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ABSTRACT

This paper investigates the problem of performing distributed deep
learning (DDL) to train machine learning (ML) models at the edge
with resource-constrained embedded devices. Existing solutions
mostly focus on data center environments, where powerful server-
class machines are interconnected with ultra-high-speed Ethernet,
and are not suitable for edge environments where much less power-
ful computing devices and networks are used. Due to the resource
constraint on computing devices and the network connecting them,
there are three main challenges for performing edge-based DDL: (1)
susceptibility to struggling workers, (2) difficulty of scaling up to a
large training cluster, and (3) frequent changes in training device
availability and capability. To address these challenges, we design
and implement EDDL, an edge-based DDL system, with ARM-based
ODROID-XU4 and Raspberry Pi 3 Model B boards. We evaluate the
prototype EDDL system by performing edge-based mobile malware
detection and classification on a large Android APK dataset. The
evaluation results show that EDDL can efficiently train deep learn-
ing models with consumer-grade embedded devices and wireless
networks while incurring small overhead.
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1 INTRODUCTION

Edge-based DDL training is desirable. We advocate performing
DDL at the edge to train deep neural network (DNN) models due
to the following observations.

First, we observe that co-located mobile device users, such as
users within a university, an office campus, or a hospital, usually
share similar interests, exhibit similar behavior patterns, or even
are targeted by similar threats. Take mobile app preferences as an
example, social networking, entertainment, and gaming apps are
popular among university students; professionals from financial
institutions are likely to have apps related to work productivity,
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finance, and their companies installed on their devices. Co-located
users may also be targeted by the same or similar security threats
as mobile apps are becoming increasingly susceptible to targeted
attacks [22, 55, 56], where malware are targeting specific groups of
users by masquerading as legitimate apps that are likely used by
the victims [5, 52].

Second, we observe that ML-based solutions that take training
data in a global manner are less effective to deal with localized
testing data than solutions that are generated based on training
data collected locally. This is because ML classification models
work best if the distributions of the testing data match those of the
training data. We present a motivation study which demonstrates
this observation in §3.

Based on the first two observations above, we argue that it is
advantageous to generate ML models by training with data collected
locally from the same group of co-located users.

Third, most of the existing ML-based solutions require process-
ing and storing the training data collected from the users centrally
on the cloud. However, there are growing concerns on the trust-
worthiness of cloud when it comes to processing/storing user data
[3, 4, 17, 25, 54, 66]. Indeed, a series of recent user data leakage
incidents [13, 18, 27, 46] warrant prudent designs for user privacy
protection.

Because of the third observation above, we argue that it is de-
sirable to move storing/processing of user data and training ML
models from cloud to the infrastructures owned and trusted by the
users. The edge computing infrastructure, which takes advantage
of the computing resources at the edge of networks, is a natural
and ideal fit for this purpose.

We focus on embedded edge devices. The edge devices we aim
to utilize are the existing edge infrastructure devices, such as wire-
less access points and base stations, and end user devices, such
as smartphones and tablets, both of which are mostly embedded
devices. We do not consider dedicated servers deployed at the edge
for a couple of reasons. First, embedded edge devices are far more
universal than dedicated edge servers and are mostly underuti-
lized. Second, most of the existing DDL solutions focus on data
center environment where powerful server-class machines are in-
terconnected via ultra-high-speed Ethernet [1, 9, 14, 35, 48, 61].
These solutions are likely to well suit the environment with dedi-
cated high-performance edge servers. However, there have been
few works investigating the issues of training DNN models us-
ing embedded devices which are connected with consumer-grade
wireless networks. Therefore, our goal to investigate the practical
issues of supporting efficient DDL at the edge with resource-limited
embedded devices.
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Challenges. To achieve the above goal, we design EDDL, a system
for DDL training by utilizing embedded edge devices. Like many
existing solutions, EDDL adopts the parameter server approach as
the way of coordinating the training nodes [8, 11, 14, 24, 35, 61].
With EDDL, edge devices participating a training job form a training
cluster. There are two roles for the training devices: worker and
leader. The training data is divided into shards such that worker
devices can concurrently work on their own shards of training
data using mini-batch Stochastic Gradient Descent (mbSGD) [36,
60], and synchronize updates of the model’s parameters to the
leader device. The leader device essentially works as a parameter
server [10, 23, 35, 37]: it performs aggregation of worker parameter
updates and sends back the new global parameters to the workers.
An epoch of training is said to be done when the whole set of the
training data has been trained on once. The training is repeated for
multiple epochs until a desirable model accuracy is achieved.
While EDDL share similarities with the existing DDL works,
it faces three unique challenges which stem from the resource
constraints of the edge devices and the underlying network.
o Challenge 1: EDDL is more susceptible to struggling workers than
existing solutions. Struggling workers are those which take longer
time to consume their shards of training data than the other workers.
They prolong the time needed for an epoch of training and thus
the whole training process. Edge-based DDL is impacted more by
struggling workers because of edge devices’ native workloads (such
as routing/switching workloads for wireless APs), which can exhibit
a large variance on different edge devices, and thus leaving a highly
variable amount of computing resource for the DDL training.
o Challenge 2: it is difficult for EDDL scale up a training cluster
because of the network bandwidth constraint at the leader device. With
the parameter server architecture, all worker devices transmit their
updated model parameters to the leader device for aggregation. Asa
result, the network bandwidth capacity at the leader device becomes
a bottleneck of scaling up the number of worker devices. Compared
to cloud-based DDL systems, the bandwidth bottleneck is much
more significant for edge-based DDL systems like EDDL. This is
because cloud-based systems run in data center environment where
high performance computing nodes are connected via ultra-high-
speed Ethernet (e.g., commonly at hundred Gigabit level [32, 53]),
whereas mobile/edge devices have a much lower interconnecting
speed (e.g., 100 to 200 Mpbs of real-world speed with recent WiFi
standards [2, 47]).
o Challenge 3: EDDL needs to deal with training device changes more
often than traditional DDL systems. Here training device changes
refer to the cases like device joining or leaving a cluster and sudden
training capability decline/boost in training device. Due to the
resource constraints and mobility of the edge devices, dealing with
training devices changes is critical to EDDL’s design.

