Debugging in the Brave New World of Reconfigurable Hardware

Jiacheng Ma Gefei Zuo Kevin Loughlin
University of Michigan University of Michigan University of Michigan
Haoyang Zhang Andrew Quinn Baris Kasikci
University of Michigan University of California, Santa Cruz University of Michigan
ABSTRACT (ASPLOS °22), February 28 — March 4, 2022, Lausanne, Switzerland. ACM,

Software and hardware development cycles have traditionally been
quite distinct. Software allows post-deployment patches, which
leads to a rapid development cycle. In contrast, hardware bugs
that are found after fabrication are extremely costly to fix (and
sometimes even unfixable), so the traditional hardware develop-
ment cycle involves massive investment in extensive simulation
and formal verification. Reconfigurable hardware, such as a Field
Programmable Gate Array (FPGA), promises to propel hardware
development towards an agile software-like development approach,
since it enables a hardware developer to patch bugs that are de-
tected during on-chip testing or in production. Unfortunately, FPGA
programmers lack bug localization tools amenable to this rapid de-
velopment cycle, since past tools mainly find bugs via simulation
and verification. To develop hardware bug localization tools for a
rapid development cycle, a thorough understanding of the symp-
toms, root causes, and fixes of hardware bugs is needed.

In this paper, we first study bugs in existing FPGA designs and
produce a testbed of reliably-reproducible bugs. We classify the
bugs according to their intrinsic properties, symptoms, and root
causes. We demonstrate that many hardware bugs are comparable
to software bug counterparts, and would benefit from similar tech-
niques for bug diagnosis and repair. Based upon our findings, we
build a novel collection of hybrid static/dynamic program analysis
and monitoring tools for debugging FPGA designs, showing that
our tools enable a software-like development cycle by effectively
reducing developers’ manual efforts for bug localization.

CCS CONCEPTS

« Hardware — Reconfigurable logic and FPGAs; « Software
and its engineering — Software testing and debugging.

KEYWORDS
FPGA, Reconfigurable Hardware, Bug Study, Debugging

ACM Reference Format:

Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, Andrew Quinn,
and Baris Kasikei. 2022. Debugging in the Brave New World of Reconfig-
urable Hardware. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS °22, February 28 — March 4, 2022, Lausanne, Switzerland

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9205-1/22/02...$15.00
https://doi.org/10.1145/3503222.3507701

New York, NY, USA, 16 pages. https://doi.org/10.1145/3503222.3507701

1 INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are increasingly promi-
nent in modern heterogeneous computer systems. Specialized hard-
ware designs provide unprecedented efficiency in domains such as
machine learning [74, 83, 101, 102, 122, 127, 128], compression [92,
125], database operations [88, 96, 104], graph processing [36, 47,
112, 129], networking [41, 52, 111], and storage virtualization [78].
To realize the benefits of FPGAs, systems researchers have built op-
erating systems [53, 73, 77, 106], virtualization support [42, 46, 80,
85, 113, 120, 123, 124], just-in-time compilers [97], and high-level
synthesis tools [43, 44, 61, 116, 117]. The proliferation and bene-
fits of FPGAs have even prompted major cloud vendors to provide
FPGA instances on their platforms [31, 33].

Compared to traditional hardware development, FPGA develop-
ment has many similarities to software development. Since post-
fabrication bugs are extremely costly to fix, traditional hardware de-
velopment invests massive resources into simulation-based testing
and formal verification to eradicate bugs before silicon fabrication.
In contrast, reconfigurability allows a developer to patch hardware
bugs in an FPGA, even those caught during on-FPGA testing or
in production. As a result, FPGA developers are moving towards
an agile development approach that accelerates time to market by
relaxing cumbersome verification in favor of lightweight simula-
tion and on-FPGA testing. For example, Microsoft has adopted a
software-like methodology for FPGA development, in which they
perform relatively small amounts of verification compared to tradi-
tional hardware [52].

Unfortunately, relaxed verification leads to more bugs in FPGA
designs, with most FPGA projects experiencing bugs that escape
testing and end up in production [54]. Alas, while there are many
hardware tools that help developers find bugs using simulation-
based testing and verification [30, 63, 79, 81, 105, 110, 114, 115, 126],
very few hardware debugging tools help a developer localize the root
cause of a bug. Existing fault localization tools only apply to specific
protocols and algorithms [28, 86]. Other tools, such as checkpoint-
ing [16, 37, 38, 75, 103] and tracing [55-57, 62, 80, 97, 119], can
be used to localize the cause of a hardware failure, but require
substantial manual effort to do so. Finally, existing software fault
localization techniques, such as data-race detectors [99] and unde-
fined memory use detectors [98], cannot be immediately applied
to hardware programming models. Consequently, debugging an
FPGA design today is a highly manual process that either involves
inspecting a massive waveform (i.e., a trace of the state of the circuit
over time) or iterative rounds of synthesis in which a developer
selects and analyzes key data signals. Unsurprisingly, a majority

https://doi.org/10.1145/3503222.3507701
https://doi.org/10.1145/3503222.3507701

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

of FPGA developers in a recent study indicate a need for better
debugging tools [23].

Reaping the full benefits of rapid FPGA development will re-
quire constructing FPGA debugging tools that help localize the root
cause of a hardware fault—similar to the rich set of tools available
to software developers. Towards this goal, we first study bugs in
open-source FPGA designs. We then introduce a novel root-cause-
based classification of the bugs we study inspired by a prior bug
taxonomy [82] and document the intrinsic properties and symp-
toms of these bugs. We augment our study with a testbed in which
each hardware bug is reliably reproducible. We demonstrate that
each class of hardware bugs mirrors a counterpart class of software
bugs and would benefit from similar techniques for bug diagnosis
and repair.

Guided by the intrinsic properties and symptoms of bugs in
FPGA designs, we build a collection of hybrid static/dynamic pro-
gram analysis and monitoring tools to help developers of recon-
figurable hardware systems follow a software-like development
and debugging process. Because hardware bugs may be detected
during simulation or when executing on an FPGA, our tools are
designed to operate in either scenario. Thus, we consider the effects
of our debugging logic on real circuit synthesis and behavior, as
opposed to only accounting for a simulator environment where
resource and timing constraints are far less stringent. At a high
level, our tools allow selectively recording and analyzing targeted
execution information using limited on-FPGA storage, and consist
of the following:

1- SignalCat unifies hardware debugging during simulation and
when deployed on an FPGA by providing a single interface for
tracing state in a hardware design. The tool converts “printf”-like
statements embedded in a hardware description into logic that
records the arguments of these statements in a hardware deploy-
ment or during simulation. After an execution, SignalCat recon-
structs a log containing the output of the printf statements.

2- FSM Monitor helps a developer identify and track finite state
machines (FSMs), which are a widespread component in a hardware
design. It uses SignalCat to support both simulation and on-FPGA
scenarios.

3- Dependency Monitor enables a developer to trace the prove-
nance of the value of a variable in their hardware design. The tool
identifies the dependency chain of each developer-specified vari-
able (i.e., the registers upon which the variable depends), and tracks
all updates made to these variables during a simulation or on-FPGA
execution using SignalCat.

4- Statistics Monitor helps a developer identify anomalous behav-
ior by recording statistics about various execution events, such as
the number of times that an interrupt is triggered or the number of
packets that arrive in a communication channel. Developers specify
an event of interest; Statistics Monitor instruments the hardware
design with new logic that uses SignalCat to track statistics during
simulation or on-FPGA scenarios.

5- LossCheck helps a developer localize the root cause of data loss
(e.g., an unintended packet drop). A developer who suspects data
loss in their design uses LossCheck to check for—and potentially
identify the source of—data loss between a specified source (e.g.,
an input to a hardware module) and sink (e.g., an output). The tool
instruments the hardware design with new logic that monitors

Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, Andrew Quinn, and Baris Kasikci

all data propagation paths between the source and sink by using
SignalCat.

We show how a developer can use the aforementioned tools—
either individually or in various combinations—to debug the bugs
in our study. In particular, we show that our tools help diagnose
the cause of each bug in our study by automatically generating and
executing dozens to thousands of lines of analysis code, which the
developer would otherwise need to write. Additionally, we evaluate
the resource overhead of our debugging tools and demonstrate
that they are feasible for production use. Among the 20 bugs we
evaluated, 18 cases maintain the design’s original target frequency
after debugging instrumentation; all cases incur at most linear
resource overheads with increased recording buffer sizes.

Overall, we make the following contributions:

e We provide the first study of bugs in open-source FPGA
designs, a root-caused-based bug classification, and a de-
scription of typical bug symptoms to guide developers in
their debugging efforts.

e We design a collection of hybrid static/dynamic analyses
that developers can use in simulation and real hardware
deployments to debug FPGA designs.

e We develop an open-source testbed [1] that includes repro-
ducible hardware bugs and our tools to facilitate future FPGA
debugging research.

In the rest of this paper, we first provide background on FPGAs
and FPGA programming (§2). We then present the results of our bug
study (§3), followed by the design of the collection of our static and
dynamic analyses for debugging FPGA designs (§4). We provide
implementation details of our analyses (§5), present evaluation
results (§6), discuss related work (§7), and finally conclude (§8).

2 BACKGROUND

In this section, we discuss the FPGA development concepts that
are necessary for understanding the bugs and debugging tools
presented in this paper.

2.1 Languages for Hardware Programming

Developers program FPGAs by implementing a digital circuit in a
hardware description language (HDL), such as Verilog [109], Sys-
temVerilog [29], or VHDL [40]. HDLs enable developers to describe
the behavior of a circuit in a cycle-by-cycle manner. For instance,
the simple statement ¢ <= a + b subscribes to a broad program-
ming paradigm: right hand expressions (a + b) are computed and
propagate to left hand operands (c) via an appropriate assignment
operator (<=) at each clock cycle.

Emerging high level synthesis (HLS) tools enable hardware devel-
opment using software programming languages, but impose signifi-
cant performance and resource penalties compared to HDLs. For ex-
ample, state-of-the-art HLS-implemented image processing is 6.6X
slower and uses 5x more resources than an HDL-implementation
[87]. As such, HDLs continue to dominate hardware development.

2.2 FPGA Debugging Stages

FPGA debugging contains two stages: simulation and on-FPGA
testing. Simulation avoids lengthy hardware synthesis and is thus

Debugging in the Brave New World of Reconfigurable Hardware

Q&

@ request_valid
@;

Figure 1: An example FSM with states represented by nodes,
and transition conditions represented by edges. This FSM
has three states: IDLE, WORK, and FINISH. A state transforms
to another state when a certain condition is satisfied.

reg [1:0] state;

1

2 always @(posedge clk) begin

3 case(state)

4 if (request_valid) state <= WORK;
5 if (work_done) state <= FINISH;

6 state <= IDLE;

7 endcase

8 end

Listing 1: Verilog code implementing of the state transition
of the FSM in Figure 1.

faster to iterate, but executes orders of magnitudes slower than on-
FPGA testing [97]. In practice, developers simulate FPGA designs
and iteratively fix any bugs they find before employing on-FPGA
methods to test their design against more complex workloads (e.g.,
via stress testing).

2.3 FPGA Programming Techniques and
Constructs

Hardware developers leverage a number of common techniques
and constructs to implement FPGA designs.

Buffers and Queues. Hardware developers use buffers and queues
to temporarily store values. Hardware buffers and queues are similar
to their software equivalents, except they must be constant-sized,
since all hardware components occupy a fixed area in a circuit.
Communication Control: Valid Interface. Logically, hardware
circuits continually process data, with one or more input signals
consumed every clock cycle. However, an input signal may not
always be meaningful. For instance, a module may only receive a
“packet” every 5 cycles. Thus, developers use valid interfaces that
indicate whether a particular input is valid (i.e., a “valid bit” variable
associated with one or more inputs).

Communication Control: Backpressure. In a communication
channel where a source repeatedly sends data to a destination, the
destination may use a backpressure or “ready” signal to inform the
source that it needs time to process inputs. These signals indicate
to the source that the destination can only receive x new packets,
where x is defined by the communication protocol (e.g., x = 1 for
a binary ready signal). In the event of backpressure, the source
should stop sending packets or reduce the sending rate to avoid
bugs at the destination.

Finite State Machines. Hardware developers frequently incorpo-
rate finite state machines (FSMs) in their designs [32, 118]. Figure 1
demonstrates an example FSM; Listing 1 shows the Verilog code
that implements the FSM. In Verilog, an FSM is implemented using
conditional assignments (e.g., an assignment inside a switch case);

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

once a condition is satisfied, the “state” transfers along the arrows
in the next clock cycle.

