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Equilibrium-lndependent Stability Analysis
for Distribution Systems With Lossy
Transmission Lines

Wenqi Cui

Abstract—Power distribution systems are becoming
much more active with increased penetration of distributed
energy resources. Because of the intermittent nature of
these resources, the stability of distribution systems under
large disturbances and time-varying conditions is becom-
ing a key issue in practical operations. Because the trans-
mission lines in distribution systems are lossy, standard
approaches in power system stability analysis do not read-
ily apply. In this letter, the stability of lossy distribution
systems is certified by breaking the network into subsys-
tems. By looking at the equilibrium-independent passivity
of each subsystem, the stability of the whole network is
implied by the diagonal stability of the interconnection
matrix. This analysis scales to large networked systems
with time-varying equilibria. The proposed method grace-
fully extrapolates between lossless and lossy systems, and
provides a simple yet effective approach to optimize con-
trol efforts with guaranteed stability regions. Case studies
verify that the proposed method is much less conservative
than existing approaches.

Index Terms—Stability analysis, distribution systems,
lossy transmission lines.

[. INTRODUCTION

ISTRIBUTED energy resources (DERs) such as rooftop
solar, electric vehicles and battery storage devices are
increasingly entering the power distribution systems. These
devices have intermittent outputs and often exhibit large and
fast ramping variations, bringing larger disturbances to the
system [1]. Therefore, stability of distribution systems under
time-varying conditions and large disturbances is becoming a
key question in their operations [2].
We are interested in the ability of a system to converge to an
acceptable equilibrium following large disturbances [3], [4]. In
power systems, this is often called transient stability analysis.
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Most of the time, transmission lines! are assumed to be
lossless (i.e., the lines have no resistances). This significantly
simplifies the mathematical analysis and allows for explicit
constructions of energy functions for microgrids [5], [6], trans-
mission systems [7], [8] and network-preserved differential-
algebraic models [9], [10]. However, the transmission lines
in distribution systems are lossy and have non-negligible
resistances [11].

For lossy systems, transient stability becomes a much harder
problem and remains open even for simplified models [2], [12].
A main difficulty is the lack of a good Lyapunov function
(or energy function) [3], [4]. Existing explicit constructions
require all the lines to have the same r/x ratios [6]. In more
general cases, a classical approach is to use path-dependent
integrals to construct Lyapunov functions, but these integrals
are not always well-defined and rely on knowing the tra-
jectories of the states [3]. Some works use linear matrix
inequalities (LMIs) to find Lyapunov functions by relaxing
sinusoidal AC power flow equations [2], [13]. These relax-
ations bound sinusoidal functions with linear or quadratic ones,
but the bound can be loose and lead to conservative stability
assessments. A candidate Lyapunov function can also be found
via Sum Of Squares (SOS) programming techniques [14],
but the computation complexity grows quickly with increased
problem size. This makes the method difficult to scale to
moderate or large systems. More recently, attempts have been
made to learn a Lyapunov function parameterized by neural
networks [12], [15]. However, it is challenging to verify that
the learned neural networks satisfy Lyapunov conditions.

Apart from the challenges in scalability, existing approaches
only apply a single equilibrium at a time [2], [12], [16].
Because of frequent changes to DERSs’ setpoints, equilibria
are time-varying. Hence, it is essential to characterize sta-
bility for a set of possible equilibria. In addition, the power
electronics on the DERs allow their damping coefficients to
be adjusted [15], [17]. But optimizing these coefficients using
existing approaches are nontrivial, since they involve solving
complicated nonconvex problems or using trial and error.

This letter proposes a novel equilibrium-independent
approach to transient stability analysis of lossy distribution
systems, where we achieve scalability by breaking the network

TPower lines in the distribution system is also called transmission lines.
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into subsystems. In particular, we consider the angle droop
control for the power-electronic interfaces to drive voltage
phase angles to their setpoints [2], [12]. Using the concept of
equilibrium-independent passivity (EIP) [18], [19], we study
the network stability with time-varying equilibrium points.
Case studies verify that the proposed method is much less
conservative and much more scalable to large systems com-
pared with existing methods [2], [12]. The key contributions
are as follows:

1) We propose a modular approach to study the angular
stability of distribution network with time-varying equi-
librium points and lossy transmission lines. Stability
certification is reduced to checking the diagonal stability
of the interconnection matrix over subsystems subject to
EIP conditions. This provides a convex constraint on the
damping coefficients and easily scales to large systems.

