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Abstract: We establish existence of order–disorder phase transitions for a class of
“non-sliding” hard-core lattice particle systems on a lattice in two or more dimensions.
All particles have the same shape and can be made to cover the lattice perfectly in a
finite number of ways. We also show that the pressure and correlation functions have
a convergent expansion in powers of the inverse of the fugacity. This implies that the
Lee–Yang zeros lie in an annulus with finite positive radii.

1. Introduction

One of themost important open problems in the theory of equilibrium statistical mechan-
ics, is to prove the existence of order–disorder phase transitions in continuum particle
systems. While such fluid-crystal transitions are ubiquitous in real systems and are
observed in computer simulations of systems with effective pair potentials, there are
no proofs, or even good heuristics, for showing this mathematically. A paradigmatic
example of this phenomenon is the fluid-crystal transition for hard spheres in 3 dimen-
sions, observed in simulations and experiments [1,16,28,34].Whereas, in 2 dimensions,
crystalline states are ruled out by the Mermin–Wagner theorem [29], it is believed that
there are other transitions for hard discs [4] (see [32] or [24, section 8.2.3] for a review),
though none have, as of yet, been proven. Such transitions are purely geometric. They
are driven by entropy and depend only on the density, that is, on the volume fraction
taken up by the hard particles.

The situation is different for lattice systems,where there aremany examples forwhich
such entropy-driven transitions have been proven. A simple example is that of hard “dia-
monds” on the square lattice (see Fig. 1a), which is a model onZ2 with nearest-neighbor
exclusion. As was shown by Dobrushin [7], this model transitions from a low-density
disordered state to a high-density crystalline phase, where the even or odd sublattice
is preferentially occupied. The heuristics of this transition had been understood earlier
(the hard diamond model is related to the 0-temperature limit of the antiferromagnetic
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a b c

Fig. 1. Three non-sliding hard-core lattice particle systems. a The hard diamond model is equivalent to the
nearest neighbor exclusion onZ2. b The hard cross model is equivalent to the third-nearest neighbor exclusion
on Z2. c The hard hexagon model is equivalent to the nearest neighbor exclusion on the triangular lattice

Ising model for which the exponential of the magnetic field plays the role of the fugacity
[6,21]), for instance byGaunt and Fisher [12], who extrapolated a low- and high-fugacity
expansion of the pressure p(z) to find a singularity at a critical fugacity zt > 0. A similar
analysis was carried out for the nearest neighbor exclusion on Z

3 by Gaunt [11].
The low-fugacity expansion in powers of the fugacity z dates back to Ursell [33]

and Mayer [23]. Its radius of convergence was bounded below by Groeneveld [14] for
positive pair-potentials and by Ruelle [30] and Penrose [26] for general pair-potentials.

The high-fugacity expansion is an expansion in powers of the inverse fugacity y ≡
z−1. As far as we know, it was first considered by Gaunt and Fisher [12] for the hard
diamond model, without any indication of its having a positive radius of convergence,
or that its coefficients are finite in the thermodynamic limit beyond the first 9 terms.

In this paper we prove, using an extension of Pirogov–Sinai theory [19,27], that
the high-fugacity expansion has a positive radius of convergence for a class of hard-
core lattice particle systems in d � 2 dimensions. We call these non-sliding models.
In addition, we show that these systems exhibit high-density crystalline phases, which,
combined with the convergence of the low-fugacity expansion proved in [14,26,30],
proves the existenceof anorder–disorder phase transition for thesemodels.Apreliminary
account of this work, without proofs, is in [17].

Non-slidingmodels are systems of identical hard particles which have a finite number
τ of maximal density perfect coverings of the infinite lattice, and are such that any
defect in a covering (a defect appears where a particle configuration differs from a
perfect covering) leaves an amount of empty space that is proportional to its size, and
that a particle configuration is characterized by its defects (this will be made precise in
the following). This class includes all of the models for which crystallization has been
proved, like the hard diamond [7] (see Fig. 1a) model discussed above, as well as the
hard cross model [15] (see Fig. 1b), which corresponds to the third-nearest-neighbor
exclusion on Z

2, and the hard hexagon model on the triangular lattice [3] (see Fig. 1c),
which corresponds to the nearest-neighbor exclusion on the triangular lattice.

The hard diamond model was studied by Gaunt and Fisher [12], in which the first 13
terms of the low-fugacity expansion and the first 9 terms of the high-fugacity expansion
were computed, from which Gaunt and Fisher predicted a phase transition at the point
where both expansions, suitably extrapolated, meet.

The hard cross model was studied by Heilmann and Præstgaard [15], who gave a
sketch of a proof that it has a crystalline high-density phase. Eisenberg and Baram
[8] computed the first 13 terms of the low-fugacity expansion and the first 6 terms
of the high-fugacity expansion for this model, and conjectured that it should have a
first-order order–disorder phase transition. We will prove the convergence of the high-
fugacity expansion, and reproduce Heilmann and Præstgaard’s result, but will stop short
of proving the order of the phase transition, for which new techniques would need to
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be developed. We will also extend this result to the hard cross model on a fine lattice,
although the present techniques do not allow us to go to the continuum.

The hard hexagon model on the triangular lattice was shown to be exactly solvable
by Baxter [2,3], and to be crystalline at high densities. The exact solution provides an
(implicit) expression for the pressure p(z), from which the high-fugacity expansion can
be obtained, as shown by Joyce [18].

1.1. Hard-core lattice particle models. Consider a d-dimensional lattice Λ∞. We con-
sider Λ∞ as a graph, that is, every vertex of Λ∞ is assigned a set of neighbors. We
denote the graph distance on Λ∞ by Δ, in terms of which x, x ′ ∈ Λ∞ are neighbors
if and only if Δ(x, x ′) = 1. We will consider systems of identical particles on Λ∞
with hard core interactions. We will represent the latter by assigning a support to each
particle, which is a connected and bounded subset ω ⊂ R

d (we need not assume much
about ω, because we will mainly consider its intersections with the lattice), and forbid
the supports of different particles from intersecting. In the examples mentioned above,
the shapes would be a diamond, a cross or a hexagon (see Fig. 1). Note that ω may, in
some cases be an open set, whereas in others, it might include a portion of its boundary
(see Sect. 2 for details). We define the grand-canonical partition function of the system
at activity z > 0 on any bounded Λ ⊂ Λ∞ as

ΞΛ(z) =
∑

X⊂Λ

z|X | ∏

x �=x ′∈X
ϕ(x, x ′) (1)

in which X is a particle configuration inΛ (that is, a set of lattice points x ∈ Λ on which
particles are placed), |X | is the cardinality of X , and, denoting ωx := {x + y, y ∈ ω}
(ωx is the support of the particle located at x), ϕ(x, x ′) ∈ {0, 1} enforces the hard core
repulsion: it is equal to 1 if and only if ωx ∩ωx ′ = ∅. In the following, a subset X ⊂ Λ∞
is said to be a particle configuration if ϕ(x, x ′) = 1 for every x �= x ′ ∈ X , and we
denote the set of particle configurations in Λ by Ω(Λ). We define Nmax as the maximal
number of particles:

Nmax := max{|X |, X ⊂ Λ}. (2)

In addition, note that several different shapes can, in some cases, give rise to the same
partition function. For example, the hard diamond model is equivalent to a system of
hard disks of radius r with 1

2 < r < 1√
2
.