Module. A module is a sub-component of a Verilog circuit with a
group of input and output signals, akin to a software function.
Intellectual Property (IP). A hardware intellectual property (IP)
block is a “blackbox” module that implement commonly-used or
platform-specific functionality, akin to a static software library. Like
a software function, an IP block accepts user-controlled inputs and
produces a set of outputs.

3 STUDY OF BUGS IN FPGA DESIGNS

To identify useful FPGA debugging tools, we study 68 hardware
bugs across 19 FPGA designs and build a testbed [1] that reliably re-
produces 20 of these bugs' in a push-button manner to enable their
detailed study (§6.1). The study explores functional bugs, i.e., bugs
in the HDL code that lead to functional issues rather than timing-
related issues, since most production FPGA bugs are functional
bugs [54]. Our methodology for gathering bugs is as follows:
Target Systems. First, we study bugs in four applications that we
used in prior work. In particular, these applications use the Intel
HARP platform [60], which uses the FPGA as a reconfigurable accel-
erator and provides an end-to-end acceleration stack. Specifically,
we identify bugs in a SHA512 accelerator [24], Reed-Solomon de-
coder [25], and grayscale image accelerator [26] applications from
HardCloud [45] (a framework with applications using HARP-based
FPGA acceleration). Additionally, we find bugs in Optimus [85] (a
HARP-based FPGA hypervisor).

Second, we examine bugs in hardware designs described in the
ZipCPU website, a popular hardware design blog [2]. We iden-
tify bugs in SDSPI [3] (a library that drives an SD card through
a Serial Peripheral Interface), Xilinx’s two example AXI endpoint
implementations [4, 5], and an FFT implementation [27].

Third, we study bugs found in hardware components from the
most popular FPGA projects on GitHub, including a WiFi con-
troller [6],a GPGPU processor [7], two RISC-V CPUs [8, 9], a Bitcoin
Miner [10], a NIC [11, 12], and two hardware libraries [13, 14].

Finally, we examine a floating-point adder [15] that was pro-

vided to us by a hardware developer upon consultation about their
experiences debugging hardware.
Bug Collection. Bugs in FPGA designs are difficult to collect,
reproduce, and study due to the relative dearth of open-source
hardware. Exacerbating this problem, among the 50 most popular
FPGA projects on GitHub, 56% do not have a publicly-accessible
bug tracker and 88% do not include test cases to reproduce bugs.

Therefore, rather than analyzing hardware bugs from bug track-
ers, we resorted to searching commit histories/issues of FPGA
projects on GitHub to identify hardware bugs. In some cases, we
found bugs through direct communication with developers (Opti-
mus and FADD) and the ZipCPU website.

For each identified bug, we manually inspect related commit
messages and discussions in GitHub Issues to understand the bug’s
root cause and symptoms. Sometimes, the commit messages and

!We select these 20 bugs because they occur in an application/platform with which
we have familiarity. The rest of the bugs could be reproduced with additional effort.

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, Andrew Quinn, and Baris Kasikci

Common Symptoms
B 1 B 1 fB
ug Class ug Subclass Number of Bugs App Stuck DataLoss Incorrect Output External
Buffer Overflow 5 v
Bit Truncation 12 v v
Data Mis-Access | Misindexing 5 v v
Endianness Mismatch 1 v
Failure-to-Update 5 v v v
Deadlock 3 v
- Producer-Consumer Mismatch 3 v v v
Communication -
Signal Asynchrony 10 v
Use-Without-Valid 1 v
Protocol Violation 3 v v v
. API Misuse 3 v
Sementic _
Incomplete Implementation 7 v
Erroneous Expression 10 v

Table 1: The result of our bug classification, including 3 main classes, 13 different subclasses, the number of bug instances
observed in each subclass, and the common symptoms of each subclass.

issues do not provide sufficient information for a thorough under-
standing; in these cases, we inspect the hardware design’s codebase
as well as bug-related patches to understand the bug.

3.1 Bug Classification

We cluster bugs with similar root causes and symptoms into 3
main classes and 13 subclasses. Table 1 shows the classification
results, identifying each bug subclass, the bug class to which each
subclasses belongs, the number of bugs in the study that belong
to each subclass, and the most common symptoms of each bug
subclass.

The three bug classes roughly correspond to the three classes
of software bugs from Li et al’s software bug study [82] and are
as follows: data mis-access bugs (§3.2), which arise when data is
accessed without proper consideration for properties of the data
format and are similar to software memory bugs; communication
bugs (§3.3), which arise when a circuit violates inter-component
communication standards and are similar to software concurrency
bugs; and semantic bugs (§3.4), which arise from other remaining
violations of a circuit’s intended functionality and correspond to
software semantic bugs. Some bugs could be classified into multiple
classes/subclasses (e.g., a buffer overflow may arise because of an
erroneous expression); we assign such multi-class bugs to the most
related and specific subclass to which they could be assigned.

In the rest of this section, we provide a detailed description
of each subclass of bug including their intrinsic properties, root
causes, and common symptoms. We identify similarities between
the hardware bugs and well-studied software bugs, which provide
inspiration for the hardware debugging tools that we propose.

3.2 Data Mis-Access Bugs

Data mis-access bugs occur when the developer accesses data with-
out proper considerations for size, endianness, and other properties
of data. These bugs are similar to software memory bugs [82] (e.g.,
buffer overflows, our first example).

3.2.1 Buffer Overflow. A buffer overflow in an FPGA design oc-
curs when a buffer is accessed with an offset that is greater than

the size of the buffer. We identify 5 real-world examples of buffer
overflow bugs in our bug study. We present a basic code snippet
for simplicity.

1 reg mybuf [N-1:0]; // a buffer with N 1-bit elements

2 always @(posedge clk)

3 mybuf[offset] <= value; // offset >= N

Line 1 defines a buffer named mybuf consisting of N single-bit
elements; mybuf [N-1:0] can be legally indexed from 0 to N — 1
(inclusive). On Line 3, the snippet uses of fset to assign a bit of
mybuf to a value; however, the value of of fset is greater than N
and therefore overflows mybuf.

Accordingly, a buffer overflow in an FPGA design is similar
to a software buffer overflow. However, unlike software buffer
overflow bugs, which can corrupt memory by overwriting adjacent
addresses, there is no notion of address adjacency beyond a buffer
in hardware logic. Instead, hardware buffer overflows yield two
possible outcomes: (1) the highest bits of of fset are truncated, so
an incorrect position in buffer is assigned (when the buffer size is a
power of two), or (2) the assignment is ignored (when the buffer
size is not a power of two). In select cases, hardware developers
rely on truncation of the high bits of offset in their circuits for
correctness, but this approach does not work for common data
structures such as heaps and queues.

Symptoms. Data loss from truncation or ignored assignment.
Fixes. Hardware buffer overflows are fixed similarly to software
buffer overflows: Developers enlarge the buffer or change the be-
havior of the FPGA design to avoid the overflow.

3.2.2 Bit Truncation. Bit truncation bugs in FPGA designs occur
when assigning a variable to another variable with fewer bits. We
identify 12 bit truncation bugs in 7 different FPGA designs.

The software equivalent of a bit truncation bug occurs when
casting a variable to another variable that is represented with fewer
bits. As in software, bit truncation in hardware may be used to
intentionally discard part of a variable, which makes precise bug
detection challenging.

In the following code snippet, lef't is a 42-bit variable and right
is a 64-bit variable whose 42 bits from [47:6] contain meaningful
data. On Line 4, right is cast into a 42-bit variable via 42’ (right)

Debugging in the Brave New World of Reconfigurable Hardware

and then right-shifted by 6 bits before being assigned to left. As a
result, bits [47 : 42] are truncated unintentionally.

reg [41:0] left; // left is a 42-bit register

reg [63:0] right; // bits [47:6] are meaningful

always@(posedge clk)
left <= 42'(right) >> 6;

W o —

Symptoms. An incorrect value or an error (e.g., a page fault) re-
ported by an external monitor (such as an FPGA shell).

Fixes. Depending on the developer’s intentions, one technique for
fixing truncation bugs is to perform shifts before bit-width casts.
In our example, this means the developer would change Line 4 to:
left <= 42'(right >>6;) Another potential fix is to grow the
variables that can cause truncation. For instance, a developer can
change the width of left to 48 bits, which prevents trucation of
meaningful bits in right. In this case, Line 4 would be updated to:
left <= 48'(right) >> 6;.

3.2.3 Misindexing. A misindexing bug occurs when a developer
uses an incorrect index to extract information from a variable. We
identify 5 misindexing bugs in our study. For example, the IEEE-
754 [22] standard defines the binary layout of 32-bit floating point,
where the bits [22:0] are the fraction and the bits [30: 23] are the
exponent. However, in an implementation of floating point adder,
the developer incorrectly extracted bits [23: @] as the fraction in a
floating point adder, which lead to the wrong output value.
Symptoms. Incorrect output or data loss, if the misindexed data
used for a control signal.

Fixes. Misindexing bugs are fixed by correcting the index.

3.24 Endianness Mismatch. Endianness mismatches occur when
an FPGA design assumes the wrong endianness for a particular
piece of data (e.g., register arrays, off-chip DRAM, and disks), similar
to how kernel code may assume the wrong endianness for device
driver data. One instance of endianness mismatch bug is identified
in our study.

In the simplified code snippet below, the circuit stores the least
significant bits of an input in data[7:@] (on Line 2) and the most
significant bits in data[15:8] (on Line 3). As a consequence, the
input is stored in data in the little endian format. On Line 5, data
is passed to a function expecting a big endian input, causing out to
have the wrong result.

// Store data as little endian

datal[7:0] <= least_significant_byte;

datal15:8] <= most_significant_byte;

// Pass data to function expecting big endian input
out <= big_endian_function(data);

[E TSR .

Symptoms. A wrong value following assignment.

Fixes. Developers fix endianness mismatch bugs by manipulating
bytes to account for the endianness difference. For example, the
bug in the above code snippet is fixed by replacing Lines 2-3 with
the following code:

1 datal[7:0] <= most_significant_byte;
2 data[15:8] <= least_significant_byte;

3.2.5 Failure-to-Update. A failure-to-update bug occurs when a
developer forgets to put (including reset and initialization) a signal;
we identify 5 failure-to-update bugs in our study.

Below, we provide a simple example code snippet of a failure-
to-update bug. In this example, input_counter is incremented

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

when the input_valid signal is set, while output_counter is in-
cremented when output_ready is set. However, upon reset, only
input_counter is set to 0, so output_counter may contain incor-
rect data after reset.

1 if (input_valid) input_counter <= input_counter + 1;

2 if (output_ready) output_counter <= output_counter + 1;

3 if (reset) input_counter <= 0;

Symptoms. Invalid output, data loss, or violation of communica-
tion interfaces if the failure-to-reset occurs on ready/valid signals
(§2.3).

Fixes. The developer will reset each relevant signal in the system.

Takeaway #1. Data mis-access bugs can often be localized to a
specific assignment, so stepping through dependency chains/FSM
transitions can help localize the bug.

Takeaway #2. Data mis-access often results in data loss, so data
loss detection (e.g., counting inputs received versus outputs sent)
is crucial for finding bugs.

3.3 Communication Bugs

Communication bugs occur when the developer violates inter-
component communication standards (e.g., inter-module interfaces,
different clock domains, pipeline stages, etc.). They are similar to
concurrency bugs in the software [82].

3.3.1 Deadlock. A deadlock in an FPGA design occurs when two
(or more) variables have a circular control dependency on each other.
Hardware deadlocks are similar to software deadlocks, where a cir-
cular dependency among resources (e.g., locks) causes the program
to stall. In hardware, deadlocks are triggered due to conditional
assignments (e.g., assignments inside if-statements) that execute in
parallel. We identify 3 deadlock bugs in our study.

In the following code snippet, if a and b are both initialized to 0,
the assignment to out on Line 3 will never execute.
1 if (a) b <= 1;
2 if (b) a <= 1
3 if (a) out <= result;
Symptoms. Infinite stall.
Fixes. To fix the bug in the above code snippet, a developer could
initialize either a or b to 1. Fixing a deadlock bug in a complex
circuit is often difficult because it is challenging to identify circular
dependencies.