How EDDL addresses the challenges. To address the first chal-
lenge above (i.e., susceptibility to struggling workers), we design a
dynamic training data distribution mechanism with which shards
of training data are distributed to the workers by the leader dur-
ing run time. Compared with the majority of the existing solu-
tions, which statically partition training data among the workers
[8, 11, 14, 35, 61, 65], our mechanism can minimize the impact of
struggling workers on training time efficiency (§4.2).
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To address the second challenge (i.e., network bandwidth bottle-
neck at the leader), we have three key designs (§4.3):

(1) We adopt synchronous parameter update (PU) by default. The
conventional wisdom suggests that fully asynchronous PU [9, 14,
35, 38, 45, 50] and asynchronous PU with bounded staleness [10,
11, 23, 61] are more time-efficient that synchronous PU because
individual training workers do not need to wait for other workers’
parameters to be synced to the leader. However, we find that sync
PU works better than the async counterpart for resource-limited
edge computing environment. The reason is that when compared
to sync PU, async PU shortens time needed for an epoch of training,
but it also increases the number of epochs needed for convergence.
As a result, it requires a large training cluster for async PU to out-
perform the sync counterpart. Unfortunately, in an edge computing
environment, before the training cluster can reach the size larger
enough to favor async PU, the network bandwidth at the leader
is saturated, meaning further increasing cluster size does not re-
duce, or even worsen, the time needed for an epoch of training. We
call the training cluster is saturated when the leader bandwidth is
saturated. In this case, further increasing the number of training
devices does not help improve the overall training time.

(2) We design a run-time method to detect if a training cluster is
saturated. For the reason described above, it is important to detect
if a training cluster becomes saturated as new workers are joining
it. We design a mechanism to accurately achieve such detection
during run time. To the best of our knowledge, we are the first to
study the issue of detecting cluster saturation in DDL training.

(3) We propose the mechanism of leader role splitting (LRS) to
help scaling up training cluster size after the leader’s bandwidth is
saturated. The idea is to adaptively split the leader role among
multiple workers such that each worker also works as the leader of
a subset of training devices. Our evaluation result shows that LRS
can significantly reduce overall training time when training cluster
becomes saturated.

To address the third challenge (i.e., need of dealing with training
device changes), we take the dynamics of devices, such as join-
ing/leaving the cluster and change of computation capabilities, into
consideration in the designs of training cluster formation, training
nodes management, and leader role transfer (§4.4).

Contributions. In summary, we make the following contributions
in this paper.

e We design and implement EDDL, an edge-based distributed deep
learning system for training DNN models. We identify and address
three main challenges of applying DDL in an edge computing en-
vironment with resource-limited computing devices. Departing
from the conventional wisdom, we demonstrate that synchronous
parameter update actually works better than the asynchronous
counter part in an environment with limited network bandwidth.
The mechanism of detecting training cluster saturation during run
time is first of its kind to the best of our knowledge.

o We implement a EDDL prototype system using ARM-based ODROID-
XU4 boards [21] and Raspberry Pi 3 Model B boards [49], and con-
duct a comprehensive set of experiments on a 16-worker-node
testbed to evaluate and study the practical issues and implications
of running EDDL.
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2 RELATED WORK

Distributed deep learning. There have been a plethora of re-
cent works which focus on improving distributed deep learning
(DDL) from theoretical perspective or on implementing and sup-
porting real-world DDL systems. Among these works, some adopt
a centralized approach, which uses parameter servers to coordinate
training workers and synchronize trained gradients/parameters
[1, 8,9, 11, 14, 23, 35, 37, 61, 67], while others opt for a decentral-
ized approach [39-41]. Some works exploit data parallelism by
employing multiple computing nodes to consume training data in
parallel [8, 11, 14, 35, 61], while others take advantage of model
parallelism which divides a large model into small parts so that
individual computing nodes can be used to process different parts
of the model [14, 29, 30, 61].

Federated learning and traditional DDL. Due to the high com-
puting resource demand for training DL models, most research
work of deep learning on embedded devices have been focusing on
DL inferences [20, 31, 42, 43, 62, 64]. Federated learning (FL), which
is a type of DDL proposed by Google [6, 44], is a promising way
of generating DL models on resource-constrained embedded de-
vices. There are three main differences between FL and traditional
DDL. First, a main motivation behind FL is to protect user data
privacy. To this end, FL generates ML models by training on private
user data on individual devices which can be heterogeneous, unbal-
anced, and non-independent and identically distributed (non-i.i.d.),
whereas traditional DDL assumes that the training datasets are
identically distributed and centrally stored. Second, training devices
in FL are usually connected via wide area networks (WANS), and are
loosely-coupled in the training. On the contrary, training nodes in
traditional DDL are connected via a high-speed local area network
(LAN), and are tightly-coupled in the training process, which is the
reason that traditional DDL incurs shorter training time than FL.
Third, training devices in FL are usually consumer-grade devices
and have lower computation capacity than those in traditional DDL
which are usually high performance servers.

EDDL is similar to traditional DDL in that it targets DDL sce-
narios where training devices are connected via the same edge
network infrastructure (e.g., a LAN) and can be tightly-coupled
to accomplish a training task. But it is also different because the
training devices in our scenarios are resource-limited consumer-
grade mobile devices. An example of such an scenario is that college
mobile users living in the same campus can face similar security
threats as mobile apps are becoming increasingly susceptible to
targeted attacks [22, 55, 56]. Those users may utilize the EDDL sys-
tem which coordinates the participating user devices to generate
mobile malware detection models based on the data collected lo-
cally within the campus. Since the users use the same campus LAN
for communication, they can be tightly-coupled to complete the
training tasks efficiently. One benefit of EDDL is that, as shown in
our motivation study (§3), DL models trained based on local data
perform better in dealing with local testing data (e.g., detecting the
targeted attacks to college app users) than those trained based on
the data collected globally.

EDDL is similar to FL in that both aim at using consumer-grade
mobile devices for DL model training. The differences are largely
the same as the ones between traditional DDL and FL as discussed
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previously. Generally speaking, on-site edge-based DDL, such as the
one DDL implements, complements FL in that it can better serve
users who use the same edge network infrastructure and share
similarities like similar interests and behaviors, while FL is better
suited for users who are loosely-coupled over wide area networks.
In this paper, we focus on training nodes communication topology,
parameter update impact and efficiency in performing DDL within
resource-constrained edge environments. Our findings should also
apply to existing federated learning solutions if training nodes are
tightly coupled.

