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ABSTRACT

This paper investigates the problem of performing distributed deep

learning (DDL) to train machine learning (ML) models at the edge

with resource-constrained embedded devices. Existing solutions

mostly focus on data center environments, where powerful server-

class machines are interconnected with ultra-high-speed Ethernet,

and are not suitable for edge environments where much less power-

ful computing devices and networks are used. Due to the resource

constraint on computing devices and the network connecting them,

there are three main challenges for performing edge-based DDL: (1)

susceptibility to struggling workers, (2) difficulty of scaling up to a

large training cluster, and (3) frequent changes in training device

availability and capability. To address these challenges, we design

and implement EDDL, an edge-based DDL system, with ARM-based

ODROID-XU4 and Raspberry Pi 3 Model B boards. We evaluate the

prototype EDDL system by performing edge-based mobile malware

detection and classification on a large Android APK dataset. The

evaluation results show that EDDL can efficiently train deep learn-

ing models with consumer-grade embedded devices and wireless

networks while incurring small overhead.
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1 INTRODUCTION

Edge-based DDL training is desirable. We advocate performing

DDL at the edge to train deep neural network (DNN) models due

to the following observations.

First, we observe that co-located mobile device users, such as

users within a university, an office campus, or a hospital, usually

share similar interests, exhibit similar behavior patterns, or even

are targeted by similar threats. Take mobile app preferences as an

example, social networking, entertainment, and gaming apps are

popular among university students; professionals from financial

institutions are likely to have apps related to work productivity,
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finance, and their companies installed on their devices. Co-located

users may also be targeted by the same or similar security threats

as mobile apps are becoming increasingly susceptible to targeted

attacks [22, 55, 56], where malware are targeting specific groups of

users by masquerading as legitimate apps that are likely used by

the victims [5, 52].

Second, we observe that ML-based solutions that take training

data in a global manner are less effective to deal with localized

testing data than solutions that are generated based on training

data collected locally. This is because ML classification models

work best if the distributions of the testing data match those of the

training data. We present a motivation study which demonstrates

this observation in §3.

Based on the first two observations above, we argue that it is

advantageous to generateMLmodels by trainingwith data collected

locally from the same group of co-located users.

Third, most of the existing ML-based solutions require process-

ing and storing the training data collected from the users centrally

on the cloud. However, there are growing concerns on the trust-

worthiness of cloud when it comes to processing/storing user data

[3, 4, 17, 25, 54, 66]. Indeed, a series of recent user data leakage

incidents [13, 18, 27, 46] warrant prudent designs for user privacy

protection.

Because of the third observation above, we argue that it is de-

sirable to move storing/processing of user data and training ML

models from cloud to the infrastructures owned and trusted by the

users. The edge computing infrastructure, which takes advantage

of the computing resources at the edge of networks, is a natural

and ideal fit for this purpose.

We focus on embedded edge devices. The edge devices we aim

to utilize are the existing edge infrastructure devices, such as wire-

less access points and base stations, and end user devices, such

as smartphones and tablets, both of which are mostly embedded

devices. We do not consider dedicated servers deployed at the edge

for a couple of reasons. First, embedded edge devices are far more

universal than dedicated edge servers and are mostly underuti-

lized. Second, most of the existing DDL solutions focus on data

center environment where powerful server-class machines are in-

terconnected via ultra-high-speed Ethernet [1, 9, 14, 35, 48, 61].

These solutions are likely to well suit the environment with dedi-

cated high-performance edge servers. However, there have been

few works investigating the issues of training DNN models us-

ing embedded devices which are connected with consumer-grade

wireless networks. Therefore, our goal to investigate the practical

issues of supporting efficient DDL at the edge with resource-limited

embedded devices.
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Challenges. To achieve the above goal, we design EDDL, a system

for DDL training by utilizing embedded edge devices. Like many

existing solutions, EDDL adopts the parameter server approach as

the way of coordinating the training nodes [8, 11, 14, 24, 35, 61].

With EDDL, edge devices participating a training job form a training

cluster. There are two roles for the training devices: worker and

leader. The training data is divided into shards such that worker

devices can concurrently work on their own shards of training

data using mini-batch Stochastic Gradient Descent (mbSGD) [36,

60], and synchronize updates of the model’s parameters to the

leader device. The leader device essentially works as a parameter

server [10, 23, 35, 37]: it performs aggregation of worker parameter

updates and sends back the new global parameters to the workers.

