +
G

Q
Q k T

Q
0

3
(1 2(1 ) )

3
dr
1/3

2/3 2
B 0

3

(5)

It is convenient to rewrite eq 5 in terms of the modulus
Ggel

FR(Q) in the swollen state and the osmotic pressure π(Q) as
follows:3,23

= + = =G Q
G

Q
Q k T

Q
Q( )

3
(1 2(1 ) )

3
( )gel

drFR
1/3

2/3 2
B 0

3

(6)

The solution of eq 6 defines the equilibrium swelling ratio Qeq.
The modulus of the network in the swollen state can be

related to the modulus in the dry state as follows23

+ = +
i
k
jjjjjj

i
k
jjjj

y
{
zzzz

y
{
zzzzzzG Q

G
Q

G I Q
( )

3
(1 2(1 ) )

3
1 2 1

( )
3

dr 2/3 2 dr 1
2

(7)

where we substituted I1(Q) = 3Q2/3. The expression on the
r.h.s. of eq 7 is the nonlinear shear modulus of the network
which can be obtained from uniaxial stretching in the dry state.
The stress generated in the dry network stretched λ times
along the z direction at a constant volume is equal to33,34

= +
i
k
jjjjjj

i
k
jjjj

y
{
zzzz

y
{
zzzzzz

G I
3

( ) 1 2 1
( )
3

dr
true

2 1 1
2

(8)

The corresponding λ dependence of the shear modulus can be
defined in terms of the first deformation invariant, I1(λ) = λ2 +
2λ−1, as

= +
i
k
jjjjjj

i
k
jjjj

y
{
zzzz

y
{
zzzzzzG I

G I
( )

3
1 2 1

( )
3

dr
1

true
2 1

1
2

(9)

The explicit form of G(I1) given by eq 9 allows for the
extraction of the shear modulus of a swollen network Ggel

FR(Q)
and the equilibrium swelling ratio from the uniaxial extension
of the same network in the dry state stretched to the same
value of the first deformation invariant, that is, I1(λ) = I1(Q) or
λ2 + 2λ−1 = 3Q2/3:

=G Q Q G Q( ) ( )gel
FR 1/3

(10)

Note that eq 10 reduces to the classical Flory−Rehner1,2

expression when βQ2/3 ≪ 1.

3. SHEAR MODULUS OF A GEL
A general expression for the shear modulus of a gel at
equilibrium swelling is obtained by considering the uniaxial
deformation of the swollen network at a constant volume as
shown in Figure 2. A swollen network with dimensions Ls,i (i =
x, y, and z) is uniaxially deformed at a constant volume Vs with
the deformation ratios

= = = = =
i
k
jjjjj

y
{
zzzzz

L
L

V
V

Q
L

L
L

L
andz

s z

s y

s y

x

s x, 0

1/3
1/3

, ,

1/2

(11)

where the deformation ratio λ is defined with respect to the dry
state as follows:

= = = i
k
jjj y

{
zzz

L
L

L

L
L

L
Q

andz

z

y

y

x

x0, 0, 0,

1/2

(12)

These deformation ratios correspond to the first invariant

= + = +I Q Q Q( , ) 2 ( 2 )1
2 1 2/3 2 1 (13)

The elastic energy of the deformed gel as a function of the
first invariant in the framework of the modified Flory−Rehner
model is written as follows:33,34

= +
i
k
jjjjjj

i
k
jjjj

y
{
zzzz

y
{
zzzzzzF Q V G I Q

I Q
( , )

1
6

( , ) 1 2 1
( , )

3elast dr0 1
1

1

(14)

The interaction part of the swollen network free energy (see eq
4) can be omitted from consideration because the deformation
of the network takes place at a constant volume, and therefore
its contribution to the total free energy of the network remains
unchanged. The tensile true stress in a gel undergoing uniaxial
deformation is given by

=

= +
i
k
jjjjjj

i
k
jjjj

y
{
zzzz

y
{
zzzzzz

L L
F Q

L

G
Q

I Q
Q

1 ( , )

3
1 2 1

( , )
3

( )

true
y x

elast

z

dr 1
2

2 1

(15)

Using the relationship λ = αQ1/3, we can rewrite eq 15 in terms
of the deformation α:

= + +i

k
jjjjjjj

i
k
jjjjj

y
{
zzzzz

y

{
zzzzzzz

G

Q
Q

3
1 2 1

( 2 )
3

( )true
dr
1/3

2/3 2 1 2
2 1

(16)

The modulus of the swollen network is defined as

=
=

G Q Q G Q( ) ( )gel
true

2 1
1

1/3

(17)

which is exactly eq 10. Thus, in the framework of the Flory−
Rehner1,2 approach the gel shear modulus is directly related to
G(Q) and can be calculated via eq 17.