Synchrony for parameter update. For the DDL solutions which
adopts the centralized approach and utilizes data parallelism, they
use one of the three ways to perform parameter synchronization:
synchronous, fully asynchronous, and asynchronous with bounded
staleness. The synchronous approach synchronizes all the training
workers in a way that the training progress is moved forward in
a batch-by-batch manner [1, 8, 10]. With the fully asynchronous
approach, the parameter server aggregates a set of locally trained
parameters/gradients as soon as they are received [9, 10, 14, 19, 35,
45]. The asynchronous with bounded staleness approach limits the
progress difference between the fastest and the slowest training
workers so as to enable faster convergence [10, 11, 23, 61].

The existing works suggest that the fully asynchronous parame-
ter update approach and the asynchronous with bounded staleness
approach work better than the synchronous approach because
they are impacted less by struggling workers and scale better [9-
11, 14, 23, 35, 38, 45, 50, 61]. However, our experiments suggest that
for DDL systems where bandwidth capacity of training nodes is
limited, sync PU is preferred over async PU in terms of training
time efficiency. We present the further analysis in §4.3 and §6.3
later.

Dealing struggling training workers. As indicted above, one
major challenge of DDL system that adopt the synchronous param-
eter update approach is dealing with the existence of struggling
workers. Chen et. al. [8] uses backup workers to replace struggling
workers. However, this approach may not work well in practice
because backup workers may not be available. Project Adam [9] and
Li et. al. [35] deals with struggling workers by simply terminating
them because losing a small of data does not affect the training.
This approach works well for large DNN models with large amount
of training data, but may not work well for small models like our
scenario.

3 THE MOTIVATION STUDY

A key observation motivating us to investigate edge-based DDL
training is that ML models trained based on data collected locally
(short as local models) perform better in local data inference than
those trained based on global training data (short as global models).
We have conducted a study to demonstrate this observation. In
this study, we examine how edge-based DDL training would help
improve the effectiveness of mobile malware defense solutions. The
existing ML-based solutions take app samples from users globally.
The universalness of the training data renders these solutions less
effective to deal with localized testing data, such as apps that are
used by users in the same community (e.g., users in the same univer-
sity, who are likely to share similar app interests and be targeted by
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Table 1: Selection/distribution of APKs for CAU scenario 1 (for training local models L1 to L6).

Category APK APKs used when training Family APK APKs used when
name (index) number L1 I L2 | L3 l L4 | L5 | L6 name (index) | number || training L1 to L6
Tools (1) 1,899 1,000 200 400 600 800 600 Mecor (3) 1,820 875
Entmt. (2) 1,651 800 1,000 200 400 600 600 Youmi (4) 1,301 625
Brain and Puzzle (3) 1,066 600 800 1,000 [ 200 400 600 Fusob (5) 1,277 613
Lifestyle (4) 1,034 400 600 800 1,000 | 200 600 Kuguo (6) 1,199 576
Education (5) 835 200 400 600 800 1,000 [ 600 BankBot (7) 648 311
| Total | 6,485 ][ 3,000 [ 3,000 [ 3,000 [ 3,000 [ 3000 ] 3000 ] [ Total [ 6245 | 3,000
(a) Benign APKs (b) Malware APKs

Table 2: Selection/distribution of APKs for CAU scenario 2 (for training local models SL1 and SL2).

Category APK APKs used when | APKs used when
name (index) number training SL1 training SL2
Entmt. (2) 1,651 360 300
Education (5) 835 360 250
Communication (14) 583 360 250
Music & Audio (16) 534 360 250
Social (17) 465 360 250
Total | 4068 | 1,800 1,800 |
(a) Benign APKs
35001
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Figure 1: Distributions of malware family sizes and benign
APK category sizes.

the same security threats). We simulate edge-based mobile malware
defense scenarios where malware detection/classification (d/c for
short) models are constructed by training on app data collected
from the users of the same community.

The Android APK dataset. Our study is based on a large Android
app dataset, which consists of 16,710 malware APKs and 16,425
benign APKs. The malware APKs are obtained from the Android
Malware Dataset [58], and are classified into 70 malware families.
The benign APKs were crawled from Google Play during the period
from April to July 2014, and can be put into 30 categories based on
app functionalities (e.g., News, Shopping, Finance, etc.). We index
all the malware families in an ascending order of family size (i.e.,
number of APKs in the family), and did the same thing for all the
benign APK categories. Figure 1 shows the distributions of malware
family sizes and benign APK category sizes.

PerNet: a deep neural network for mobile malware detection
and classification. We design a multilayer perceptron (MLP) [59]

Family APK APKs used when

name (index) number || training SL1 and SL2
Fusob (5) 1,277 543
Kuguo (6) 1,199 510
BankBot (7) 648 276
Fisut (8) 560 238
DroidKungFu (9) 546 233

| Total [ 4230 | 1,800 |
(b) Malware APKs

based DNN, which is named “PerNet” because it determines whether
an app is a malware based on the permissions used in the app. The
input to PerNet is the subject APK’s Boolean vector of Android
permissions. PerNet examines all the permissions defined by the
Android system, which are 427 in total. Therefore, there are 427
neurons in the input layer. The input layer connects to five fully-
connected hidden layers, whose number of neurons are 512, 512,
256, 256, and 128 respectively. The output layer has 71 neurons,
which contain the Boolean classification results for the 71 classes
(i.e., the 70 malware families and the benign class). The activation
function used in PerNet is rectified linear unit (ReLU) [7].

