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Abstract. Black carbon (BC) is one of the dominant absorbing aerosol species in the atmosphere. It normally
has complex fractal-like structures due to the aggregation process during combustion. A wide range of aerosol—
radiation interactions (ARIs) of BC have been reported throughout experimental and modeling studies. One
reason for the large discrepancies among multiple studies is the application of the oversimplified spherical mor-
phology for BC in ARI estimates. In current climate models, the Mie theory is commonly used to calculate the
optical properties of spherical BC aerosols. Here, we employ a regional chemical transport model coupled with a
radiative transfer code that utilizes the non-spherical BC optical simulations to re-evaluate the effects of particles’
morphologies on BC shortwave ARI, and the wavelength range of 0.3—4.0 um was considered. Anthropogenic
activities and wildfires are two major sources of BC emissions. Therefore, we choose the typical polluted area in
eastern China, which is dominated by anthropogenic emissions, and the fire region in the northwest US, which
is dominated by fire emissions in this study. A 1-month simulation in eastern China and a 7 d simulation in the
fire region in the northwest US were performed. The fractal BC model generally presents a larger clear-sky ARI
compared to the spherical BC model. Assuming BC particles are externally mixed with other aerosols, the rel-
ative differences in the time-averaged clear-sky ARI between the fractal model with a fractal dimension (Ds) of
1.8 and the spherical model are 12.1 %—20.6 % and 10.5 %—14.9 % for typical polluted urban cities in China and
fire sites in the northwest US, respectively. Furthermore, the regional-mean clear-sky ARI is also significantly
affected by the BC morphology, and relative differences of 17.1 % and 38.7 % between the fractal model with a
Dy of 1.8 and the spherical model were observed in eastern China and the northwest US, respectively. However,
the existence of clouds would weaken the BC morphological effects. The time-averaged all-sky ARI relative dif-
ferences between the fractal model with a Dy of 1.8 and the spherical model are 4.9 %—6.4 % and 9.0 %—-11.3 %
in typical urban polluted cities and typical fire sites, respectively. Besides, for the regional-mean all-sky ARI,
the relative differences between the fractal model and the spherical model are less than 7.3 % and 16.8 % in the
polluted urban area in China and the fire region in the US, respectively. The results imply that current climate
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modeling may significantly underestimate the BC ARI uncertainties as the morphological effects on BC ARI are

ignored in most climate models.

1 Introduction

Black carbon (BC), as the main absorbing aerosol in the at-
mosphere, exerts a positive radiative forcing and lofts smoke
plumes (Buseck and Buseck, 2000; Streets et al., 2006;
Moosmiiller et al., 2009). However, there are still large uncer-
tainties in evaluating the BC radiative effects. An important
cause of the discrepancy is BC’s complex morphology. BC
aerosols are assumed to be spheres, and the optical properties
are calculated using the Mie theory in most climate and atmo-
spheric chemical transport models, such as the Community
Earth System Model (CESM) (Danabasoglu et al., 2020), the
Model for Interdisciplinary Research on Climate (MIROC-
SPRINTARS) (Takemura et al., 2005, 2009), Weather Re-
search and Forecasting coupled to Chemistry (WRF-Chem)
(Grell et al., 2005; Fast et al., 2006), and GEOS-Chem.
However, many studies have shown that BC particles, espe-
cially nascent ones, have fractal-like structures. The spher-
ical assumption for BC can lead to a large deviation from
the field measurement data and non-spherical simulated re-
sults (Chakrabarty et al., 2007; Luo et al., 2018c, 2021b; He
et al., 2015; Liu and Mishchenko, 2005; Luo et al., 2018d;
Mishchenko et al., 2016a). Based on the sampled BC images,
researchers found that the shape of uncoated BC aggregates
can be fitted well by a fractal law with monomer number
(Ns), mean monomer radius (R), fractal prefactor (ko), fractal
dimension (D) and the radius of gyration (Rg) (Mishchenko
et al., 2002; Sorensen, 2011; Luo et al., 2021a):

Ny = ko(%)Df~ (1

Previous studies have shown that aggregated particle mod-
els are more realistic to reproduce the optical measurement
results (Kahnert, 2010a; Luo et al., 2019, 2018b). Some stud-
ies have used the fractal BC models to investigate the radia-
tive properties of BC (Wu et al., 2015; C. Liu et al., 2015; Liu
and Mishchenko, 2005; Yin and Liu, 2010; Teng et al., 2019;
Luo et al., 2018a; Kahnert, 2010a). The direct radiative ef-
fect (DRE) was widely used to evaluate the climate effects of
aerosol (Bond et al., 2013; Saleh et al., 2015). IPCC (2014)
suggested using the new terminology of aerosol-radiation in-
teractions (ARIs) instead of DRE. Thus, in this work, we use
the terminology of ARI to replace DRE. However, an ex-
tremely limited number of studies have evaluated the ARI
of non-spherical BC in regional or global climate models.
Kahnert (2010b) has made efforts to simulate the radiative
properties of freshly emitted BC using the Multiple-scale At-
mospheric Transport and CHemistry (MATCH) model. That
study assumed a fixed solar zenith angle (SZA) and restricted
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the modeling region in western Europe. Expanding the mod-
eling range to regions with different emission characteristics
is important to understand the effects of BC sources on ARI.

A global mean BC all-sky ARI of +0.6 W m~2 has been
reported by IPCC (2014). However, the BC ARI values es-
timated based on in situ optical measurements in some re-
gions are much larger than the rest. BC emissions in China
roughly account for one-fourth of its global anthropogenic
emission budget (Streets et al., 2001). Eastern China, a typi-
cal polluted region, is dominated by anthropogenic emissions
(Zhang et al., 2009; Li et al., 2017). Therefore, BC ARI in
eastern China has gained increasing interest.