2) For lossy transmission lines, we design a tunable param-
eter that can serve to trade off between the control effort
and the stability region. This method gracefully extrapo-
lates between lossless and lossy systems, recovering the
lossless results when the 7/x ratio goes to 0.

[I. MODEL AND PROBLEM FORMULATION
A. Power-Electronic Interfaced Distribution Systems

Consider a distribution system with n buses and m lines
modelled as a connected graph (N, £), where each bus is
equipped with a power-electronic interface [2], [12] Buses
are indexed by k € N := {1,...,n}. Lines are indexed by
le L:={n+1,...,n+ m}. Without loss of generality, we
define the power flow from i to j to be the positive direction
if i < j. We denote the interconnections between buses i, j
and line / connecting them as [ € Bi+ and [ € Bj_, where Bi+
and Bj_ represents the line / leaving bus i and entering bus j,
respectively.

We adopt the model proposed in [2] where angle and voltage
droop control are utilized for real and reactive power shar-
ing through power-electronic interfaces. Let §; and v; be the
voltage phase angle and voltage magnitude at bus k € N,
and §;, v be their setpoint values set by distribution system
operators (for more information on how the setpoints are cho-
sen, see [2], [12]). Let px and g; denote real and reactive
power injections at bus k, and p; and g; be their setpoints.
The dynamics of bus k are described by

(1a)
(1b)

Tk = —dax 8k — 87) + (P — Px)
Tk = —duc vk — Vi) + (g5 — i),

where 7y, and Ty are time constants for voltage phase angle
and voltage magnitude at bus k, respectively. The parameters
dgk and d, are damping coefficients controlling power injected
by inverters, and thus larger values correspond to larger control
efforts. Importantly, the equilibria of the system come from the
setpoints §* and vy, which are time varying and not known
ahead of time.

We follow the model in [2], [12] where 7% > 74 by
design. Then, the voltage v; evolves much slower than the
phase angle &k, hence the angle and voltage dynamics sepa-
rates in timescale and vy is typically assumed to be constant.
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Fig. 1. Interconnection of buses (grey blocks) and transmission
lines (blue blocks). The input and output of each subsystems are
interconnected through the y = (M4 + Mbs)u, where My is skew-
symmetric and M5 is sparse.

M, : Sparse

We therefore focus on the angle stability dynamics in (1a) and
set vy = 1 per unit in the rest of this letter.

Let g; and b; be the conductance and susceptance of the
transmission line / € L, respectively. The active power flow
in the line / from bus i to j is

pi = 81 — 81¢os(8; — 8;) + bysin(8; — §;), )

which is the nonlinear AC power flow equation. We often use
d;j as a shorthand for §; — §;. System operators calculate the
setpoints such that py and §; satisfy the power flow equation
for all k € A/. A transmission line is called lossless if g =0
and lossy otherwise. For distribution systems, g; is typically
not significantly smaller than b;.

The buses are interconnected with transmission lines and
the active power injected from bus k to the network is

=Y p— Y p 3

leBf leB;

The dynamics of the system is described by (1a), (2) and (3).
The transient stability of the system is defined as the ability
to converge to the equilibrium points 6* from different initial
conditions. Since equilibria are set by system operators, the
system needs to be stable for multiple possible equilibria. In
this letter, we adopt a modular approach to certify stability
and design the damping coefficients dg’s, and show how it
overcomes the challenges of existing approaches.

B. Stability Analysis Through a Modular Approach

The goal of this letter is to answer two key questions for
the transient stability of distribution systems: /) How large is
the stability region? and 2) What is the control effort needed
to attain certain range of stability region? To this end, we
certify network-level stability by breaking the network into
subsystems. Then by looking at the equilibrium-independent
passivity (EIP) of each subsystems and their interconnections,
the stability analysis scale to large networked systems with
time-varying equilibrium points [19].