3.3.2 Producer-Consumer Mismatch. When a collection of con-
sumer registers cannot process the data values produced by a col-
lection of producer registers, a producer-consumer bug occurs. For
example, if the producers yield more valid data in a cycle than
the consumers can process and store, data will be lost. Hence, a
producer-consumer mismatch bug is similar to the classic “bounded-
buffer” [51] producer-consumer problem in software, in which
consumer threads can only process/store a limited quantity of out-
put from producer threads. We identify 3 real-world examples of
producer-consumer mismatch bugs in our study.

For a simple example, consider the following code snippet that
uses a valid interface (§2.3), where producers generate and overwrite
x and y at every cycle. If both x_valid and y_valid are true in the
same cycle, then the value of y may be lost, since only the code on
line 1 will execute.

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

1 if (x_valid) out <= x;

2 else if (y_valid) out <= y;

Symptoms. Data loss, invalid output, or an infinite stall (if the
consumer FSM logic waits for a lost producer value).

Fixes. In software, locks and condition variables are used to force
producer threads to wait until the consumer threads are ready
to receive new values. In hardware, an analogous solution is to
pause a producer by adding a back-pressure signal throughout the
circuit. However, pausing a producer is invasive, since nearly all
components of the circuit must be altered to accommodate the
pause. Instead, an easier solution is creating a larger buffer for pro-
duced values that have not been consumed, assuming the maximum
needed queue size is bounded.

3.3.3 Signal Asynchrony. A signal asynchrony bug occurs when
two variables that are supposed to be used together—such as a
data variable and its valid/backpressure interface signals (§2.3) or
the two operands of a mathematical operation—are not updated
synchronously. We identify 10 signal asynchrony bugs in our study.
The following code snippet shows a simplified example of a sig-
nal asynchrony bug. The code responds to requests from a module
that requires a minimum 2 cycle difference between requests and
responses. Accordingly, upon receiving a request, the code buffers
the response (calculated in a single cycle) in buffered_response
for an extra cycle (Line 1), before outputting final_response
(Line 2). Unfortunately, the final_response_valid signal (indi-
cating the validity of the response data) is set immediately fol-
lowing receipt of request (Line 3), meaning final_response and
final_response_valid are out of sync. For simplicity, we omit
the code resetting final_response_valid to 0.
1 if (request) buffered_response <= input_data + 1;
2 final_response <= buffered_response;
3 if (request) final_response_valid <= 1;
Symptoms. An incorrect output value.
Fixes. The signal asynchrony bug in the snippet can be fixed by
properly delaying the final_response_valid signal to be syn-
chronous with the final_response signal. For instance, the devel-
oper may replace Line 3 with the following lines to fix the bug.

1 if (request) delayed_response_valid <= 1;
2 final_response_valid <= delayed_response_valid;

3.3.4 Use-Without-Valid. A use-without-valid bug occurs when a
data variable guarded by a valid signal (§2.3) is used when the valid
signal is in an invalid state. Use-without-valid bugs are similar to
signal asynchrony bugs, but occur when data is used erroneously,
as opposed to signal asynchrony bugs which occur when data is
updated erroneously. We identify one instance of use-without-valid
bug in our study.

In the following code snippet, if data is a variable using a valid
interface (e.g., with data_valid as its valid signal), sum may not
be calculated correctly because it can use an invalid data as input.
1 // data is associated with a valid variable (data_valid)

2 sum <= sum + data;

Symptoms. An incorrect output value.

Fixes. Developers fix use-without-valid bugs by updating their
code to use the correct valid interface. For example, the bug in the
above code snippet is fixed by replacing Line 2 with the following
two lines:

Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, Andrew Quinn, and Baris Kasikci

1 if (data_valid) sum <= sum + data;
2 else sum <= sum;

Takeaway #3. Given the proliferation of FSMs, circular depen-
dencies, and infinite stalls in communication bugs, localizing the
bugs would be easier with ability to record key states and statis-
tics at arbitrary points in the circuit.

Takeaway #4. Like data mis-access bugs, debugging communi-
cations bugs would benefit from localized data loss detection.

3.4 Semantic Bugs

Semantic bugs occur due to remaining violations that cause the
circuit to incorrectly perform its intended functionality. Semantic
bugs include bugs where a developer does not correctly imple-
ment the entire high-level circuit specification (e.g., the protocol or
FSM logic), misuses the API of a pre-implemented module, or does
not implement special cases in complex logic. They are similar to
semantic software bugs [82].

3.4.1 Protocol Violation. Components of an FPGA design (e.g.,
modules) communicate through industry-standard communication
protocols such as AXI4 [35]. However, such protocols are complex
and contain corner cases that are difficult to cover in testing. If a
developer fails to handle all cases correctly, a protocol violation
occurs and escapes from simulation-based testing. We identify 3
instances of protocol violations.

Symptoms. Invalid outputs, infinite stall, or a protocol violation
error reported by an external monitor (e.g., an FPGA shell).
Fixes. Fixing protocol violations requires correcting a mismatch
between the high-level specification and implementation or adding
logic for an unhandled corner case.

3.4.2 API Misuse. FPGA designers use a hierarchy of modules
to organize code and simplify the FPGA design process. An API
misuse bug occurs when developers fail to use a pre-implemented
module or IP block correctly. A hardware design may have an API
misuse bug even if it implements all the involved communication
protocols correctly, as it may pass wrong parameters to the module
or configure it improperly. We identify 3 API misuse bugs in our
study.

The following code snippet shows an example of an API misuse

bug. Suppose that a developer wants to determine whether signal
a is greater than signal b using a module, greater_than, which
takes two parameters, x and y, and returns x>y. However, when
instantiating the module, the developer erroneously connects signal
a to the module’s input port y and signal b to the module’s input
port x. Consequently, the module instance (i.e., a_greater_than_b)
computes b>a instead of a>b, resulting in an incorrect output value.
1 // The greater_than module calculates whether x>y
2 greater_than a_greater_than_b(.x(b), .y(a), .result(out));
Symptoms. An incorrect output value.
Fixes. Fixing API misuse bugs involves correcting the mismatch
between a module’s API definition and how the module is used,
usually by changing signal connections and the module’s configu-
ration.

3.4.3 Incomplete Implementation. Hardware designs can be exceed-
ingly complex, so hardware developers omit logic to handle corner
cases, either intentionally or unintentionally. Such omissions are

Debugging in the Brave New World of Reconfigurable Hardware

incomplete implementation bugs and often occur in corner cases
that are difficult to trigger during testing. We identify 7 instances
of incomplete implementation bugs in our study.

Symptoms. Incorrect and invalid output.

Fixes. Developers fix incomplete implementation bugs by imple-
menting the missing functionality, which may involve a redesign of
certain components of the hardware design. Developers may also
add additional test cases to cover the newly-added code.

3.4.4 Erroneous Expression. An erroneous expression bug occurs
when hardware developers use a wrong expression in a control-
flow statement (e.g., an if-statement) or data-flow statement (e.g.,
an assign-statement). Erroneous expression bugs are different from
incomplete implementation bugs in that they involve an incorrect
expression rather than omitted expressions. A wrong expression
in a control-flow statement steers the hardware’s control-flow to
a wrong direction; a wrong expression in a data-flow statement
generates an incorrect data value, which is used in other statements.
In our study, we include 5 erroneous expression bugs in control-flow
and 5 such bugs in data-flow.

Symptoms. Incorrect and invalid output.

Fixes. Developers fix erroneous expression bugs by correcting the
erroneous expression in the control-flow or the data-flow.

Takeaway #5. Corner cases that trigger semantic bugs are dif-
ficult to detect, especially in simulation; runtime data recording
enables debugging these scenarios.

4 DESIGN OF FPGA DEBUGGING TOOLS

Our bug study in §3 demonstrates that FPGA debugging can ben-
efit from debugging tools similar to those used in software (e.g.,
flexible logging capabilities and program analysis). In contrast, past
hardware debugging tools have emphasized airtight verification,
and do little to help a developer diagnose the cause of a bug after
its symptoms have been observed.

Therefore, we propose a set of hybrid static/dynamic analysis
tools that simplify root cause diagnosis in FPGA designs. In this
section, we describe the tools; the evaluation demonstrates their
applicability to the bugs in our study (§6).

First, we unify simulation and on-FPGA debugging with Signal-
Cat (§4.1). While “printf”-like statements have traditionally only
been available in HDL simulators or required platform-specific IP
to implement on FPGAs, SignalCat synthesizes these statements
for actual FPGA deployments across multiple platforms. The infras-
tructure provided by SignalCat serves as a cornerstone upon which
developers can build symptom-specific tools without needing to
consider the execution context of the circuit and applies directly to
all 5 of the takeaways from our bug study.

Using SignalCat, we build three monitoring tools that gather
targeted information based upon insights from our bug study. First,
FSM Monitor (§4.2) statically detects FSM variables and records
them at runtime, automatically reconstructing FSM state-transition
traces to aid developers in debugging. Second, Dependency Mon-
itor (§4.3) statically analyzes the dependencies of user-specified
variables and dynamically records the updates to each dependency,
allowing developers to backtrace and localize the source of an in-
correct output-of-interest. Third, Statistics Monitor (§4.4) provides

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

counters for user-specified events, helping users identify bugs re-
flected in statistical metadata (e.g., data loss is often indicated by
fewer outputs generated than inputs received).

Finally, given the commonality of data loss in our bug symptoms,
we develop an additional tool for the event that a developer sus-
pects or detects data loss. In particular, LossCheck (§4.5) pinpoints
the location of data loss within a hardware design. LossCheck stati-
cally analyzes an FPGA design and instruments it with logic that
dynamically checks for data loss in suspected locations.

4.1 SignalCat for Unified Logging

Our bug study shows that hardware debugging would benefit from
the ability to log arbitrary runtime information, just as software
debugging does [121]. Today, while developers can use debug state-
ments (e.g., $display) to log values during HDL simulation, similar
tools are not pervasively available on deployed FPGAs without spe-
cific FPGA virtualization or IO support [80, 97]. In lieu of generic
“printf”-like statements, developers typically use vendor-provided
data recording IPs (e.g., Intel SignalTap [62] and Xilinx ILA [119])
to record a subset of variables when debugging a deployed FPGA
design. Thus, developers must maintain two different versions of
their FPGA design when debugging, one that uses simulation-based
deubgging primitives, and one that uses on-FPGA primatives.

SignalCat bridges this gap by unifying simulation-based and
on-FPGA debugging through automatic generation of on-FPGA
recording logic (e.g., using FPGA vendors’ IPs) from debugging
statements (e.g., $display). SignalCat incorporates a static and
a dynamic component. The static component analyzes the path
constraints of debugging statements and generates an IP instance
for on-FPGA data collection, while the dynamic component records
the trace via the IP instance in an on-FPGA scenario.

SignalCat searches the abstract syntax tree (AST) of an FPGA de-
sign for debugging statements. For each such statement, SignalCat
determines the arguments (i.e., the variables that the developers
want to print) and the path constraint (i.e., the conditions under
which the statement is reached) of the statement. Then, SignalCat
generates an instance of a vendor-provided data recording IP to
record the collected arguments and path constraints, encoding path
constraints as a 1-bit bool per debugging statement. At each cycle,
The system stores all arguments and encoded path constraints in
the recording IP buffer if at least one path constraint is true. Signal-
Cat reconstructs and prints debugging logs after execution allowing
the same format for on-FPGA debugging and simulation.

SignalCat requires that developers specify the size (i.e., the num-
ber of data entries) of the IP’s recording buffer and events that start
and stop data recording (e.g., when the first packet arrives or an
assertion is triggered). Developers can also configure the buffer to
capture a fixed interval before and/or after the user-provided event.

Since SignalCat provides a single interface for simulation and
on-FPGA logging, developers of debugging tools can instrument an
HDL design with a “printf”-like statement and support simulation
and on-FPGA debugging with a single code-base. In fact, all of
our subsequent debugging tools (§4.2-§4.5) leverage SignalCat for
runtime data recording.

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

4.2 FSM Monitor for State Machine Traces

Hardware circuits often use finite state machines (FSMs) in their
design (§2.3). When this design paradigm is used, an FSM (state-
transition) trace provides a user-friendly abstraction for circuit
execution and debugging, especially in comparison to a low-level
waveform (i.e., a graph of all signals at every cycle). Therefore, we
propose FSM Monitor to help developers automatically generate
FSM traces. FSM Monitor detects FSMs in a circuit and generates
logic that monitors state changes for each detected FSM.