Besides anthropogenic sources, wildfires significantly
contribute to regional BC emissions. Extremely high BC con-
centrations can be found at those fire sites. Recent studies
have shown that BC emitted from fire sites can also loft the
surrounding atmospheric aerosols to the upper troposphere
and lower stratosphere (Yu et al., 2019). Thus, the investiga-
tion of BC ARI in these regions is important to understand
the detailed plume dynamics and the warming effects of BC.
The northwest US, as one of the regions where wildfires are
most frequent, has also been investigated in addition to east-
ern China.

In this work, we employed WRF-Chem to simulate aerosol
mass concentrations. Note here that WRF-Chem assumes
aerosols to be spherical. Therefore, the radiative parameters
of fractal BC aggregates were calculated offline using an
optical module, Flexible Aerosol Optical Depth (FlexAOD)
(Curci, 2012). We calculated the ARI at the top of the at-
mosphere (TOA) using a radiative transfer model, libRadtran
(Mayer and Kylling, 2005), after the particles’ optical prop-
erties were calculated.

2 Method

2.1 Aerosol distribution simulation

In this work, WRF-Chem version 4.1.3 was used to simulate
the transport of atmospheric species. Two areas were selected
to represent the BC sources with different emission charac-
teristics. Eastern China, a major polluted region in the world,
represents the typical polluted urban region. It consists of
115 east—west grids and 105 south—north grids centered at
35.00°N, 112.00°E with a grid resolution of 18 km. The
northwest US, one of the regions where wildfires are most
frequent in the world, was also investigated in this work. The
fire region consists of 120 east—west grids and 120 south—
north grids centered at 39.89° N, 121.48° W with a grid reso-
lution of 4 km. The schematics of the two regions are shown
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in Fig. S1 in the Supplement. Both regions have 33 vertical
layers above the ground, with a top pressure of 50 hPa.

We used the Model of Emissions of Gases and Aerosols
from Nature version 2.1 (MEGAN2.1) to compute the
biogenic emissions over two regions (Guenther et al.,
1994, 2006). The anthropogenic inventory for eastern China
in the year 2016 was compiled by the Multi-resolution Emis-
sion Inventory for China (MEIC) (Li et al., 2014; F. Liu et al.,
2015). We used the MIX anthropogenic inventory for the re-
gion outside China (Li et al., 2017). The Regional Acid De-
position Model version 2 (RADM?2) atmospheric chemical
mechanism (Stockwell et al., 1990) and the Model Aerosol
Dynamics for Europe with the Secondary ORGanic Aerosol
Model (MADE/SORGAM) were applied in the simulation
of eastern China (Seinfeld et al., 2001; Ackermann et al.,
1998). The Fast-J photolysis scheme (Wild et al., 2000) was
used to simulate the photolysis rates. The physical scheme
options in WRF-Chem are shown in Table S1. The simula-
tions in eastern China started at 00:00 UTC on 31 Novem-
ber 2016, and ended at 00:00 UTC on 1 January 2017. The
data from 00:00 UTC on 1 December 2016 to 00:00 UTC on
1 January 2017 were used for analysis.

The Emission Database for Global Atmospheric Research
for Hemispheric Transport of Air Pollution (EDGAR-HTAP)
version 2 emission inventory for 2010 was used in the north-
west US. The MOSAIC aerosol scheme (Zaveri and Peters,
1999; Zaveri et al., 2008) and the Carbon Bond Mechanism
Z (CBM-Z) photochemical mechanism (Zaveri and Peters,
1999) were used in the fire region simulation. The Fire emis-
sion was provided by the Fire INventory from NCAR (FINN)
(Wiedinmyer et al., 2011). Note here that the EDGAR-HTAP
anthropogenic inventory and FINN were provided for the
MOZART chemical mechanism, so we mapped the emis-
sion for the Model for Ozone and Related chemical Trac-
ers (MOZART) chemical mechanism to the CBM-Z chemi-
cal mechanism based on the study of Emmons et al. (2010).
For both simulations in eastern China and the northwest US,
the National Center for Environmental Prediction (NCEP)
Global Forecast System (GFS) Final Analysis (FNL) with a
horizontal grid spacing of 0.25° and 6 h intervals was used to
provide the meteorological initial and boundary conditions.
The chemical initial and boundary conditions were obtained
from the Model for Ozone and Related chemical Tracers,
version 4 (MOZART-4). The simulations in the northwest
US started at 00:00UTC on 5 August 2016 and ended at
00:00 UTC on 21 August, and the data from 00:00 UTC on
14 August to 00:00 UTC on 21 August were used for analy-
sis.

2.2 The morphology of BC

In this work, we only consider externally mixed BC aerosols,
which are commonly represented by fractal structures. Dy is
a key parameter to describe the compactness of fractal BC
(Wang et al., 2017; Yuan et al., 2019). Dy increases from ap-
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Figure 1. Typical morphologies of fractal BC.

proximately 1.8 to 3 when the BC morphology can vary from
a chain-like structure to a spherical structure. The freshly
emitted BC generally exhibits a fluffy structure with a Dy
of approximately 1.8 (Heinson et al., 2010, 2017). The lab-
oratory measurements also showed that the freshly emitted
BC generally presents a small D¢. Chakrabarty et al. (2006)
have shown that Dy of BC emitted from wildland fuels gen-
erally exhibits a range of 1.67-1.83. A Dy range of 1.6—
1.9 was observed for BC produced from diesel combustion
(Wentzel et al., 2003). China et al. (2013) indicated that the
BC freshly emitted from wildfire generally exhibits Dy with a
range of 1.74—1.92. However, a more compact structure was
commonly observed for BC in the atmosphere with particle
aging (Li et al., 2003; Adachi et al., 2014, 2010; Chen et al.,
2016). A Dy range of 2.2-2.4 was observed in the study of
Adachi et al. (2010). The fractal structures with a larger Dy
are widely used to describe the BC with more compact struc-
tures (Adachi et al., 2010). Chakrabarty et al. (2006) further
showed that the D¢ of aged BC can reach up to 2.6. To rep-
resent both fluffy and compact BC, Dy values of 1.8, 2.2 and
2.6 were considered in this study. While the fractal prefac-
tor ko was also measured in a wide range in the atmosphere,
its impact on the optical properties was relatively small. We
assumed a fixed kg of 1.2 in this work. The typical morpholo-
gies of fractal BC are shown in Fig. 1.