For each bus (1a) and each transmission line (2), we abstract
them as a subsystem G; with input u; and output y;, which will
be specified later in Section III. Fig. 1 shows the diagram for
the connection of subsystems. The coupling of the input and
output of each subsystems are described by u = My, where the
matrix M is determined by interconnections of the system. We
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show that M is the summation of a skew-symmetric matrix M
and a sparse matrix M>. This enable us to obtain a compact and
convex expression of stabilizing damping coefficients, which
can easily be used for controller design.

If all the lines are lossless, the sparse component of M> is
zero and only the skew-symmetric part remains. Then stan-
dard results from EIP theory can be used to directly show the
stability of the system, illustrating why lossless systems are
simpler than lossy ones.

[1l. MODULAR DESIGN OF SUBSYSTEMS
With the aim of network stability assessment through the
passivity of subsystems, we study the abstraction of (1a)-(3)
as subsystems of buses and lossy transmission lines and their
input-output interconnections in this section.

A. Subsystems for Buses and Lossy Transmission Lines

The subsystem for the lossy transmission line [ € L
leaving bus i and entering bus j is defined with the input
u = [8,~ -8 4 —6,~]T € R? to be the angle differences
from i to j and from j to i. The output y; € R? is defined to
be the modified power flow from i to j and from j to i:

|:yl,1:| _ 1[Eg1 _glCOS(Ml,I);/OfI‘f‘bl sin(uz,l)] (4a)

yi,2 2| (g1 — gicos(ui2)) /oy + bysin(ug2)

up| |1 A 1]
] = Lo [
_——— ————

;i q)lj

(4b)

where «; > 0 is a tunable scalar and we will study later
in detail. At a high level, a larger «; implies larger stabil-
ity regions and larger stabilizing damping coefficients. The
power flow (2) from bus i to j and that from bus j to i
can be recovered by p; = yi1 — yi2 + o(yi,1 + yi,2) and
pji = —yi1 +yi12 + ai(yi1 + yi,2), which will then serve as
the input to the subsystem of buses. Stacking the inputs and

outputs of lines gives u, = [u,;r+1 w1 eR™ andy, =
T
— ]]

Wpii Yapml] € R¥™. The matrix block & := [1
and @ = [—1 1]—r are defined for the mapping from the
output of the head i and the tail j to the input of line [,
respectively.

The subsystem for bus k is defined with the input u; € R
to be the power injection from connected transmission lines
and the output yx € R to be the phase angle

TSk = —di (S — 87) + (P} + ux) (5a)
Yk = 8 (5b)
we= Y [-1 u+a[-1 1]y

ZEBZ— Dy Wi
+Y [1 —1ytal-1 =1y G0
1eBy Dy Wi

where the matrix block ®; and Wy, is defined for the mapping
from the output of the subsystem for line / € £ to the input
of the subsystem for bus k € A. The matrix block &y =
[-1 1]if I € Bf and Dy = 51 — 1] if I € B;. The
matrix block @y = [—ak — oy | is defined uniformly for

all line / that connects bus k. It will serve to constrain the
minimum-effort damping coefficients that stabilize the system.

B. The Interconnection of Subsystems

To investigate the stability of the whole interconnected
system, we stack the input/output vectors in sequence as
u = (upn,ug) € R andy == (ypr,yz) € R The
mapping from the output of the bus k € A to the input of
the line / € £ is described by a matrix ® .5 € R?"*", where
the block in the (2] — 1)-th, 2/-th row and the k-th column is
@y in (4). Similarly, the mapping from the output of the line
I € L to the input of the bus k € N is described by the matrix
L INRS R™*2" wwhere the block in the k-th row and the (2/—1)
to 2I-th column is ®y; in (5). The input-output dependent on «
is represented in the matrix ¥ € R"*?” where the block in the
k-th row and the (2/ — 1) to 2/-th column is W; in (5). Then,
the interconnection of subsystems represented in (4) and (5)
are compactly described by

u= M+ M)y (6)

where

— Onxn

My = [‘I’LN
Note that the matrix ® s and ® - is constituted by the
blocks that satisfy &;; = —CI>;ir forallie M and ! € L, we
have ® . + <I>Z - = 0 and thus M is skew-symmetric. The
next section will show how the skew-symmetricity of M and
the sparsity of M, can be utilized for stability assessment of
networked systems. We provide more detailed derivations and
two examples in the longer online version of this letter [20].