Hardware FSMs employ fixed code patterns that are detectable
with static analysis [32, 118], unlike software FSMs, which are
difficult to detect without complex online tracing tools [39]. In an
FSM, a state transforms to another state when certain condition(s)
are satisfied. State transitions usually conditionally assign (e.g., an
assignment inside a switch case) to FSM variables and include FSM
variables as a part of the condition. Additionally, circuits rarely
perform mathematical operations (e.g., addition or subtraction) on
FSM variables and rarely select individual bits of FSM variables.

Accordingly, FSM Monitor traverses the abstract syntax tree
(AST) of a circuit and searches for FSM variables by using the
aforementioned heuristics. For each identified FSM variable, FSM
Monitor generates Verilog code that displays a log message when
the variable is updated.

FSM Monitor’s heuristics can incur both false positives and false
negatives, but we find a high degree of accuracy in our evaluation
(of the 32 manually-identified FSMs in our benchmark suite, FSM
Monitor has 0 false positives and 5 false negatives). Furthermore,
more sophisticated FSM detection approaches, like those used by
the Intel and Xilinx synthesizers, could further increase accuracy.
Finally, FSM Monitor allows developers to patch mistakes by adding
undetected FSMs and filtering out FSMs that are inaccurate or
irrelevant for their current bug.

4.3 Dependency Monitor for Provenance
Tracking

Our bug study indicates that the only symptom of many hardware
bugs is one or more incorrect output values (Table 2). Since the root
cause of a bug can occur many cycles prior to output generation,
it is useful to build the dependency chains for a specific variable
and trace updates to variables in the dependency chain during
execution.

We therefore build Dependency Monitor to statically analyze
the dependencies of a variable and generate the necessary logic to
monitor their updates. Dependency Monitor first statically finds all
registers that may propagate to a variable v within the previous k
cycles (where v and k are specified by the developer). Dependency
Monitor then generates logic that logs each update to variables in
the dependency chain at runtime.

Dependency Monitor handles partial assignments (i.e., assign-
ment to a strict subset of a variable’s bits) by logically splitting
a partially assigned variable to multiple variables. Similarly, De-
pendency Monitor splits constant-indexed arrays into individual
variables. If an array is accessed with at least one variable index,
Dependency Monitor considers the whole array as an individual
register and an assignment to/from the array as a special assignment
that only occurs when the index matches. To track dependencies

Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, Andrew Quinn, and Baris Kasikci

through a blackbox IP, Dependency Monitor requires the developer
to provide a model of data and control dependencies within the IP.
An IP model describes the relationship between the input signals
and the output signals of the IP, which is included in the IP specifi-
cation and typically well-understood by developers before using an
IP. Developers can reuse IP models across projects that share the
same IPs.

By default, Dependency Monitor analyzes both control and data
dependencies; however, it can be configured to only analyze one
type of dependency.

4.4 Statistics Monitor for Counting
Events-of-Interest

Collecting hardware statistics (i.e., event counters) provides insight
into program execution without requiring cycle-by-cycle record-
ing of numerous variables. Furthermore, per-component (e.g., per
pipeline stage) counters help a developer localize a statistical anom-
aly (indicative of a bug) to a small region of a complex circuit.

Accordingly, we propose Statistics Monitor, a tool to help devel-
opers collect statistics for events of interest when debugging an
FPGA design. Statistics Monitor generates Verilog code that counts
occurrences of single-bit signals specified by a developer and adds
logging code that emits messages when counts change.

Statistics Monitor is particularly useful when developers suspect
that 1) it is too expensive (i.e., with regard to resource consump-
tion) or unnecessary to record all variables of interest on an FPGA
deployment (especially cycle-by-cycle), and 2) the bug’s symptoms
can be inferred via statistical anomalies (e.g., unexpected differences
between valid input and valid output counts, indicating potential
data loss).

4.5 LossCheck for Precise Data Loss
Localization

While Statistics Monitor may indicate the presence of data loss
(among other bug symptoms) and may localize it to a portion of
the circuit, the pervasiveness of bugs manifesting as data loss in
our bug study indicates that precise data loss localization would be
helpful for hardware debugging.

We therefore design LossCheck, a tool that localizes the root
cause of data loss symptoms. A developer specifies a SOURCE reg-
ister, a SINK register, and a valid signal for SOURCE (§2.3). Then,
LossCheck instruments the HDL code to monitor the propagation
of valid data between SOURCE and SINk. If a valid register is over-
written before its value is propagated from SOURCE to SINK (i.e.,
overwritten before being used as a right-hand variable), LossCheck
indicates potential data loss.

We note that the tracking of data propagation logic in Loss-
Check shares similarities with that of Dependency Monitor. How-
ever, unlike Dependency Monitor, LossCheck does not yield a trace
of updates to variables of interest in a dependency chain. Rather,
LossCheck indicates the precise location of a potential data loss.
Ultimately, LossCheck’s dynamic analysis conveniently enables
automatic localization of data loss bugs without recording a large
number of data propagation events.

We now describe how LossCheck statically analyzes HDL code
(§4.5.1), instruments the code (§4.5.2), and dynamically detects data

Debugging in the Brave New World of Reconfigurable Hardware

loss while mitigating false alerts (§4.5.3). We then discuss the limi-
tations of LossCheck (§4.5.4).

4.5.1 Static Analysis of Data Propagation. LossCheck statically
analyzes data propagation in an FPGA design and builds a table of
propagation relations. It uses these relations to calculate metadata
variables that indicate potential data loss (§4.5.2).

A propagation relation X ~s, Y implies that the data value
stored in register X will propagate to register Y when the condition
o is satisfied. In other words, the value stored in Y at cycle k + 1
(i.e., Yr41) will be influenced by the value stored in X at cycle k (i.e.,
Xp), if o is true at cycle k (i.e, oy).

At a high level, LossCheck uses logic similar to Dependency
Monitor to detect propagation relations and thereby build the prop-
agation relation table. More specifically, LossCheck first identifies a
set of data propagation sequences through which a value stored in
SOURCE can propagate to SINK. LossCheck then analyzes the con-
trol and data dependencies for each register R in the propagation
sequences, and adds each identified propagation relation into the
table.

We use the following code snippet as a running example of how
LossCheck works, where in is the SOURCE register, out is the SINK
register, and in_valid is the valid bit for in:

1 always @(posedge clk) begin
2 // buggy code (b's value can be lost)
3 if (cond_a) out <= a;

4 else if (cond_b) out <= b;

5 if (in_valid) b <= in;

6 end

To analyze the dependencies of b in this example, LossCheck first
detects the propagation sequence: in — b — out. LossCheck then
analyzes the dependencies for b and out, building the following
table with 3 propagation relations.

Line | Propagation Relations
3 a “Wcond_a Out
4 b ~_cond_ancond_b OUt
5 in ~in_valid b

Similar to Dependency Monitor, if the source code for an IP is
unavailable, LossCheck inserts propagation relations into the table
based upon developer-provided IP models.

4.5.2 Instrumentation of HDL Code. LossCheck uses the propaga-
tion relations to guide circuit instrumentation that enables data loss
detection at runtime. The instrumentation process of LossCheck
contains two phases: 1) inferring various loss-related metadata for
each register in each propagation sequence, and 2) inserting corre-
sponding logic to check for potential data loss via this metadata.
Assignment, Validity, and Propagation Statuses. Intuitively,
potential data loss occurs when the assignment of a valid register
occurs before its value is propagated to another register, thereby
overwriting (unused) valid data. So, to detect potential data loss for a
register R, LossCheck generates assignment A(R), valid-assignment
V(R), and propagation P(R) shadow variables for the register.

For some cycle k, a register’s assignment status A(R)y indicates
whether R is assigned a value during cycle k. The value of A(R)y is
inferred at runtime from the propagation relation table. Specifically,
A(R)y evaluates to true if at least one register R’ propagates its
value to R at cycle k. More formally, the condition o for some
propagation relation R” ~»4 R must be satisfied at cycle k.

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Similarly, V(R); indicates whether R is specifically assigned
a valid value during cycle k. V(R)y is therefore determined by
combining the logic for calculating A(R); with runtime information
about data validity. In simple cases (such as our code example), data
validity status is trivially available for the variable of interest (e.g.,
via a corresponding valid signal); in more complex cases, LossCheck
calculates validity status for each variable of interest according to
the initial input validity value and propagation relations.

Finally, a register’s propagation status P(R)y indicates whether
R is used to compute another register’s value during cycle k. Similar
to how A(R)j represents assignment to register R, P(R) represents
assignment from register R. Thus, P(R); evaluates to true if R can
propagate its value to at least one register R’ at cycle k (i.e., if the
condition o for some propagation relation R w4 R’ is satisfied at
cycle k).

After LossCheck determines the values of A(R), V(R), and P(R),
it instruments the circuit with the logic to compute the values of
these variables at each cycle. Below, we apply these rules to variable
b from the original code snippet:

1 always @(posedge clk) begin

2 // update shadow vars for next cycle
3 A_b <= in_valid;

4 V_b <= in_valid;

5 P_b <= ~cond_a & cond_b;

6 end

Lines 3-5 calculate the values of A(b), V(b), and P(b) for the

next cycle based on the propagation relations. We note that, in this
example, A(b) = V(b) because assignment to b is guarded by the
valid signal in_valid.
Inserting Checking Logic. Given a register’s shadow variables,
data loss for register R at cycle k occurs if the following 3 conditions
hold: (1) R is assigned at cycle k—i.e., A(R)r = true, (2) R is not
simultaneously propagated at cycle k—i.e., P(R) = false, and (3) R
was assigned a valid value in some previous cycle, which has not
yet propagated.

The first two conditions are trivially calculated for R at the cur-
rent cycle via aforementioned logic. For the third condition, Loss-
Check keeps track of an additional “Needs-Propagation” variable
N(R), which is set to true when a valid value is assigned to R and
reset to false when the value propagates. In mathematical terms,
N(R)o = false (since no valid value has been assigned at cycle 0),
and for k > 0,

N(R)k = V(R)g—1 V [N(R)g—1 A ~P(R)je_1] . (1)
Potential data loss at cycle k is then calculated as:
Loss = A(R)p A =P(R)x A N(R)f . (2)

Notably, while the shadow variables (i.e., A(R), P(R), and N(R))
have a unique value at each cycle, k, LossCheck can detect loss in R
at cycle k using only the most recent value of each shadow variable,
(i.e.,A(R)g, P(R)g, and N(R)). Consequently, the amount of state
that LossCheck tracks is bounded, so LossCheck can be realized on
hardware.

LossCheck generates code that calculates N (R) and checks Equa-
tion 2. The instrumented circuit that checks for data loss on b is:

1 always @(posedge clk) begin

// calculate N_b for next cycle from shadow vars
if (reset) N_b <= 0;

else N_b <= V_b | (N_b & ~P_b);

// check for data loss at current cycle

aoe v

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

6 if (A_b & ~P_b & N_b)
7 $display("LossCheck: potential data loss at b");
8 end

Lines 3-4 calculate N (b) for the next cycle according to Equation
1, and Lines 6-7 perform the check for potential data loss at cycle
k based on Equation 2.

4.5.3 Filtering False Positives and Final Analysis. Notably, Loss-
Check’s design can generate false positives due to an intentional
data drop (as opposed to an unintentional data loss). For example,
an FPGA may intentionally drop a network packet input that fails
a checksum; LossCheck would flag the packet as data loss. Accord-
ingly, LossCheck uses an FPGA design’s test cases—presumably
passed during simulation testing— as “ground-truth” test programs;
LossCheck suppresses warnings triggered by these test cases. We
note that pre-existing test programs for the open-source designs
in our study filter 23/24 false positive registers (i.e., those with
intentional data drops).

Like the monitors, LossCheck leverages SignalCat to transform
the filtered debugging statements (indicating unintentional data
loss) into log messages for either simulation or on-FPGA scenarios.
Thus, if potential data loss is detected for some register R, a log
message indicates R as the source of the loss, and the bug can be
precisely localized.

4.5.4 Limitations of LossCheck. While LossCheck can accurately
localize data losses to a specific register, it cannot distinguish inten-
tional data drops from unintentional data losses. As a consequence,
if an unintentional data loss and an intentional data drop occur at
the same place, the data loss may be filtered by LossCheck, resulting
in a false negative. We identify a single such false negative (out of
7 data loss bugs) in our testbed (§6.3).