The volume-mean particle radius was commonly used to
describe the size of non-spherical BC. Previous studies have
observed a range of approximately 8—57 nm for BC monomer
radius (Eggersdorfer and Pratsinis, 2012; Mikhailov et al.,
2006; Koylu and Faeth, 1992; Lee et al., 2002), while Kah-
nert and Kanngieer (2020) further showed that the typical
range is approximately 10-25 nm. In this work, we assumed
a fixed monomer radius of 20 nm. We considered an N range
of 1-1000 to represent BC with different sizes. The volume-
mean particle radius (rp) can be calculated using

rp =RN{". )

Note here that BC can also internally mix with other com-
positions, and the morphology can become more complex
(Wang et al., 2021c, 2017). However, we mainly focus on the
freshly emitted BC, and we only consider externally mixed
BC. Further investigations would be performed for more
complex internally mixed BC in the future.

Atmos. Chem. Phys., 22, 7647—-7666, 2022
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2.3 The refractive index and size distribution of BC

BC refractive index shows spectral dependence (Chang and
Charalampopoulos, 1990), while it does not vary largely with
wavelengths in the short wavelength range (Liu et al., 2018;
Lack and Cappa, 2010; Bond and Bergstrom, 2006). The sug-
gested BC refractive index values by Bond and Bergstrom
(2006) were commonly used. In this work, the median value
of 1.85+40.71i was used, as it was widely used in many re-
gional and global climate models (e.g., WRF-Chem). The
size distribution of BC also suffers large uncertainties from
different fuels and conditions. The size distribution of BC is
commonly fitted by a lognormal size distribution with a ge-
ometric mean radius () and a geometric standard deviation
(0g) (Schwarz et al., 2008; Mishchenko et al., 2016b):

3

n(rp) =

No <1n(rp) —In(ry) ) ?
—— exp | [ —E—F
V2rrpln (o) V2In(oy)
where n(rp) is the probability density distribution of particle
number concentrations, 7y is the volume-mean particle radius
and Ny is the number concentration, which can be calculated
by the mass concentration obtained from WRF-Chem by as-
suming BC mass density, r; and oy. The details about the
calculation of Ny are shown in Curci (2012).

BC geometric mean radius of 0.05-0.06 um is frequently
observed by instruments and widely assumed in numerical
studies (Alexander et al., 2008; Coz and Leck, 2011; Red-
dington et al., 2013; Liu et al., 2018). In this work, BC geo-
metric mean radius was assumed to be 0.05 um, and Oy Was
assumed to be 1.6. We used the volume-equivalent radius to
characterize the particle size of fractal BC. The density of BC
was assumed to be 1.8 gm~> based on the suggested values
by Bond and Bergstrom (2006).

2.4 BC radiative properties

In this work, BC radiative properties were calculated using
the multiple-sphere T-matrix method (MSTM) (Mackowski
and Mishchenko, 2011, 1996). The MSTM can efficiently
calculate the optical properties of spheres without intersect-
ing surfaces. The MSTM has high computational efficiency
because it theoretically calculates the optical properties of
randomly oriented particles without numerically averaging
them over different particle orientations. The MSTM can di-
rectly calculate the extinction efficiency (Qext), scattering ef-
ficiency (Qsca) and phase function (P) with the refractive
index, wavelength and input shapefile. Then, the extinction
cross section (Cext) and scattering cross section (Cgca) Were
obtained using

Cext = Qextﬂrga 4)
Csca = Qscanr; (5)

Extinction coefficient (bey), scattering coefficient (bsc,) and
bulk phase function < P > were calculated using the follow-
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ing equations.

"max
bew= [ Coutrpmtrar ©)
"min
Fmax
bsca = / Csca(rp)n(rp)dr (N
T min
max 0 ()P (O, ro)n(ry)dr
< P(9)>=frmm =p PP (8)
byca

In climate modeling, instead of using the phase function, the
Legendre expansion coefficients were commonly used:

Smax

< P(®)>=)_ asPs(cost). )
S=1

where 6 is the scattering angle, Ps represents generalized
spherical functions, as represents the Legendre expansion
coefficients and Sy is the order of truncation of the Leg-
endre expansion coefficients.

In this work, we used the pmom tool, which is available in
libRadtran software for calculating the Legendre expansion
coefficients. With the inputs of the aerosol bulk phase func-
tion and the desired number of Legendre expansion coeffi-
cients, the pmom tool can calculate the Legendre expansion
coefficients.

The radiative properties of fractal BC and spherical BC
were calculated at 300-4000nm wavelengths. The step
size of AA=50nm was chosen when A is less than
1000 nm, while AX =200nm was selected for 1000 nm <
A <2000nm and AA =400 nm when A > 2000 nm. We cre-
ated look-up tables for beyt, bsca and the Legendre expansion
coefficients of phase functions for each oy and rg. Thus, the
optical properties of BC can be obtained by interpolating the
look-up tables.

