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ABSTRACT
Relation extraction (RE) is an important task for many natural lan-
guage processing applications. Document-level relation extraction
task aims to extract the relations within a document and poses
many challenges to the RE tasks as it requires reasoning across
sentences and handling multiple relations expressed in the same
document. Existing state-of-the-art document-level RE models use
the graph structure to better connect long-distance correlations.
In this work, we propose SagDRE model, which further considers
and captures the original sequential information from the text. The
proposed model learns sentence-level directional edges to capture
the information flow in the document and uses the token-level
sequential information to encode the shortest paths from one entity
to the other. In addition, we propose an adaptive margin loss to
address the long-tailed multi-label problem of document-level RE
tasks, where multiple relations can be expressed in a document for
an entity pair and there are a few popular relations. The loss func-
tion aims to encourage separations between positive and negative
classes. The experimental results on datasets from various domains
demonstrate the effectiveness of the proposed methods.
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1 INTRODUCTION
Relation extraction (RE) aims to extract the relations among entities
from text. It plays an important role in various natural language
processing (NLP) tasks such as knowledge graph construction [8],
question answering [42], and text summarization [12]. In the RE
tasks, there are two specific scenarios: sentence-level relation ex-
traction and document-level relation extraction [24]. Sentence-level
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relation extraction focuses on relationships expressed within sen-
tences, while document-level relation extraction aims to extract
relationships across sentence boundaries.

There are unique challenges for document-level RE compared
to sentence-level RE. In a document, an entity can be mentioned
multiple times, but only a few mentions may contribute to the
targeted relation reasoning, making it harder for the RE model to
focus on the most relevant parts in the document. The mentions of
entities may also locate in different sentences, which requires the
RE model to effectively encode long-distance information [29].

To address these challenges, some methods propose to construct
a graph to represent the document and achieve the state-of-the-art
performances [11, 23, 29]. However, these graph-based methods
use regular graph structures with bi-directional edges for effective
feature propagation, and neglect the sequence features in the orig-
inal text, an important characteristic of languages. These graphs
cannot encode the sequential information due to its permutation
invariance property [28], which can downgrade the performance
for document-level RE tasks.

Another challenge of document-level RE task is that the docu-
ment may express multiple relations for the same entity pair. This
leads to the multi-label problem. Existing methods convert the
multi-label problem as multiple binary classification problems, and
assign the corresponding label if the predicted probability is higher
than a global threshold shared for all entity pairs. However, the
threshold is mostly determined heuristically or tuned on validation
set. The resulting threshold may not be optimal for all instances.
Another commonly observed phenomenon for multi-label learning
problems is the long-tail distribution of the labels. Many relations
have only a few training examples, whereas only a few relations
have sufficient training examples. Regular probability distribution-
based loss estimations tend to over-fit the model with the popular
relations but under-fit for the unpopular relations.

This work1 proposes a Sequence-Aware Graph-based Document-
level Relation Extraction model (SagDRE) to consider original text
sequential information for document-level relation extraction tasks.
Given a document, we first construct a sequence-aware document
graphwith directed edges, which can capture sentence-level sequen-
tial information in the document. In particular, forward edges from
previous sentence roots to later ones are added with edge weights
learned by an attention mechanism. Based on the constructed doc-
ument graph, we adopt graph convolutional neural network and
multi-head self attention to encode local and global features. To
capture the token-level sequential information, SagDRE finds the 𝑘
shortest paths from the head entity to the tail entity on the docu-
ment graph and then reconstruct the paths with the original token

1The code is publicly available at https://github.com/IAmHedgehog/SagDRE.
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orders and auxiliary tokens. The paths are encoded using LSTM
and a multi-head attention layer is used to aggregate paths such
that relevant paths are emphasized. The resulting path encoding is
concatenated with other features for prediction.

To address the long-tailed multi-label problems in document-
level RE tasks, we propose a novel adaptive margin loss based on
the idea of Hinge Loss. In particular, we learn a separation class for
each pair of entities between positive classes and negative classes.
The adaptive margin loss is invoked if an example is wrongly clas-
sified or classified within a margin to the separation class. The
optimization based on this loss will encourage the separation be-
tween positive and negative classes via the separation class.

In empirical studies, we use three benchmark document-level RE
datasets from both general and biomedical domains to evaluate the
proposed method. The results show that the proposed SagDRE con-
sistently outperforms state-of-the-art models. The ablation studies
show that the adaptive margin loss and the sequence components
are the most important contributors to the overall model perfor-
mances.

The main contributions are summarized as:

• We propose SagDRE that considers and incorporates the
sentence-level and token-level sequential information from
the text in the graph-based document RE model.

• We propose adaptive margin loss for multi-label learning
problems, which encourages the maximum separation be-
tween positive and negative classes via a separation class.

• Empirical studies on three document-level relation extrac-
tion datasets from various domains demonstrate the effec-
tiveness of the proposed method.

2 RELATED WORK
The relation extraction task has been studied in the past decades.
The applications of deep learning methods have significantly ad-
vanced the development for the task [14, 24]. Recently the research
on document-level relation extraction tasks has drawn more and
more attention. Comparing with sentence-level RE tasks, document-
level RE tasks have a wider range of applications [40] but extracting
document-level relations is more challenging since cross-sentence
learning usually requires effective long-distance feature encoding
and reasoning [29].