Generating the local models. We simulate the scenarios of app
usage in different communities based on which local malware d/c
models are generated. Since users from the same community are
likely to use similar types of apps, we select several benign APK
categories (out of the 30 categories) to simulate the commonly used
app types in a community. We also choose several malware families
(out of the 70 families) to simulate the malware attacks targeting the
users in the community. Specifically, we simulate two community
app usage (short as “CAU” below) scenarios as follows.

e For CAU scenario 1 (summarized in Table 1), we pick the five
largest benign categories, which together have 6,485 APKs, and
select 3,000 of them for training local models. To match the total
number of APKs in the five benign categories, we choose five mal-
ware families, which contain 6,245 APKs in total, and also select
3,000 of them in training local models. To evaluate the effects of
different training data distributions on malware d/c accuracy, we
generate six local models (L1 to L6), of which the 3,000 training
benign APKs follow different distributions among the five benign
categories. For example, the 3,000 benign APKs are linearly dis-
tributed among the five categories when training local models L1 to
L5. For the local model L6, the 3,000 benign APKs are evenly divided
among the 5 categories. All the 6 local models share the same set of
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Table 3: Inference testing results of CAU scenario 1 and 2.

CAU scenario 1 CAU scenario 2
Li [ L2 | 13 [ L4 [ L5 | L6 [Global [ SL1 [ SL2 [ Global
Classification accuracy 99.0% | 98.97% | 98.94% | 98.95% | 98.95% | 98.94% | 96.93% || 99.67% | 99.72% | 95.37%
Classification recall 97.97% | 97.7% | 97.83% | 97.83% | 97.85% | 97.83% | 93.75% || 99.35% | 99.45% | 90.89%
Classification precision 100% 100% 100% 100% 100% 100% 100% 100% 100 % 100%
Detection accuracy 100% 100% 100% 100% 100% 100% 100% 99.94% | 99.94% | 99.94%

3,000 training malware APKs, which are randomly chosen from the
five malware families. We select training APKs in the above way
because for the same set of malware APKs, the detection accuracy
may vary with the environment they are targeting. Different envi-
ronments can have different mixtures of benign APKs, depending
on the interests of the community.

e For CAU scenario 2 (summarized in Table 2), we simulate app
usage in schools. We select five benign app categories which are
commonly used by students, and use 1,800 APKs from these cate-
gories for training the local models. Five malware families whose
total number of APKs match that of the five benign categories are
selected to train the local models. Two local models (SL1 and SL2)
are generated for the scenario 2: SL1 is trained on benign APKs
which are uniformly distributed among the five categories, and
SL2’s training benign APKs are dominated by one benign category.
Similar to CAU scenario 1, the training malware APKs are randomly
chosen from the five malware families.

Local testing data. The local testing data are drawn from the
benign categories and malware families which are associated with
the CAU scenarios. We randomly choose 20% from each of these
categories/families that were not used in the training process. As
a result, for CAU scenario 1, we select 2,544 APKs (1,297 benign
and 1,247 malware) as the testing APKs; for CAU scenario 2, 1,654
APKs (814 benign, 840 malware) are selected as the testing APKs.

Generating the global model. The global mode is trained based
on all the APKs in the dataset except the testing APKs.

Study results. Table 3 presents the simulation study results. An
app is considered to be correctly classified if the PerNet model cor-
rectly puts the app into one of the 71 classes (i.e., benign and the
70 malware families). An malware app is considered to be correctly
detected if the model labels it to one of the malware families (regard-
less the correctness of the labeling). An benign app is considered
to be correctly detected if the model rules it as benign.

We can see from Table 3 that for CAU scenario 1, the six lo-
cal models (L1 to L6) enjoy a classification accuracy around 99%,
whereas the global model’s classification accuracy is 96.9%. For
CAU scenario 2, both local models (SL1 and SL2) achieve more than
99.6% of classification accuracy, which is over 4% higher than the
global model. All the local models have significant higher classi-
fication recall than global model, while both the local and global
models achieve 100% classification precision. This indicates that
local models perform better than global models on correctly classi-
fying true malware targeting the communities, but both are unlikely
to misclassify a benign app as malware.

It is worth noting that there have been several recent studies
which achieve personalized DL models via different approaches,

EDDL
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Figure 2: The basic setup of EDDL’s distributed training,.

such as meta-learning [28], multi-task learning [51, 63] and trans-
fer learning [57]. These solutions usually first train a global model
which is then adapted to individual users based on their local data.
EDDL complements these solutions in that it does not require train-
ing of global models which may not be feasible due to lack of global
data. With EDDL, local-community-oriented DL models can be
generated based on the data collected locally.

4 EDDL SYSTEM DESIGN

4.1 The setup of EDDL’s distributed training

The basic setup of EDDL’s distributed training is shown in Figure
2. There are three main entities: the EDDL training cluster, the
EDDL manager, the training data entry storage.

The EDDL training cluster consists of edge or mobile devices
that are participating in a training task. In the following, we refer
to these devices as the training nodes. There are two roles in for the
training nodes: leader and worker. As introduced in §1, individual
worker nodes train on their own portions of training data entries
(TDEs) using mini-batch Stochastic Gradient Descent (mbSGD) [36,
60], and synchronize the updated model parameters to the leader
node. The leader node acts as a parameter server [10, 23, 35, 37]
which aggregates and sends back the parameters received from
the workers. We refer to the number of worker nodes in a training
cluster as the size of the cluster. In the example shown in Figure 2,
the training cluster has a size of four.

The EDDL manager performs three tasks: working as the portal
device to collect training data entries (TDEs) from users within the
same community, initializing training tasks, and relaying TDEs to
the training cluster during a training. Edge infrastructure devices,
such as wireless APs, are ideal to work as EDDL managers because
the EDDL manager needs to communicate to the leader device of a
training cluster, which can be any user device, and requires minimal
amount of computation.

A Training data entry (TDE) is a piece of labeled data which
consists of a feature vector and a classification label. Take the the
edge-based malware defense (§3) as an example, the feature vector
of a TDE is the permission vector of an app, and the label tells
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Figure 3: Dynamic training data distribution in EDDL.

whether the app is benign or the type of malware. Another example
is that for an edge-based news recommendation, the feature vector
of the TDE could be user preferences and time when a piece of
news is viewed, and the label is the headline of the news. The TDE
storage stores TDEs contributed by users of the same community.
Compared to cloud storage, the TDE storage is owned and trusted
by the community users.