We will discuss the properties of the finite-volume pressure of hard-core particles
systems, defined as

pΛ(z) := 1

|Λ| logΞΛ(z) (3)

and its infinite-volume limit

p(z) := lim
Λ→Λ∞

pΛ(z) =: ρm log z + f (y) (4)

in which y ≡ z−1 and ρm is the maximal density ρm = limΛ→Λ∞
Nmax|Λ| . In particular,

we will focus on the analyticity properties of f (y). When f (y) is analytic for small
values of y, the system is said to admit a convergent high-fugacity expansion.
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1.2. Low-fugacity expansion. The main ideas underlying the high-fugacity expansion
come from the low-fugacity expansion, which we will now briefly review. It is an expan-
sion of pΛ in powers of the fugacity z, and its formal derivation is fairly straightforward:
defining the canonical partition function as

ZΛ(k) :=
∑

X⊂Λ
|X |=k

∏

x �=x ′∈X
ϕ(x, x ′) (5)

as the number of particle configurations with k particles, (1) can be rewritten as

ΞΛ(z) =
Nmax∑

k=0

zk ZΛ(k). (6)

Injecting (6) into (3), we find that, formally,

pΛ(z) =
∞∑

k=1

bk(Λ)zk (7)

with

bk(Λ) := 1

|Λ|
k∑

n=1

(−1)n+1

n

∑

k1,...,kn�1
k1+···+kn=k

ZΛ(k1) · · · ZΛ(kn). (8)

As was shown in [14,23,26,30,33], there is a remarkable cancellation that eliminates
the terms in bk(Λ) that diverge as Λ → Λ∞, so that bk(Λ) → bk when Λ → Λ∞.
This becomes obvious when the bk(Λ) are expressed as integrals over Mayer graphs. In
addition, the radius of convergence R(Λ) of (7) converges to R > 0, which is at least as
large as the radius of convergence of

∑∞
k=1 bkz

k (for positive pair potentials, R is equal
to the radius of convergence [26]).

1.3. High-fugacity expansion. The low-fugacity expansion is obtained by perturbing
around the vacuum state by adding particles to it. The high-fugacity expansion will be
obtained by perturbing perfect coverings by introducing defects. Single-particle defects,
corresponding to removing one particle from a perfect covering, come with a cost y ≡
z−1, which is, effectively, the fugacity of a hole. The main idea, due to Gaunt and Fisher
[12], is to carry out a cluster expansion for the defects, which is similar to the low-
fugacity expansion described above. Let us go into some more detail in the example of
the hard diamond model.

We will takeΛ to be a 2n×2n torus, which can be completely packed with diamonds
(see Fig. 2). The number of perfect covering configurations is

τ = 2 (9)

and the maximal number of particles and maximal density are

Nmax = ρm |Λ|, ρm = 1

2
. (10)
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We denote the number of configurations that are missing k particles as

QΛ(k) := ZΛ(Nmax − k) (11)

in terms of which

ΞΛ(z) = τ zNmax

Nmax∑

k=0

(
1

τ
z−k QΛ(k)

)
(12)

(we factor τ out because QΛ(0) = τ and we wish to expand the logarithm in (3) around
1). We thus have, formally

pΛ(y) = 1

|Λ| log τ + ρm log z +
Nmax∑

k=1

ck(Λ)yk (13)

where y ≡ z−1 and

ck(Λ) := 1

|Λ|
k∑

n=1

(−1)n+1

nτ n

∑

k1,...,kn�1
k1+···+kn=k

QΛ(k1) · · · QΛ(kn). (14)

The first 9 ck(Λ) are reported in [12, table XIII] and, as for the low-fugacity expansion,
there is a remarkable cancellation that ensures that these coefficients converge to a finite
value ck as Λ → Λ∞. But, unlike the low-fugacity expansion, there is no systematic
way of exhibiting this cancellation for general hard-core lattice particle systems. In fact
there are many example of systems in which the coefficients ck(Λ) diverge asΛ → Λ∞,
like the nearest-neighbor exclusion model in 1 dimension (which maps, exactly, to the
1-dimensional monomer-dimer model), for which

QΛ(1) = 1
4 |Λ|2, QΛ(2) = 1

192 (|Λ|2 − 4)|Λ|2,
c1(Λ) = 1

8 |Λ|, c2(Λ) = − 1
192 |Λ|(5|Λ|2 + 4).

(15)

Note that the pressure for this system, given by

p(y) − ρm log z = log

(
1 +

√
1 + 4z

2

)
− 1

2
log z = log

(√
1 +

1

4
y +

1

2
√
y

)
(16)

is not an analytic function of y ≡ z−1 at y = 0 (though it is an analytic function of√
y). Clearly, this model does not satisfy the non-sliding property. There are examples

in higher dimensions of sliding models for which the pressure is not analytic in y, and
which are not crystalline at high fugacities (see, for example, [13]).

One of our goals, in this paper, is to prove that, for non-sliding models, the pressure is
analytic in a disk around y = 0, thus proving the validity of the Gaunt–Fisher expansion
for non-sliding systems.

Remark. Let us note that, at finite temperature, lattice gases of particles with a bounded
pair potential ϕ that admit a convergent low-fugacity expansion (for example for
summable potentials) also admit a high-fugacity expansion. This follows immediately
from the spin-flip symmetry of the corresponding Ising model, which implies that

pΛ(z) = log(ze− 1
2α)p(yeα), eα := eβ

∑
x∈Λ ϕ(|x |). (17)
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The radius of convergence R̃(Λ) of the expansion in y is therefore related to the radius
R(Λ) of convergence of the expansion in z: R̃(Λ) = R(Λ)e−α . This coincides, at
sufficiently high temperature, with the results of Gallavotti, Miracle-Sole and Robinson
[10], who prove analyticity for small values of z

1+z . (A similar result holds for bounded
many-particle interactions.)

1.4. High-fugacity expansion and Lee–Yang zeros. Aswas pointed out by Lee and Yang
[22,35], a powerful tool to study the equilibriumproperties of a system is via the positions
of the roots of the partition function as a function of the fugacity z, called the Lee–
Yang zeros of the system. In particular, the logarithm of the partition function and,
consequently, the pressure, diverge at the Lee–Yang zeros, so whenever the limiting
density of the roots approaches the positive real axis, this signals the presence of a phase
transition.Let us denote the set ofLee–Yangzeros of a hard-core lattice particle systemby
{ξ1(Λ), . . . , ξNmax(Λ)}. The convergence of the low-fugacity expansion within its radius
of convergence R(Λ) > 0 implies that every Lee–Yang zero satisfies |ξi (Λ)| � R(Λ),
and that this inequality is sharp. Similarly, when the high-fugacity expansion has a
positive radius of convergence R̃(Λ) > 0, every Lee–Yang zero must satisfy

R(Λ) � |ξi (Λ)| � R̃(Λ)−1 (18)

and these inequalities are sharp. In addition, writing the partition function as

ΞΛ(z) =
Nmax∏

i=1

(
1 − z

ξi (Λ)

)
= zNmax

∏Nmax
i=1 (−ξi (Λ))

Nmax∏

i=1

(1 − yξi (Λ)) (19)

we rewrite the high-fugacity expansion (13) as

pΛ(y) = ρm log z − 1

|Λ|
Nmax∑

i=1

log(−ξi (Λ)) −
∞∑

k=1

yk

k

(
1

|Λ|
Nmax∑

i=1

ξ ki (Λ)

)
(20)

which, in particular, implies that

Nmax∏

i=1

(−ξi (Λ)) = 1

QΛ(0)
, ck(Λ) = −1

k

(
1

|Λ|
Nmax∑

i=1

ξ ki (Λ)

)
. (21)

When taking the thermodynamic limit, kck is proportional to the average of the k-th
power of ξ weighted against the limiting distribution of Lee–Yang zeros. Thus, the high-
fugacity expansion converges if and only if the average of ξ k grows atmost exponentially
in k.