To tackle this challenge, somemethods [35, 41, 45] apply BERT [7]
for more informative contextual token encoding. Tang et al. [35]
propose a hierarchical inference network from entity, sentence and
document levels using BERT representations. Ye et al. [41] explicitly
encode the coreference information to enhance the coreferential
reasoning ability of BERT. Zhou et al. [45] propose an adaptive-
thresholding loss, which learns an adaptive threshold to separate
positive and negative classes.

Besides BERT-based methods, another line of approaches pro-
poses to use the graph structure to shorten the distances between
entities in the document [5, 11, 15, 23, 29]. Sahu et al. [29] pro-
pose the first work to adopt graph structure in document-level
RE tasks. It uses linguistic tools to build various edges, such as
co-reference edges, which embed inter-sentence and intra-sentence
dependencies, and applies a graph convolutional neural network for
feature learning. Unlike previous methods that use linguistic tools

for graph construction, Guo et al. [11] and Sahu et al. [30] use at-
tention mechanisms to construct edges in the graph. Guo et al. [11]
employ an attention mechanism to automatically learn attending
relevant sub-structures in the graph for relation reasoning. Instead
of constructing token-level graphs, Zeng et al. [43] propose to build
two graphs, including mention-level and entity-level graphs, to
predict relations. Christopoulou et al. [5] construct a graph with
different nodes and edges and applies edge-oriented graph neural
networks for document-level relation extraction. Nan et al. [23]
apply an iterative refinement strategy to aggregate multi-hop in-
formation for reasoning. Compared to previous methods that use
graph neural networks to encode features, Zhou et al. [44] propose
a global context-enhanced graph convolutional network to consider
global context information for relation reasoning.

However, most existing works use regular graph structures,
which cannot capture the sequential information in the original
text. The permutation invariance property of graph structure [28]
makes it hard to embed sequential information naturally, which
is critical in extracting document-level relation information. This
work addresses this issue by encoding sequential information in
graphs and directional path information for document-level relation
reasoning.

3 PRELIMINARY
In this section, we introduce graph neural networks and formulate
the document-level RE task.

3.1 Graph Convolutional Networks
Given a graph G = (𝑉 , 𝐸), 𝑉 and 𝐸 represent the node set and
edge set in the graph, respectively. Each node 𝑣 has a feature vector
𝒙𝑣 . An adjacency matrix 𝑨 is used to represent graph connections.
Graph Neural Networks (GNNs) learn feature representations for
nodes and the graph from the graph structure and node features.
Most existing graph neural networks follow a neighborhood aggre-
gation learning strategy, where each node iteratively aggregates
features from its neighborhood and updates its features [13, 39].
Specifically to Graph Convolutional Networks (GCN), the ℓ𝑡ℎ GCN
layer is defined as:

𝑯 (ℓ+1) = 𝜎
(
𝑫− 1

2𝑨𝑫− 1
2 𝑯 (ℓ)𝑾 (ℓ)

)
, (1)

where 𝑨 is the adjacency matrix, 𝑫 is the degree matrix, 𝑯 (ℓ) is
the input feature matrix at layer ℓ ,𝑾 (ℓ) is the trainable parameter
matrix, and 𝜎 (·) represents an activation function.

3.2 Relation Extraction Task Formulation
We formally formulate the task of document-level relation extrac-
tion as follows. A documentD contains𝑁 sentences {𝑠1, 𝑠2, . . . , 𝑠𝑁 }.
𝑠𝑖 is the 𝑖𝑡ℎ sentence, which includes 𝑃𝑖 tokens: {𝑤𝑖,1,𝑤𝑖,2, . . . ,𝑤𝑖,𝑃𝑖 }.
𝑤𝑖, 𝑗 represents the 𝑗𝑡ℎ word in the 𝑖𝑡ℎ sentence. Each token𝑤𝑖, 𝑗 is
initially populated with an embedding feature vector 𝒙𝑖, 𝑗 . An entity
𝑒𝑘 can have𝑄𝑘 mentions {𝑚𝑘,1,𝑚𝑘,2, · · · ,𝑚𝑘,𝑄𝑘

} in this document,
where𝑚𝑘,𝑎 refers to the 𝑎𝑡ℎ span of tokens for the entity 𝑒𝑘 .

Given a document D and a pair of entities (𝑒ℎ , 𝑒𝑡 ), where 𝑒ℎ
and 𝑒𝑡 are head entity and tail entity, respectively, the RE task
aims to predict the relations for this pair of entities based on the
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document. The pre-defined relations contain labels {𝑅1, · · · , 𝑅𝐶 },
where𝑅𝑖 (1 ≤ 𝑖 ≤ 𝐶) represents the 𝑖𝑡ℎ pre-defined relationships. A
RE model should output either an empty set or a subset of relations
from {𝑅1, · · · , 𝑅𝐶 } for each (𝑒ℎ , 𝑒𝑡 ) based on the document. The
relations between two entities exist if any pair of their mentions
expresses the corresponding relationships. In the testing time, a
relation extraction model predicts relations between all pairs of
entities in a document.