4.2 Dynamic training data distribution

Existing distributed DNN training solutions usually statically par-
tition training data among the training workers [8, 11, 14, 35, 61,
65]. The static partitioning approach is unlikely to work well for
EDDL because of two reasons. First, as discussed previously, training
workers in our scenario have high variation in available computing
resource. As a result, static training data partitioning can lead to
large differences in time needed for individual workers to finish
one epoch of training (i.e., to consume their partitions of data once),
which would slow down the overall training significantly. Second,
static training data partitioning cannot well deal with training node
changes, such as nodes leaving and joining, which is not uncommon
in our scenario.

To address the above problems, EDDL adopts a dynamic training
data distribution approach, which allows the leader to distribute
training data based on the training progresses on different work-
ers. The overall training workflow with the dynamic training data
distribution mechanism is shown in Figure 3. The EDDL manager
initiates a training task, whose goal is to generate a new or updated
malware d/c model, by dispatching the training metadata, which
contains the indexes of all the TDEs, to the leader of a training
cluster (step @D). The leader then dispatches training jobs, each of
which requests a worker to perform the forward pass and backprop-
agation on one batch of training data as in mini-batch stochastic
gradient descent (mbSGD) [36, 60]. For each worker which is ready
for a new training job, the leader sends it the indexes of a TDE
batch (step @). The worker then fetches the batch of TDEs from
the EDDL manager (steps @ and @), and performs local training
on them (step ®). After the local training is completed, the worker
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sends the new local parameters to the leader (step ®), which aggre-
gates them with other worker’s latest local parameters or the latest
global parameters (depending on (a)synchrony of the aggregation)
to generate the updated global parameters (step @), and sends them
back to the worker. The steps @ to ® above repeat until a epoch
of training is completed (i.e., the entire set of TDEs are trained on
once). Multiple epochs of training are needed to obtain a model
with desired accuracy.

The above design dynamically dispatches training data range
for each training job to workers based on their training progresses
instead of statically partitioning the data among them. As a result,
fast-working workers do not need to wait for struggling work-
ers to finish their shards of data in an epoch of training, which
consequently lead to improved training time efficiency.

To reduce the overhead of distributing training data in real time,
we adopted an optimization in our system implementation that
after the leader device receives the indexes of all the TDEs from
the EDDL manager (i.e., step @), it broadcasts this info to all the
workers. Each worker then prefetches the whole set of TDEs before
the training process starts. This way, each worker device can start
the local training right after receiving info of the TDE batch it
needs to work on from the leader (i.e., step @), and therefore to
forego steps @ and @ to speed up the whole training process. Here
prefetching the entire training dataset is a feasible optimization
for edge-based DDL scenarios due to two reasons. First, it is a
one-time operation which occurs before the training starts and
thus has little impact on overall training time. Second, compared
to conventional DDL which trains ML models based on a massive
amount of data collected globally, the training data size of edge-
based DDL is relatively small because the data are collected from
only one local community.

4.3 Scaling up EDDL training cluster size

As discussed in §1, a challenge for EDDL to apply DDL training in
an edge environment is the difficulty of scaling up the number of
training nodes in a cluster. Our approach of addressing this chal-
lenge is three-fold: first, we adopt synchronous parameter update
as the default approach for aggregating parameter updates from
workers; second, we design a practical method to detect if a training
cluster is saturated when scaling up its size; third, we propose the
approach of adaptive leader role splitting to further scale up train-
ing cluster size after cluster saturation is reached. In the following,
we first introduce the concept of synchronous and asynchronous
updates, and then the three designs of scaling up EDDL training
cluster size.

(A)synchrony of parameter update. The operations performed
in steps ©®, @ and ® in Figure 3 are referred to as parameter update
(PU). EDDL supports two types of PU: synchronous and asynchro-
nous. With synchronous PU, after the leader dispatches training
jobs to the workers, it waits for all the workers’ new local param-
eters before performing aggregation on them and sending back
the new global parameters. With asynchronous PU, whenever the
leader receives local parameters from a worker, it aggregates them
with the latest global parameters to generate new ones and sends
them back to the worker. If the leader receives a worker’s local
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parameters while an aggregation process is under way;, it restarts
the aggregation to include the newly-arrived parameters.

EDDL adopts synchronous PU by default. The reason of this
design is that, according to our experiments (§6.3 later), we find
that in distributed deep learning systems where bandwidth capacity
of training nodes is limited, sync PU is preferred over async PU
in terms of training time efficiency. Our finding here contradicts
many recent works which suggest sync PU is inferior to fully async
PU [9, 14, 35, 38, 45, 50] or async PU with bounded staleness [10,
11, 23, 61]. We analyze the cause of the disagreement below.

With the parameter server architecture, all the worker nodes in
a training cluster send their updated model parameter to the leader
node for aggregation. As the number of worker nodes increases, the
network capacity at the leader node will become saturated, after
which time further increasing worker nodes would only deteriorate
the overall training time because of the fast increasing network
time for parameter synchronization. We call the number of workers
in a training cluster when the leader node’s network bandwidth is
saturated the “saturation size” of the training cluster.

In the meantime, although async PU takes less time in one epoch
of training (“epoch time” for short) than sync PU, both our exper-
iment results and the recent works suggest that async PU needs
to take more epochs to converge (i.e., to reach the desired training
accuracy). For a given training cluster, async PU incurs less over-
all training time (which is the product of epoch time and epoch
number) than sync PU when the cluster size is large enough, such
that the reduction in epoch time outweighs the disadvantage in
epoch number. We name this sufficiently large cluster size with
which async PU incurs less overall training time than sync PU the
“inflection size”! of the training cluster.

For edge-based DDL, the inflection size of a training cluster
is likely to be notably higher than the cluster’s saturation size
because of the limited network bandwidth at the leader node. In
other words, when scaling up the training cluster size, the leader
node’s bandwidth is saturated long before the inflection size is
reached. As a result, async PU usually has worse performance than
sync PU in terms of overall training time. The experiment results
which support the above analysis will be presented later in §6.3.

Detecting training cluster saturation size. Since increasing the
number of worker nodes in a training cluster after the cluster’s
saturation size is reached would deteriorate the overall training
time, it is important to be able to detect when saturation size is
reached when scaling up the size of the cluster. However, detecting
training cluster saturation size is not trivial because the saturation
size varies as the available network bandwidth at the leader node
changes. Therefore, an online approach is needed rather than an
offline one.