2.5 Flexible Aerosol Optical Depth (FlexAOD)

The aerosol mass concentrations from WRF-Chem were in-
putted into an optical software Flexible Aerosol Optical
Depth (FlexAOD) (Curci, 2012; Curci et al., 2015) to cal-
culate the aerosol radiative properties. FlexAOD is an optical
post-processing tool for the atmospheric chemistry-transport
model, and it started as a tool for the GEOS-Chem model.
We have made some modifications to FlexAOD to make it
accommodate the WRF-Chem outputs. We first mapped the
aerosols from WRF-Chem into five categories: BC, organic
carbon (OC), inorganic salt (INS), sea salt (SA) and dust
(DST). The mapping details are shown in Tables S2-S3. Af-
ter the WRF-Chem species were mapped, the size distribu-
tion, refractive indices and hygroscopic growth factors were
then assigned.

FlexAOD first reads the aerosol mass concentrations from
WRF-Chem and then converts them to aerosol volume con-
centrations based on the assigned mass densities. Based on
the assigned normalized size distributions, we can calculate
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the number concentration (Ng) of each aerosol. FlexAOD
pre-calculates the optical properties of each type of aerosol
by assuming No = 1 with the assumed size distributions. The
total scattering and extinction coefficients can be obtained by
multiplying the pre-calculated scattering and extinction cross
sections with the number concentrations. The phase func-
tion of each type of aerosol is identical to the pre-calculated
phase function by assuming Ny = 1, and then the total phase
function was calculated according to the number concentra-
tion of each aerosol. In FlexAOD, aerosol shapes were as-
sumed to be spherical, and the corresponding optical prop-
erties of each aerosol species were calculated using the Mie
code provided by Mishchenko et al. (1999). The bulk optical
properties were then calculated by combining an assembly of
aerosols.

BC optical properties were overwritten using the look-up
tables created in Sect. 2.4. As described in Sect. 2.4, we have
created look-up tables for non-spherical BC with different
size distributions. Thus, if the size distribution of BC is as-
signed, the optical properties of BC with a normalized size
distribution can be determined by interpolating the look-up
tables. Once the number concentration is calculated, we can
determine the total optical properties.

Apart from BC, the physical properties of other chemi-
cal species were also specified. We used the OC refractive
indices suggested by Highwood (2009). The density of OC
varies under different conditions. The density of the oxidized
organic aerosol was reported to be approximately 1.3 gcm™3
(Cross et al., 2007), while Nakao et al. (2013) reported that
the density of OC with lower oxidation was approximately
1-1.2 gecm™3. For freshly formed OC, 0.9-1.1 gcm™3 was
used by Liu et al. (2017). In this work, the density of OC was
assumed to be 1.2 gm™3. OC size is also commonly fitted by
a lognormal size distribution. In the study of He et al. (2016)
and Dentener et al. (2006), rg = 0.03 um and rg = 0.075 um
were assumed for hydrophobic and hydrophilic OC, respec-
tively. In this study, all OC was assumed to be hydrophilic,
and we assumed a ry of 0.075um and a oy of 1.6 for OC.
The refractive indices of dust were identical to those used
in the Goddard Chemistry Aerosol Radiation and Transport
(GOCART) model (Chin et al., 2002). For dust, the gamma
distribution was assumed (Martin et al., 2003; Curci, 2012):

n(ry) = Nor =" exp (- L), (10)
ab

where a and b are two parameters for the distribution, and b

is in the range of 0-0.5.

The refractive indices of other chemical species were
adapted from the Optical Properties of Aerosols and Clouds
(OPAC) package (Hess et al., 1998). The physical properties
are displayed in Table S4. Similar to the study of Curci et al.
(2019), the hygroscopic growth factors of different aerosols
were taken from the OPAC package (Hess et al., 1998). Note
here that many internally mixed particles exist in the atmo-
sphere, while in this study we mainly aim to study the mor-
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phological effects of freshly emitted particles, and more com-
plex particles may be investigated in the future. Effective
refractive indices were calculated using the volume mixing
method for hydrophilic particles.

The total column single-scattering albedo (SSA) and
aerosol optical depth (AOD) were calculated by FlexAOD,
and absorption aerosol optical depth (AAOD) was calculated
by

AAOD = AOD(1 — SSA). (11)

2.6 ARl modeling

The optical properties (extinction coefficient, SSA, asym-
metric factor (ASY)) calculated using FlexAOD at each
WRF-Chem grid were inputted into a radiative transfer
model, libRadtran (Mayer and Kylling, 2005), to calculate
the radiative fluxes at the top of the atmosphere (TOA). The
radiative transfer equation was solved by the DIScrete Or-
dinate Radiative Transfer (DISORT) radiative transfer equa-
tion solver (Stamnes et al., 1988; Buras et al., 2011). The
libRadtran can select a standard atmosphere background and
determine the solar zenith angle (SZA) based on the longi-
tude, latitude and UTC time. The surface albedo information
was obtained from NASA Earth Observations (NEO). The
radiative transfer calculations were performed for each hour
and then were averaged over 1d. In this work, ARIs of BC
aerosol were calculated using the following equations:

ARI = FLUXwih Bc — FLUXwithout BC» (12)
FLUX = FY — F', (13)

where FV represents downward radiative flux and F' repre-
sents upward radiative flux. In this work, we just considered
the ARI at the TOA. Only shortwave ARI was considered,
and the wavelength is in the range of 0.3—4.0 um.

In this work, both the clear-sky ARI and all-sky ARI were
calculated. The daily-mean cloud optical thickness, cloud ef-
fective radius and cloud cover data from the MOderate Res-
olution Imaging Spectroradiometer (MODIS) products were
used for the all-sky ARI calculations. The regional-mean BC
ARI was also calculated. The aerosol optical properties and
cloud properties were first averaged, and then the radiative
transfer calculations were performed for only 1d (the me-
dian day). Similar methods were also used in previous stud-
ies (e.g., Saleh et al., 2015; Tuccella et al., 2020).