4 SAGDRE
This section introduces a sequence-aware graph-based document-
level relation extraction network (SagDRE), which consists of four
components: sequence-aware graph construction (Section 4.1), lo-
cal and global feature encoding (Section 4.2), sequence-aware path
encoding (Section 4.3), and relation prediction head (Section 4.4).
Figure 1 illustrates the architecture of the proposed network. In
Section 4.5, we propose a novel adaptive margin loss especially de-
signed for multi-label multi-class learning tasks such as document-
level RE.

4.1 Sequence-Aware Graph Construction
Many existing document-level RE methods adopt graph structures
using dependency parsers [4, 31] to construct the document graph
with undirected edges. The undirected graph increases the connec-
tivity between the head-tail entity pairs, and thus can better capture
long-distance information for document-level RE tasks. However,
the language sequence information cannot be explicitly reflected in
this type of constructed graphs. Moreover, the permutation invari-
ance property of a bi-directional graph makes it more challenging
to capture sequential information expressed in the text [28].

It is critical to encode the original sequential information from
the text as changing the order of words or the order of sentences
can lead to semantic changes of relations for a pair of entities. If
the sequential information in the text is neglected, it can negatively
impact the performance of graph-based relation extraction models.
To maintain high connectivity between the head-tail entity pairs
and effectively encode original sequential information, we propose
to construct a sequence-aware document graph that can capture
the sentence-level sequential information.

Given a document, we first encode contextual features of each
token in the document:

𝑯 = [𝒉1,1, · · · ,𝒉𝑁,𝑃𝑁 ]
= Encoder( [𝒙1,1, · · · , 𝒙𝑁,𝑃𝑁 ]),

where 𝒙𝑖, 𝑗 is the word embedding for the 𝑗𝑡ℎ token of the 𝑖𝑡ℎ sen-
tence in the document and 𝒉𝑖 is the encoded feature representa-
tion for the same token. This encoder can be a pre-trained BERT
model [7] or LSTM model.

Then, we construct a document graph. This graph contains two
types of nodes: token nodes and entity nodes. Each token in the
document corresponds to a token node and its encoded features are
used as node features. Each entity in the document corresponds to
an entity node. Its node features are calculated by averaging the
features of tokens in its mentions.

There are two types of edges in the graph: bi-directed edges
and directed edges. The bi-directed edges are formed based on

three sources: dependency syntax tree, adjacent sentence roots,
and entity-token relation. Each sentence in the document is fed
into a dependency parser, which generates a dependency syntax
tree. Bi-directed edges are added between each pair of connected
tokens in the syntax tree. Then the dependency syntax tree roots of
adjacent sentences are connected by bi-directed edges since there
are close context relationships between adjacent sentences. Finally,
bi-directed edges between each entity and tokens of its mentions
are added. In this graph, the weights for bi-directed edges are 1,
which indicates strong connections among nodes.

The directed edges are added to capture the sentence-level se-
quential information in the document. In particular, we add forward
edges from previous sentence root nodes to later ones, since infor-
mation of a document tends to propagate from earlier sentences to
later ones naturally. However, not all sentences are closely related
to earlier sentences, we apply an attention mechanism to automat-
ically learn the closeness between each pair of sentences for the
given tasks and use the resulting similarity scores as weights for
these directed edges.

Specifically, given two sentences root nodes 𝑖 and 𝑗 , we compute
the weight 𝐴𝑖, 𝑗 for the directed edge from node 𝑖 to node 𝑗 based
on their feature vectors:

𝐴𝑖, 𝑗 =
𝒉𝑖 · 𝒉 𝑗

| |𝒉𝑖 | | · | |𝒉 𝑗 | |
, (2)

where 𝒉𝑖 and 𝒉 𝑗 are the encodings of corresponding tokens 𝑖 and 𝑗 .
Using these learned edges weights, our relation extraction model
can automatically identify important logic flows from earlier sen-
tences to later sentences. Note that if 𝑖 and 𝑗 are roots of adjacent
sentences, 𝐴𝑖, 𝑗 and 𝐴 𝑗,𝑖 are always 1 as there is a bi-directed edge
between them.

4.2 Local and Global Feature Encoding
Based on the constructed document graph with feature matrix 𝑯 ,
and adjacency matrix 𝑨, we extract graphical features locally and
globally.We employ graph convolutional network layers (GCN) [13]
for feature aggregation and encoding. Since GCN layers only aggre-
gates information from neighboring nodes, the resulting features
can be considered as local feature encoding, providing information
from a local context.