An epoch of training is said to be done when the whole set of the

training data has been trained on once. The training is repeated for

multiple epochs until a desirable model accuracy is achieved.

While EDDL share similarities with the existing DDL works,

it faces three unique challenges which stem from the resource

constraints of the edge devices and the underlying network.

• Challenge 1: EDDL is more susceptible to struggling workers than

existing solutions. Struggling workers are those which take longer

time to consume their shards of training data than the other workers.

They prolong the time needed for an epoch of training and thus

the whole training process. Edge-based DDL is impacted more by

struggling workers because of edge devices’ native workloads (such

as routing/switching workloads for wireless APs), which can exhibit

a large variance on different edge devices, and thus leaving a highly

variable amount of computing resource for the DDL training.

• Challenge 2: it is difficult for EDDL scale up a training cluster

because of the network bandwidth constraint at the leader device. With

the parameter server architecture, all worker devices transmit their

updated model parameters to the leader device for aggregation. As a

result, the network bandwidth capacity at the leader device becomes

a bottleneck of scaling up the number of worker devices. Compared

to cloud-based DDL systems, the bandwidth bottleneck is much

more significant for edge-based DDL systems like EDDL. This is

because cloud-based systems run in data center environment where

high performance computing nodes are connected via ultra-high-

speed Ethernet (e.g., commonly at hundred Gigabit level [32, 53]),

whereas mobile/edge devices have a much lower interconnecting

speed (e.g., 100 to 200 Mpbs of real-world speed with recent WiFi

standards [2, 47]).

• Challenge 3: EDDL needs to deal with training device changes more

often than traditional DDL systems. Here training device changes

refer to the cases like device joining or leaving a cluster and sudden

training capability decline/boost in training device. Due to the

resource constraints and mobility of the edge devices, dealing with

training devices changes is critical to EDDL’s design.

How EDDL addresses the challenges. To address the first chal-

lenge above (i.e., susceptibility to struggling workers), we design a

dynamic training data distribution mechanism with which shards

of training data are distributed to the workers by the leader dur-

ing run time. Compared with the majority of the existing solu-

tions, which statically partition training data among the workers

[8, 11, 14, 35, 61, 65], our mechanism can minimize the impact of

struggling workers on training time efficiency (§4.2).

To address the second challenge (i.e., network bandwidth bottle-

neck at the leader), we have three key designs (§4.3):

(1) We adopt synchronous parameter update (PU) by default. The

conventional wisdom suggests that fully asynchronous PU [9, 14,

35, 38, 45, 50] and asynchronous PU with bounded staleness [10,

11, 23, 61] are more time-efficient that synchronous PU because

individual training workers do not need to wait for other workers’

parameters to be synced to the leader. However, we find that sync

PU works better than the async counterpart for resource-limited

edge computing environment. The reason is that when compared

to sync PU, async PU shortens time needed for an epoch of training,

but it also increases the number of epochs needed for convergence.

As a result, it requires a large training cluster for async PU to out-

perform the sync counterpart. Unfortunately, in an edge computing

environment, before the training cluster can reach the size larger

enough to favor async PU, the network bandwidth at the leader

is saturated, meaning further increasing cluster size does not re-

duce, or even worsen, the time needed for an epoch of training. We

call the training cluster is saturated when the leader bandwidth is

saturated. In this case, further increasing the number of training

devices does not help improve the overall training time.

(2) We design a run-time method to detect if a training cluster is

saturated. For the reason described above, it is important to detect

if a training cluster becomes saturated as new workers are joining

it. We design a mechanism to accurately achieve such detection

during run time. To the best of our knowledge, we are the first to

study the issue of detecting cluster saturation in DDL training.

(3) We propose the mechanism of leader role splitting (LRS) to

help scaling up training cluster size after the leader’s bandwidth is

saturated. The idea is to adaptively split the leader role among

multiple workers such that each worker also works as the leader of

a subset of training devices. Our evaluation result shows that LRS

can significantly reduce overall training time when training cluster

becomes saturated.

To address the third challenge (i.e., need of dealing with training

device changes), we take the dynamics of devices, such as join-

ing/leaving the cluster and change of computation capabilities, into

consideration in the designs of training cluster formation, training

nodes management, and leader role transfer (§4.4).

Contributions. In summary, we make the following contributions

in this paper.