3 Results

3.1 Impacts of BC morphology on AOD and AAOD

To verify the modeling performance of the aerosol concen-
trations, we compared the simulated PM» s concentrations
with observations at some monitoring sites, and the results

Atmos. Chem. Phys., 22, 7647—-7666, 2022
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Figure 2. Comparison of measured and calculated PM> 5 concentrations.

Fire Region
! ! ! = Locl
~ 400 == Loc2-]
“’g - Loc3
2
U 200 B ) :~: ]
@ /\ ST
2%15-08-14 2015-08-16 2015-08-18 2015-08-20
Polluted Urban
! ! = Beijing ! !
~ 20 Shanghai -1
” = Tianjin
% s == Nanjing
S : a4
U 10 :"
oa) 3 \ ( A
AN A KLTR s |
O2016-12-02 2016-12-12 2016-12-22 2017-01-01

Date

Figure 3. The time series of BC concentrations at typical sites in the northwest US and eastern China.

are shown in Fig. 2. In the figures, the left column represents
typical cities in eastern China, and the right column repre-
sents the sites in the northwest US. The calculated PM; 5
concentrations in eastern China are generally consistent with
the observations. Even though the simulated PM; s concen-
trations in the fire region are a little higher than the observa-
tions, the deviations are not large, and the general trends are
consistent. Therefore, it is reasonable to represent the atmo-
spheric aerosol concentrations using WRF-Chem modeling.

In this study, we selected three fire sites to evaluate the
morphological effects on the BC ARI. The positions of the
selected sites are shown in Table S5, and they represent

Atmos. Chem. Phys., 22, 7647—-7666, 2022

the fire sites with high aerosol concentrations. As shown
in Fig. 3, the temporal BC concentrations at fire sites can
even exceed approximately 400 ug m~3 when the fire occurs,
while the BC concentrations are extremely low on other days.
As shown in Fig. 3, even though the maximum BC concen-
trations in the polluted urban cities are much smaller than
the fire sites, the mean BC concentrations can reach approx-
imately 12ugm™3. The simulated BC concentrations gen-
erally agree with the measurements of Zhang et al. (2012)
for the urban region, where BC concentrations were ob-
served to be approximately 4—-12.7 ug m~3. We further com-
pare the calculated AOD and AAOD with observations from

https://doi.org/10.5194/acp-22-7647-2022
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Figure 4. Comparison of measured and calculated AOD and AAOD in Beijing, where A =500 nm for AOD. A =440 and 450 nm for
measured and calculated AAOD, respectively, and the observations were obtained from AERONET.

AErosol RObotic NETwork (AERONET). The AERONET
data of Beijing are available among all selected cities in east-
ern China. As shown in Fig. 4, the calculated AAOD and
AQD can generally represent the observations.

Figure 5 shows the AOD of BC with different morpholo-
gies, where BC AOD was calculated by the difference be-
tween AOD with BC and that without BC. Zhuang et al.
(2019) indicated that the time-averaged BC AOD in Beijing,
Hefei and Taihu was approximately 0.05-0.06. Our simula-
tions are generally in agreement with their results, and the
simulated BC AOD varies from approximately 0.01 to ap-
proximately 0.12 in the selected urban cities. In Beijing and
Tianjin, BC AOD can reach approximately 0.12, while in
Shanghai and Nanjing, the maximum BC AOD is approxi-
mately 0.07 and 0.1, respectively. The maximum BC AOD
can reach 0.5-0.9 in typical fire sites. From Fig. 5, we can
also see that BC AOD calculated using the spherical model
is relatively higher than those using fractal aggregate models,
which is consistent with the findings of Liu and Mishchenko
(2005). As shown in Fig. 6, in the urban area a spherical as-
sumption for BC led to an overestimation of less than 0.03
for AOD compared to the fractal model with a D¢ of 1.8,
while the overestimation can reach approximately 0.15 in fire
sites. The overestimation accounts for a large proportion of
BC AOD, which can exceed 20 % of the total BC AOD.

Figure 7 shows the calculated BC AAOD using differ-
ent BC models, where BC AAOD was calculated by the
difference between AAOD with BC and that without BC.
Our modeling results show that a more compact structure
may lead to a smaller AAOD, and this is consistent with the
findings of Liu and Mishchenko (2005) for single BC parti-
cles. The reason is that a more compact structure blocks the
light from transmitting into the inner part of the particle, and
a smaller absorption efficiency was observed (Kahnert and

https://doi.org/10.5194/acp-22-7647-2022

Devasthale, 2011). Shin et al. (2019a) showed that most BC
AAOD at 440 nm in Asia is within the range of 0-0.12. Our
simulated BC AAOD at 450 nm is generally consistent with
their findings. At fire sites, BC AAOD at 450 nm wavelength
can reach approximately 0.7. As shown in Fig. 8, the spher-
ical model underestimates AAOD by approximately 0.016
compared to the fractal model with a Dy of 1.8 in typical
polluted cities, while the AAOD underestimation using the
spherical model can reach approximately 0.04 in fire sites.
In general, the AAOD underestimation using the spherical
model is approximately 8 % of the total BC AAOD.

Figure 9 shows the time-averaged BC AOD at 550 nm
and AAOD at 450 nm as a percentage of the total AOD and
AAOD, respectively. In typical polluted cities in China, BC
AOQOD at 550 nm accounts for approximately 4.6 %—7 % of the
total AOD, while BC AOD at fire sites can account for more
than 10 % of the total AOD. At 450 nm, at both polluted ur-
ban and fire sites, the fractions of BC AAOD are close and
are approximately 30 %. This means that the relative propor-
tions of BC and OC in polluted urban sites are close to those
of fire sites.