Remark. As noted earlier, for bounded potentials, we find that the Lee–Yang zeros all
lie in an annulus of radii R(Λ) and eα/R(Λ). Note that if one were to consider a hard-
core model as the limit of a bounded repulsive potential, the hard-core limit would
correspond to taking α → ∞. This implies that some zeros move out to infinity and that
the radius of convergence of the high-fugacity expansion tends to 0 as α → ∞. This
does not, however, imply that in the hard-core limit ΞΛ(y) vanishes for y = 0: indeed
the distribution of Lee–Yang zeros does not approach the hard-core limit continuously,
as is made obvious by the fact that the number of Lee–Yang zeros for finite potentials is
|Λ|, whereas it is Nmax in the hard-core limit. Instead, when a hard-core particle system
has a convergent high-fugacity expansion, there is a bound on the remaining zeros which
remains finite as Λ → Λ∞.
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1.5. Definitions and results. We focus on the class of hard-core lattice particle models
that satisfy the non-sliding property, which, roughly, means that the system admits only
a finite number of perfect coverings, that any defect in a covering induces an amount
of empty space that is proportional to its volume, and that any particle configuration is
entirely determined by its defects. More precisely, defining σx as the set of lattice sites
that are covered by a particle located at x :

σx := ωx ∩ Λ∞ (22)

given a particle configuration X ∈ Ω(Λ), we define the set of empty sites as those that
are not covered by any particle:

EΛ(X) := {y ∈ Λ, ∀x ∈ X, y �∈ σx }. (23)

A perfect covering is defined as a particle configuration X ∈ Ω(Λ∞) that leaves no
empty sites: EΛ∞(X) = ∅.
Definition 1 (Sliding). A hard-core lattice particle system is said to be non-sliding if the
following hold.

− There exists τ > 1, a periodic perfect coveringL1, and a finite family ( f2, . . . , fτ )
of isometries of Λ∞ such that, for every i , Li ≡ fi (L1) is a perfect covering (see
Fig. 3 for an example). (Here, when we use the word ‘lattice’, we do not intend a
discrete subgroup ofRd but a discrete periodic subset ofRd ; the setsLi will be called
‘sublattices’ in the following, even though they may not have any group structure.)
− Given a bounded connected particle configuration X ∈ Ω(Λ∞) (that is, a configu-
ration in which the union

⋃
x∈X σx is connected), we define S(X), roughly (see (24)

for a formal definition), as the set of particle configurations X ′ that
− contain X ,
− are such that every x ′ ∈ X ′\X is adjacent to X ,
− leave no empty sites adjacent to

⋃
x∈X σx .

(see Figs. 5 and 7):

S(X) := {X ′ ∈ Ω(Λ∞), X ′ ⊃ X, Δ(EΛ∞(X ′),
⋃

x∈X σx ) > 1,
∀x ′ ∈ X ′,Δ(σx ′ ,

⋃
x∈X σx ) � 1} (24)

in which, we recall,Δ denotes the graph distance onΛ∞. In order to be non-sliding, a
model must be such that, for every bounded connected X , S(X) = ∅, or, ∀X ′ ∈ S(X),
there exists a unique μ ∈ {1, . . . , τ } such that X ′ ⊂ Lμ.

Remark. In non-slidingmodels, every defect (recall that a defect appearswhere a config-
uration differs from a perfect covering) induces an amount of empty space proportional
to its size because any connected particle configuration X that is not a subset of any
perfect covering must have S(X) = ∅, which means that there must be some empty
space next to it. In addition, a particle configuration is determined by the empty space
and the particles surrounding it, since the remainder of the particle configuration consists
of disconnected groups, each of which is the subset of a perfect covering. The position
of the particles surrounding it uniquely determines which one of the perfect coverings
it is a subset of.
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In addition, we make the following assumption about the geometry of Λ: Λ is
bounded, connected and Λ∞\Λ is connected, and tiled, by which we mean that there
must exist μ ∈ {1, . . . , τ } and a set S ⊂ Lμ such that

Λ =
⋃

x∈S
σx . (25)

The choice of μ will not play any role in the thermodynamic limit.
Given such a Λ, we will consider the following boundary conditions. Given ν ∈

{1, . . . , τ } (which is not necessarily equal to the μ with which we tiled Λ), we define
Ων(Λ) as the set of particle configurations such that, roughly (see (26) for a formal
definition),

− every site x ∈ Lν such that Δ(σx ,Λ∞\Λ) � 1, is occupied by a particle,
− the particles that neighbor the boundary must not neighbor an empty site in Λ∞.

Thus, defining Bν(Λ) := {x ∈ Lν ∩ Λ, Δ(σx ,Λ∞\Λ) � 1} as the set of sites in Lν

that neighbor the boundary, and Xν(Λ) := Lν\Λ, we define

Ων(Λ) := {X ⊂ Λ, X ⊃ Bν(Λ), ∀x ∈ Bν(Λ), Δ(σx , EΛ∞(X ∪ Xν(Λ))) > 1}.
(26)

We choose these particular boundary conditions in order to make the discussion below
simpler. Certain types of more general boundary conditions would presumably lead
to infinite volume measures which are convex combinations of those induced by the
boundary conditions considered here. For example, for the hard diamond model with
periodic or open boundary conditions, we would get a limiting state which is a 1

2 -
1
2

superposition of the even and odd states.
Allowing the fugacity to depend on the position of the particle, we define the partition

function with fugacity z : Λ∞ → [0,∞) and boundary condition ν as

Ξ
(ν)
Λ (z) =

∑

X∈Ων(Λ)

(
∏

x∈X
z(x)

)
∏

x �=x ′∈X
ϕ(x, x ′). (27)

Since the infinite-volume pressure is independent of the boundary condition, it can be
recovered from Ξ

(ν)
Λ (z) by setting z(x) ≡ z. By allowing the fugacity to depend on the

position of the particle, we can compute the n-point truncated correlation functions of
the system with ν-boundary conditions at fugacity z, defined as

ρ
(ν)
n,Λ(x1, . . . , xn) := ∂n

∂ log z(x1) · · · ∂ log z(xn)
logΞ

(ν)
Λ (z)

∣∣∣∣
z(x)≡z

(28)

as well as its infinite-volume limit

ρ(ν)
n (x1, . . . , xn) := lim

Λ→Λ∞
ρ

(ν)
n,Λ(x1, . . . , xn). (29)

Note that the 1-point correlation function is the local density. In addition, we define the
average density as

ρ := lim
Λ→Λ∞

1

|Λ|
∑

x∈Λ

ρ
(ν)
1,Λ(x). (30)

Our main result is summarized in the following theorem.
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Theorem 1. (Crystallization and high-fugacity expansion)Consider a non-sliding hard-
core lattice particle system. There exists y0 > 0 such that, if |y| < y0, then there are τ

distinct extremal Gibbs states. The ν-th Gibbs state, obtained from the boundary con-
dition labeled by ν, is invariant under the translations of the sublattice Lν . In addition,
for any boundary condition ν ∈ {1, . . . , τ }, any n � 1 and x1, . . . , xn ∈ Λ∞, both
p(z)−ρm log z and the n-point truncated correlation function ρ

(ν)
n (x1, . . . , xn) are ana-

lytic functions of y for |y| < y0.
These Gibbs states are crystalline: having picked the boundary condition ν, the

particles are much more likely to be on the Lν sublattice than the others: for every
x ∈ Λ∞,

ρ
(ν)
1 (x) =

{
1 + O(y) if x ∈ Lν

O(y) if not.
(31)

Finally, both p+ρm log(ρm−ρ) and ρ
(ν)
n (x1, . . . , xn) are analytic functions of ρm−ρ,

with a positive radius of convergence.