•We design and implement EDDL, an edge-based distributed deep

learning system for training DNN models. We identify and address

three main challenges of applying DDL in an edge computing en-

vironment with resource-limited computing devices. Departing

from the conventional wisdom, we demonstrate that synchronous

parameter update actually works better than the asynchronous

counter part in an environment with limited network bandwidth.

The mechanism of detecting training cluster saturation during run

time is first of its kind to the best of our knowledge.

•We implement a EDDL prototype system usingARM-basedODROID-

XU4 boards [21] and Raspberry Pi 3 Model B boards [49], and con-

duct a comprehensive set of experiments on a 16-worker-node

testbed to evaluate and study the practical issues and implications

of running EDDL.
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2 RELATED WORK

Distributed deep learning. There have been a plethora of re-

cent works which focus on improving distributed deep learning

(DDL) from theoretical perspective or on implementing and sup-

porting real-world DDL systems. Among these works, some adopt

a centralized approach, which uses parameter servers to coordinate

training workers and synchronize trained gradients/parameters

[1, 8, 9, 11, 14, 23, 35, 37, 61, 67], while others opt for a decentral-

ized approach [39ś41]. Some works exploit data parallelism by

employing multiple computing nodes to consume training data in

parallel [8, 11, 14, 35, 61], while others take advantage of model

parallelism which divides a large model into small parts so that

individual computing nodes can be used to process different parts

of the model [14, 29, 30, 61].

Federated learning and traditional DDL. Due to the high com-

puting resource demand for training DL models, most research

work of deep learning on embedded devices have been focusing on

DL inferences [20, 31, 42, 43, 62, 64]. Federated learning (FL), which

is a type of DDL proposed by Google [6, 44], is a promising way

of generating DL models on resource-constrained embedded de-

vices. There are three main differences between FL and traditional

DDL. First, a main motivation behind FL is to protect user data

privacy. To this end, FL generates ML models by training on private

user data on individual devices which can be heterogeneous, unbal-

anced, and non-independent and identically distributed (non-i.i.d.),

whereas traditional DDL assumes that the training datasets are

identically distributed and centrally stored. Second, training devices

in FL are usually connected via wide area networks (WANs), and are

loosely-coupled in the training. On the contrary, training nodes in

traditional DDL are connected via a high-speed local area network

(LAN), and are tightly-coupled in the training process, which is the

reason that traditional DDL incurs shorter training time than FL.

Third, training devices in FL are usually consumer-grade devices

and have lower computation capacity than those in traditional DDL

which are usually high performance servers.

EDDL is similar to traditional DDL in that it targets DDL sce-

narios where training devices are connected via the same edge

network infrastructure (e.g., a LAN) and can be tightly-coupled

to accomplish a training task. But it is also different because the

training devices in our scenarios are resource-limited consumer-

grade mobile devices. An example of such an scenario is that college

mobile users living in the same campus can face similar security

threats as mobile apps are becoming increasingly susceptible to

targeted attacks [22, 55, 56]. Those users may utilize the EDDL sys-

tem which coordinates the participating user devices to generate

mobile malware detection models based on the data collected lo-

cally within the campus. Since the users use the same campus LAN

for communication, they can be tightly-coupled to complete the

training tasks efficiently. One benefit of EDDL is that, as shown in

our motivation study (§3), DL models trained based on local data

perform better in dealing with local testing data (e.g., detecting the

targeted attacks to college app users) than those trained based on

the data collected globally.

EDDL is similar to FL in that both aim at using consumer-grade

mobile devices for DL model training. The differences are largely

the same as the ones between traditional DDL and FL as discussed

previously. Generally speaking, on-site edge-based DDL, such as the

one DDL implements, complements FL in that it can better serve

users who use the same edge network infrastructure and share

similarities like similar interests and behaviors, while FL is better

suited for users who are loosely-coupled over wide area networks.

In this paper, we focus on training nodes communication topology,

parameter update impact and efficiency in performing DDL within

resource-constrained edge environments. Our findings should also

apply to existing federated learning solutions if training nodes are

tightly coupled.

Synchrony for parameter update. For the DDL solutions which

adopts the centralized approach and utilizes data parallelism, they

use one of the three ways to perform parameter synchronization:

synchronous, fully asynchronous, and asynchronous with bounded

staleness. The synchronous approach synchronizes all the training

workers in a way that the training progress is moved forward in

a batch-by-batch manner [1, 8, 10]. With the fully asynchronous

approach, the parameter server aggregates a set of locally trained

parameters/gradients as soon as they are received [9, 10, 14, 19, 35,

45]. The asynchronous with bounded staleness approach limits the

progress difference between the fastest and the slowest training

workers so as to enable faster convergence [10, 11, 23, 61].