We also employ multi-head self attention layers [36] on contex-
tual embeddings obtained from the GCN encode. Multi-head self
attention layer can attend over all nodes in the input graph and
thus can update the features from the global view, extracting fea-
tures over the entire document graph. The local and global feature
embedding are combined to update features of each node in the
graph. We formulate this local and global feature extraction process
at layer ℓ as:

𝑯 ′
1 = GCN(𝑯 (ℓ) ,𝑨),

𝑯 ′
2 = Attn(𝑾𝑄𝑯

(ℓ) ,𝑾𝐾𝑯
(ℓ) ,𝑾𝑉𝑯

(ℓ) ),

𝑯 (ℓ+1) = 𝑯 ′
1 + 𝑯 ′

2,

where 𝑯 (ℓ) is the input feature matrix of layer ℓ , 𝑾𝑄 , 𝑾𝐾 , and
𝑾𝑉 are trainable weights. GCN and Attn represent a GCN layer
and an attention layer, respectively.
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RC

Figure 1: Illustration of the sequence-aware document-level relation extraction network. Given an input document, each token
obtains its initial feature embedding from the encoder. Then a document graph is constructed. The directed cross-sentence
edges are added (green edges) and their edge weights are computed using an attention mechanism. We stack several GCN layers
and attention layers to learn feature representations from both local and global perspectives. Then, we extract 𝐾 shortest paths
from the head entity to the tail entity from the graph, encoded by LSTM, and fused by an attention layer, resulting in a path
embedding. Finally, the entity and path embeddings are fed into an MLP for prediction. The adaptive margin loss is applied.

4.3 Sequence-Aware Path Encoding
The document graphs constructed can resolve the issue of long dis-
tance between entities by increasing entity connectives. However,
the graph can also connect less-related information and confuse the
model. To focus on the most relevant information and encode orig-
inal token-level sequential information, we propose to construct a
set of sequence-aware paths from the head entity to the tail entity.

Given a graph and a pair of entities (𝑒ℎ, 𝑒𝑡 ), the paths from 𝑒ℎ to
𝑒𝑡 in the graph usually contain the relevant reasoning information
for their relationships. We select the top 𝐾 shortest paths as they
tend to contain the most information. We denote the 𝑘𝑡ℎ shortest
path as 𝑃𝑘

ℎ,𝑡
= [𝑒ℎ, 𝑛𝑘,1, · · · , 𝑛𝑘,𝑑 , 𝑒𝑡 ], where 𝑛𝑘,𝑗 represents the 𝑗𝑡ℎ

node on the 𝑘𝑡ℎ shortest path. These shortest paths may neglect
some important structural words for relation reasoning though
such as “near” and “outside”. To enrich the sequence-aware paths
and include more informative nodes, we augment each extracted
path with adposition words attached to this path. That is, given the
𝑘𝑡ℎ shortest path, we add the neighboring adposition word nodes
of each node 𝑛𝑘,𝑗 in 𝑃𝑘ℎ,𝑡 , which leads to the augmented path 𝑄𝑘

ℎ,𝑡
.

To encode the original token-level sequential information, we
order the nodes in each path by their original sequential order in
the text, which leads to 𝑄𝑘

ℎ,𝑡
. We apply a directional LSTM layer

to encode features and a max-pooling layer to obtain the feature
representations of each path. The proposed sequence-aware path

encoding for the 𝑘𝑡ℎ shortest path is formulated as:

−→𝒖 𝑘𝑗 = LSTM(−→𝒉 𝑘𝑗 ) (3)

𝒑𝑘
ℎ,𝑡

= max(−→𝒖ℎ,−→𝒖 𝑘1 , · · · ,
−→𝒖 𝑘
𝑑
,
−→𝒖𝑡 ), (4)

where 𝒖𝑘
𝑗
represents the LSTM hidden representations of the 𝑗𝑡ℎ

node in 𝑄𝑘
ℎ,𝑡

.
Since not all paths contain relevant information for relation rea-

soning, we employ a multi-head attention layer over the 𝐾 shortest
paths encodings to identify the most relevant ones. We formulate
this process as:

𝑷 = [𝒑1
ℎ,𝑡

; · · · ;𝒑𝐾
ℎ,𝑡

], (5)

𝒑ℎ,𝑡 = Attn(𝑾 ′
𝑄 (𝒆ℎ − 𝒆𝑡 ),𝑾 ′

𝐾𝑷 ,𝑾
′
𝑉 𝑷 ), (6)

where𝑾 ′
𝑄
,𝑾 ′

𝐾
, and𝑾 ′

𝑉
are trainable weights and Attn represents

an attention layer. This attention layer takes the vector from head
to tail entity encoding as the query, which is widely used to reflect
the relations of the two entities [22]. As a result, the attention layer
responds by the weighted aggregating path encoding with relevant
paths emphasized.

4.4 Relation Prediction Head
We use a relation prediction head to predict relations for a pair of
entities. The prediction is based on both entities’ feature represen-
tations and their aggregated path encoding. Following previous
methods [43], we concatenate the entity encoding of two entities
(𝒆ℎ , 𝒆𝑡 ), the absolute values of subtraction of two entity encoding
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Figure 2: Illustration of our proposed adaptive margin loss.
Given an entity pair (𝑒𝑖 , 𝑒 𝑗 ) in a document, their relations are
𝑅1 and 𝑅4.