Remark. We show that the analyticity of the pressure in y implies analyticity in ρm −ρ.
The converse is not necessarily true. In particular, if p − ρm log z is analytic in yα

for some α (as is the case for the 1-dimensional nearest neighbor exclusion, for which
α = 1

2 ), then it is also analytic in ρm − ρ.

2. Non-sliding Hard-Core Lattice Particle Models

In this section, we present several examples of non-sliding hard-core lattice particle
models.

1. Let us start with the hard diamond model, or rather, a generalization to the “hyperdia-
mond”model in d � 2-dimensions,which is equivalent to the nearest neighbor exclusion
on Z

d . It is formally defined by specifying the lattice Λ∞ = Z
d and the hyperdiamond

shape ω ⊂ R
d (see Fig. 1a):

ω =
{
(x1, . . . , xd) ∈ (−1, 1)d ,

∑n
i=1|xi | < 1} ∪ {(0, . . . , 0, 1)

}
. (32)

Note the adjunction of the point (0, . . . , 0, 1), whose absencewould prevent the existence
of any perfect covering (see Fig. 2), and implies that each hyperdiamond covers two sites.
The notion of connectedness in Λ∞ is defined as follows: two points are connected if
and only if they are at distance 1 from each other. There are 2 perfect coverings (see
Fig. 2):

L1 = {(x1, . . . , xd) ∈ Z
d , x1 + · · · + xd even}

L2 = {(x1, . . . , xd) ∈ Z
d , x1 + · · · + xd odd} (33)

which are related to each other by the translation by (0, . . . , 0, 1). Finally, this model
satisfies the non-sliding condition because any pair x1, x2 ∈ Z

d of hyperdiamondswhose
supports are disjoint and connected (connected, here, refers to the set σx1 ∪σx2 ) are both
in the same sublattice: (x1, x2) ∈ L2

1 ∪ L2
2, and the distinct sublattices do not overlap

L1 ∩ L2 = ∅. Connected hyperdiamond configurations are, therefore, always subsets
of L1 or of L2, and one can find which one it is from the position of a single one of its
particles.
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Fig. 2. Perfect covering of diamonds. There are 2 inequivalent such coverings, obtained by translating the one
depicted here

Fig. 3. Perfect coverings of crosses. There are 10 inequivalent such coverings, obtained by translating each
of the ones depicted here in 5 inequivalent ways. These two coverings are related to each other by a reflection

2. Let us now consider the hard-cross model (see Fig. 1b), for which Λ∞ = Z
2, and

ω = {(nx + x, ny + y), (x, y) ∈ (− 1
2 ,

1
2 )

2,

(nx , ny) ∈ {−1, 0, 1}2, |nx | + |ny | � 1}. (34)

There are 10 perfect coverings (see Fig. 3):

L1 = {(nx + 2ny, 2nx − ny), (nx , ny) ∈ Z
2}

L2 = {(−nx + 2ny, 2nx + ny), (nx , ny) ∈ Z
2} (35)

and, for p ∈ {2, 3, 4, 5},
L2p−1 = vp + L1, L2p = vp + L2 (36)

with v2 = (1, 0), v3 = (0, 1), v4 = (−1, 0) and v5 = (0,−1). The L2p−1 are related to
L1 by translations, as are the L2p related to L2, and L2 is mapped to L1 by the vertical
reflection. Let us now check the non-sliding property. We first introduce the following
definitions: two crosses at x, x ′ whose supports are connected and disjoint are said to be
(see Fig. 4)

− left-packed if x − x ′ ∈ {(1, 2), (−2, 1), (−1,−2), (2,−1)} ⊂ L1
− right-packed if x − x ′ ∈ {(2, 1), (−1, 2), (−2,−1), (1,−2)} ⊂ L2
− stacked if x − x ′ ∈ {(3, 0), (0, 3), (−3, 0), (0,−3)}.

Now, consider a connected configuration of crosses X .
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a b c

Fig. 4. Pairs of crosses that are a left-packed, b right-packed and c stacked

a b

Fig. 5. The two configurations in S({x}) ≡ {Xa , Xb}. The cross at x is drawn in cyan, whereas the crosses in
Xi\{x} are drawn in magenta. For each i ∈ {a, b}, there exists a unique μi such that Xi ⊂ Lμi (color figure
online)

− If |X | = 1, then S(X) (see Definition 1) consists of the two configurations in Fig. 5,
each of which is the subset of a unique sublattice Lμ.

− If X contains at least one pair x, x ′ ∈ X of stacked crosses, which, without loss of
generality, we assume satisfies x − x ′ = (−3, 0), then one of the two sites x + (1, 1)
or x + (2, 1) cannot be covered by any other cross (see Fig. 6a), which implies that
S(X) = ∅.

− We now assume that every pair of crosses in X is either left- or right-packed,
and there exists at least one triplet x, x ′, x ′′ ∈ X whose supports are connected and
disjoint, and is such that x, x ′ is right-packed and x, x ′′ is left-packed. Without loss
of generality, we assume that x − x ′ = (2, 1) and x − x ′′ = (−1,−2) (see Fig. 6b)
or x − x ′′ = (−2, 1) (see Fig. 6c). In the former case, the site x + (−1, 1) cannot be
covered by any other crosses. In the latter case, one of the three sites x + (−1,−2),
x + (0,−2) or x + (1,−2) cannot be covered by any other cross. Thus, S(X) = ∅.

− Finally, suppose that every pair of crosses is left-packed (the case in which they are
all right-packed is treated identically). Let Y be a pair of left-packed crosses, S(Y )

consists of a single configuration, depicted in Fig. 7, which is a subset of a unique
sublattice Lμ. Since there is a unique way of isolating each left-packed pair in X ,
there is a single way of isolating X , that is, S(X) consists of a single configuration,
which is the union over left-packed pairs Y in X of the unique configuration in S(Y ),
and is, therefore, a subset of a unique sublattice Lμ.

3. By proceeding in a similar way, one proves that the models depicted in Fig. 8 are all
non-sliding hard-core lattice particle systems. There are many more examples, among
which the hard hexagon model (see Fig. 1c), and many more polyominoes than those
depicted in Fig. 8. In addition, for every hard polyomino model (a cross is a polyomino)
that is non-sliding, the corresponding model with a finer lattice mesh is also non-sliding.
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a b c

Fig. 6. Connected configurations that cannot be completed to a perfect covering. The red regions cannot be
entirely covered by crosses (color figure online)

Fig. 7. If X is a pair of left-stacked crosses (in cyan), then this is the unique configuration X ′ ∈ S(X). The
crosses in X ′\X are drawn in magenta (color figure online)

Fig. 8. More examples of non-sliding hard-core lattice particle systems. These shapes are all polyominoes

3. High-Fugacity Expansion

In this section, we will prove the convergence of the high-fugacity expansion for non-
sliding hard-core lattice particle systems. To that end, we will map the particle system to
a model of Gaunt–Fisher configurations (GFc), and use a cluster expansion to compute
the GFc partition function.