4. SCALING MODEL AND NONLINEAR SWELLING
EFFECTS IN BRUSH GELS

As a polymer network swells in a selective solvent, the network
strands adopt the conformations of stretched chains in a
semidilute polymer solution as illustrated in Figure 3. In a
semidilute solution, the interactions between monomers are
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screened on the length scales on the order of the solution
correlation length ξ which contains sections of brushes with gξ
backbone monomers27−32

= lg B/ (18)

where exponent ν = 0.5 and 0.588 for θ and good solvents,
respectively, and l is the monomer projection length. The
parameter B characterizes the interactions between a polymer
and a solvent and can be written in terms of the excluded
volume vs per monomer of the backbone and the Kuhn length,
bK,s, of the network strand in a solvent as follows:28−32

=
i
k
jjjjj

y
{
zzzzz

i
k
jjjjjj

y
{
zzzzzzB

l
b

v
lb( )K s

s

K s,

0.5

,
1.5

1 2

(19)

The parameter B is equal to Bg and Bth for scaling exponent ν =
0.588 and ν = 0.5, respectively.
The space-filling condition of the correlation blobs expresses

the correlation length ξ and the number of monomers gξ in
terms of the swelling ratio

=Q
g

l

B
g0

3

1
0

3

3
3 1

(20)

Note that the factor φ appears because the swelling ratio
accounts for all monomers in brush-like macromolecules while
the packing of the blobs is related to the concentration of
backbone monomers. Solving eqs 18 and 20 for the number of
backbone monomers per correlation blob, gξ, and solution
correlation length, ξ, we have

i
k
jjjjjj

y
{
zzzzzzg B

Q
l

3/(3 1)

0
3

1/(3 1)

(21a)

i
k
jjjjjj

y
{
zzzzzzlB

Q
l

1/(3 1)

0
3

/(3 1)

(21b)

On the length scales larger than the solution correlation
length, uncross-linked strands of correlation blobs adopt an
ideal chain conformation with the mean-square end-to-end
distance

R
n
g

R
lg

x max2 2 2

(22)

The factor of ξ2/lgξ can be viewed as the Kuhn length of the
chain of correlation blobs as immediately follows from the
definition of the Kuhn length.3 In a gel, the chains are
stretched and have size R determined by the network swelling
ratio Q. The size of the swollen network strand is estimated as
the size of an array of tension blobs with size dt (Figure 3);
each blob contains gt backbone monomers and is a random
walk of correlation blobs3

R
d n

g

n R

g
t x

t

x

t

2

(23)

The elastic energy of a chain of blobs with size R is on the
order of the thermal energy kBT per tension blob between
cross-links and is equal to

F R k T
n
g

k T R
R

( )
3
2

3
2elast ch

x

t
, B B

2

2
(24)

The coefficient 3/2 is introduced to match eq 24 with that for
the chain’s elastic energy in a θ-solvent and in the dry state.3

The elastic energy of the network of such chains in the
deformed state with the first deformation invariant correspond-
ing to isotropic swelling I1(Q) = 3Q2/3 is written as follows

F Q V Ck T
n

R
R

Q

V G
b R

R
Q

( )
3
2

3
2

elast
x

dr
K max

0 B
0 in

2

2
2/3

0 2
2/3

(25)

where we take into account the expression for the dry network
shear modulus Gdr given by eq 3. Note that bKRmax is the mean-
square end-to-end distance of a chain in the dry state with
Kuhn length bK. Using the relationship between the derivative
of the elastic part of the network free energy and the gel
modulus (eqs 15−17), we can express the modulus of the gel
in terms of the modulus of the dry network and strand
properties in the swollen state