(|𝒆ℎ − 𝒆𝑡 |), the element-wise feature multiplication (𝒆ℎ ⊙ 𝒆𝑡 ), and
the sequence-aware path encoding (𝒑ℎ,𝑡 ), which leads to an overall
encoding for this entity pair:

𝑰ℎ,𝑡 = [𝒆ℎ ; 𝒆𝑡 ; |𝒆ℎ − 𝒆𝑡 |; 𝒆ℎ ⊙ 𝒆𝑡 ;𝒑ℎ,𝑡 ] . (7)

We compute the prediction values 𝒛 ∈ R𝐶 for all relation classes:

𝒛 =𝑾2𝜎1 (𝑾1𝑰ℎ,𝑡 + 𝒃1) + 𝒃2, (8)

where𝑾1,𝑾2, 𝒃1, 𝒃2 are trainable parameters, and𝜎1 is an element-
wise activation function. Additionally, we predict a separation class
𝑅𝑠 to separate the positive classes and negative classes:

𝑧𝑠 =𝑾4𝜎2 (𝑾3𝑰ℎ,𝑡 + 𝒃3) + 𝒃4, (9)

where𝑾3,𝑾4, 𝒃3, 𝒃4 are trainable parameters, and𝜎2 is an element-
wise activation function. During prediction, for each entity pair,
SagDRE outputs a set of classes [𝑐1, 𝑐2, · · · , 𝑐𝑑 ] where 𝑧𝑐 𝑗 > 𝑧𝑠 (1 ≤
𝑗 ≤ 𝑑). Note that if no class has a value bigger than 𝑧𝑠 , SagDRE
outputs an empty set, indicating no relationships between the given
entity pair (𝑒𝑖 , 𝑒 𝑗 ).

4.5 Adaptive Margin Loss
Most existing relation extraction models output 𝑃 (𝑅𝑖 |𝑒ℎ, 𝑒𝑡 ,D) for
the probability of that the 𝑖-th relation 𝑅𝑖 exists for the pair of enti-
ties (𝑒ℎ, 𝑒𝑡 ), which requires a pre-determined global threshold to
convert probabilities into relation labels. Some methods [18, 23, 25]
use heuristic threshold or learn a global threshold with the highest
F1 score on the validation set. However, the global threshold may
not be optimal for all instances and introduce errors. To address
this issue, Zhou et al. [45] introduce an extra threshold class as a
threshold to separate positive classes and negative classes. How-
ever, such probability distribution-based methods may suffer when
the long tail problem occurs, where a majority of labels are only
associated with a small number of training examples. Even when
the prediction is correct (higher than the threshold), probability
distribution-based losses such as cross-entropy loss may still in-
voke a large loss. Dominate classes with more training examples
will have stronger impacts on the whole model, which leads to
over-fitting to dominant classes.

Many variants of Hinge loss [9] have been proposed to over-
come the long tail problem for multi-class learning tasks in various
fields [3, 6, 21, 27]. Instead of modeling probabilistic distributions,
Hinge loss leads to a maximum-margin classifier. However, these
Hinge loss variants cannot be directly applied to multi-label learn-
ing problems where an instance can belongs to multiple classes.

To this end, we develop an adaptive margin loss function for
multi-label learning tasks, which encourages more separations be-
tween positive classes and negative classes. Given a pair of entities
(𝑒ℎ, 𝑒𝑡 ), we first split their relation labels into positive classes P and
negative classes N . The positive classes P contains relations that
exist between two entities. Note that the positive classes set P can
be empty when there is no relation between these two entities. The
negative classes set N contains relations that do not exist between
them. An illustrative example is shown in Figure 2. We define a set
of new labels 𝒕 = [𝑡1, 𝑡2, · · · , 𝑡𝐶 ]𝑇 . The value of 𝑡𝑖 is defined as:

𝑡𝑖 =

{
1 𝑅𝑖 ∈ P
−1 𝑅𝑖 ∈ N .

(10)

The adaptive margin loss for an entity pair (𝑒ℎ, 𝑒𝑡 ) includes the
loss for each relation class and is formally defined as:

L =
∑︁

1≤𝑖≤𝐶
max(0, 𝛼 − 𝑡𝑖 (𝑧𝑖 − 𝑧𝑠 )), (11)

where 𝛼 ≥ 0 is a hyper-parameter for margin in the margin-based
loss. Note that the proposed adaptive margin loss will reduce to
Hinge loss in the binary RE tasks.

When the prediction is correct (i.e., 𝑡𝑖 and (𝑧𝑖 −𝑧𝑠 ) have the same
sign) and the predicted value is higher or lower than that of the
separation class with the margin (i.e., |𝑧𝑖 − 𝑧𝑠 | > 𝛼), the loss will
be 0. Otherwise, the loss will be linear to the distance of |𝑧𝑖 − 𝑧𝑠 |.
In this case, the model aims to make “good enough” predictions
instead of “prefect” predictions. Thus, the model avoids over-fitting
to any classes, especially to the dominate classes.

5 EXPERIMENTS
In this section, we evaluate the proposed SagDRE model on sev-
eral document-level relation extraction benchmark datasets from
various domains.