3.1. The GFc model. We start by mapping the particle system to a model of Gaunt–
Fisher configurations. This step is analogous to the contour mapping in the Peierls
argument [25], which we will now briefly recall. Consider the two-dimensional ferro-
magnetic Ising model. Having fixed a boundary condition in which every spin on the
boundary is up, one can represent any spin configuration as a collection of contours,
which correspond to the interfaces of the regions of up and down spins. Since these
boundaries are unlikely at low temperatures, the effective activity of a contour is low.
We wish to adapt this construction to non-sliding hard-core lattice systems. Defining
boundaries in this context is more delicate than in the Ising model, due to the necessity
of constructing a model of contours that does not have any long range interactions. We
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will identify boundaries by focusing on empty space, and define GFcs as the connected
components of the union of the empty space and the supports of the particles surrounding
it. GFcs give us a formal way of defining the notion of a defect, which was left impre-
cise until now. The following definition follows somewhat naturally from the proof of
Lemma 1 below.

Definition 2 (Gaunt–Fisher configurations).Given ν ∈ {1, . . . , τ }, aGFc is a quadruplet
γ ≡ (Γγ , Xγ , ν, μ

γ
) inwhichΓγ is a connected and bounded subset ofΛ, Xγ ∈ Ω(Γγ ),

and μ
γ
is a map H(Γγ ) → {1, . . . , τ }, and satisfies the following condition. Let Xγ

denote the particle configuration obtained by covering the exterior and holes of Γγ by
particles:

Xγ :=
(
Lν ∩ Γ̂γ,0

)
∪

⎛

⎝
hΓγ⋃

j=1

(
L

μ
γ
(Γ̂γ, j )

∩ Γ̂γ, j

)⎞

⎠ . (37)

A quadruplet γ is a GFc if

− The particles in Xγ are entirely contained insideΓγ and those inXγ do not intersect
Γγ : ∀x ∈ Xγ , σx ⊂ Γγ and ∀x ′ ∈ Xγ , σx ∩ Γγ = ∅.
− for every x ∈ Xγ , Δ(σx , EΛ(Xγ ∪ Xγ )) = 1 (recall that Δ is the graph distance
on Λ∞, σx is the support of the particle at x (22), and EΛ(Xγ ∪Xγ ) is the set of sites
left uncovered by the configuration Xγ ∪ Xγ (23)),
− for every x ∈ Xγ , Δ(σx , EΛ(Xγ ∪ Xγ )) > 1.

We denote the set of GFcs by Cν(Λ).

Lemma 1 (GFc mapping). The partition function (27) can be rewritten as

Ξ
(ν)
Λ (z)

zν(Λ)
=

∑

γ⊂Cν (Λ)

⎛

⎝
∏

γ �=γ ′∈γ

Φ(γ, γ ′)

⎞

⎠
∏

γ∈γ

ζ
(z)
ν (γ ) (38)

where Cν(Λ) is the set of GFcs, defined in Definition 2 below,Φ(γ, γ ′) ∈ {0, 1} is equal
to 1 if and only if Γγ and Γγ ′ are disconnected,

zν(Λ) :=
∏

x∈Λ∩Lν

z(x) (39)

and

ζ
(z)
ν (γ ) :=

∏
x∈Xγ

z(x)

zν(Γγ )

hΓγ∏

j=1

Ξ
(μ

γ
(Γ̂γ, j ))

Γ̂γ, j
(z)

Ξ
(ν)

Γ̂γ, j
(z)

(40)

in which we used the following definition. Given a connected subset Γ ⊂ Λ, we denote
the exterior of Γ by Γ̂0, and its holes byH(Γ ) ≡ {Γ̂1, . . . , Γ̂hΓ } with hΓ � 0. Formally,
Γ̂0, . . . , Γ̂hΓ are the connected components of Λ∞\Γ , and Γ̂0 is the only unbounded
one.

Proof. We will first map particle configurations to a set of GFc, then extract the most
external ones, and conclude the proof by induction.

1. GFcs. To a configuration X ∈ Ων(Λ), we associate a set of external GFcs. See Fig. 9
for an example.
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Fig. 9. An example cross configuration, and its associated GFc supports. There are two disconnected GFcs:
the first consists of the red crosses and the neighboring black empty sites, and the second consists of the
magenta crosses and the neighboring black empty sites (color figure online)

Given x ∈ Λ, let ∂X (x) denote the set of sites covered by particles neighboring x
which do not themselves cover x :

∂X (x) :=
⋃

y∈X
Δ(σy ,x)=1

σy . (41)

Consider the union of the set of empty sites and the particles neighboring it:

UΛ(X) := EΛ(X) ∪
⎛

⎝
⋃

x∈EΛ(X)

∂X (x)

⎞

⎠ . (42)

We denote the connected components of UΛ(X) by Γ1, . . . , Γn . These will be the sup-
ports of the GFcs associated to the configuration.

We then denote the connected components of Λ∞\(Γ1 ∪ · · · ∪ Γn) by {κ1, . . . , κm}.
By construction, each κi is covered by particles. We denote the particle configuration
restricted to κi by Xi := X ∩ κi . In addition, we define X̄i as the union of Xi and the
particles that surround κi :

X̄i := Xi ∪ {x ∈ X, ∃x ′ ∈ Xi , Δ(σx , σx ′) = 1} ∈ S(Xi ) (43)

(we recall that S was defined in Definition 1). By the non-sliding condition, there exists
a unique μi ∈ {1, . . . , τ } such that X̄i ⊂ Lμi . See Fig. 10 for an example.

By construction, for every i ∈ {1, . . . , n}, each hole of Γi (we recall that the holes of
Γi are denoted by Γ̂i, j ) contains at least one of the κk . In fact, for every i ∈ {1, . . . , n}
and j ∈ {0, . . . , hΓi } there exists a unique index k(Γ̂i, j ) ∈ {1, . . . ,m} such that κk(Γ̂i, j )

is contained inside Γ̂i, j and is in contact with Γi :

κk(Γ̂i, j )
⊂ Γ̂i, j , Δ(κk(Γ̂i, j )

, Γi ) = 1 (44)
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Fig. 10. A configuration in which the GFc supports are nested. The κi are the connected components of cyan
crosses. Each is a subset of a unique perfect covering (color figure online)

(see Fig. 10). We then define the set of GFcs associated to X as the set of quadruplets

γ (X) =
{(

Γi , X ∩ Γi , μk(Γ̂i,0)
, μ

i

)
, i ∈ {1, . . . , n}

}
(45)

where X ∩Γi is the restriction of the particle configuration to Γi , andμ
i
is the map from

H(Γ̂i ) to {1, . . . , τ } defined by

μ
i
(Γ̂i, j ) = μk(Γ̂i, j )

. (46)

The set of quadruplets thus constructed is a set of GFcs, in the sense of Definition 2, that
is, γ (X) ⊂ Cν(Λ).

2. External GFc model. We have thus mapped X to a model of GFcs. Note that the
indices μ· must match up, that is, if a GFc is the first nested GFc in the hole of another,
its external μ must be equal to the μ of the hole it is in. This is a long range interaction
between GFcs, which makes the GFc model difficult to study. Instead, we will map
the system to a model of external GFcs, that do not have long range interactions. We
introduce the following definitions: two GFcs γ, γ ′ ∈ Cν(Λ) are said to be

− compatible if their supports are disconnected, that is, Δ(Γγ , Γγ ′) > 1,
− external if their supports are in each other’s exteriors, that is, Γγ ⊂ Γ̂γ ′,0 and
Γγ ′ ⊂ Γ̂γ,0.