G Q
G

Q

b R
R

G

Q

b lg
( )gel

K dr Kdr
1/3

max
2 1/3 2

(26)

In a θ-solvent for linear chain networks, ξ2 ≈ bKlgξ, eq 26
reduces to the Flory−Rehner expression for the gel modulus1,2

assuming that the Kuhn lengths of the network strands in the
dry and swollen states are identical. However, for networks
with brush strands, the effective Kuhn length bK,s of swollen
brushes is controlled by polymer/solvent affinity and is
different from its value in the dry state bK, which in turn
results in a dependence of the gel modulus on the strand
architecture in addition to what one would expect just from a
Gdr dependence.
We can extend the scaling approach and describe the

nonlinear deformation of gels by noticing that the strand
elongation ratio β = ⟨Rin

2⟩/Rmax
2 is a function of the initial and

Figure 3. Schematic representation of hierarchical blob structure of
bottlebrush strands in a swollen network represented as a semidilute
solution of stretched filaments with tension blob size dt, correlation
length ξ, and filament thickness Ds which determines the Kuhn length
and excluded volume of the brush strand.
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fully extended chain dimensions. Thus, to account for
nonlinear gel deformation, we can simply multiply eq 25 by
the correction function (see eq 2) describing the finite strand
extensibility

= +F Q V G
b R

R
Q Q( )

1
2

(1 2(1 ) )elast dr
K

0
max
2

2/3 2/3 1

(27)

Applying eqs 15−17 to the nonlinear elastic free energy of a gel
(eq 27), the gel shear modulus is

+G Q
G

Q

b R
R

Q

G Q
b lg

( )
3

(1 2(1 ) )

( )

gel
dr K max

gel
K

1/3 2
2/3 2

FR
2 (28)

Remembering that the factor of ξ2/lgξ can be viewed as the
Kuhn length of the chain of correlation blobs, the shear
modulus of a gel Ggel(Q) is different from Ggel

FR(Q) by the ratio
of the Kuhn lengths in the dry and swollen states.
In the framework of the scaling approach, the rate of change

in the elastic free energy of a gel (eq 27) with the gel volume
V0Q is balanced by the osmotic pressure of the semidilute
polymer solution, estimated as the thermal energy kBT per
correlation blob volume

i
k
jjjjjj

y
{
zzzzzzV

F Q
Q

G Q
k T k T

l
B

Q
l

1 ( )
( )

0

elast
gel

B
3

B
3

3/(1 3 )

0
3

3 /(1 3 )

(29)

Note that in rewriting eq 29 in terms of Ggel(Q), we keep only
the dominant divergent term accounting for the finite strand
extensibility, neglecting the derivative of 1/⟨Rξ

2⟩ with respect
to the swelling ratio Q in the expression for gel elastic free
energy (eq 27). It is also worth pointing out that a numerical
coefficient in front of this term is proportional to 1 − 2v such
that this correction is canceled out in a θ-solvent. Combining
eqs 28 and 29, we obtain the following nonlinear equation
determining the equilibrium swelling ratio Q = Qeq

+i
k
jjjjjj

y
{
zzzzzzG Q

k T
b l g

k T
b l

B
Q

l
( )gel

K K

FR B B
2

4/(1 3 )

0
3

(1 )/(1 3 )

(30)

and express the B parameter as

i

k
jjjjjjj

y

{
zzzzzzz

i
k
jjjjjj

y
{
zzzzzzB

G Q

G Q
l

b

Q

l

( )

( )

gel eq

gel eq K

eq
FR

3 1

0
3

1 2

(31)

We can use eq 29 to represent the gel shear modulus as a
function of the equilibrium swelling ratio Qeq and properties of
the network strands in the swollen state

×

i
k
jjj y

{
zzz

i
k
jjjjj

y
{
zzzzz

i
k
jjjjjj

y
{
zzzzzz

G Q
k T k T

l
v
l

l
b

Q

l

( )gel eq
s

K s

eq

B
3

B
3 3

(6 3)/(3 1)

,

(9 6)/(3 1)

0
3

3 /(3 1)

(32)

Below we will apply this scaling-based model to illustrate how
the modulus of a gel made of brush strands depends on their
molecular architecture.