BC morphologies also have significant impacts on the BC
AOD and AAOD fractions. As BC morphologies change
from a fractal dimension of 1.8 to a spherical structure, BC
AOD fraction increases from 4.6 %-5.5% to 5.8 %—6.9 %
in typical polluted urban cities and from 9.0 %-10.3 % to
11.1 %-12.7 % at typical fire sites, respectively. The rela-
tive differences between the fractal model and the spherical
model ((fractal — sphere)/sphere) can be above 25 %. For BC
AAOD fraction, the values can vary in the range of 25.0 %-
33.2% in typical polluted urban cities and the range of
25.4 %-30.0 % at typical fire sites, respectively. The AAOD
fraction relative differences between the fractal model with a
Dy of 1.8 and the spherical model are approximately 10 %.

Atmos. Chem. Phys., 22, 7647-7666, 2022
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3.2 Impacts of BC morphology on SSA

SSA, as the ratio of scattering to extinction, is widely used
to infer aerosol types. Figure 10 shows the comparison of
SSA using different BC models. Shin et al. (2019b) showed
that the mean SSA at 440 nm was approximately 0.89-0.92
in Beijing using AERONET data, and Shaheen et al. (2019)
demonstrated that the mean SSA at 440nm was approxi-
mately 0.897 in winter Beijing. At 450 nm, the calculated
SSA in typical urban cities is within the range of 0.86-0.92,
which is generally consistent with the observations in previ-
ous studies. In the fire region, SSA varies in a wider range.
At450 nm, SSA at the selected fire sites can vary in the range
of 0.75-0.9, which is a little smaller than that in polluted ur-
ban areas due to large portions of carbonaceous aerosols in
the fire region.

With more compact structures, SSA presents a larger
value, which is consistent with the findings of Kahnert and
Devasthale (2011). However, the effects of BC morpholo-
gies on total SSA at 450 nm are not obvious due to the small
percentage of BC in the atmosphere. As shown in Fig. 11,
the overestimations of the spherical BC model for SSA at
450 nm are generally within 0.005 in typical polluted cities
and within 0.012 at fire sites, which is less than 1 % of the
total SSA. However, these values may have relatively larger
impacts when evaluating the climate effect of BC, as BC
commonly presents a relatively small value of 0.2-0.4 (Kah-
nert and Devasthale, 2011).

3.3 Impacts of BC morphology on ARI

BC clear-sky ARI varies in different regions, and the re-
ported BC ARI varies in previous studies. Zhuang et al.
(2018) estimated BC clear-sky ARI to be +1.85Wm~2 in
East Asia. Much larger BC clear-sky ARIs during Decem-
ber (+15 Wm_z) and November (48 W m_z) over Ahmed-
abad and Guru Shikhar, respectively, were reported by Ra-
jesh and Ramachandran (2018). Zhuang et al. (2019) showed
that clear-sky ARIs averaged over East Asia were +0.02 to
+1.34Wm~2 in summer in eastern Asia. Lu et al. (2020)
showed daily-mean BC clear-sky ARIs were within the range
of +-1.37-4.89 W m~2 in Beijing. Our calculated daily-mean
BC ARI in winter generally agrees with those previous stud-
ies. The daily-mean clear-sky BC ARI at the TOA in typical
sites using different BC models is presented in Fig. 12. In
winter, BC clear-sky ARI in typically polluted cities varies
in the range of approximately +0.5-5.0 W m~2. At large fire
sites, the daily mean BC clear-sky ARI exceeds +8.0 W m™2.
Generally, with a more compact structure, BC presents a
smaller clear-sky ARI at the TOA. The reason can be ex-
plained by the following. Fractal BC can more efficiently
absorb than spherical BC, while the total scattering is not
significantly modified. Thus, the fractal BC leads to a larger
positive clear-sky ARI.

Atmos. Chem. Phys., 22, 7647—-7666, 2022
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Table 1. Time-averaged BC clear-sky ARI at different sites
(Wm™2).

Location Df=18 Df=22 Df=2.6 Sphere
Beijing +1.76 +1.68 +1.63  +1.57
Shanghai +1.52 +1.45 +1.38  +1.26
Tianjin +2.00 +1.91 +1.86 +1.77
Nanjing +1.99 +1.90 +1.83  +1.70
Fire Locl +5.39 +5.16 +5.00 +4.69
Fire Loc2 +8.60 +8.27 +8.12 +7.78
Fire Loc3 +5.61 +5.38 +522 4491

Table 2. Time-averaged BC all-sky ARI at different sites (W m~2).

Location Df=18 Df=22 Dy=2.6 Sphere
Beijing +1.77 +1.70 +1.68  +1.67
Shanghai +2.26 +2.18 +2.15  +2.15
Tianjin +2.00 +1.93 +190 +1.88
Nanjing +2.79 +2.69 +2.66  +2.66
Fire Locl +5.14 +4.93 +4.81  +4.62
Fire Loc2 +7.38 +7.11 +6.99 +6.77
Fire Loc3 +5.22 +5.02 +4.89  +4.69

Table 1 shows the time-averaged BC clear-sky ARI (aver-
aging BC clear-sky ARI over the simulation period) at typical
polluted urban sites and fire sites. Using the spherical model,
the time-averaged clear-sky ARI is +1.26—+1.77Wm~2 in
typical polluted urban cities, while it increases to +1.52—
+2.00 W m~? using a fractal aggregate model with a Dy of
1.8. The relative differences between the fractal model with a
Dy of 1.8 and spherical model ((fractal — sphere)/sphere) can
reach approximately 12.1 %-20.6 % in typical urban cities.
At fire sites, when modifying BC structure from a sphere
to a fractal aggregate with a Dy of 1.8, the time-averaged
BC clear-sky ARI increases from +4.69—+7.78 Wm™2 to
+5.39—+8.60 Wm™2, and the relative differences between
the two models are 10.5 %—14.9 %. Lu et al. (2020) showed
that BC shapes can introduce approximately 5 % relative un-
certainties in eastern China using different measured BC pro-
files. However, our results show that much larger uncertain-
ties can be introduced from BC morphologies. The reason is
that Dy = 2.8 was assumed for BC aggregates in the study
of Lu et al. (2020), which are close to spherical shape. This
Dy value is larger than the observed Dy. Besides, due to dif-
ferent solar zenith angles, our results show the ARI uncer-
tainties caused by BC morphologies may vary in different
regions. Therefore, the BC morphological effects on the BC
ARI should be carefully considered in different regions.