Dpr M, = 0,51 v
02m><2m ’ 02m><n 02m><2m ’

IV. COMPOSITIONAL STABILITY CERTIFICATION
A. Stability Region

The stability region is the set of initial states that converges
to an equilibrium. Formally, it is defined as [9]:

Definition 1 (Stability Region): A dynamical system
5= f.(8) is asymptotically stable around an equilibrium
8* if, Vo > 0, 30 > 0 such that |§(0) — §*|| < @ implies
18(2) — &*|| < ¢ and lim;—,» 8(f) —> 8*. The stability region
of a stable equilibrium & is the set of all states § such that
lim;_, o0 6(1) —> &%

For nonlinear systems, it is very difficult to character-
ize the exact geometry of the whole stability region. This
letter, and most others (see, e.g., [5], [6], [9]), attempt
to find an inner approximation to the true stability region
through Lyapunov’s direct method. Correspondingly, the sta-
bility region is algebraically calculated by the states satisfying
Lyapunov conditions S|y() = {8|V(8) > 0, V() < 0} with
V(8) be a Lyapunov function that equals zero at equilibrium.
In the next subsections, we construct a Lyapunov function
from equilibrium-independent passivity of subsystems, which
will bring larger stability region than existing methods [2].

B. Equilibrium Independent Passivity

Equilibrium-independent passivity (EIP), characterized by
a dissipation inequality referenced to an arbitrary equilibrium
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input/output pair, allows one to ascertain passivity of the com-
ponents without knowledge of the exact equilibrium [18]. The
definition is given as follows [18], [19].

Definition 2 (Equilibrium-Independent  Passivity): The
system described by § = f(é,u),y = h(d, u) is equilibrium-
independent passive in a set § € S if, for every possible
equilibrium §* € S, there exists a continuously-differentiable
storage function Vg« : S — Rsq, such that Vg«(§*) = 0 and
VsVs(8)Tf(8,u) < (u —u*)" (y —y*). If there further exists
a positive scalar € such that
VsV O f@.w) < @ —u) ¢ —y) —eo—y)T 0 -y, ()
then the system is strictly EIP.

In Section V, we will show that subsystems (5) correspond-
ing to the bus k € N is strictly EIP in the region S with
€r = dg and the storage function Vi(§) = ﬁ(ék — 8,’(‘)2.
The subsystem (4) corresponding to the line [ € L is strictly
EIP in the region S; with ¢ = 20 and the stor-

g +biof

age function V;(§) = 0. We denote en = (€1,...,€),
€r = (enr11a, ..., €n4m12) for the EIP coefficients of buses
and lines, and the diagonal matrices €, := diag(er), € =
diag(enr) and € := diag(e s, €,) that will be used in network
stability certification. In particular, let dyr = (dg1, - - -, dan),
we have € = diag(dnr), which links stability certification
with the control efforts.

C. Stability of Interconnected Systems

In this section we derive Lyapunov functions from the stor-
age functions. We define the set S = {®:’:1m S;i} to be the
states that satisfy strictly EIP for each input-output pairs in
all the subsystems. The next lemma allows us to construct
Lyapunov functions for any equilibrium in S. Consequently,
S is an inner approximation of the stability region.

Lemma 1: Consider the networked system (4)-(6) with
input # and output y that interconnected through u = My,
where each input-output pair {u;, y;} is locally strictly EIP with
€; for § € S. If there exists a diagonal matrix C > 0 such that
CM — &)+ (M — &) "C < 0, then any equilibrium §* € S is
locally asymptotically stable.