5. COMPARISON WITH SIMULATIONS
We performed coarse-grained molecular dynamics simulations
of the deformation of swollen networks (Supporting
Information) whose properties in the dry and equilibrium
swelling ratios were studied in our previous publication.23 This
allowed us to determine the shear modulus of swollen
networks (gels) Ggel(Qeq) and use this information in
combination with the shear modulus in the dry state G(Qeq)
in data analysis. The swollen networks were deformed at a
constant equilibrium volume Vs (see Figure 2), and the shear
modulus Ggel(Qeq) was obtained from the slope of the σtrue vs
α2 − α−1 plots shown in Figure 4a. The data analysis results are

summarized in Table 1 and graphically represented in Figure
4b. While the data follow expected scaling dependence
Ggel(Qeq) ∝ Qeq

−3 for a θ-solvent, there is also an effect of
the strands’ architecture on the gel modulus, manifested in a
systematic shift of the Ggel(Qeq) lines. In particular, by
increasing side chain grafting density, 1/ng, or their degree of
polymerization, nsc, we see a systematic decrease of the
Ggel(Qeq) values. This effect is the most pronounced for brush
strands with two side chains grafted to each monomer of the

Figure 4. (a) Tensile stress σtrue as a function of α2 − α−1, where α =
Lz/Ls,z = λ/Qeq

1/3 for brush networks with strand degree of
polymerization nx ≈ 16, number of bonds between grafting sites ng
= 2, and varying degrees of polymerization of the side chains nsc = 2
(circles), 4 (triangles), 8 (inverted triangles), 16 (squares), and 32
(rhombs). Dashed lines are best linear fits. (b) Dependence of the gel
modulus at small deformations Ggel(Qeq) on the equilibrium swelling
ratio Qeq. Symbol notations are given in Table 1. Dashed lines
highlight observed trends. Logarithmic scales.
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backbone represented by the blue symbols in Figure 4b. This
points out that we can obtain gels with the same solvent
content but different values of the gel modulus (gray
highlighted area). Thus, the brush-like architecture of the
network strands allows a decoupling of the degree of swelling
and the gel’s mechanical properties which is impossible for
networks with linear strands.
The θ-solvent behavior is also confirmed by the dependence

of the shear modulus Ggel
FR(Qeq) on the swelling ratio Qeq

calculated in the framework of the Flory−Rehner approach

(Figure 5a). Indeed, the observed scaling dependence
Ggel

FR(Qeq) ∝ Qeq
−3.0 is in agreement with eq 6 with data for

all studied networks collapsing together. This should not be
surprising since Flory−Rehner1,2 theory is a macroscopic
version of the classical Flory approach to chain swelling which
correctly predicts swollen chain dimensions due to the
serendipitous cancellation of errors. However, this representa-
tion masks the strong effect of brush strand architecture on the
gel shear modulus which is observed in Ggel(Qeq) plots shown
in Figure 4b. The breakdown of Flory−Rehner theory1,2 in the

Table 1. Summary of Simulation Data

aThe data for the structural modulus Gdr, the strain-dependent shear modulus G(Qeq), and the gel shear modulus Ggel(Qeq) are presented in units of
10−3 kBT/σ3. Bond length l = 0.985σ. Kuhn length of bare backbone and side chains b = 1.966σ. Values of Kuhn length in the dry networks bK are
taken from ref 25.
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evaluation of the gel shear modulus is highlighted by plotting
Ggel(Qeq) obtained in molecular dynamics simulations of gel
deformation on the gel modulus estimated as Ggel

FR(Qeq) by
using results of the molecular dynamics simulations of the dry
network and equilibrium swelling ratio Qeq (Figure 5b). This
figure also points out that the strand architecture effect on the
gel modulus is the strongest for brush strands with the longest
or most densely grafted side chains which is manifested by the
biggest departure of the data points from the diagonal line.
We can use both Ggel(Qeq) and Ggel

FR(Qeq) to obtain the B
parameter defining the properties of the brush strands in the
gel and test scaling model predictions (see eq 31). In the case
of a θ-solvent the strand Kuhn length is directly related to the
value of the Bth parameter

b
l

B
b

G Q

G Q

( )