5 IMPLEMENTATION

We build our static analyses using Pyverilog [108], a toolbox for
Verilog analysis and instrumentation. We use Pyverilog’s dataflow
analysis framework to analyze data dependencies and its Verilog
code generator to output the instrumented circuit. Furthermore,
to analyze circuits developed in SystemVerilog (i.e., an extension
of Verilog with more language features), we augment Pyverilog
to use the more modern SystemVerilog parser of Verilator [105],
a SystemVerilog simulator. Verilator parses SystemVerilog files
and performs optimizations such as inline expansion and module
instantiation, resulting in an analysis-friendly abstract syntax tree
(AST) that Pyverilog can analyze. We modify and add 269 lines of
C++ code and 1,750 lines of Python code to integrate Verilator and
Pyverilog.

We implement the debugging tools (i.e., SignalCat, FSM Monitor,
Dependency Monitor, Statistics Monitor, and LossCheck) as a col-
lection of analysis and instrumentation passes on Pyverilog ASTs.
These passes are implemented with 3,797 lines of Python code.

Dependency Monitor and LossCheck require developers to im-
plement a model that describes the relation between the inputs
and outputs for each closed-source IP. In our testbed, three IPs are
used: altsyncram, a block RAM implementation; scfifo, a single
clock queue implementation; and dcfifo, a double clock queue
implementation. We implement the models for these IPs in Python
and Verilog, resulting in 394 lines of code in total.

Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, Andrew Quinn, and Baris Kasikci

6 EVALUATION

In this section, we first present our testbed (§6.1) and experimental
setup (§6.2). Then, we evaluate the effectiveness of our debugging
tools at helping developers debug the bugs in our study (§6.3).
Finally, we present the resource usage and performance overhead
when using the debugging tools to diagnose the study bugs (§6.4).

6.1 Testbed of Reproducible FPGA Bugs

We built and released a testbed consisting of 20 bugs that we repro-
duced to facilitate further study of FPGA bugs and FPGA debugging
tools [1]. The bugs span the 3 major classes of bugs we identified—
data mis-access, communication, and semantic—and multiple de-
velopment platforms (e.g., Intel HARP and Xilinx). For each bug,
we identify the subclass, application, symptom, and the tools that
are helpful when debugging each bug, as shown in Table 2. The
artifact also includes a simplified code snippet for each bug for
explanation purposes and provides instructions for reproducing
the bug in a push-button manner with the open-source Verilator
simulator [105] . Using a simulator eliminates the need for testbed
users to spend substantial time and effort acquiring design-specific
knowledge that would otherwise be necessary to reproduce each
bug.

Although each bug in the testbed is reproducible on real hard-
ware, but, we opt to reproduce the bugs in Verilator for 3 reasons.
First, a Verilator-compatible testbed demonstrates that both the
fundamental properties of the bugs and the logic of our debugging
tools are broadly-applicable in FPGA development. Second, other
developers can reason about these bugs and a range of development
platforms without purchasing expensive hardware. Third, Verila-
tor simplifies the environmental conditions required to reproduce
each bug—crucially, without changing the buggy programs them-
selves. For the key platform-specific recording IP primitives used
by SignalCat (SignalTap [62] and ILA [119]), we provide support
for simulating their behavior. Unless specifically mentioned, the
buffer size for these data recording IPs is fixed at 8,192 entries.

6.2 Experimental Setup

Platform for Overhead Measurement. We evaluate the resource
and performance overhead of our debugging tools using Quartus
17.0 [17] and Vivado 2020.2 [19], the official synthesizers for Intel’s
and Xilinx’s FPGAs, respectively. We synthesize all Intel HARP-
specific designs to the HARP platform [60] (using Quartus), with the
remaining designs synthesized to the Xilinx KC705 [21] platform
(using Vivado).

Use Cases. We evaluate our tools in two use cases. In the first
case, we use SignalCat and the three monitors (FSM Monitor, De-
pendency Monitor, and Statistics Monitor) to debug all bugs in our
study; in the second one, we use LossCheck to localize the source
of data loss symptoms for the 4 relevant bugs. Table 2 shows the
tools used during the debugging process of each bug.

6.3 Effectiveness of Debugging Tools

We evaluate the effectiveness of our debugging tools by assessing
how much they simplify root cause diagnosis for the bugs in our
study (§3). An experienced developer could diagnose, localize, and

Debugging in the Brave New World of Reconfigurable Hardware ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

.. Symptom Helpful Tools

1D Subclass Application Platform Stuck Loss Incor. Ext. | SC FSM Stat. Dep. | LC
D1 RSD HARP v v v v v v
D2 Grayscale HARP v v v v v v
p3 | Buffer Overflow optiymus HARP 7 7 VY VAV IV
D4 Frame FIFO Generic v v v v v
D5 Bit Truncation SHAS512 HARP v v v v v

D6 FFT Generic v v v

D7 Misindexing FADD Generic v v

D38 AXI-Stream Switch Generic v v

D9 Endianness Mismatch SDSPI Generic v v

D10 SHA512 HARP v v v v

D11 Failure-to-Update Frame FIFO Generic v v v

D12 Frame FIFO Generic v v v

D13 Frame Length Measurer | Generic v v v v

C1 Deadlock SDSPI Generic v v v v

Cc2 Producer-Consumer Mismatch | Optimus HARP v v v v v v v
C3 Signal Asynchrony SDSPI Generic v v

C4 AXI-Stream FIFO Generic v v v
S1 Protocol Violation AXI-Lite Demo Xilinx v v

S2 AXI-Stream Demo Xilinx v v

S3 Incomplete Implementation AXI-Stream Adapter Generic v v

Table 2: The testbed of reproducible bugs, including their classes, subclasses, platforms, symptoms, and which of our new tools
help localize their root cause. Bug D1-D13 are data mis-access bugs, Bug C1-C4 are communication bugs, and Bug S1-S3 are
semantic bugs. A “Generic” platform means that the application does not target on a specific platform and can be synthesized
to different FPGAs. For bug symptoms, “Stuck” indicates a symptom of infinite waiting; “Loss’ indicates a data loss; “Incor.”
means the FPGA design gives an incorrect output; and “Ext” means an external monitor (such as an FPGA shell) reports an
error. For helpful tools, “SC” stands for SignalCat; “FSM” stands for FSM monitor; “Stat” stands for statistics monitor; “Dep.”
stands for dependency monitor; and “LC” stands for LossCheck.

fix the bugs in our study without extra tooling; this is what oc-
curred when these bugs were first reported. But, we find that the
localization process is simpler when using our tools. We specifi-
cally answer two questions (1) How often is each tool useful when
debugging the bugs in our study? and (2) How much work do the
debugging tools automate? Additionally, we provide a case study
that demonstrates how a developer would use the tools to localize
a data loss bug in an Intel HARP application.

SignalCat and Monitors. SignalCat is useful for debugging every
bug in our study, serving as the fundamental cross-platform logging
infrastructure. Each of the 3 monitors assists with debugging at
least four bugs from the testbed. During debugging (with SignalCat
and the 3 monitors), we often find FSM Monitor to be the most
helpful in an initial debugging iteration when one or more FSMs
were present in the design. Statistics Monitor is generally most
usefully deployed in subsequent iterations, where developers try to
narrow down the search space of a bug’s root cause. Finally, upon
encountering a variable with an unexpected value, SignalCat is
useful for directly recording updates to the specific variable, while
Dependency Monitor supplements this with an analysis of the
variable’s dependencies. On average, SignalCat and the monitors
generate and insert 72 lines of Verilog code to help with root cause
localization.

LossCheck. LossCheck precisely locates the root cause of data
loss (i.e., a specific register) for 6 out of 7 bugs exhibiting data loss
(i.e., Bugs D1, D2, D3, D4, C2, and C4) in our study. For 2 of these
bugs (D4 and C4), LossCheck uniquely identifies the root cause

of the bug without using the false positive filtering technique in
§4.5.3. For 3 of these bugs (D2, D3, and C2), LossCheck uses the false
positive filtering technique to localize the bug without reporting
false positives. For the Reed-Solomon decoder buffer overflow (D1),
LossCheck reports 1 false positive (i.e., it mistakenly identifies an
intentionally dropped register as unintentional data loss), because
the developer-provided test case does not perform an intentional
data drop at the mis-reported register, so LossCheck does not silence
the warning. LossCheck cannot localize the data loss in Bug D11
because the unintentional data loss occurs in a register where the
data value may be dropped intentionally under certain conditions;
as a result, the data loss is mis-filtered by the LossCheck’s false
positive filtering. LossCheck generates and inserts 522-19,462 lines
of Verilog code to analyze data propagation and detect data loss at
runtime, which helps developers avoid the time-consuming manual
implementation of data loss checking logic.

Case Study: Debugging Grayscale’s Buffer Overflow. We de-
scribe a case study in which a developer uses the new tools to debug
a buffer overflow in the Grayscale application [26]. Grayscale is an
end-to-end application written for Intel HARP [60] that includes an
FPGA accelerator and a software component. The CPU-side soft-
ware component reads an image from the file system and programs
the FPGA accelerator to read the image from CPU-side memory,
perform the grayscale transformation, and write the result back
to CPU-side memory. The software component identifies that the
acceleration task hangs when the bug occurs.

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, Andrew Quinn, and Baris Kasikci

v 4.31 56 2 —— D1
= i S o
2 %-‘61 S S D2
=& x 41— « + — % DR * * — —— D3
%0-8‘ D x > o § :1‘: - = ¥ 5 § —¥— D5

0.4 £ 29 = = S e . —e— D10

. . ° ° P— ° °)
ké 0.2 =) S — C2
= ; T T T 20 T T T 0= T T T
@ 1K 2K 4K 8K 1K 2K 4K 8K 1K 2K 4K 8K
E S 8- 6 —— D4 —— D13
'_g § 6 8 D6 Cc1
= >, = — D7 —— C3
s o 4 x —— D8 —— C4
= 3 e —— D9 s1
+~ 4 mz‘

X 21" - - v 3 * - » * —— D11 —¥%- S2
2 ol : : J 7ol : : : D12 —— S3
@ 1K 2K 4K 8K 1K 2K 4K 8K

Figure 2: The resource overhead of manual debugging using SignalCat, FSM Monitor, Statistics Monitor, and Dependency
Monitor on Intel HARP (top) and Xilinx KC705 (bottom) platforms. Resource overheads (y-axes) are shown in terms of block
RAM, registers, and logic (i.e., the three types of resources on an FPGA) with an increasing recording buffer size (x-axes). The

buffer size and block RAM overhead are shown in log-scale.

Grayscale consists of multiple FSMs, so the developer first uses
FSM Monitor to identify the state of each FSM when the hang
occurs. The developer re-executes the application to trigger the
bug. FSM Monitor’s output identifies that the accelerator finished
reading data from the CPU, since the read FSM—which controls
how the accelerator reads CPU memory—is in the RD_FINISH state.
However, the circuit has not finished writing data to the CPU, since
the write FSM—which controls how the accelerator writes CPU
memory—is in the WR_DATA state. The developer concludes that the
hang occurs in write-related logic.

Next, the developer inspects the state transition logic of the
write FSM. They find that the state of the write FSM only transfers
from WR_DATA to WR_FINISH after the accelerator writes the whole
transformed image to the CPU-side memory. Since the accelerator
has already read all data from the CPU (i.e., the read FSM is in the
RD_FINISH state), the hang indicates data loss in the accelerator dur-
ing the propagation between a memory read and its corresponding
memory write.

Finally, the developer uses LossCheck to identify the source
of the data loss. They re-execute the application with LossCheck
enabled. LossCheck identifies the source of the data loss as a specific
register in the accelerator.

6.4 Efficiency of Debugging Tools

In this section, we assess the efficiency of the debugging tools by
measuring (1) the additional resources consumed when circuits
are instrumented using our tools—i.e., the resource overhead, and
(2) the necessary clock frequency slowdown stemming from the
augmented logic that must execute each cycle—i.e., the runtime
performance overhead.

SignalCat and Monitors. Figure 2 shows the resource overhead
(in terms of block RAM, registers, and logic) of SignalCat and the
monitors, applied to each buggy design. The most significant re-
source overhead lies in block RAM usage, which increases linearly

as the developer-specified recording buffer size increases. The reg-
ister and logic overheads tend to be stable for each bug, regardless
of the recording buffer size. Among our benchmarks, the two bugs
on the Optimus hypervisor and the Bit Truncation bug on the FFT
accelerator incur the largest register and logic overheads consum-
ing approximately 0.23% and 0.3% of register and logic resources
on the Intel platform (3.08% and 1.99% on Xilinx).