Proof: The proof roughly follows [19]. For completeness,
we provide the key steps. For the system (4)-(6), let the sum
of the storage functions V(§) = Zf’ilzm c;Vi(8) serve as a
candidate Lyapunov function. Its time derivative is

n+2m

V) = ) aVid)
i=1

@Hzmc_ u,'—u;“T 0 1/2 || u — uf
T = vi—yi| |12 —e]lyi—yf
u—u* T 0 C u—u*

y—y* C —2Ce||ly—»y*

1 AT[M1'To ¢ M i
b7 e Sl T]p -

1
=50 —y*)T<C(M —O+ M- é)TC) (v —y"). ®

where (D follows from the conditions on EIP in (7). Because
y=y*ifand only if § = 8*, CM — &)+ M —&)"C <0

N =

implies V(8) < 0 for y # y*. Hence V(8) is a valid Lyapunov
function for § € &, and an equilibrium §* € S is locally
asymptotically stable. |
The LMI in Lemma 1 is not jointly convex in ds and C.
Setting C = I gives a simple convex condition on d /.
Theorem 1 (Local Exponential Stability): If the damping
coefficients satisfy diag(dn) > %W@Z]\IIT, an equilibrium
8" € S of the system (1)-(3) is locally exponentially stable.
Proof: This theorem follows from picking C to be the iden-
tity matrix. In this case, the condition in Lemma 1 becomes
M" +M —2¢) < 0. From (6), M = M; + M, and
using the fact that Mj is skew symmetric, and expanding
€ = diag(d s, € 1), we have
coen (o T —diag(dn) %\Il o
V) =(y—y") [ Ly _GAJ(y ¥).  ©
To certify exponential stability, we need to find a scalar
o >0, such that V(§) < —oV(8). Since the Lyapunov
function V(8) = Y2 ¢;Vi(8) is
Ve =3 - (5, — 1)
( )-Ezw(l ;)
——y)" [% dioag(r)*‘
2mxn

0552 ](y _y*),

02m X2m

- ¥
2€A£i|>0.

By definition, €, > 0 and Schur complement gives

then V(8) < —o' V(8) is equivalent to

[2 diag(d ) — o diag(r)~!

e (10)

1
(Zdiag(dN) —o diag(r)_l) —swe v -0

If diag(das) > ;ll\llézl\IIT, then any o satisfying 0 < o <
Amin (2 diag(dpr) — %\Ilézl\IlT) min}_,; 7,; guarantees (10) and
8" is locally exponentially stable. |

Note that the damping coefficients obtained in Theorem 1
is derived by setting C = I, thus the region of stabilizing
damping coefficients diag(dar) > %W@ZI\IIT is a subset of
that verified through C(M — &) + (M — &€)'C < 0. We will
show in the case study that the damping coefficients obtained
by diag(das) > %W@ZI\IIT is already much less conservative
compared with existing LMIs-based methods [2].

V. CONTROLLER DESIGN FROM EIP OF SUBSYSTEMS

In this section, we prove the strictly EIP of the subsystems
in (4) and (5). The system stability region is built from the
angles that stabilize each of the subsystems. We also show
how each stability region can be tuned to tradeoff with the
size of the stabilizing damping coefficients.

A. Strictly EIP of Lossy Transmission Lines and Buses

The next Lemma shows that the subsystem (4) of each lossy
transmission line / € L is strictly EIP for a region &;.

Lemma 2 (EIP of Lossy Lines): The lossy transmission line
[ from bus i to j represented by (4) is strictly EIP with ¢ =

2 for all the possible equilibriums §% in the set S; =
g12+b12a12 Y
{855 — arctan (bjoy/g1) = §; < arctan (bjoy/g1)}-
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v, () Stability region for u;

Region of EIP

u

Left margin

Right margin

Fig. 2. The region of EIP S; is computed by y,’(u) > 0 and is labeled
in red. The stability region for an equilibrium u* is the areas that y;(u) —
y;(u*) and u — u* has the same sign. The stability region is in blue and
its intersection for all equilibrium u* € S is the region of EIP in red.