( )K s
th

K
gel eq

gel eq
, 2

FR

(33)

which immediately follows from eq 19 after setting the value of
the scaling exponent ν = 0.5.
Using the values of the Bth parameters, we represent the

simulation data in a universal form and verify the scaling model
of brush gels (Figure 6). There are two regimes in Ggel(Qeq)Bth

6

as a function of Qeq/φ. For values of Qeq/φ < 25 (Qeq < 6), we

observe a weak dependence of Ggel(Qeq)Bth
6 on Qeq/φ which

corresponds to a crossover from the dry network to the swollen
network regime as density and length of the side chains
decrease. However, in the interval Qeq/φ > 25 (Qeq > 6), we
recover the expected scaling dependence with exponent −3.
Note that the systems with ng = 0.5 (blue symbols) are
separated from the rest, confirming the specificity of brushes
with two side chains grafted to the same monomeric unit.
Detailed analysis of this effect will be the subject of future
work.

6. COMPARISON WITH EXPERIMENTS
We applied the developed models to experimental data for
poly(n-butyl acrylate) (PBA) networks swollen in toluene with
the strand architectural parameters varied within nsc = 11−41,
ng = 1−10, and nx = 50−200.35 The experimental systems
cover a wide range of equilibrium swelling ratios as illustrated
in Figure 7a showing variation of the gel shear modulus
Ggel(Qeq) with equilibrium swelling ratio Qeq. The general trend
in experimental data Ggel(Qeq) ∝ Qeq

−3.0 together with the
mechanical diversity of iso-Q gels (gray highlighted area) is
consistent with the results of computer simulations summar-
ized in Figure 4b and agrees with the predictions of the scaling
model of brush gels. Using information about the mechanical
properties of the dry networks, we can evaluate the B
parameters for studied systems with different brush architec-
tures and use these values to test the scaling model of gels.
Figure 7b shows Ggel(Qeq)Bth

6 as a function of Qeq/φ for all
PBA gels with brush strands. We observed a good collapse for
all systems except for the PBA gels with longest side chains nsc
= 41. These systems have the smallest value of the Bth
parameter which translates into the largest value of the Kuhn
length (eq 33) (see Table S1). For such gels, the length of the
brush strands between cross-links becomes comparable with
the Kuhn length of swollen brushes, indicating that such gels
behave as networks of semiflexible filaments between cross-
links.

7. KUHN LENGTH OF THE SWOLLEN BRUSH
STRANDS

The Kuhn length of the swollen brush strands can be estimated
from the Bth parameters (eq 33) and compared with the values
obtained for dry brushes. This is illustrated in Figure 8 showing
the Kuhn length of the brush strands in gels, bK,s, as a function

Figure 5. (a) Dependence of the strain-dependent shear modulus
Ggel

FR(Qeq) = G(Qeq)/Qeq
1/3 on the swelling ratio Qeq. (b) Dependence

of the gel modulus at small deformations Ggel(Qeq) on the gel modulus
obtained in the framework of the Flory−Rehner approach Ggel

FR(Qeq).
Symbol notations are given in Table 1. Dashed lines highlight
observed trends. Logarithmic scales.

Figure 6. Dependence of Ggel(Qeq)Bth
6 on normalized swelling ratio

Qeq/φ. Symbol notations are given in Table 1. Dashed lines highlight
observed trends.
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of their values in the dry networks, bK. There is a systematic
increase of the rigidity of the brush-like strands in the swollen
networks. The effective Kuhn length of swollen brush
(bottlebrush) strands can be represented as

+b D l g/K s s D s,
1

, (34)

where gD,s is the number of backbone monomers within the
brush thickness Ds (see the inset in Figure 3) and the exponent
δ defines the mechanism of rigidity for swollen brush strands.
In the case of δ = 1, swollen bottlebrushes behave as flexible
filaments which persistence length is on the order of filament
diameter Ds.