The GFcs in γ (X) (see (45)) are compatible, but not necessarily external to each other.
Roughly, the idea is to keep the GFcs that are external to each other, since those do
not have long-range interactions (they all share the same external μ, which is fixed to
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ν once and for all). At that point, the particle configuration in the exterior of all GFcs
is fixed, and we are left with summing over configurations in the holes. The sum over
configurations in each hole is of the same form as (27), with Λ replaced by the hole, and
the boundary condition by the appropriate μ. Following this, we rewrite (27) as

Ξ
(ν)
Λ (z)

zν(Λ)
=

∑

γ⊂Cν (Λ)

⎛

⎝
∏

γ �=γ ′∈γ

Φext(γ, γ ′)

⎞

⎠
∏

γ∈γ

⎛

⎜⎜⎝

∏
x∈Xγ

z(x)

zν(Γγ )

hΓγ∏

j=1

Ξ
(μ

γ
(Γ̂γ, j ))

Γ̂γ, j
(z)

zν(Γ̂γ, j )

⎞

⎟⎟⎠

(47)
in which Φext(γ, γ ′) ∈ {0, 1} is equal to 1 if and only if γ and γ ′ are compatible and
external. Note that Γ̂γ, j is obviously bounded, connected and Λ∞\Γ̂γ, j is connected. It
is also tiled, since, as is readily checked,

Γ̂γ, j =
⋃

x∈L
μi (Γ̂γ, j )

∩Γ̂γ, j

σx . (48)

We have, thus, rewritten the model as a system of external GFcs.

3. GFc model. The last factor in (47) is similar to the left side of (47), except for the
fact that the boundary condition is μ

γ
(Γ̂γ, j ) instead of ν. (The denominator zν also has

a different index from the numerator, although this is not a problem since zν and zμ
γ
are

rather explicit.) In order to obtain a model of GFcs (which are not necessarily external
to each other), we could iterate (47), but, as was discussed earlier, this would induce
long-range correlations. Instead, we introduce a trivial identity into (47):

Ξ
(ν)
Λ (z)

zν(Λ)
=

∑

γ⊂Cν (Λ)

⎛

⎝
∏

γ �=γ ′∈γ

Φext(γ, γ ′)

⎞

⎠
∏

γ∈γ

⎛

⎝ζ
(z)
ν (γ )

hΓγ∏

j=1

Ξ
(ν)

Γ̂γ, j
(z)

zν(Γ̂γ, j )

⎞

⎠ (49)

in which ζ
(z)
ν (γ ) is defined in (40). We then rewrite Ξ

(ν)

Γ̂γ, j
(z) using (49), iterate, and,

noting that, if Γ̂γ, j does not contain GFcs, then Ξ
(ν)

Γ̂γ, j
(z) = zν(Γ̂γ, j ), we find (38). ��

3.2. Cluster expansion of the GFc model. As was discussed in Sect. 1.2, the pressure
of a system of hard particles at low fugacity can be expressed as a convergent power
series. The GFc model in (38) is a system of hard GFcs (the factor Φ(γ, γ ′) is a hard-
core interaction), and, as we will see below, the GFcs have a small activity. Similarly to
the low-fugacity expansion, the logarithm of the left side of (38) can be expressed as a
convergent power series. In this context, in which the hardGFcs havemore structure than
hard particles, the expansion is usually called a cluster expansion. The cluster expansion
has been studied extensively (to cite but a few [5,9,20,31]), and we will use a theorem
by Bovier and Zahradnik [5], which is summarized in the following lemma.
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Lemma 2 (Convergence of the cluster expansion [5]). If there exist two functions a, d
that map Cν(Λ) to [0,∞) and a number δ � 0, such that ∀γ ∈ Cν(Λ),

|ζ (z)
ν (γ )|ea(γ )+d(γ ) � δ < 1,

∑

γ ′∈Cν (Λ)

γ ′ �∼γ

|ζ (z)
ν (γ ′)|ea(γ ′)+d(γ ′) � δ

| log(1 − δ)|a(γ )

(50)
in which γ ′ �∼ γ means that γ ′ and γ are not compatible (that is, the union of their
supports is connected), then

Ξ
(ν)
Λ (Λ)

zν(Λ)
= exp

⎛

⎝
∑

γ�Cν (Λ)

ΦT (γ )
∏

γ∈γ

ζ
(z)
ν (γ )

⎞

⎠ (51)

γ � Cν(Λ) means that γ is a multiset (a multiset is similar to a set except for the fact
that an element may appear several times in a multiset, in other words, a multiset is an
unordered tuple) with elements in Cν(Λ), and ΦT is the Ursell function, defined as

ΦT (γ1, . . . , γn) := 1

Nγ !
∑

g∈GT (n)

∏

{ j, j ′}∈E(g)

(Φ(γ j , γ j ′) − 1) (52)

where Φ(γ j , γ j ′) ∈ {0, 1} is equal to 1 if and only if Γγ j ∪ Γγ j ′ is disconnected, GT (n)

is the set of connected graphs on n vertices and E(g) is the set of edges of g, and, if nγi is

the multiplicity of γi in (γ1, . . . , γn), then Nγ ! ≡ ∏n
j=1(nγ j !)

1
nγ j . In addition, for every

γ ∈ Cν(Λ),

∑

γ ′�Cν (Λ)

∣∣∣∣∣∣
ΦT ({γ } � γ ′)

∏

γ ′∈γ ′

(
ζ

(z)
ν (γ ′)ed(γ ′)

)
∣∣∣∣∣∣
� ea(γ ) (53)

where � denotes the union operation in the sense of multisets.

We will now show that (50) holds for an appropriate choice of a, d and δ.

Lemma 3 (Bound on the activity). Let

N := sup
x∈Λ∞,X∈Ω(Λ∞)

|∂X (x)|. (54)

If z(x) ≡ z for every x ∈ Λ∞ except for a finite number n of sites (x1, . . . , xn), and if
there exist z0, c1 > 0 such that |z| > z0 and

e− c1
n |z| � |z(xi )| � e

c1
n |z| (55)

then, for every θ, ξ ∈ (0, 1) such that θ + ξ < 1, (50) is satisfied with

a(γ ) := −θ |Γγ | logα > 0, d(γ ) := −ξ |Γγ | logα > 0 (56)

and
δ = ςα1−(θ+ξ), ς = max

(
e2c1 , 1 + 2n(e2

c1
n + 1)

)
(57)

in which
α := ςeχ |z|−ρm(1+N )−1 � 1 (58)
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a b

Fig. 11. Two different boundary conditions for the hard-cross model. The set Λ is outlined by the thick
black line. The crosses that are drawn are those mandated by the boundary condition (the boundary condition
stipulates that every cross that is in contact with the boundary must be of a specified phase and cannot be in
contact with empty sites), and the remaining available space in Λ is colored gray. a Λ can be tiled by the
covering corresponding to the boundary condition, whereas it cannot in (b). The partition function in the case
of a is z25(1 + y) whereas that in (b) is z25(1 + 5y + 14y2 + 18y3 + 9y4 + y5) (color figure online)

in which χ is the coordination number of Λ∞, that is, the maximal number of neighbors
each vertex in Λ∞ has.

In addition, there exists C1 ∈ (0, ξ) such that, for every i ∈ {1, . . . , n}, and every
μ ∈ {1, . . . , τ } ∣∣∣∣∣

∂

∂ log z(xi )
log

(
Ξ

(μ)
Λ (z)

zμ(Λ)

)∣∣∣∣∣ � αC11(xi ∈ Λ) (59)

in which 1(E) ∈ {0, 1} is equal to 1 if and only if E is true.