The existing works suggest that the fully asynchronous parame-

ter update approach and the asynchronous with bounded staleness

approach work better than the synchronous approach because

they are impacted less by struggling workers and scale better [9ś

11, 14, 23, 35, 38, 45, 50, 61]. However, our experiments suggest that

for DDL systems where bandwidth capacity of training nodes is

limited, sync PU is preferred over async PU in terms of training

time efficiency. We present the further analysis in §4.3 and §6.3

later.

Dealing struggling training workers. As indicted above, one

major challenge of DDL system that adopt the synchronous param-

eter update approach is dealing with the existence of struggling

workers. Chen et. al. [8] uses backup workers to replace struggling

workers. However, this approach may not work well in practice

because backup workers may not be available. Project Adam [9] and

Li et. al. [35] deals with struggling workers by simply terminating

them because losing a small of data does not affect the training.

This approach works well for large DNN models with large amount

of training data, but may not work well for small models like our

scenario.

3 THE MOTIVATION STUDY

A key observation motivating us to investigate edge-based DDL

training is that ML models trained based on data collected locally

(short as local models) perform better in local data inference than

those trained based on global training data (short as global models).

We have conducted a study to demonstrate this observation. In

this study, we examine how edge-based DDL training would help

improve the effectiveness of mobile malware defense solutions. The

existing ML-based solutions take app samples from users globally.

The universalness of the training data renders these solutions less

effective to deal with localized testing data, such as apps that are

used by users in the same community (e.g., users in the same univer-

sity, who are likely to share similar app interests and be targeted by
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Figure 10: Training time ratio of the ASYNC-30 model over

the SYNC-20 model (i.e., ASYNC−30
SYNC−20 training time ratio) (y-

axis) with training cluster with different sizes (x-axis).

aggregate parameter updates from the entire cluster before start-

ing the next batch of training, while async PU does not have this

requirement.

• The leader node’s network bandwidth capacity is shared among

the workers. Thus, after the leader’s bandwidth is saturated, adding

more workers would proportionally increase sync time as well as batch

training time. Figure 6 also shows that batch training time with

cluster node bandwidth of 100 Mbps is significantly higher than

that with cluster node bandwidth of 1000 Mpbs, especially for clus-

ters with more workers. The difference is caused by the increase of

(parameter) sync time. For example, when 16 workers are used, the

ratios between sync time and batch training time for sync/async PU

are 0.88/0.87 with bandwidth of 100 Mbps, compared to 0.38/0.07

with bandwidth of 1000 Mbps.

6.2 Model accuracy

Figure 7 shows the results of model test accuracy after 10, 20 and

30 epochs of training with different number of workers. We can see

the following results from the figure.

• It requires more epochs of training for async PU to converge (i.e., to

reach a desired model test accuracy) than sync PU. For example, the

models trained with async PU after 30 epochs (i.e., the łASYNC-30

epochsž line) have almost the same accuracy as the models trained

with sync PU after 20 epochs (i.e., the łSYNC-20 epochsž line). This

finding is consistent with recent literature [1, 8, 12].

• Sync PU achieves better model test accuracy than async PU under

the same condition (i.e., same number of training epochs and same

training cluster size). For example, models with SYNC-30 achieve

notably higher accuracy than those with ASYNC-30 when the clus-

ter size is larger than 8.

•With the same number of epochs of training, model test accuracy de-

clines as size of the training cluster increases, but the variation range

is much smaller when the model is trained for more number of epochs.

In other words, it requires more epochs of training for large training

clusters to reach a desired model test accuracy. For example, after

20 epochs of training using async PU (i.e., ASYNC-20), an accuracy

of 95% can be achieved with a training cluster of 4 workers, while

only an accuracy of 88% is achieved with a 16-worker cluster.

( b)
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Figure 11: Bandwidth utilization ratio (BUC) (y-axis) vs. clus-

ter size (x-axis). (a) When cluster node’s bandwidth is set to

1000 Mbps, no cluster saturation with both sync and async

PU. (b)When cluster node bandwidth is set to 100 Mbps, clus-

ter saturation is detectedwhen cluster size increases to 6 and

4 for sync PU and async PU respectively.