36−39 For δ = 2, bottlebrushes resemble semi-
flexible filaments with Kuhn length scaling as Ds

2.39−41 Thus,
to establish an explicit dependence of the Kuhn length on the
strand architecture, we need to know the brush thickness Ds
and use this information to establish the mechanism of
bottlebrush rigidity.
For swollen bottlebrushes, their thickness is determined by

the optimization of the elastic free energy of the stretched
backbone, side chains with the degree of polymerization nsc
grafted every ng monomers, and two-body repulsion between
monomers within the brush thickness
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where bs and vs are the Kuhn length and excluded volume of
the backbone and side chain monomers in the swollen state,
respectively. Minimization of the bottlebrush free energy (eq
35) with respect to Ds and gD,s results in the following
expressions for the equilibrium bottlebrush thickness

D v b l g v b l n n( ) ( ) ( )s s s D s s s sc g
2

,
3 1/5 1/5 2/5 3/10

(36a)

and the number of monomers of the backbone within a
diameter Ds

g n n( )D s sc g,
1/2

(36b)

Thus, by plotting the normalized Kuhn length of the
bottlebrush bK,sgD,s/l as a function of φ−2/5(nscng)3/10, we
should be able to determine the exponent 1 + δ and answer a
question about bottlebrush flexibility in a swollen gel or a
semidilute solution.
Figure 9 demonstrates different regimes of flexibility for

swollen brush strands. For gels studied in computer
simulations with brush architectures ng = 0.5 and nsc = 2,4,8,
we have δ ≈ 1 pointing out that such strands behave as flexible

Figure 7. (a) Dependence of the measured gel modulus Ggel(Qeq) on
equilibrium swelling ratio Qeq for PBA brush gels in toluene. (b)
Dependence of Ggel(Qeq)Bth

6 on normalized swelling ratio Qeq/φ for
PBA brush gels in toluene. Symbol notations are given in Table S1.
Dashed lines highlight observed trends.

Figure 8. Kuhn length in the swollen state bK,s as a function of Kuhn
length in the dry state, bK, for (a) simulations of brush gels and (b)
PBA gels in toluene. Logarithmic scales. Symbol notations are given in
Tables 1 and S1.
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filaments. In Figure 9a we also observe a weaker dependence
indicating a crossover regime to a hybrid network42 structure,
where the shorter brush strands (nx ≈ 16) are cross-linked
through the ends of the flexible side chains (nx ≤ 2nsc). The
analysis of experimental data for swollen networks of brush
strands (Figure 9b) gives δ ≈ 2.1, which corresponds to gels of
semiflexible filaments.

8. CONCLUSIONS
We have studied the swelling and mechanical properties of
brush networks. Using a combination of analytical and scaling
techniques, computer simulations, and experiments, we have
shown that the equilibrium swelling ratio of brush gels is
related to the nonlinear shear modulus of the corresponding
dry networks (Figure 5a). Analysis of experimental and
simulation data demonstrates that different values of the gel
shear modulus could correspond to the same swelling ratio
(Figures 4b and 7a). Thus, one can have mechanically diverse
gels with the same solvent content. In the framework of the
scaling approach, this behavior is ascribed to a strong
dependence of the brush Kuhn length on the molecular
architecture in the gel state. In particular, for gels of PBA
networks swollen in toluene, gel strands behave as semiflexible
filaments with diameter Ds and Kuhn length proportional to
Ds

2 (Figure 9b). This dependence of the Kuhn length of

swollen brush strands was obtained by expressing it in terms of
the Kuhn length in the dry state and a ratio of moduli (eq 33).
Note that a strong stiffening of the swollen brush strands is the
main reason behind the θ-solvent-like swelling behavior of the
studied gels. The observed good agreement with simulation
and experimental data indicates that the developed models can
be applied to a broad class of synthetic and biological networks
and gels with complex strand architecture.
Lastly, the developed framework should allow the use of a

combination of mechanical testing in the dry state33,34 and
analysis of the concentration dependence of solution viscosity
in semidilute solutions of uncross-linked strands28−32 to
predict the equilibrium swelling ratio and gel shear modulus.
Specifically, these two techniques provide a functional form of
the nonlinear shear modulus (eq 7) and values of the B
parameters, respectively, both of which are required for
calculations of the gel modulus and swelling ratio (eqs 29
and 31). We are planning to test this approach in future
publications.
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