We observe that before a training cluster is saturated, the follow-
ing inequation should hold:

S
BZ>MX,,’ (1)

tsync

1t is named this way because when the number of worker devices in the training
cluster is smaller than the cluster’s inflection size, sync PU achieves better overall
training time than async PU. When there are more worker devices in the training
cluster than the cluster’s inflection size, and async PU performs better.
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Figure 4: Leader role splitting example in a 5-node cluster.

where Bj is the leader’s available network bandwidth, n is the
number of workers, Sparam is the size of parameters which are
needed to be synchronized for a batch of training, and tsync is the
average time needed for parameter synchronization in a batch of
training. The above inequation means before cluster is saturated,
Bj has surplus after accommodating bandwidth consumption from
the workers.
We define bandwidth usage coefficient (BUC) as:
n

BUC = 2

tsync
According to the inequation (1), the following should hold before
saturation is reached:

L’ (3)

Sparam

BUC <

which means if a new worker were added, the new BUC would
be larger than the current one. Therefore, our way of detecting
cluster saturation as workers are added is allowing leader node to
monitor how the BUC value changes after adding a new worker:
if the new BUC is larger than the old value, it means the cluster
has not yet been saturated; otherwise the cluster is saturated. It
is worth noting that the value of ¢5ync can be easily obtain by the
leader node during runtime. The experiment later in §6.4 shows
that the runtime metric of BUC is able to accurately detect when
the saturation size is reach while increasing the size of a training
cluster.

Adaptive leader role splitting. One of our ongoing efforts is
investigating how to adjust the topology of a training cluster after
the saturation size is reached, such that further scaling up the
cluster can be beneficial. Our current design adopts a two-level
tree structure where the leader locates at the root level and new
workers are always directly connected to the leader. The drawback
of this design is that cluster saturation size is determined by the
available bandwidth of a single node (i.e., the leader). A promising
direction is to adaptively (e.g., when leader’s network bandwidth is
saturated) split the current leader role among several worker nodes
which can then work as “sub-leaders”. Figure 4 shows an example
of leader role splitting (LRS) in a training cluster with 5 devices. In
the example, the leader device (PD5) splits its leader role among
PD3 and PD5 to allow them to work as sub-leaders which aggregate
parameters for a portion of the workers, and relays the partially-
aggregated parameters to the top leader for final aggregation. In
order to enable LRS without requiring more physical devices, PD3
and PD5 also work as workers (each of which is implemented as
a separate process from the sub-leader process). The preliminary
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Figure 5: Implementation of leader and worker nodes.

evaluation result (§6.5) shows that LRS is a promising approach to
scaling up training cluster size for edge-based DDL where training
cluster saturation size is usually small.

4.4 Training cluster formation and training
nodes management

Owners of edge devices have strong incentives to participate in
the distributed training for the following three reasons. First, the
edge devices may greatly be benefited by using the trained models.
Second, organizations such as companies and schools, which can
be benefited most by edge-based DDL solutions (such as the one
presented in §3), may mandate their employees to participate. Third,
the training can be done while the edge devices are idle, which
alleviates the concern of training interfering normal workloads on
the devices.

Formation of a training cluster is initiated by the EDDL manager
when it has collected sufficient TDEs. Edge devices that are selected
to participate in the training process send their hardware specifi-
cation and runtime resource statistics, such as CPU and network
interface utilization, to the EDDL manager, which uses such infor-
mation to pick a device as the leader of the training cluster. The
leader node of the training cluster is responsible for training nodes
management which has two main goals. First, the leader node needs
to be aware of available computation resource changes on different
training nodes, so that the leader role can be transferred to the node
with the most abundant available computation resource. Second,
training node dynamics, such as joining and leaving the training
cluster, need to be properly managed. This goal is easy to achieve
because training data is dynamically distributed to workers in a
batch-based manner and workers synchronize model parameters
with the leader after each batch of training. As a result, the leader
does not need to maintain states for workers. Each worker can be
treated the same regardless when it joined the cluster.

5 EDDL SYSTEM IMPLEMENTATION

Prototype system hardware. We implemented a prototype sys-
tem using two single-board computer (SBC) embedded platforms

Pengzhan Hao and Yifan Zhang

which have similar computation capability as today’s edge de-
vices, such as smartphones and access points. One such platform
is ODROID-XU4 [21], which is equipped with a 2.1/1.4 GHz 32-bit
ARM big LITTLE octa-core processor and 2GB memory. The other
platform is Raspberry Pi 3 (RP3) Model B board [49], which comes
with an ARM 1.2 GHz 64-bit quad-core processor and 1 GB memory.

Software environment. The operating system running on the
above SBC platforms is Ubuntu 18.04 with Linux kernel 4.14. We
use Dlib [16], a C++ library which provides implementations for a
wide range of machine learning algorithms and tools, to implement
the core deep learning functionalities, such as SGD. We choose the
Dlib library because it is written in C/C++, and thus can be easily
and natively used by embedded devices for good performance.

Leader/worker node implementation. Figure 5 demonstrates
the implementations of leader and worker nodes. To support dy-
namic leader role transfer, the implementation logic of both leader
and worker are carried in each ODROID and RP3 device, such
that all training nodes can work as leader or worker depending on
runtime needs.

The implementation logic of both leader and worker nodes con-
sists of multiple threads, each of which is implemented as a POSIX
thread to complete a specific functionality. For a new worker node
to join a training cluster, the control thread in the worker node
sends a join request to the control thread in the leader node (step @).
For each new worker node, the leader launches a synchronization
thread, through which it starts a new job for the worker by sending
the indexes of a batch of TDEs to the worker’s control thread (step
). The worker then fetches the said TDEs from EDDL manager
and stores them locally (step ). Our implementation adopts the op-
timization mentioned before, which allows worker node to prefetch
the entire set of TDEs, and thus avoids the need of fetching TDEs
from EDDL manager for every new job. The worker control thread
also communicates its status (e.g., CPU and network bandwidth
utilization) to the leader thread, which can use the info to manage
training nodes (e.g., to initialize leader role transfer). When a new
batch of TDEs become available, the training thread within the
worker starts the forward and backward training passes on the new
TDEs, and stores the resulted (local) parameters (step @), which
are fetched and synchronized to the leader node by the worker’s
synchronization thread (step ®). The leader node is responsible for
aggregating the locally trained parameters from different workers
to generate the latest global parameters (step ®). For synchronous
PU, the leader waits for the local parameters from all the work-
ers until aggregating them to generate the global parameters. For
asynchronous PU, the leader aggregates the newly received local
parameters with the current global parameters to generate the latest
ones without waiting for other workers. Once new global param-
eter become available, the leader sends them back to individual
workers through the corresponding per-thread sync thread (step
@). In our implementation, the TDE indexes of a new training job
are piggybacked when leader sends updated global parameters back
to workers (i.e., the info sent in steps @ and ® is delivered with
one network message). After worker node receives the latest global
parameters and the indexes of the next batch of TDEs, it starts a
new training cycle by repeating the steps @ to @ above.
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Figure 6: Time for training a batch of 128 TDEs (y-axis)
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Figure 7: Model test accuracy after 10/20/30 epochs of train-
ing (y-axis) with training clusters of different sizes (x-axis).