6.3 Overall training time

Figure 8 and Figure 9 demonstrate how overall training time is

affected by the different factors. We have the following finding

about overall training time and cluster size.

• Increasing number of workers is helpful for reducing overall training

time until network bandwidth of the leader node becomes a bottleneck.

For example, as shown in Figure 9, with cluster node network

bandwidth set at 100 Mbps, increasing training cluster size beyond

6 does not only does not reduce, it may also increase, the overall

training time (e.g., the overall training times with the 16-worker

cluster are larger than those with smaller clusters)

• In DDL systems where network bandwidth of the training nodes is

limited, sync PU is preferred over async PU in terms of training time

efficiency. For example, recall that in Figure 7, it was shown that the

model trained with async PU for 30 epochs (short as łASYNC-30

modelž below) achieves almost the same test accuracy as the model

trained with sync PU for 20 epochs (short as łSYNC-20 modelž

below) under training clusters of different sizes. Here, according to

Figure 8 and 9, ASYNC-30 model needs more time than SYNC-20

model in most of the cases.

We find that the time difference for training SYNC-20 andASYNC-

30 models actually varies depending on network bandwidth of the

leader as well as size of the training cluster. Figure 10 plots the

training time ratio of ASYNC-30 model over the SYNC-20 model

for training cluster of different sizes. We can see that when the

leader node’s network bandwidth is limited (i.e., 100 Mbps), the
ASYNC−30
SYNC−20 training time ratio decreases toward 1 as number of

workers increases from 1 to 4. However, when there are more than

4 workers in the training cluster, the ASYNC−30
SYNC−20 training time ratio

increases as cluster size grows. The reason is that network band-

width of the leader is saturated when there are 4 workers (i.e., the

saturation size of the cluster is 4). Thus, adding more workers would

cause a significant increase in network sync time when training

a batch of TDEs. The increase of batch training time in this case

overshadows the benefit brought by adding more workers (which

is reducing the number of batches to be trained by each worker).
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6.7 Impact of training batch size

EDDL adopts mbSGD for training the PerNet model. Here we eval-

uate the impact of batch size on training time (Figure 14 (a)) and

model accuracy (Figure 14 (b)). The experiment performs training

for 30 epochs with different batch sizes and cluster sizes. Cluster

node’s network bandwidth is set to 100 Mbps, and async PU is

used. Figure 14 (a) shows that training time decreases as batch size

gets bigger. This is because larger batch size means less number of

parameter aggregation and synchronization. However, as demon-

strated in Figure 14 (b), training with large batch size can lead to

significant model accuracy drop for training clusters with four or

more workers. The default batch size of our prototype system is

128 TDEs, which strikes a good balance between training time and

model accuracy.

6.8 System overhead

The training nodes in our system are edge devices which have

their own normal workloads. Here we evaluate how EDDL training

workload affects the normal workloads on these edge devices. We

construct three normal workloads which are heavy on usage of

CPU, memory, and network respectively. The CPU and memory

workloads are constructed using sysbench which is a scriptable

database and system performance benchmark [15]. The network

workload is constructed using the iperf utility [26]. We run each of

the above workload while issuing a training workload which trains

a PerNet model using ODROID devices. The network bandwidth

of cluster nodes is set to 100 Mbps. Figure 15 (a) shows the result

for worker node. The major overhead caused by the training is

seen on the CPU workload, which is a slowdown about 27%. This is

because the main computation resource used by a worker node is

CPU. Figure 15 (b) shows the overhead results for leader node. We

can see that when the number of workers increase from 1 to 8, the

CPU workload and the memory workload suffer from slowdowns

of 5%-13% and 19%-26%, respectively. The major overhead for leader

node is on the network workload, which is about 10% to 43%. Given

the above result, it is preferable to run training workload on edge

devices when they are idle, especially for devices serving as training

leaders.

7 CONCLUSION

In this paper, we advocate edge-based DDL with which machine

learning models are trained based on the data collected locally

from users serviced by the same edge infrastructure. We designed

EDDL, an edge-based DDL system which addresses multiple chal-

lenges of performing DDL on edge environments where computing

devices are resource-constrained embedded devices connected via

consumer-grade wireless networks. The proposed EDDL system has

been implemented with ARM-based ODROID-XU4 and Raspberry

Pi 3 Model B boards. We further conducted a case study of enabling

edge-based mobile malware defense on our 16-device EDDL proto-

type system, which demonstrated the effectiveness and efficiency

of the EDDL system.
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