5.1 Experiments on the General Domain Dataset
Datasets and Evaluation Metrics. We conduct experiments to
evaluate the proposed method on DocRED dataset [40], a gen-
eral domain dataset. The DocRED dataset is a large-scale human-
annotated dataset constructed from Wikipedia and Wikidata. It
contains 132,275 entities, 56,354 relational facts, and 96 relation
classes. More than 40.7% of the relation pairs are cross-sentence
relation facts. The statistics of this dataset is summarized in Table 1.
We use the evaluation metrics provided by Yao et al. [40], including
Ign F1 and F1 scores, on both validation and test sets. Ign F1 scores
are computed by excluding those relational facts shared by the
training and dev/test sets. For both metrics, the higher the better.
Baseline Models. We compare the proposed SagDRE with the
state-of-the-artmodels including sequence-basedmodels and graph-
based models. For sequence-based models, we compare the pro-
posedmethodwith two traditional neural networks: CNN-GloVe [2]
and BiLSTM-GloVe [20], and BERT enhanced models including
BERT [37], ATLOP-BERT [45], CorefBERT [41], and HIN-BERT [35].
The graph-based baseline models include AGGCN-GloVe [11], EoG-
GloVe [5], LSR-GloVe/BERT [23], and GAIN-GloVe/-BERT [43]. We
evaluate the proposed SagDRE with 𝐾 = 1 and 3, where 𝐾 is the
number of shortest paths used in the sequence-aware path encoding
component. Note that SagDRE uses the shortest path when 𝐾 = 1.
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Table 1: Statistics of the DocRED, CDR, and CHR datasets. On the DocRED dataset, we do not have access to the numbers of
positive and negative pairs in the test dataset

DocRED CDR CHR
Train Dev Test Train Dev Test Train Dev Test

#Documents 3053 1000 1000 500 500 500 7,298 1,182 3,614
#Pos pairs 38,180 12,323 - 1,038 1,012 1,066 19,643 3,185 9,578
#Neg pairs 1,198,650 396,790 - 4,198 4,069 4,119 69,843 11,466 33,339

Table 2: Results on document-level RE tasks using the DocRED dataset from the general domain. We report the Ign F1 (%) and
F1 (%) scores on both the validation set and the test set. For performances on the test set, we report the official test score using
the best model on the validation set. Results with † are reported from [23]. Results with * are reported from their original
papers. In SagDRE, 𝑘 indicates the number of the shortest paths in the sequence-aware path encoding component.

Dev Test
Model Ign F1 F1 Ign F1 F1
CNN-GloVe* 41.58 43.45 40.33 42.26
BiLSTM-GloVe* 48.87 50.94 48.78 51.06
AGGCN-GloVe† 46.29 52.47 48.89 51.45
EoG-GloVe† 45.94 52.15 49.48 51.82
LSR-GloVe* 48.82 55.17 52.15 54.18
GAIN-GloVe* 53.05 55.29 52.66 55.08
SagDRE-GloVe (𝐾 = 1) 53.69 56.69 53.85 56.19
SagDRE-GloVe (𝐾 = 3) 53.73 56.71 53.90 56.23
BERTBASE* - 54.16 - 53.20
LSR-BERTBASE* 52.43 59.00 56.97 59.05
HIN-BERTBASE* 54.29 56.31 53.70 55.60
CorefBERTBASE* 55.32 57.51 54.54 56.96
GAIN-BERTBASE* 59.14 61.22 59.00 61.24
ATLOP-BERTBASE* 59.22 61.09 59.31 61.30
SagDRE-BERTBASE (𝐾 = 1) 60.32 62.11 60.11 62.32
SagDRE-BERTBASE (𝐾 = 3) 60.26 62.06 60.06 62.19

SagDRE Setups. For the proposed methods, we use Huggingface’s
Transformers [38] to implement BERT model [7]. A dropout [33]
operation is applied in the final prediction layer with a keep rate of
0.6. We use AdamW optimizer [19] to optimize the SagDRE model
with the learning rate of 1e-3.When trainingwith the BERT encoder,
a linear warmup [10] is used for the first 6% steps then decay the
linear rate to 0. When using Glove embedding [26], we reduce the
learning rate when the F1 value on the validation set has stopped
improving. All hyper-parameters are tuned on the validation set.
We train all RE models using one Tesla V100 GPU.
Main Results.We summarize the comparison results in Table 2.
The results clearly show that the proposed SagDRE model con-
sistently outperform previous state-of-the-art models. Comparing
with models without using pre-trained BERT models, GAIN-GloVe
achieves the best performance among the baseline methods. The
proposed SagDRE-GloVe outperforms GAIN-GloVe by margins of
0.64% and 1.4% on the validation set, and by 1.19% and 1.11% on the
test set, in terms of Ign F1 and F1, respectively. All methods improve
significantly after applying pre-trained BERT model. Comparing
with baseline models, the proposed SagDRE-BERTBASE achieves
better performances on both validation and test sets as well. In

particular, the proposed model improves the performances by 1.1%
and 1.12% on the validation set, and by 0.8% and 1.02% on test set, in
terms of Ign F1 and F1, respectively, compared to ATLOP-BERTBASE.
Both comparison results show that the proposed methods can bring
consistent performance improvements when working with GloVe
embedding or pre-trained transformer models. Note that, SagDRE
with 𝐾 = 1 achieves similar results as SagDRE with 𝐾 = 3. This is
caused as the shortest paths already contain the most information
for reasoning and are also encoded with rich contextual information
especially with the pre-trained Bert model.