6 EVALUATION AND INSIGHTS

We conducted experiments to evaluate the real-world performances
of our EDDL prototype system.

Training devices. The training nodes used in the evaluation ex-
periments are ODROID XU4 devices.

Network setting. To enable controllable network bandwidth be-
tween leader and worker devices, the training nodes are connected
via an Ethernet switch, which emulates wireless communication
speeds by varying the bandwidth.

DNNs and training datasets. We conducted experiments on two
DNN models and their associated datasets. The first DNN is the
PerNet introduced in §3. We trained PerNet using 6,656 TDEs (i.e.,
TDEs derived from 6,656 APKs which were selected following the
same way of training the local model L1 of the CAU scenario 1 (see
Table 1 in §3 previously). The size of the 6,656 TDEs is 6.3 MB. As a
comparison, the size of all the 33,135 TDEs used in training/testing
the global model (§3) is about 30.7MB. The testing APKs were also
selected using the same way as described in §3. The second DNN
is the LeNet [33] and was trained using the MNIST dataset [34]
which has about 60,000 grey-scaled images of handwritten digits
with about 47 MB in total. Both of the datasets chosen have around
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several thousands to tens of thousands data entries, which match
the scale edge-based DDL scenarios where models are trained based
on the data collected from local communities.

The findings presented in the following are supported by the
experiment data on both PerNet and LeNet. Due to the space limit,
we use the data obtained from the PerNet experiments to discuss
the findings.

6.1 Batch training time

Figure 6 shows the average time needed to train a batch of 128
TDEs, which consists of local training time and (parameter) sync
time, with different number of workers. The measurement was per-
formed under two network bandwidth settings for cluster nodes:
1000 Mbps and 100 Mbps. From the figure we can see that worker’s
local training time stays unchanged regardless parameter update
(PU) synchrony or cluster node bandwidth setting differences. The
figure shows the following results about the relationship between
batch training time PU synchrony.

e Async PU incurs smaller batch training time than sync PU. This
is because sync PU requires each worker to wait for the leader to
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aggregate parameter updates from the entire cluster before start-
ing the next batch of training, while async PU does not have this
requirement.

o The leader node’s network bandwidth capacity is shared among
the workers. Thus, after the leader’s bandwidth is saturated, adding
more workers would proportionally increase sync time as well as batch
training time. Figure 6 also shows that batch training time with
cluster node bandwidth of 100 Mbps is significantly higher than
that with cluster node bandwidth of 1000 Mpbs, especially for clus-
ters with more workers. The difference is caused by the increase of
(parameter) sync time. For example, when 16 workers are used, the
ratios between sync time and batch training time for sync/async PU
are 0.88/0.87 with bandwidth of 100 Mbps, compared to 0.38/0.07
with bandwidth of 1000 Mbps.

6.2 Model accuracy

Figure 7 shows the results of model test accuracy after 10, 20 and
30 epochs of training with different number of workers. We can see
the following results from the figure.

e It requires more epochs of training for async PU to converge (i.e., to
reach a desired model test accuracy) than sync PU. For example, the
models trained with async PU after 30 epochs (i.e., the “ASYNC-30
epochs” line) have almost the same accuracy as the models trained
with sync PU after 20 epochs (i.e., the “SYNC-20 epochs” line). This
finding is consistent with recent literature [1, 8, 12].

o Sync PU achieves better model test accuracy than async PU under
the same condition (i.e., same number of training epochs and same
training cluster size). For example, models with SYNC-30 achieve
notably higher accuracy than those with ASYNC-30 when the clus-
ter size is larger than 8.

o With the same number of epochs of training, model test accuracy de-
clines as size of the training cluster increases, but the variation range
is much smaller when the model is trained for more number of epochs.
In other words, it requires more epochs of training for large training
clusters to reach a desired model test accuracy. For example, after
20 epochs of training using async PU (i.e., ASYNC-20), an accuracy
of 95% can be achieved with a training cluster of 4 workers, while
only an accuracy of 88% is achieved with a 16-worker cluster.
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Figure 11: Bandwidth utilization ratio (BUC) (y-axis) vs. clus-
ter size (x-axis). (a) When cluster node’s bandwidth is set to
1000 Mbps, no cluster saturation with both sync and async
PU. (b) When cluster node bandwidth is set to 100 Mbps, clus-
ter saturation is detected when cluster size increases to 6 and
4 for sync PU and async PU respectively.

6.3 Overall training time

Figure 8 and Figure 9 demonstrate how overall training time is
affected by the different factors. We have the following finding
about overall training time and cluster size.
o Increasing number of workers is helpful for reducing overall training
time until network bandwidth of the leader node becomes a bottleneck.
For example, as shown in Figure 9, with cluster node network
bandwidth set at 100 Mbps, increasing training cluster size beyond
6 does not only does not reduce, it may also increase, the overall
training time (e.g., the overall training times with the 16-worker
cluster are larger than those with smaller clusters)
o In DDL systems where network bandwidth of the training nodes is
limited, sync PU is preferred over async PU in terms of training time
efficiency. For example, recall that in Figure 7, it was shown that the
model trained with async PU for 30 epochs (short as “ASYNC-30
model” below) achieves almost the same test accuracy as the model
trained with sync PU for 20 epochs (short as “SYNC-20 model”
below) under training clusters of different sizes. Here, according to
Figure 8 and 9, ASYNC-30 model needs more time than SYNC-20
model in most of the cases.