First we note that if g; = 0, then the subsystem (4) is strictly
EIP in 8;; € (=%, %) for any oy > 0 . In particular, ¥ can
be made arbitrarily close to 0 and diag(dar) > %‘I’ézl\ll—r
for any dys > 0. Namely, 87 € (=7, %) is stable for any
positive damping coefficients. This recovers the observations
for lossless transmission lines [7].

For lossy transmission line with g; > 0, Lemma 2 shows
that «; trades off between the size of S; and passivity: a larger
a; enlarges S; but also increases the bound ;lt\llézl\IlT that
requires larger damping. The proof is given below.

Proof: The subsystem (4) is a memoryless system, where
yi,1 and y; 7 is a function of the input ;1 = §;; and u;» = —§;,
respectively. Hence, it suffices to consider the function

81 — g1 cos(u)

yi(u) = 2o + 5 D sin(u)
2 4 12,2
g & thiap
=— 4+ —- - ), 11
20 + 2o sin(u — y;) (1)
when u = §; and u = —§;, respectively. The constant

y = arctan( b’ ) € (0, n/2) horizontally shift the function
yi(u) as shown in Fig. 2 and thus affect the range of §;; sat-
isfying strictly EIP. For the memoryless system (11), we take
the storage function to be zero and then the condition for strict
passivity is [19]

— @)’ =0, (12)

(=) (i) = i) — er(yi(u)

which holds for any equ1hbr1um if and only if yl(u) € [0

76/

W guarantees that yl(u) < E—].

Then y;(u) > 0 is guaranteed for the region u € [ — % + v,
Z + yl, which is labeled in red in Fig. 2.

Substituting u = §8; and u = —§; gives —5 < §; —
vi < %5 and =5 < —§; —y < 7, respectively. Taking
the intersection, the angle difference satisfying strictly EIP
is 8; € [ — % + v, % — wl, which is equivalent to §; €
[ — arctan (bja;/g1), arctan (bja;/g1)]. [ |

Lemma 3 (EIP of buses): Bus k represented by (5) is strictly
EIP with €, = dy for all equilibria §; € R.

This Lemma shows that the subsystem of buses is strictly
EIP for all the possible equilibrium of angles. It follows
directly from the definitions and the proof is given in the
longer online version of this letter [20].

To this end, setting ¢; =

B. Sizing Stability Regions

The equilibrium-independent stability guarantees that any
equilibrium in the set S is exponentially stable. Naturally, it
is of interest to control the size of the stability region S. The
next theorem shows how the parameter « should be chosen if
the stability region need to meet a prescribed size.

Theorem 2 (Tuning « for Stability Region): For the line
[ from bus i to j with an equilibrium 8; € &j, the stabil-
ity region is Sjlg+ = {8;;| — 2arctan (bjo;/g1) — 8;; <& <

2 arctan (bja;/g1) — 8*} If o M for a constant
O0< B <m— 2|8 1, then the system is guaranteed to be stable
around the equihbrlum 81* with at least the margin of g, i.e.,
(65 — Br, 85+ Bil C Sils*

Note that if varying 8* in the set §; = {8*| —
arctan (bjot;/g1) < 8* < arctan (biay/g1)}, the 1ntersect10n
of &ils+ is exactly Sl Hence, the region of equilibrium-
independent stability can also be understood as the intersection
of the stability region for all the possible equilibrium.

Proof: The stability certification (8)-(10) holds as long as
the inequality (7) holds. For a certain equilibrium §*, we
define the stability region Slg+ to be the angles satisfying the
inequality (7). This condition is equivalent to certifying (12)
for u = §; and u = —§;; when fixing u* = 8; Note that
€ = \/ﬁ gives yé(u) < el,’ then condition (12) is satis-

fied as long as y;(u) — y;(u*) is the same sign as u — u* for
both u = §;; and u = —4;;.