IPCC (2014) has reported a global mean BC all-sky ARI
of +0.6 Wm~2, while Wang et al. (2014) estimated a smaller
all-sky ARI of +0.13 W m~2 based on the constraints from
the mass and absorption observations. Tuccella et al. (2020)
further showed that the global mean BC all-sky ARI is in the
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Figure 10. The comparison of SSA using different BC models, > = 450 nm.

range of +0.13 and +0.25 W m~2. However, the BC all-sky
ARI in some specific regions is relatively large. Based on
in situ measurements, Lamb et al. (2018) have estimated the
mean column all-sky BC ARI to be 4+0.48 to +-2.01 Wm™?
over South Korea. In Beijing, Sun et al. (2022) found that

https://doi.org/10.5194/acp-22-7647-2022

the mean BC all-sky ARI decreased from +3.36 Wm™2 in
2012 to +1.09 W m~2 in 2020. The daily-mean all-sky ARIs
in typical urban polluted cities in eastern China and fire sites
in the northwest US are shown in Fig. 13. The daily-mean
all-sky ARI estimated in this study generally varies in the
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Figure 11. The SSA differences between fractal aggregate models and the spherical model, A = 450 nm.

range of approximately +0.2—+4.5W m™2 in typical pol-
luted cities. Table 2 shows the time-averaged BC all-sky ARI
(averaging BC all-sky ARI over the simulation period) at
different sites. The time-averaged all-sky ARIs are +1.67-
+2.79W m~2 in urban cities, and it is relatively high com-
pared to the regional-mean all-sky ARI due to the high BC
emissions. Our estimated BC all-sky ARI is generally in the
range reported by Sun et al. (2022).

The differences in all-sky ARI between the fractal model
and spherical model are smaller than those of clear-sky ARI
in typical polluted cities in eastern China. The relative differ-
ences in the time-averaged all-sky ARI between the fractal
model and the spherical model are below 6.5 % in typical
polluted cities. The all-sky ARI at fire sites in the northwest
US is smaller than the clear-sky ARI. The time-averaged all-
sky ARIs are 4+4.62—+7.38 Wm™2 at typical fire sites. The
relative differences in the time-averaged all-sky ARI between
the fractal model with a D¢ of 1.8 and the spherical model are
9.0 %-11.3 % at typical fire sites, which is relatively smaller
than the differences for clear-sky ARI.

The regional-mean ARIs are shown in Figs. 14-15. As
shown in Fig. 14, the BC clear-sky ARI of exceeding
+3.0Wm™2 is observed in eastern China. With a spheri-
cal BC model, the regional-mean clear-sky ARI in eastern
China is estimated as +1.35 W m~2, and it agrees well with
the reported regional-mean clear-sky ARI of +1.34 Wm™2
in East Asia by Zhuang et al. (2019). BC morphologies also
have a non-ignorable impact on the BC ARI. The regional-

Atmos. Chem. Phys., 22, 7647—-7666, 2022

mean ARI deviations between the fractal model and spher-
ical model are +0.23, +0.15 and +0.1 W m~2 when Dy is
1.8, 2.2 and 2.6, respectively, and the relative differences are
17.1 %, 11.1 % and 7.4 %, respectively.

The BC morphologies have a relatively small impact on
the all-sky ARI. As shown in the lower panels of Fig. 14,
the all-sky ARI is generally larger than the clear-sky ARI,
while the deviations between the fractal model and spherical
model are smaller compared to those for clear-sky ARI. The
BC all-sky ARI can exceed +4.0 W m~2 in eastern China. A
relatively larger regional-mean all-sky ARI is observed than
clear-sky ARI, whichis +1.79 W m~2 in eastern China when
using the spherical model. The regional-mean all-sky ARI
differences between the fractal model and spherical model
are 0.13, 0.06 and 0.03 W m~2 when Dsis 1.8, 2.2 and 2.6,
respectively. The relative differences for all-sky ARI between
the two models are less than 7.3 %.

The regional-mean clear-sky ARI in the fire region in the
northwest US is shown in Fig. 15. The clear-sky ARI at the
fire sites is obviously larger than the other sites. The BC
clear-sky ARI exceeding +5.0 Wm™? is observed, and the
regional-mean clear-sky ARI is +0.93 W m~2. The differ-
ences in regional-mean clear-sky ARI between the fractal
model and the spherical model in the fire region in the north-
west US are more substantial than those in eastern China,
which reach approximately +0.36, +0.29 and +0.19 W m—2
when Dy is 1.8, 2.2 and 2.6, respectively. The relative dif-
ferences between the fractal model and spherical model are
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Figure 12. The clear-sky BC ARI in the typical urban polluted cities in eastern China and fire sites in the northwest US calculated using
different BC models.
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Figure 13. The all-sky BC ARI in the typical urban polluted cities in eastern China and fire sites in the northwest US calculated using
different BC models.
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Figure 15. Similar to Fig. 14, but for the northwest US.