We find that the time difference for training SYNC-20 and ASYNC-
30 models actually varies depending on network bandwidth of the
leader as well as size of the training cluster. Figure 10 plots the
training time ratio of ASYNC-30 model over the SYNC-20 model
for training cluster of different sizes. We can see that when the
leader node’s network bandwidth is limited (i.e., 100 Mbps), the
% training time ratio decreases toward 1 as number of
workers increases from 1 to 4. However, when there are more than
4 workers in the training cluster, the % training time ratio
increases as cluster size grows. The reason is that network band-
width of the leader is saturated when there are 4 workers (i.e., the
saturation size of the cluster is 4). Thus, adding more workers would
cause a significant increase in network sync time when training
a batch of TDEs. The increase of batch training time in this case
overshadows the benefit brought by adding more workers (which
is reducing the number of batches to be trained by each worker).
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Figure 13: TDEs dynamic distribution vs. static partition.

6.4 Training cluster saturation size detection

Figure 11 shows how the BUC value changes in the experiments
discussed previously. When leader node’s bandwidth is sufficient
(i.e., 1000 Mbps), BUC increases as number of workers increases,
which matches our observation that there is no cluster saturation
with sync and async PU when leader’s bandwidth is 1000 Mbps.
When leader node’s bandwidth is limited (i.e, 100 Mbps), BUC in-
creases as the worker number grows until reaching 6 and 4 workers
for sync and async PU, which again matches our observation on
cluster saturation size with 100 Mbps bandwidth (which can be
seen in Figure 9 that the overall training time for sync and async
PU stops decreasing when there are more than 6 and 4 workers in
the cluster respectively).

6.5 Leader role splitting (LRS) for scaling up
training cluster size after saturation

Figure 12 shows the effect of LRS for training clusters with 4/8/12/16
workers. In this experiment, training devices’ network bandwidth
is set to 100 Mbps, and async PU is used for the case of without LRS,
of which the saturation size is 4 workers as we analyzed previously.
For the case of with LRS, sync PU is used between workers and
sub-leaders, and async PU is used between sub-leaders and the
top leader. If the cluster topology with LRS in Figure 4 is notated
as “1-2-4” (meaning 1 top leader, 2 sub-leaders, and 4 workers
which are evenly under the sub-leaders), the cluster topologies

Figure 15: Overhead on normal workload caused by training
workload on (a) worker node, and (b) leader node.

with LRS in this experiments are “1-2-4”, “1-2-8”, “1-3-12” and “1-
4-167, respectively. The results reported here are for 30 epochs
of training. Figure 12 (a) suggests that LRS achieves similar to
slightly better model accuracy as when LRS is not applied. Figure
12 (b) demonstrates that topologies with LRS incurs much less
training than those without, especially when the severity of cluster
saturation is high. From the above results it can be seen that LRS
is a promising approach to deal with saturated clusters. We are
working on addressing other fundamental challenges, such as how
to practically and systematically achieve the optimal topology.

6.6 Evaluating the effects dynamic training
data distribution

We compared our dynamic TDEs distribution approach with the tra-
ditional static training data partition approach. In this experiment,
an 8-worker cluster is used to trained a PerNet model with aysnc
PU for 30 epochs. We allow some of the workers to be “struggling
workers” by using RP3 devices, which have significantly lower
processing power than ODROID devices. With static training data
partition, the training TDE set is evenly divided into eight parts,
each of which is fed to an individual worker. Figure 13 shows the
result of training time for the two different approaches. We can
see that our TDEs dynamic distribution approach is notably more
time-efficient than the static partition approach when there are
struggling workers in the training cluster.
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6.7 Impact of training batch size

EDDL adopts mbSGD for training the PerNet model. Here we eval-
uate the impact of batch size on training time (Figure 14 (a)) and
model accuracy (Figure 14 (b)). The experiment performs training
for 30 epochs with different batch sizes and cluster sizes. Cluster
node’s network bandwidth is set to 100 Mbps, and async PU is
used. Figure 14 (a) shows that training time decreases as batch size
gets bigger. This is because larger batch size means less number of
parameter aggregation and synchronization. However, as demon-
strated in Figure 14 (b), training with large batch size can lead to
significant model accuracy drop for training clusters with four or
more workers. The default batch size of our prototype system is
128 TDEs, which strikes a good balance between training time and
model accuracy.

6.8 System overhead

The training nodes in our system are edge devices which have
their own normal workloads. Here we evaluate how EDDL training
workload affects the normal workloads on these edge devices. We
construct three normal workloads which are heavy on usage of
CPU, memory, and network respectively. The CPU and memory
workloads are constructed using sysbench which is a scriptable
database and system performance benchmark [15]. The network
workload is constructed using the iperf utility [26]. We run each of
the above workload while issuing a training workload which trains
a PerNet model using ODROID devices. The network bandwidth
of cluster nodes is set to 100 Mbps. Figure 15 (a) shows the result
for worker node. The major overhead caused by the training is
seen on the CPU workload, which is a slowdown about 27%. This is
because the main computation resource used by a worker node is
CPU. Figure 15 (b) shows the overhead results for leader node. We
can see that when the number of workers increase from 1 to 8, the
CPU workload and the memory workload suffer from slowdowns
of 5%-13% and 19%-26%, respectively. The major overhead for leader
node is on the network workload, which is about 10% to 43%. Given
the above result, it is preferable to run training workload on edge
devices when they are idle, especially for devices serving as training
leaders.

7 CONCLUSION

In this paper, we advocate edge-based DDL with which machine
learning models are trained based on the data collected locally
from users serviced by the same edge infrastructure. We designed
EDDL, an edge-based DDL system which addresses multiple chal-
lenges of performing DDL on edge environments where computing
devices are resource-constrained embedded devices connected via
consumer-grade wireless networks. The proposed EDDL system has
been implemented with ARM-based ODROID-XU4 and Raspberry
Pi 3 Model B boards. We further conducted a case study of enabling
edge-based mobile malware defense on our 16-device EDDL proto-
type system, which demonstrated the effectiveness and efficiency
of the EDDL system.
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