The signs of y;(u) — y;(u™) and u — u* are the same when
uel—m+2y—u*, 7+ 2y —u*]. This region is labeled in
blue in Fig. 2, which is larger than the region of EIP shown
in red. For u = §;; and u = —4§;j, we have §;; € [ — 7 + 2y, —
85, m+2y1— 8], and =3 € [— 7 + 2y + 85, w + 2y + 831,

ij> . ij
respectively. The intersection gives the region

Silg = (8] — 7 + 21— 85 < 85 <7 — 2y — 8}, (13)

and thus [§} — B, 87 + Bil C Sils* yields

-+ 2y — 85 <

lJ—U ﬂl<5 +,31<JT—2V1 8

which gives 7 —y; > |8;‘j| + Q. Equivalently, arctan(ljé—;x

tan(|8%|+B1/2
|8*| + ﬂ’ and thus we require o > M ]

Theorems 1 and 2 provide a way of optimizing over the
damping coefficients while guaranteeing the size of the sta-
bility region. Suppose the margin of stable angle difference is

&k 2
Bi e [0, —2i85] for I € £, we define o = A2

by
Thus, ¢ = —2%— and W is determined by «;’s through (5b).
g1 +biof

To minimize the damping coefficients (related to hardware
costs [17]), we can solve

) =

min ||drll2 (14a)
dy

1
s.t. diag(dpr) > Z\I’@ZI\IIT, (14b)

which is a convex problem. The Pareto-front of the least-
cost damping coefficients and the size of stability region can
be computed by varying «, quantifying the trade-off between
control efforts and stability regions.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 12,2022 at 21:00:25 UTC from IEEE Xplore. Restrictions apply.



IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

3354
£S)
S 0.5
Q Proposed
‘2 0.0 Benchmark
kS
=
9 —0.5 1
(=2
(9]
I~
> —1.0 1
E
8 -1.5 . - . .
w -1.5 -1.0 -0.5 0.0 0.5

Stability Region of A&, (rad)

Fig. 3. Stability regions of Ad1o and Adog under the same damping
coefficients. The proposed approach finds a larger stability region.

€

L1254

£ a Increases
& 10.04

O

2

E 437 Pareto front
S 5.0

£

2 251

5 Stabilizing region
S 0.01

05 1.0 15 20 25 3.0 35 40 45
max{6;} — min{6;} (rad)

Fig. 4. Pareto-front of the width of the stability region and the minimum
stabilizing damping coefficients by varying « from 0.1 to 2 in line 1.

VI. CASE STuDY

Case studies are conducted on the IEEE 123-node test
feeder [11]. Since existing LMIs-based and neural network-
based methods all partition the network into a 5-bus system
to alleviate computational issues [2], [12], we first work
with this 5-bus system to compared against these base-
lines. Then, we directly work with the original 123-node
feeder to show that the proposed approach can scale to large
systems.

A. Comparison With LMIs-Based Stability Assessment

We first compare with existing LMI-based transient stability
assessment found in [2]. Under the same damping coefficients,
Fig. 3 compares the stability regions of two lines calculated
by our proposed method and the benchmark in [2]. The angle
difference §;; relative to an equilibrium for the line connecting
bus i and j is labeled as A§;; = (Sij—c?;"j. Our proposed approach
attains much larger stability region.

From the other direction, if we fix the size of the stability
regions, (14) can be solved to find the stabilizing damping
coefficients. This is in contrast to existing methods, where
damping coefficients are found through exhaustive searches.

B. Performance on Large Systems

To verify the performance of the proposed method on larger
systems, we further simulate on the original 123-node test
feeder. Fig. 4 shows the Pareto-front of the width of the stabil-
ity region and the least-norm stabilizing damping coefficient
by varying o« from 0.1 to 2 in the line 1. This quantifies the
trade-off between enlarging the stability region and minimiz-
ing control efforts. More simulation results can be found in
the longer online version of this letter [20].

VIl. CONCLUSION

This letter proposes a modular approach for transient sta-
bility analysis of distribution systems with lossy transmission
lines and time-varying equilibria. Network stability is decom-
posed into the strictly EIP of subsystems and the diagonal
stability of the interconnection matrix. This in turn provides a
simple yet effective approach to optimize damping coefficients
with guaranteed stability regions. Case studies show that the
proposed method is less conservative compared with exist-
ing approaches and can scale to large systems. Incorporating
the voltage and the frequency response with conventional
machines are important future directions for us.
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