5.2 Experiments on Biomedical Datasets
Datasets and Evaluation Metrics. In this section, we use two
datasets from biomedical domains: CDR and CHR. The CDR or
BC5CDR dataset [16] is a human-annotated relation extraction
dataset with detailed annotation guidelines on corpus of PubMed.
The chemicals, diseases, and their relations are annotated by four
MeSH indexers with a medical training background and curation
experience. The dataset includes 1,500 PubMed articles, 5,818 dis-
eases, 4,409 chemicals, and 3,119 chemical-disease relation pairs.

 

2005



SagDRE: Sequence-Aware Graph-Based Document-Level Relation Extraction with Adaptive Margin Loss KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 3: Results on document-level RE tasks using the CDR
and CHR datasets from Biomedical domain. Results with ‡
are obtained using their official released code. Results with *
are reported from their original papers. We report the F1 (%)
scores on the test sets.

Model CDR CHR
CNN-BioGloVe 62.3* 84.1*
BiLSTM-BioGloVe 59.1* 86.4*
GCNN-BioGloVe 58.6* 87.5*
EoG-BioGloVe 63.6* -
SciBERT 65.1* 88.9‡

ATLOP-SciBERT 69.4* 90.1‡
SagDRE-SciBERT(ours) 71.8 92.9

The task is to predict the binary relation between Chemicals and
Diseases.

The CHR dataset is a distantly annotated document-level RE
dataset [29] with chemical relations. The annotation is a two-step
process. In the first step, the semantic faceted search engine Thalia
[32] is used to annotate biomedical name entities on abstracts from
PubMed. Then each pair of annotated chemical entities are aligned
with the graph dataset Biochem4j [34]. Two chemical entities are
considered to have a relation if they appear in Biochem4j. The task
is to predict the binary relation between chemicals.

The statistics of these datasets are summarized in table 1. We
use F1 scores to evaluate the proposed model.
Baseline Models.We compare the proposed model with sequen-
tial models including CNN-BioGloVe and BiLSTM-BioGloVe [29],
and state-of-the-art models including GCNN-BioGloVe [29], EoG-
BioGloVe [5], GAIN-GloVe [43], ATLOP-SciBERT [45], and SciB-
ERT [45].
SagDRE Setups. We follow similar setups as Section 5.1 with sev-
eral changes. We use SciBERT [1] as the encoder, which is a pre-
trained language model trained on large-scale labeled scientific
corpora. We use AdamW to optimize the SagDRE model with the
learning rate of 1e-3. A linear warmup is used for the first 6% steps
then decay the linear rate to 0. We evaluate the proposed SagDRE
with 𝐾 = 1 to save computational costs.
Main Results. The results are summarized in Table 3. SagDRE
achieves consistently better performances than previous state-of-
the-art models on both biomedical RE datasets. Compare to the
previously best model ATLOP-SciBERT, the proposed SagDRE out-
performs it by margins of 2.4% and 2.8% on CDR and CHR, respec-
tively. This demonstrates the effectiveness of our proposed methods
on biomedical datasets.

5.3 Ablation Study of SagDRE
We conduct ablation studies to investigate the contributions of each
component to the overall model performances. Based on SagDRE
model, we remove one component (GNN encoders, directed edges,
path LSTM, path augmentation, and adaptive margin loss) at a
time and evaluate the resulting model using the validation set of
DocRED. To examine the importance of the sequence information,
we also tested SagDRE model removing all sequence components

Table 4: Ablation study results onDocRED dataset with GloVe
embedding. We report the precision (P) (%), recall (R) (%), and
F1 (%) scores on the validation set.

Model P R F1
SagDRE-GloVe (K=1) 57.24 56.16 56.69
(-) GCN layers 53.44 56.75 55.04
(-) Directed edges 49.88 60.59 54.72
(-) path LSTM 50.56 59.68 54.74
(-) Path augmentation 51.20 61.61 55.92
(-) Adapt margin loss

(+) Best threshold loss 50.60 58.51 54.26
(+) Adapt threshold loss 49.98 55.02 52.38

(-) sequence components 50.48 58.76 54.30

Table 5: Analysis results of different 𝛼 values on document-
level relation extraction tasks using the DocRED dataset. We
report the precision (P) (%), recall (R) (%), and F1 (%) scores
on the validation set.

𝛼 P R F1
0.0 57.86 61.85 59.79
0.5 62.50 60.00 61.39
1.0 63.33 60.97 62.11

Table 6: Error distribution of SagDRE on 50 wrong predic-
tions from the CDR dataset.

Label Noise Hard Ambiguity Other
(LN) (H) (A) (O)

Count 12 5 16 17
Ratio 24% 10% 32% 34%

including both directed edges and path LSTM. The ablation study re-
sults on SagDRE-GloVe model are shown in Table 4, while SagDRE-
BERTBASE shows similar trends.

From Table 4, we can observe that every proposed component
contributes to the overall model performance. The most impor-
tant contributors are the adaptive margin loss and the sequence
components. When replacing the adaptive margin loss with cross
entropy loss with the best threshold and the adaptive threshold
loss in [45], F1 score drops by 2.43% and 4.31%, respectively. When
removing sequence components, the performance drops by 2.39%,
which shows that the sequential information in text is critical for
document-level RE task. In particular, encoding sentence-level and
word-level sequential information both contribute to the overall
performances of the SagDRE model, which can be observed from
the performance drops when removing the direction-aware edges
and path LSTM, respectively.