Runtime performance overhead is only incurred for 1 design;
namely, Optimus fails to achieve its targeted clock frequency (400
MHz) after the debugging instrumentation. As a result, we reduce
its frequency to 200 MHz for debugging. While SHA512 also targets
a 400 MHz frequency, it still achieves this frequency after instru-
mentation. Other designs target a 200 MHz frequency and likewise
do not incur performance overhead to account for debugging logic.
LossCheck. Figure 3 shows LossCheck’s resource overhead in
terms of registers and logic for the data loss bugs in our study.
LossCheck’s instrumentation uses less than 1.7% of the total register
and logic resources for the four data loss bugs on the Intel platform,
and uses less than 0.7% of total resources for the two data loss bugs
on Xilinx.

As with SignalCat and the monitors, LossCheck reduces the
frequency of Optimus from 400 MHz to 200 MHz. The 200 MHz
target frequency of other FPGA designs remain unchanged.

7 RELATED WORK

Hardware Bug Studies. HardFails [50] performs a bug study of
security bugs in CPUs that include real-world and synthetic bugs
and creates a testbed by injecting bugs into an open-source CPU
design. HardFails only includes security bugs, which are represen-
tative of few bugs that make it to production [54]. In contrast, our
study examines real-world functionality bugs in FPGA designs.

Simulation-Based FPGA Debugging. Developers usually sim-
ulate an FPGA design before deploying on-FPGA. Most simula-
tors [18, 20, 105, 107, 114] can generate a waveform—a visualization
of signal values—during simulation to aid with debugging. Previous

Debugging in the Brave New World of Reconfigurable Hardware

[Register | 0.6

’ 0]
HD ~mul

Figure 3: LossCheck’s overhead in terms of registers and logic,
normalized to the total resources available on Intel HARP
(left) and Xilinx KC705 (right) platforms.

= =
o v
L |

Normalized
Overhead (%)

o

w

o
)

D4 Cc4

research accelerates simulation-based debugging using language
features [48, 89] and by offloading simulation to an FPGA [64, 65, 97]
or a GPU [91]. Our debugging tools are designed for both on-FPGA
and simulation-based debugging.

Trace-Based FPGA Debugging. Trace-based FPGA debugging
tools allow developers to collect the value of a selected set of sig-
nals in an FPGA deployment. FPGA vendors provide IPs (e.g., Intel
SignalTap [62] and Xilinx ILA [119]) that export manual interfaces
(e.g., GUIs). To use these tools, developers manually specify the
signals that they wish to trace and triggering conditions that should
enable tracing output. In contrast, SignalCat automates the selec-
tion of signals and corresponding trigger conditions (by statically
analyzing “printf”-like statements and their path constraints) and
provides a natural, vendor-agnostic debugging interface. Prior work
reduces the runtime recording overhead of platform-specific IPs
by reducing buffer usage [55-57, 59, 76, 84, 90, 103]; SignalCat can
benefit from these optimizations when applicable.
Checkpointing-Based FPGA Debugging. Checkpointing-based
FPGA tools [37, 38, 75, 80, 97] allow a developer to capture the state
of an FPGA deployment for later analysis or debugging, but do not
help with localizing the root cause of bugs. Our debugging infras-
tructure could benefit from similar checkpoint-based functionality.
Synthesizing Traditionally-Unsynthesizable HDL. Cascade [97]
and Synergy [80] enable traditionally “unsynthesizable” Verilog, in-
cluding “printf”-like statements, to execute on an FPGA. Cascade
and Synergy can store arbitrarily-long logs in off-FPGA storage (e.g.,
in CPU-side memory or disk), but may slow down the circuit since
they pause circuit execution when executing “printf”-like state-
ments. In contrast, SignalCat offers a different tradeoff: SignalCat
imposes lower overhead since it does not pause circuit execution,
but can only store limited information since it uses on-FPGA storage
(e.g., block RAM).

Interactive FPGA Debugging. Interactive FPGA debugging tools
allow a developer to interactively manipulate packets in their FPGA’s
communication channels [86] and provide GDB-like interfaces for
FPGA debugging [34]. These tools are useful during simulation but
are not applicable for on-FPGA debugging and do not directly help
a developer localize the root-cause of a hardware bug.
Traditional Hardware Testing. Traditionally, hardware develop-
ers implement test suites with industry standard frameworks [30] to
extensively test hardware designs in simulation. Hardware fuzzing
techniques [79, 110] and formal verification [58, 63, 81, 93, 94, 115,
126] help developers find and eliminate bugs before fabrication, but

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

do not help a developer identify the root-cause of a bug and are
resource-intensive. In contrast, our work explores bug localization
tools designed for both simulation and on-FPGA scenarios.
Hardware-Assisted Testing and Debugging. A plethora of tools
[49, 66-69, 130] have used efficient hardware tracing techniques
(typically used in profiling and optimization of hardware/software
designs [70-72]) for testing and debugging. In this paper, we show
how reconfigurable hardware can be leveraged to instead design
more targeted debugging support by designing and implementing
foundational debugging tools. We expect future work to use the
reconfigurable nature of FPGAs to design advanced debugging
support.

Software Bug Detection at Runtime. Our work on FPGA bug
localization is inspired by software debugging tools and techniques
such as AddressSanitizer [98], ThreadSanitizer [99], Memcheck
[100], and dynamic slicing [95]. Particularly, LossCheck’s key build-
ing block-tracking data propagation dynamically—is closely in-
spired by such work. Since our own work shows that software
techniques are useful for hardware debugging, we believe that the
core data propagation logic of LossCheck could be generalized and
adapted to other sophisticated FPGA debugging tools.

8 CONCLUSION

The proliferation of reconfigurable hardware has enabled a software-
like rapid development cycle in which teams relax verification ef-
forts. While the community has expended effort into bug finding
tools (e.g., simulation-based testing tools), very little work has fo-
cused on localizing the root cause of hardware bugs. In this work,
we performed a study of bugs in open-source FPGA designs and
showed that hardware bugs follow a similar taxonomy to software
bugs. We argue that hardware bugs are amenable to software-style
hybrid static/dynamic program analysis and monitor tools and
provide a toolset that aids FPGA debugging and facilitates greater
confidence in emerging test-deploy-patch FPGA development cy-
cles.

ACKNOWLEDGMENTS

We thank our shepherd, Adrian Sampson, for his guidance and the
anonymous reviewers for their insightful feedback. Additionally,
we thank the numerous hardware developers whose advice and
feedback helped us in our efforts. This work was supported by
the NSF CAREER award 1942218, the NSF DGE award 1256260,
a Google fellowship, and the Applications Driving Architectures
(ADA) Research Center (a JUMP Center co-sponsored by SRC and
DARPA).

A ARTIFACT APPENDIX
A.1 Abstract

The artifact includes 20 hardware bugs, each of which can be repro-
duced with Verilator in a push-button manner. It also includes the
five tools we designed to help bug localization (i.e., SignalCat, FSM
Monitor, Statistics Monitor, Dependency Monitor, and LossCheck),
examples of using each bug localization tool, and instructions for
the figures in the paper. Below we describe each of these compo-
nents in more detail:

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

A.2 Artifact check-list (meta-information)
e Included Programs: 20 reproducible hardware bugs and 5 debug-
ging tools
e Required Compilation tools: Verilator, Make, C/C++, Vivado,
Quartus, VCS
e Runtime environment: Ubuntu 20.04

A.3 Description

A.3.1 Access. The source code and tutorial are available via GitHub?
and Zenodo®.

A.3.2 Software dependencies. All experiments are conducted un-
der Ubuntu 20.04. Reproducing the 20 hardware bugs requires GCC
9.3.0, G++ 9.3.0, Make 4.2.1, and a modified version of Verilator,
which is included the artifact repository. Using the tools and repro-
ducing the evaluation results requires additional software, including
Vivado 2020.2, Quartus Prime Pro 17.0 (with the necessary licenses—
i.e., 6AF7 QOFB, 6AF7 0119, 6AF7 011A, 6AF7 011B—and platform files
for Skylake HARP), and Synopsys VCS MX 2017.03.

A.4 Installation and experiment workflow

We provide detailed tutorials in the README . md file of the artifact
repository. In the tutorial, we describe (1) how to install the reposi-
tory, (2) how to reproduce each bugs in the repository, and (3) how
to reproduce the evaluation result in §6.

A.5 Expected results
The following three results are expected to be reproduced:

o All bugs listed in Table 2 can be reproduced in a push-button
manner. Specifically, for each bug, the user should expect
an error message printed out after entering the command
described in the tutorial.

o After instrumenting the hardware designs with our tools, the
resource overhead reported by the synthesis tool (Quartus
or Vivado) matches Figure 2.

e LossCheck reports the register where the data loss occurs
for the 6 data loss bugs. For 5 bugs, LossCheck does not in-
cur false positive. After instrumentation, the resource usage
reported by Quartus matches Figure 3.

REFERENCES

n.d.]. https://github.com/efeslab/hardware-bugbase.

[

[2] [n.d.]. https://zipcpu.com.

[3] [n.d.]. https://github.com/ZipCPU/sdspi.

[4] [n.d.]. https://zipcpu.com/formal/2018/12/28/axilite.html.

[5] [n.d.]. https://zipcpu.com/dsp/2020/04/20/axil2axis.html.

[6] [n.d.]. https://github.com/open-sdr/openwifi-hw.

[7] [n.d.]. https://github.com/jbush001/NyuziProcessor.

[8] [n.d.]. https://github.com/openhwgroup/cva6.

[9] [n.d.]. https://github.com/SpinalHDL/VexRiscv.
[10] [n.d.]. https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner.
[11] [n.d.]. https://github.com/corundum/corundum.
[12] [n.d.]. https://github.com/alexforencich/verilog-ethernet.
[13] [n.d.]. https://github.com/analogdevicesinc/hdl.
[14] [n.d.]. https://github.com/alexforencich/verilog-axis.
[15] [n.d.]. https://github.com/mjc0608/really-simple-fadd.
[16] [n.d.]. AXI Hardware ICAP. https://www.xilinx.com/products/intellectual-

property/axi_hwicap.html.

Zhttps://github.com/efeslab/asplos22-hardware- debugging-artifact
3https://doi.org/10.5281/zenodo.5855030

Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, Andrew Quinn, and Baris Kasikci

[17] [n.d.]. Intel Quartus Prime Software Suite. https://www.intel.com/content/w
ww/us/en/sof tware/programmable/quartus- prime/overview.html.
[18] [n.d.]. Questa Verification & Simulation. https://eda.sw.siemens.com/en-US/i

c¢/questa/simulation.

[19] [n.d.]. Vivado Design Suite. https://www.xilinx.com/products/design-tools/vi
vado.html.

[20] [n.d.]. Xcelium Logic Simulation. https://www.cadence.com/en_US

/home/tools/system-design-and-verification/simulation-and- testbench-
verification/xcelium-simulator.html.

[21] [n.d.]. Xilinx Kintex-7 FPGA KC705 Evaluation Kit. https://www.xilinx.com/p

roducts/boards-and-kits/ek-k7-ke705-g.html.

1985. IEEE Standard for Binary Floating-Point Arithmetic. ANSIIEEE Std

754-1985 (1985), 1-20. https://doi.org/10.1109/IEEESTD.1985.82928

2015. https://www.exostivlabs.com/fpga-debug-flow-should-be-improved/.

2018. https://github.com/omphardcloud/hardcloud/tree/master/samples/sh

a512.

[25] 2018. https://github.com/omphardcloud/hardcloud/tree/master/samples/reed_s
olomon_decoder.

[26] 2018. https://github.com/omphardcloud/hardcloud/tree/master/samples/graysc

ale.

2018. https://zipcpu.com/dsp/2018/10/02/fft.html.

2018. AXI Protocol Checker v2.0. https://www.xilinx.com/support/docum

entation/ip_documentation/axi_protocol_checker/v2_0/pg101-axi-protocol-

checker.pdf.

2018. IEEE Standard for SystemVerilog-Unified Hardware Design, Specification,

and Verification Language. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012)

(2018), 1-1315. https://doi.org/10.1109/IEEESTD.2018.8299595

[30] 2020. IEEE Standard for Universal Verification Methodology Language Reference

Manual. IEEE Std 1800.2-2020 (Revision of IEEE Std 1800.2-2017) (2020), 1-458.

https://doi.org/10.1109/[EEESTD.2020.9195920

Alibaba. [n.d.]. Deep Dive into Alibaba Cloud F3 FPGA as a Service In-

stances. https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-

f3-fpga-as-a-service-instances_594057.

Altera. 2013. Implementing State Machines (Verilog HDL). https:

//www.intel.com/content/www/us/en/programmable/quartushelp/13.0/

mergedProjects/hdl/vlog/vlog_pro_state_machines.htm.