38.7%, 31.2 % and 20.4 % when Dx is 1.8, 2.2 and 2.6, re-
spectively. Smaller all-sky ARIs than clear-sky ARIs are ob-
served at the sites where fire occurs, while the regional-mean
all-sky ARI in the fire region in the northwest US is gener-
ally larger than clear-sky ARI, which is +1.67 Wm™2. The
differences between the two models are +0.28, +0.19 and
+0.11Wm~2 when D is 1.8, 2.2 and 2.6, respectively, and
the relative differences are 16.8 %, 11.4 % and 6.6 %.

4 Discussion

In current climate models, such as CESM, MIROC-
SPRINTARS and WRF-Chem, the Mie theory was com-
monly used to calculate the optical properties of BC aerosols.
However, fractal-like BC aerosols were often observed in the
atmosphere. In this work, we found that the effects of BC
morphology are spatially dependent. Compared to the spher-
ical BC model, the fractal BC model generally presents a
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larger clear-sky ARI, which may lead to underestimations
of BC ARI in the climate models. The relative differences
in the time-averaged clear-sky ARI are 12.1 %-20.6 % and
10.5 %-14.9 % in typical polluted urban cities and fire sites,
respectively. Furthermore, the regional-mean clear-sky ARI
is also significantly affected by the BC morphology, and rel-
ative differences of 17.1 % and 38.7 % between the fractal
model were observed in eastern China and in the northwest
US, respectively, while the existence of cloud would weaken
the BC morphological effects. The results imply that current
climate modeling may significantly underestimate the BC
ARI uncertainties as the morphological effects on BC ARI
are ignored in most climate models.

However, this work is by no means exhaustive. This work
assumed that BC aerosols are externally mixed with other
chemical components, while BC aerosols are often internally
mixed with other components, such as organic aerosols, sul-
fate, etc. (China et al., 2013; Adachi et al., 2010; Wang et al.,
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2021b). BC absorption can be significantly enhanced by the
“lensing effect” even if BC aerosols are internally mixed with
non-absorbing materials, which may lead to larger BC ARI
(Chung et al., 2012; Liu et al., 2017). Previous studies have
shown that the morphologies of internally mixed BC would
significantly affect its absorption enhancement (Luo et al.,
2019, 2021c; Wang et al., 2021a) and thus lead to larger un-
certainties in the estimation of BC ARI. Thus, the sensitiv-
ities of BC morphologies to the ARI estimated in this work
may be smaller than those in real cases.

Furthermore, we found that the spherical assumption gen-
erally underestimates the clear-sky ARI for externally mixed
BC, while the opposite phenomenon may be found for in-
ternally mixed BC. A core—shell spherical morphology was
widely used to represent the internally mixed BC. However,
many partially coated BC aerosols exist in the atmosphere,
while the core—shell spherical BC model commonly assumes
the BC is fully embedded in a coating shell. The core—shell
morphology may overestimate the absorption of partially
coated BC (Wang et al., 2021a; Zhang et al., 2018) and thus
overestimate the ARI. Thus, the ARI of internally mixed BC
with complex morphologies should be further investigated in
the future.

5 Summary and conclusions

The current climate modeling commonly assumes a spherical
morphology for BC, while the fractal structure is more real-
istic than the spherical morphology for externally mixed BC.
In this work, we used the fractal model to re-evaluate the BC
ARI in a typical polluted urban area in eastern China and a
fire region in the northwest US. We found that BC morpholo-
gies have non-ignorable impacts on the aerosol optical prop-
erties. At 550nm wavelength, the spherical BC model can
overestimate the AOD up to 0.03 and 0.15 in typical polluted
cities in China and fire sites in the US, respectively. The over-
estimations roughly account for 20 % of the total BC AOD.
Besides, the spherical BC model underestimates BC AAOD
at 450 nm up to 0.016 and 0.04 in typical polluted cities in
China and fire sites in the US, respectively, compared to the
fractal model with a D of 1.8. The underestimations account
for approximately 8 % of the total BC AAOD.

The morphological effects on both clear-sky and all-sky
ARIs are evaluated. With a spherical BC model, the esti-
mated time-averaged clear-sky ARI is generally in the range
of +1.26-+1.77Wm™? in typical urban polluted cities in
eastern China, while this range increases to approximately
+1.52-42.00 W m~2 when using the fractal model with a
Dy of 1.8. The clear-sky ARI relative differences between
the two models are approximately 12.1 %—-20.6 % in typical
urban polluted cities. At fire sites, when modifying BC struc-
ture from a sphere to a fractal aggregate, the time-averaged
BC clear-sky ARI increases from +4.69—+7.78 Wm™2 to
+5.39—+8.60 Wm™? at typical fire sites. The relative dif-
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ferences between the two models are approximately 10.5 %—
14.9 % at typical fire sites. The existence of clouds weak-
ens the effects of BC morphologies on the ARI. The all-sky
ARI relative differences between the fractal model and the
spherical model are approximately 4.9 %—6.4 % and 9.0 %—
11.3 % in typical urban polluted cities and typical fire sites,
respectively, which is relatively smaller than those of clear-
sky ARI

The impacts of BC morphologies on the regional-mean
ARI were also evaluated. The regional-mean clear-sky ARI
was estimated as +1.35 W m~2 and +0.93 W m~2 in the pol-
luted urban area and the fire region, respectively, using the
spherical BC model. The regional-mean clear-sky ARI dif-
ferences between the fractal model and the spherical model
are approximately +0.23 and +0.36 W m~2 in these two re-
gions, respectively, and the relative differences between the
two models are approximately 17.1 % and 38.7 %, respec-
tively. The all-sky ARI differences between the fractal model
and the spherical model are relatively smaller. The relative
differences in the regional-mean all-sky ARI between the
fractal model and the spherical model are less than 7.3 % and
16.8 % in these two regions, respectively. Thus, the effects of
BC morphologies on the ARI should be carefully considered
in different regions.
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