Remark. The value of z0 depends on the model. It is worked out rather explicitly in the
proof, and appears as a smallness condition on α, which is made explicit in (70), (73),
(75), (86), (88) and (102). In these equations, we use the notation α � (· · · ) to mean
“there exists a small constant c > 0 such that if α < c(· · · )”.
Proof. We will prove this lemma along with the following inequality: for every μ ∈
{1, . . . , τ } ∣∣∣∣∣

Ξ
(μ)
Λ (z)

Ξ
(ν)
Λ (z)

∣∣∣∣∣ � ςe|∂Λ| (60)

in which ∂Λ is the set of sites inΛ that neighborΛ∞\Λ. We proceed by induction on the
volume |Λ| ofΛ. (Note that, for certain models, this ratio is identically equal to 1. This is
the case when the different perfect coverings are related to each other by a translation, as
in the hard diamond model. However, for the hard-cross model, in which certain perfect
coverings are related by a reflection, the ratio may differ from 1, see Fig. 11.)

1. First of all, if Λ is so small that it cannot contain a GFc, that is, Cμ(Λ) = ∅ for every
μ ∈ {1, . . . , τ }, then (50) is trivially true, and

Ξ
(μ)
Λ (z) = zμ(Λ) =

∏

x∈Λ∩Lμ

z(x). (61)
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Therefore, (59) holds. We now turn to (60). The x dependence of z(x) can be neglected,
since there can be at most n factors that differ from z, and they do so by a bounded
amount:

e−c1 |z||Λ∩Lμ| � |Ξ(μ)
Λ (z)| � ec1 |z||Λ∩Lμ|. (62)

In addition, as we will show below, |Λ ∩ Lμ| is independent of μ, which implies that
∣∣∣∣∣
Ξ

(μ)
Λ (z)

Ξ
(ν)
Λ (z)

∣∣∣∣∣ � e2c1 � ςe|∂Λ| (63)

since, by (57),
ς � e2c1 . (64)

So, to conclude this argument, it suffices to prove that |Λ ∩ Lμ| is independent of μ.
This follows from the fact that Λ is tiled (see (25)). In fact, we will show that for every
x ∈ Λ∞, |Lμ ∩ σx | = 1 for any μ, which, by (25) implies that |Λ ∩ Lμ| = ρm |Λ|. We
proceed in two steps, by first showing that |Lμ ∩ σx | is smaller than 2, and then that it
is larger than 0.

− To prove that |Lμ ∩ σx | < 2, we show that if y, y′ ∈ Lμ ∩ σx , then σy ∩ σy′ �= ∅.
Indeed, since y ∈ σx , writing y′ = x + υ ∈ σx , by translating by υ, we find that
σy′ ≡ σx+υ � y + υ ∈ σy . Therefore, |Lμ ∩ σx | < 2.

− Finally, if |Lμ ∩ σx | = 0, then, since Lμ is periodic, the density of Lμ would be
< ρm , which contradicts the fact that the Li are related to each other by isometries.

All in all, |Lμ ∩ σx | = 1,which concludes the proof of (63).

2. From now on, we assume that (60) holds for every tiled strict subset of Λ (note that
Γ̂γ, j is a tiled strict subset of Λ). We first prove (50).

2-1 By (40) and (60),

|ζ (z)
ν (γ )| � e2c1ςhΓγ

|z||Xγ |

|z|ρm |Γγ | e
χ |Γγ | (65)

in which χ is the coordination number of Λ∞ (χ appears because, for any set A ⊂ Λ∞,
|∂A| � χ |∂(Λ∞\A)|). By Definition 2, in every configuration Xγ , every particle must
be in contact with at least one empty site. Therefore, the fraction ψγ (Xγ ) of empty sites
in Γγ must satisfy

ψγ (Xγ ) := |EΓγ (Xγ )|
|Γγ | � 1

N + 1
(66)

(recall that |EΓγ (Xγ )| is the number of empty sites (23), and N is the maximal volume
occupied by particles that neighbor a site (54)). Therefore,

|Xγ | = ρm |Γγ |(1 − ψγ (Xγ )) � ρm |Γγ | N
N + 1

. (67)

Therefore, by (58), (64) and (65), and using the fact that hΓγ � |Γγ |,

|ζ (z)
ν (γ )| � ς

(
ςeχ |z|−ρm

1
N+1

)|Γγ | ≡ ςα|Γγ |. (68)

Thus, by (56),

|ζ (z)
ν (γ )|ea(γ )+d(γ ) � ςα(1−(θ+ξ))|Γγ | (69)
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which proves the first inequality in (50) with δ ≡ ςα1−(θ+ξ), which, provided

α � ς−(1−(θ+ξ))−1
(70)

satisfies δ � 1.

2-2 We now turn to the second inequality in (50). By (69),

∑

γ ′∈Cν (Λ)

γ ′ �∼γ

ea(γ ′)+d(γ ′)|ζ (z)
ν (γ ′)| � ς

∑

γ ′∈Cν (Λ)

γ ′ �∼γ

α
(1−(θ+ξ))|Γγ ′ |. (71)

We bound the number of GFcs γ ′ that are incompatiblewith a fixedGFc γ by the number
of walks on Λ∞ of length 2|Γγ ′ | ≡ 2� that intersect or neighbor Γγ :

∑

γ ′∈Cν (Λ)

γ ′ �∼γ

ea(γ ′)+d(γ ′)|ζ (z)
ν (γ ′)| � ς(χ + 1)|Γγ |

∞∑

�=1

χ2�α(1−(θ+ξ))� (72)

((χ + 1)|Γγ | is a bound on the number of sites that intersect or neighbor Γγ ). Now,
provided

α � χ−2(1−(θ+ξ))−1
(73)

we have ∑

γ ′∈Cν (Λ)

γ ′ �∼γ

ea(γ ′)+d(γ ′)|ζ (z)
ν (γ ′)| � ςc2|Γγ | (74)

for some constant c2 > 0. If, in addition,

α � e−ςc2θ−1
(75)

then this implies (50).

3.Let us nowprove (59). Since (50) holds, the cluster expansion in Lemma2 is absolutely
convergent. Thus, by (51),

∂

∂ log z(xi )
log

(
Ξ

(μ)
Λ (z)

zμ(Λ)

)
=

∑

γ ′∈Cμ(Λ)

∂ζ
(z)
μ (γ ′)

∂ log z(xi )

∑

γ�Cμ(Λ)

ΦT ({γ ′} � γ )
∏

γ∈γ

ζ
(z)
μ (γ )

(76)
so, by (53),

∣∣∣∣∣
∂

∂ log z(xi )
log

(
Ξ

(μ)
Λ (z)

zμ(Λ)

)∣∣∣∣∣ �
∑

γ ′∈Cμ(Λ)

ea(γ ′)
∣∣∣∣∣
∂ζ

(z)
μ (γ ′)

∂ log z(xi )

∣∣∣∣∣ . (77)
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Furthermore, by (40),

∂ log ζ
(z)
μ (γ ′)

∂ log z(xi )
= 1

(
xi ∈ Xγ ′

) − 1
(
xi ∈ Lμ ∩ Γγ ′

)

+

hΓ
γ ′∑

j=1

(
1

(
xi ∈ L

μ
γ ′ (Γ̂γ ′, j )

∩ Γ̂γ ′, j

)
− 1

(
xi ∈ Lμ ∩ Γ̂γ ′, j

))

+

hΓ
γ ′∑

j=1

⎛

⎜⎜⎝
∂

∂ log z(xi )
log

⎛

⎜⎜⎝
Ξ

(μ
γ ′ (Γ̂γ ′, j ))

Γ̂γ ′, j
(z)

z
μ

γ ′ (Γ̂γ ′, j )
(Γ̂γ ′, j )