Amazon. [n.d.]. Amazon EC2 F1 Instances - Run Customizable FPGAs in the

AWS Cloud. https://aws.amazon.com/ec2/instance-types/f1.

Hari Angepat, Gage Eads, Christopher Craik, and Derek Chiou. 2010. NIFD:

Non-intrusive FPGA Debugger-Debugging FPGA'Threads’ for Rapid HW/SW

Systems Prototyping. In 2010 International Conference on Field Programmable

Logic and Applications. IEEE, 356-359.

ARM. 2021. AMBA AXI and ACE Protocol Specification.

Osama G Attia, Tyler Johnson, Kevin Townsend, Philip Jones, and Joseph Zam-

breno. 2014. Cygraph: A reconfigurable architecture for parallel breadth-first

search. In 2014 IEEE International Parallel & Distributed Processing Symposium

Workshops. IEEE, 228-235.

Sameh Attia and Vaughn Betz. 2020. Feel Free to Interrupt: Safe Task Stopping

to Enable FPGA Checkpointing and Context Switching. ACM Transactions on

Reconfigurable Technology and Systems (TRETS) 13, 1 (2020), 1-27.

[38] Sameh Attia and Vaughn Betz. 2020. StateMover: Combining Simulation and
Hardware Execution for Efficient FPGA Debugging. In Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA
’20). Association for Computing Machinery, New York, NY, USA, 175-185. https:
//doi.org/10.1145/3373087.3375307

[39] Ivan Beschastnikh, Jenny Abrahamson, Yuriy Brun, and Michael D Ernst. 2011.

Synoptic: Studying logged behavior with inferred models. In Proceedings of the

19th ACM SIGSOFT symposium and the 13th European conference on Foundations

of software engineering. 448—451.

Jayaram Bhasker. 1999. A Vhdl Primer. Prentice-Hall.

Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salvatore Pontarelli,

Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cammarano, Alessandro

Palumbo, Luca Petrucci, and Roberto Bifulco. 2020. hXDP: Efficient Software

Packet Processing on {FPGA } NICs. In 14th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 20). 973-990.

Stuart Byma, J Gregory Steffan, Hadi Bannazadeh, Alberto Leon Garcia, and

Paul Chow. 2014. Fpgas in the cloud: Booting virtualized hardware accelerators

with openstack. In 2014 IEEE 22nd Annual International Symposium on Field-

Programmable Custom Computing Machines. IEEE, 109-116.

Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,

Jason H Anderson, Stephen Brown, and Tomasz Czajkowski. 2011. LegUp: high-

level synthesis for FPGA-based processor/accelerator systems. In Proceedings

of the 19th ACM/SIGDA international symposium on Field programmable gate

arrays. 33-36.

[44] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Tomasz Czajkowski, Stephen D Brown, and Jason H Anderson. 2013. LegUp:
An open-source high-level synthesis tool for FPGA-based processor/accelerator
systems. ACM Transactions on Embedded Computing Systems (TECS) 13, 2 (2013),

[22

[23
[24

[27
[28

[29

[31

[32

[33

[34

[35
[36

[37

[40
[41

[42

[43

https://github.com/efeslab/hardware-bugbase
https://zipcpu.com
https://github.com/ZipCPU/sdspi
https://zipcpu.com/formal/2018/12/28/axilite.html
https://zipcpu.com/dsp/2020/04/20/axil2axis.html
https://github.com/open-sdr/openwifi-hw
https://github.com/jbush001/NyuziProcessor
https://github.com/openhwgroup/cva6
https://github.com/SpinalHDL/VexRiscv
https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner
https://github.com/corundum/corundum
https://github.com/alexforencich/verilog-ethernet
https://github.com/analogdevicesinc/hdl
https://github.com/alexforencich/verilog-axis
https://github.com/mjc0608/really-simple-fadd
https://www.xilinx.com/products/intellectual-property/axi_hwicap.html
https://www.xilinx.com/products/intellectual-property/axi_hwicap.html
https://github.com/efeslab/asplos22-hardware-debugging-artifact
https://doi.org/10.5281/zenodo.5855030
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://eda.sw.siemens.com/en-US/ic/questa/simulation
https://eda.sw.siemens.com/en-US/ic/questa/simulation
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://doi.org/10.1109/IEEESTD.1985.82928
https://www.exostivlabs.com/fpga-debug-flow-should-be-improved/
https://github.com/omphardcloud/hardcloud/tree/master/samples/sha512
https://github.com/omphardcloud/hardcloud/tree/master/samples/sha512
https://github.com/omphardcloud/hardcloud/tree/master/samples/reed_solomon_decoder
https://github.com/omphardcloud/hardcloud/tree/master/samples/reed_solomon_decoder
https://github.com/omphardcloud/hardcloud/tree/master/samples/grayscale
https://github.com/omphardcloud/hardcloud/tree/master/samples/grayscale
https://zipcpu.com/dsp/2018/10/02/fft.html
https://www.xilinx.com/support/documentation/ip_documentation/axi_protocol_checker/v2_0/pg101-axi-protocol-checker.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_protocol_checker/v2_0/pg101-axi-protocol-checker.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_protocol_checker/v2_0/pg101-axi-protocol-checker.pdf
https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.1109/IEEESTD.2020.9195920
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/hdl/vlog/vlog_pro_state_machines.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/hdl/vlog/vlog_pro_state_machines.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/hdl/vlog/vlog_pro_state_machines.htm
https://aws.amazon.com/ec2/instance-types/f1
https://doi.org/10.1145/3373087.3375307
https://doi.org/10.1145/3373087.3375307

Debugging in the Brave New World of Reconfigurable Hardware

[45

[46

(47

S
&

[49

(50]

[51

[53

[54

[55

(56

o
=)

[58

[59

[60

=
N

(62

[63

(64

o
9

[66

(67

1-27.

Ciro Ceissler, Ramon Nepomuceno, Marcio Pereira, and Guido Araujo. 2018.
Automatic offloading of cluster accelerators. In 2018 IEEE 26th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 224-224.

Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao Chang, and
Kun Wang. 2014. Enabling FPGAs in the cloud. In Proceedings of the 11th ACM
Conference on Computing Frontiers. 1-10.

Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and
Deming Chen. 2021. ThunderGP: HLS-based Graph Processing Framework on
FPGAs. In The 2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. 69-80.

Young-Kyu Choi, Yuze Chi, Jie Wang, and Jason Cong. 2020. FLASH: Fast,
Parallel, and Accurate Simulator for HLS. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 39, 12 (2020), 4828-4841.

Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma, Ruoyu
Wang, and Insu Yun. 2018. {REPT }: Reverse debugging of failures in deployed
software. In 13th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 18). 17-32.

Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Kanuparthi,
Hareesh Khattri, Jason M Fung, Ahmad-Reza Sadeghi, and Jeyavijayan Rajen-
dran. 2019. Hardfails: Insights into software-exploitable hardware bugs. In 28th
{USENIX} Security Symposium ({USENIX} Security 19). 213-230.

Edsger W. Dijkstra and DIJKSTRA EW. 1972. Information streams sharing a
finite buffer. (1972).

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. 2018. Azure accelerated networking: Smartnics in the public cloud.
In 15th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 18). 51-66.

Kermin Fleming and Michael Adler. 2016. The LEAP FPGA operating system.
In FPGAs for Software Programmers. Springer, 245-258.

Harry Foster. 2020. 2020 Wilson Research Group functional verification study:
FPGA functional verification trend report.

Jeffrey Goeders and Steven JE Wilton. 2014. Effective FPGA debug for high-
level synthesis generated circuits. In 2014 24th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 1-8.

Jeffrey Goeders and Steve JE Wilton. 2015. Using dynamic signal-tracing to
debug compiler-optimized HLS circuits on FPGAs. In 2015 IEEE 23rd annual
international symposium on field-programmable custom computing machines.
IEEE, 127-134.

Daniel Holanda Noronha, Ruizhe Zhao, Jeff Goeders, Wayne Luk, and Steven JE
Wilton. 2019. On-chip fpga debug instrumentation for machine learning ap-
plications. In Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. 110-115.

Bo-Yuan Huang, Hongce Zhang, Pramod Subramanyan, Yakir Vizel, Aarti Gupta,
and Sharad Malik. 2018. Instruction-Level Abstraction (ILA) A Uniform Spec-
ification for System-on-Chip (SoC) Verification. ACM Transactions on Design
Automation of Electronic Systems (TODAES) 24, 1 (2018), 1-24.

Eddie Hung and Steven JE Wilton. 2012. Scalable signal selection for post-silicon
debug. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 21, 6
(2012), 1103-1115.

Intel. [n. d.]. Hardware Accelerator Research Program. https://software.intel.c
om/en-us/hardware-accelerator-research-program.

Intel. [n. d.]. Intel High Level Synthesis Compiler. https://www.intel.com/con
tent/www/us/en/sof tware/programmable/quartus- prime/hls- compiler.html.
Intel. 2020. Intel Quartus Prime Pro Edition User Guide: Debug
Tools. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/lit
erature/ug/ug-qpp-debug.pdf.

Himanshu Jain, Daniel Kroening, Natasha Sharygina, and Edmund Clarke. 2005.
Word level predicate abstraction and refinement for verifying RTL verilog. In
Proceedings of the 42nd annual Design Automation Conference. 445-450.

Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya
Chopra, et al. 2018. FireSim: FPGA-accelerated cycle-exact scale-out system
simulation in the public cloud. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 29-42.

Sagar Karandikar, Albert Ou, Alon Amid, Howard Mao, Randy Katz, Borivoje
Nikoli¢, and Krste Asanovi¢. 2020. FirePerf: FPGA-accelerated full-system
hardware/software performance profiling and co-design. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 715-731.

Baris Kasikci, Weidong Cui, Xinyang Ge, and Ben Niu. 2017. Lazy Diagnosis of
In-Production Concurrency Bugs. In SOSP. Shanghai, China. https://doi.org
/10.1145/3132747.3132767

Baris Kasikei, Cristiano Pereira, Gilles Pokam, Benjamin Schubert, Malandal
Musuvathi, and George Candea. 2015. Failure Sketches: A Better Way to Debug.
In 15th Workshop on Hot Topics in Operating Systems (HotOS XV). USENIX

[68

[69

[70

(71

[72

[73

[74

[75

[76]

[77

[78

[79

[80]

[81

[82

[83

[84

[85]

[86

[87

[88

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

Association, Kartause Ittingen, Switzerland.

Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam, and George
Candea. 2015. Failure Sketching: A Technique for Automated Root Cause
Diagnosis of In-Production Failures. In SOSP. Monterey, CA. https://doi.org
/10.1145/2815400.2815412

Baris Kasikei, Cristian Zamfir, and George Candea. 2013. RaceMob: Crowd-
sourced Data Race Detection. In SOSP. Farmington, PA. https://doi.org/10.1145/
2517349.2522736

Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan K Soundarara-
jan, Rakesh Kumar, Joseph Devietti, Sreenivas Subramoney, Gilles A Pokam,
Heiner Litz, and Baris Kasikci. 2021. Twig: Profile-Guided BTB Prefetching for
Data Center Applications. In 54th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO).

Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam, Heiner
Litz, and Baris Kasikci. 2020. I-SPY: Context-Driven Conditional Instruction
Prefetching with Coalescing. In 2020 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). IEEE, 146-159.

Tanvir Ahmed Khan, Dexin Zhang, Akshitha Sriraman, Joseph Devietti, Gilles
Pokam, Heiner Litz, and Baris Kasikei. 2021. Ripple: Profile-Guided Instruction
Cache Replacement for Data Center Applications. In Proceedings of the 48th
International Symposium on Computer Architecture.

Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric Schkufza,
and Christopher J Rossbach. 2018. Sharing, protection, and compatibility for
reconfigurable fabric with amorphos. In 13th { USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18). 107-127.

Alireza Khodamoradi, Kristof Denolf, and Ryan Kastner. 2021. S2N2: A FPGA
Accelerator for Streaming Spiking Neural Networks. In The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 194-205.
Donggyu Kim, Christopher Celio, Sagar Karandikar, David Biancolin, Jonathan
Bachrach, and Krste Asanovi¢. 2018. DESSERT: Debugging RTL Effectively with
State Snapshotting for Error Replays across Trillions of Cycles. In 2018 28th
International Conference on Field Programmable Logic and Applications (FPL).
IEEE, 76-764.