5.4 Parameter Study in Adaptive Margin Loss
In the proposed adaptive margin loss, there is a hyper-parameter
𝛼 that controls the margin. In this experiment, we investigate the
impact of 𝛼 values on model performances. We evaluate the pro-
posed SagDRE model with different 𝛼 values (0.0, 0.5, and 1.0) on
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Table 7: Case study of RE results on the CDR dataset. For each case, the head entity and tail entity are colored blue and red,
respectively. Important words for relation reasoning are highlighted .

Category Document Pred Label

LN
Document #24618873: Cerebellar and oculomotor dysfunction induced by rapid infusion of pethidine.
Pethidine is an opioid that gains its popularity for the effective pain control through acting on the opioid-
receptors. . . .

1 0

H

Document #24659727 : Tolerability of lomustine in combination with cyclophosphamide in dogs with
lymphoma. . . . Ninety treatments were given to the 57 dogs included in the study. . . . One dog ( 3% )
developed hematologic changes suggestive of hepatotoxicity. No dogs had evidence of either renal toxicity
or hemorrhagic cystitis.

1 0

A
Document #3297909: Progressive bile duct injury after thiabendazole administration. A 27-yr-old man
developed jaundice 2 wk after exposure to thiabendazole. . . .

1 0

A
Document #24729111: . . . A 62-year-old man was found to have bradycardia, hypothermia and respiratory
failure 3 weeks after initiation of amiodarone therapy for atrial fibrillation. . . .

0 1

O Document #24897009: Optochiasmatic and peripheral neuropathy due to ethambutol overtreatment.Etham-
butol is known to cause optic neuropathy and, more rarely, axonal polyneuropathy. . . . 0 1

the validation set of DocRED dataset. The results are summarized
in Table 5. The results show that the SagDRE model achieves the
best performance when 𝛼 = 1, a popular choice for margin in
margin-based losses [17]. As expected, larger margins improve the
Precision, since the model requires a higher score to predict a label.

5.5 Error Analysis
To better understand the bottleneck of the SagDRE and inspire
future work, we conduct a case study to investigate the errors that
SagDRE makes. To this end, we choose CDR dataset since it is
labeled by domain experts, and thus may have the least label noise.

We randomly selected 50 wrong predictions made by SagDRE
and analyzed their reasons. In particular, we categorize in three
main reasons: 1) Label Noise (LN), where entity pairs in this cat-
egory may obtain wrong labels by domain experts, 2) Hard (H),
where inferring relations between entity pairs may require extra
knowledge such as statistics and advanced reasoning, 3) Ambigu-
ity (A), where the document expresses the relation vaguely, and 4)
Others (O), where all other wrong predictions are included. The
error distribution of these wrong predictions is shown in Table 6.
We also illustrate some examples under each category in Table 7.

From our analysis, the majority of the errors occurred without
obvious reasons. However, we observe that the model makes more
mistakes for entity pairs with certain keywords. For example, Docu-
ment #24897009 states that “Ethambutol is known to cause ... rarely
... polyneuropathy”. The negation word “rarely” may trigger the
model to classify the relation as unrelated. Other observed key-
words include negation word such as “no” and words expressing
uncertainty such as “may”.

Another major cause of errors is the ambiguity of the document.
Almost all the errors of this type occur in reports of drug side-
effect events. For example, Document #3297909 states that a man
developed jaundice after exposure to thiabendazole, and Document
#24729111 states that a man had respiratory failure after initiation
of amiodarone therapy. It is somewhat ambiguous whether the
symptoms are caused by the drugs in these two cases, and in fact,
the labels provided by experts of these two cases are also different.

There may be more similar cases in the training data, and thus the
model cannot predict consistently.

There may also be some incorrect labels provided by domain
experts. For example, Document #24618873 clearly states the causal
relationship between the disease and the drug. However, the label
for this pair of entities is “unrelated”.

There are also some hard cases that external knowledge might
be needed. For example, Document #24659727 states that 1 out of
57 dogs with the given treatments developed the symptom, so the
relation is statistically insignificant. To correctly label this symptom-
drug pair, the model needs to understand “3%” is too low to support
the relation. Studies in common sense extraction and number ex-
traction may be helpful for this case.

6 CONCLUSION
In this work, we propose the SagDRE model for document-level
relation extraction, which encodes the sequential information in
the original text. SagDRE considers both the sentence-level and the
token-level sequential information in the documents. To capture
sentence-level sequential information, directed edges are added
in the constructed document graph and their weights are learned
through an attention mechanism. These directed weighted edges
can capture the logic flows of the sentences in a document. For
token-level sequential information, SagDRE extracts and recon-
structs augmented shortest paths from the head entity to the tail
entity with the original sequential ordering, and encodes it with
LSTM. To address the limitation of the regular loss function for
RE model optimization, we propose the adaptive margin loss. This
loss function employs a threshold class and maximizes the margins
between the positive classes and the negative classes. The experi-
mental results on document-level RE datasets from both general
and biomedical domains demonstrate the effectiveness of the pro-
posed methods. The ablation study of SagDRE shows that every
proposed component contributes to the overall model performance.
The most important contributions are from the adaptive margin
loss and the sequence components.
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