Ho Fai Ko and Nicola Nicolici. 2010. Automated trace signals selection using
the RTL descriptions. In 2010 IEEE International Test Conference. IEEE, 1-10.
Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do {OS} abstrac-
tions make sense on FPGAs?. In 14th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 20). 991-1010.

Dongup Kwon, Junehyuk Boo, Dongryeong Kim, and Jangwoo Kim. 2020.
{FVM }: FPGA-assisted Virtual Device Emulation for Fast, Scalable, and Flexible
Storage Virtualization. In 14th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 20). 955-971.

Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik
Sen. 2018. RFUZZ: Coverage-directed fuzz testing of RTL on FPGAs. In 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE,
1-8.

Joshua Landgraf, Tiffany Yang, Will Lin, Christopher J Rossbach, and Eric
Schkufza. 2021. Compiler-driven FPGA virtualization with SYNERGY. In Pro-
ceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 818—831.

Suho Lee and Karem A Sakallah. 2014. Unbounded scalable verification based
on approximate property-directed reachability and datapath abstraction. In
International Conference on Computer Aided Verification. Springer, 849-865.
Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang
Zhai. 2006. Have things changed now? An empirical study of bug character-
istics in modern open source software. In Proceedings of the 1st workshop on
Architectural and system support for improving software dependability. 25-33.
Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. 2018. FP-
BNN: Binarized neural network on FPGA. Neurocomputing 275 (2018), 1072-
1086.

Xiao Liu and Qiang Xu. 2009. Trace signal selection for visibility enhancement
in post-silicon validation. In 2009 Design, Automation & Test in Europe Conference
& Exhibition. IEEE, 1338-1343.

Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yangiang Liu, Abel Mu-
lugeta Eneyew, Zhengwei Qi, and Baris Kasikci. 2020. A hypervisor for shared-
memory fpga platforms. In Proceedings of the Twenty-Fifth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems.
827-844.

Marco Antonio Merlini, Isamu Poy, and Paul Chow. 2021. Interactive Debug-
ging at IP Block Interfaces in FPGAs. In The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 138-144.

Roberto Milléon, Emmanuel Frati, and Enzo Rucci. 2020. A comparative study
between HLS and HDL on SoC for image processing applications. arXiv preprint
arXiv:2012.08320 (2020).

Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo Alonso. 2017. Centaur:
A framework for hybrid CPU-FPGA databases. In 2017 IEEE 25th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 211-218.

https://software.intel.com/en-us/hardware-accelerator-research-program
https://software.intel.com/en-us/hardware-accelerator-research-program
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-debug.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-debug.pdf
https://doi.org/10.1145/3132747.3132767
https://doi.org/10.1145/3132747.3132767
https://doi.org/10.1145/2815400.2815412
https://doi.org/10.1145/2815400.2815412
https://doi.org/10.1145/2517349.2522736
https://doi.org/10.1145/2517349.2522736

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

(89]

[90

o
o)

[93

[94

o
i

[96

[97

[98

)
20,

[100]

[101

[102

[103

[104

[105
[106]

[107

[108

Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, and Adam Chlipala. 2021.
Effective simulation and debugging for a high-level hardware language using
software compilers. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems.
789-803.

Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, et al. 2014. A reconfigurable fabric for accelerating large-
scale datacenter services. In 2014 ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA). IEEE, 13-24.

Hao Qian and Yangdong Deng. 2011. Accelerating RTL simulation with GPUs.
In 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE, 687-693.

Weikang Qiao, Jieqiong Du, Zhenman Fang, Michael Lo, Mau-Chung Frank
Chang, and Jason Cong. 2018. High-throughput lossless compression on tightly
coupled CPU-FPGA platforms. In 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE, 37-44.
Alastair Reid. 2016. Trustworthy specifications of ARM® v8-A and v8-M system
level architecture. In 2016 Formal Methods in Computer-Aided Design (FMCAD).
IEEE, 161-168.

Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David Hoyes,
Will Keen, Ashan Pathirane, Owen Shepherd, Peter Vrabel, and Ali Zaidi. 2016.
End-to-end verification of processors with ISA-Formal. In International Confer-
ence on Computer Aided Verification. Springer, 42-58.

Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram Adve. 2013. Us-
ing likely invariants for automated software fault localization. In Proceedings of
the eighteenth international conference on Architectural support for programming
languages and operating systems. 139-152.

Sahand Salamat, Armin Haj Aboutalebi, Behnam Khaleghi, Joo Hwan Lee,
Yang Seok Ki, and Tajana Rosing. 2021. NASCENT: Near-Storage Acceleration
of Database Sort on SmartSSD. In The 2021 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 262-272.

Eric Schkufza, Michael Wei, and Christopher J Rossbach. 2019. Just-in-time
compilation for Verilog: A new technique for improving the FPGA programming
experience. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. 271—
286.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Proceedings
of the 2012 USENIX Conference on Annual Technical Conference (Boston, MA)
(USENIX ATC’12). USENIX Association, USA, 28.

Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: Data
race detection in practice. In Proceedings of the workshop on binary instrumenta-
tion and applications. 62-71.

Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to Detect Unde-
fined Value Errors with Bit-Precision. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference (Anaheim, CA) (ATEC °05). USENIX
Association, USA, 2.

Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung
Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh. 2016. From high-level
deep neural models to FPGAs. In Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on. IEEE, 1-12.

Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung
Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh. 2016. From high-level
deep neural models to FPGAs. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 1-12.

David Sidler and Ken Eguro. 2016. Debugging framework for FPGA-based soft
processors. In 2016 International Conference on Field-Programmable Technology
(FPT). IEEE, 165-168.

David Sidler, Zsolt Istvan, Muhsen Owaida, and Gustavo Alonso. 2017. Ac-
celerating pattern matching queries in hybrid CPU-FPGA architectures. In
Proceedings of the 2017 ACM International Conference on Management of Data.
ACM, 403-415.

Wilson Snyder. 2021. https://www.veripool.org/verilator/.

Hayden Kwok-Hay So and Robert W Brodersen. 2007. Borph: An operating
system for fpga-based reconfigurable computers. Citeseer.

Synopsys. 2021. VCS Functional Verification Solution. https://www.synopsys.c
om/verification/simulation/ves.html.

Shinya Takamaeda-Yamazaki. 2015. Pyverilog: A Python-Based Hardware
Design Processing Toolkit for Verilog HDL. In Applied Reconfigurable Computing
(Lecture Notes in Computer Science, Vol. 9040). Springer International Publishing,
451-460. https://doi.org/10.1007/978-3-319-16214-0_42

Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, Andrew Quinn, and Baris Kasikci

Donald Thomas and Philip Moorby. 2008. The Verilog® Hardware Description
Language. Springer Science & Business Media.

Timothy Trippel, Kang G Shin, Alex Chernyakhovsky, Garret Kelly, Dominic
Rizzo, and Matthew Hicks. 2021. Fuzzing Hardware Like Software. arXiv preprint
arXiv:2102.02308 (2021).

Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivastav, Nate
Foster, and Hakim Weatherspoon. 2017. P4fpga: A rapid prototyping framework
for p4. In Proceedings of the Symposium on SDN Research. 122-135.

Qinggang Wang, Long Zheng, Yu Huang, Pengcheng Yao, Chuangyi Gui, Xiaofei
Liao, Hai Jin, Wenbin Jiang, and Fubing Mao. 2021. GraSU: A Fast Graph Update
Library for FPGA-based Dynamic Graph Processing. In The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 149-159.

Wei Wang, Miodrag Bolic, and Jonathan Parri. 2013. pvFPGA: Accessing an
FPGA-based hardware accelerator in a paravirtualized environment. In 2013
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS). IEEE, 1-9.

Stephen Williams. [n. d.]. Icarus Verilog. http://iverilog.icarus.com/.

Clifford Wolf. 2016. Yosys open synthesis suite.

Xilinx. [n.d.]. SDAccel Development Environment. https://www.xilinx.com/p
roducts/design-tools/software-zone/sdaccel.html.

Xilinx. [n. d.]. Vitis High-Level Synthesis. https://www.xilinx.com/products/de
sign-tools/vivado/integration/esl-design.html.

Xilinx. 2015. Finite State Machines. https://www.xilinx.com/support/doc
umentation/university/Vivado-Teaching/HDL-Design/2015x/VHDL/docs-
pdf/lab10.pdf.

Xilinx. 2016. Integrated Logic Analyzer v6.2. https://www.xilinx.com/support
/documentation/ip_documentation/ila/vé6_2/pg172-ila.pdf.

Hangchen Yu, Arthur Michener Peters, Amogh Akshintala, and Christopher J
Rossbach. 2020. AvA: Accelerated Virtualization of Accelerators. In Proceed-
ings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems. 807-825.

Ding Yuan, Soyeon Park, and Yuanyuan Zhou. 2012. Characterizing logging
practices in open-source software. In 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 102-112.

H. Zeng, C. Zhang, and V. Prasanna. 2017. Fast Generation of High Through-
put Customized Deep Learning Accelerators on FPGAs. In 2017 International
Conference on ReConFigurable Computing and FPGAs (ReConFig). 1-8. https:
//doi.org/10.1109/RECONFIG.2017.8279792

Yue Zha and Jing Li. 2020. Virtualizing FPGAs in the cloud. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 845-858.

Yue Zha and Jing Li. 2021. When application-specific ISA meets FPGAs: a multi-
layer virtualization framework for heterogeneous cloud FPGAs. In Proceedings of
the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 123-134.

Min Zhang, Linpeng Li, Hai Wang, Yan Liu, Hongbo Qin, and Wei Zhao. 2019.
Optimized compression for implementing convolutional neural networks on
fpga. Electronics 8, 3 (2019), 295.

Rui Zhang, Calvin Deutschbein, Peng Huang, and Cynthia Sturton. 2018. End-
to-End Automated Exploit Generation for Validating the Security of Processor
Designs. In Proceedings of the 51st Annual IEEE/ACM International Symposium
on Microarchitecture (Fukuoka, Japan) (MICRO-51). IEEE Press, 815-827. https:
//doi.org/10.1109/MICRO.2018.00071

Yichi Zhang, Junhao Pan, Xinheng Liu, Hongzheng Chen, Deming Chen, and
Zhiru Zhang. 2021. FracBNN: Accurate and FPGA-Efficient Binary Neural
Networks with Fractional Activations. In The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 171-182.

Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin, Mani
Srivastava, Rajesh Gupta, and Zhiru Zhang. 2017. Accelerating binarized con-
volutional neural networks with software-programmable fpgas. In Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, 15-24.

Shijie Zhou and Viktor K Prasanna. 2017. Accelerating graph analytics on
CPU-FPGA heterogeneous platform. In 2017 29th International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD). IEEE,
137-144.

Gefei Zuo, Jiacheng Ma, Andrew Quinn, Pramod Bhatotia, Pedro Fonseca, and
Baris Kasikci. 2021. Execution Reconstruction: Harnessing Failure Reoccur-
rences for Failure Reproduction. In ACM SIGPLAN conference on Programming
language design and implementation.

https://www.veripool.org/verilator/
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
https://doi.org/10.1007/978-3-319-16214-0_42
http://iverilog.icarus.com/
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/VHDL/docs-pdf/lab10.pdf
https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/VHDL/docs-pdf/lab10.pdf
https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/VHDL/docs-pdf/lab10.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf
https://doi.org/10.1109/RECONFIG.2017.8279792
https://doi.org/10.1109/RECONFIG.2017.8279792
https://doi.org/10.1109/MICRO.2018.00071
https://doi.org/10.1109/MICRO.2018.00071

	Abstract
	1 Introduction
	2 Background
	2.1 Languages for Hardware Programming
	2.2 FPGA Debugging Stages
	2.3 FPGA Programming Techniques and Constructs

	3 Study of Bugs in FPGA Designs
	3.1 Bug Classification
	3.2 Data Mis-Access Bugs
	3.3 Communication Bugs
	3.4 Semantic Bugs

	4 Design of FPGA Debugging Tools
	4.1 SignalCat for Unified Logging
	4.2 FSM Monitor for State Machine Traces
	4.3 Dependency Monitor for Provenance Tracking
	4.4 Statistics Monitor for Counting Events-of-Interest
	4.5 LossCheck for Precise Data Loss Localization

	5 Implementation
	6 Evaluation
	6.1 Testbed of Reproducible FPGA Bugs
	6.2 Experimental Setup
	6.3 Effectiveness of Debugging Tools
	6.4 Efficiency of Debugging Tools

	7 Related Work
	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation and experiment workflow
	A.5 Expected results

	References