⎞

⎟⎟⎠

− ∂

∂ log z(xi )
log

⎛

⎜⎝
Ξ

(μ)

Γ̂γ ′, j
(z)

zμ(Γ̂γ ′, j )

⎞

⎟⎠

⎞

⎟⎠ . (78)

Therefore, using (59) inductively to estimate the last term,
∣∣∣∣∣
∂ζ

(z)
μ (γ ′)

∂ log z(xi )

∣∣∣∣∣ � |ζ (z)
μ (γ ′)|31(xi ∈ Int(Γγ ′)) (79)

in which

Int(Γγ ′) := Γγ ′ ∪
⎛

⎜⎝

hΓ
γ ′⋃

j=1

Γ̂γ ′, j

⎞

⎟⎠ (80)

so that ∣∣∣∣∣
∂

∂ log z(xi )
log

(
Ξ

(μ)
Λ (z)

zμ(Λ)

)∣∣∣∣∣ � 3
∑

γ ′∈Cμ(Λ)

Int(Γγ ′ )�xi

ea(γ ′)|ζ (z)
μ (γ ′)|. (81)

In addition, by the isoperimetric inequality,

|Int(Γγ ′)| � c(d)
3 |Γγ ′ |d (82)

for some constant c(d)
3 > 0 (which depends on d), so

∣∣∣∣∣
∂

∂ log z(xi )
log

(
Ξ

(μ)
Λ (z)

zμ(Λ)

)∣∣∣∣∣ � 3
∑

γ ′∈Cμ(Λ)

Γγ ′ �xi

c(d)
3 |Γγ ′ |dea(γ ′)|ζ (z)

μ (γ ′)|. (83)

Furthermore,
|Γγ ′ |d � d!e|Γγ ′ | (84)

so, rewriting

ea(γ ′)+|Γγ ′ | = e−d̄(γ ′)e(a(γ ′)+d(γ ′)), d̄(γ ′) := d(γ ) − |Γγ ′ | � −ξ logα − 1 (85)
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which holds provided

α � e− 1
ξ (86)

and by (74), we find

∣∣∣∣∣
∂

∂ log z(xi )
log

(
Ξ

(μ)
Λ (z)

zμ(Λ)

)∣∣∣∣∣ � αξ3e1c(d)
3 d!ςc2 (87)

which, provided

α �
(
3e1c(d)

3 d!ςc2
)−(ξ−C1)

−1

(88)

implies (59).

4. We now turn to the proof of (60).

4-1 First of all, we get rid of the dependence on z(xi ): by Taylor’s theorem,

log

(
Ξ

(μ)
Λ (z)

Ξ
(ν)
Λ (z)

)
= log

(
Ξ

(μ)
Λ (z)

Ξ
(ν)
Λ (z)

)
+

n∑

i=1

(z(xi ) − z)
∂

∂ z̃(xi )
log

(
Ξ

(μ)
Λ (z̃)

Ξ
(ν)
Λ (z̃)

)
(89)

in which z̃ is a function satisfying z̃(xi ) ∈ [z, z(xi )] and z̃(x) = z for any x �= xi . By
(59),

∣∣∣∣∣
∂

∂ z̃(xi )
log

(
Ξ

(μ)
Λ (z̃)

Ξ
(ν)
Λ (z̃)

)∣∣∣∣∣ � 1

|z̃(xi )|
(∣∣1

(
xi ∈ Lμ ∩ Λ

) − 1 (xi ∈ Lν ∩ Λ)
∣∣ + αC1

)
.

(90)
Thus, ∣∣∣∣∣

n∑

i=1

(z(xi ) − z)
∂

∂ z̃(xi )
log

(
Ξ

(μ)
Λ (z̃)

Ξ
(ν)
Λ (z̃)

)∣∣∣∣∣ � 2n(e
2c1
n + 1). (91)

4-2 We now focus on Ξ
(μ)
Λ (z), and make use of the cluster expansion in Lemma 2: by

(51),

log

(
Ξ

(μ)
Λ (z)

Ξ
(ν)
Λ (z)

)
=

∑

γ�Cμ(Λ)

ΦT (γ )
∏

γ∈γ

ζ (z)
μ (γ ) −

∑

γ�Cν (Λ)

ΦT (γ )
∏

γ∈γ

ζ (z)
ν (γ ) (92)

(we recall that z|Λ∩Lμ| is independent of μ so the zμ(Λ) and zν(Λ) factors cancel out).
We then split these cluster expansions into bulk and boundary contributions, which are
defined as follows. Let C(|Λ|)

μ (Λ∞) denote the set of GFcs in Λ∞ whose upper-leftmost
corner (if d > 2, then this notion should be extended in the obvious way) is in Λ. Note
that C(|Λ|)

μ (Λ∞) only depends on Λ through its cardinality |Λ| (up to a translation). We
then write ∑

γ⊂Cμ(Λ)

ΦT (γ )
∏

γ∈γ

ζ (z)
μ (γ ) = B(|Λ|)

μ (Λ∞) − b(Λ)
μ (Λ∞) (93)
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in which B is the bulk contribution, and b is the boundary term.

B(|Λ|)
μ (Λ∞) :=

∞∑

m=1

∑

γ ′∈C(|Λ|)
μ (Λ∞)

(ζ (z)
μ (γ ′))m

∑

γ�Cμ(Λ∞)\{γ ′}
ΦT ({γ ′}m � γ )

∏

γ∈γ

ζ (z)
μ (γ )

b(Λ)
μ (Λ∞) :=

∞∑

m=1

∑

γ ′∈C(|Λ|)
μ (Λ∞)

(ζ (z)
μ (γ ′))m

∑

γ�Cμ(Λ∞)\{γ ′}
({γ ′}m�γ ) ��Cμ(Λ)

ΦT ({γ ′}m � γ )
∏

γ∈γ

ζ (z)
μ (γ )

(94)

in which {γ ′}m is the multiset with m elements that are all equal to γ ′.

4-2-1 The bulk terms cancel each other out. Indeed, we recall (see Sect. 1.1) that there
exists an isometry Fμ,ν of Λ∞ such that Fμ,ν(Lμ) = Lν . In addition, since Fμ,ν is
an isometry, it maps perfect coverings to perfect coverings, and this map is denoted by
fμ,ν : {1, . . . , τ } → {1, . . . , τ }:

L fμ,ν(κ) = Fμ,ν(Lκ). (95)

This allows us to define an action on GFcs: Fμ,ν : Cμ(Λ) → Cν(Fμ,ν(Λ)),

Fμ,ν(Γγ , Xγ , μ,μ
γ
) := (Fμ,ν(Γγ ), Fμ,ν(Xγ ), ν, fμ,ν(μγ

)). (96)

ThemapFμ,ν is a bijection and, since the partition function is invariant under isometries,

it leaves ζ
(z)
μ and ΦT invariant, so

B(|Λ|)
μ (Λ∞) =

∞∑

m=1

∑

γ ′∈C(|Fμ,ν (Λ)|)
ν (Fμ,ν(Λ∞))

(ζ (z)
ν (γ ′))m

·
∑

γ�Cν (Fμ,ν(Λ∞))\{γ ′}
ΦT ({γ ′}m � γ )

∏

γ∈γ

ζ (z)
ν (γ ) (97)

so, since Fμ,ν(Λ∞) = Λ∞ and |Fμ,ν(Λ)| = |Λ|,

B(|Λ|)
μ (Λ∞) − B(|Λ|)

ν (Λ∞) = 0. (98)

4-2-2 Finally, we estimate the boundary term. First of all, since every cluster {γ ′} � γ

that is not a subset of Cμ(Λ) must contain at least one GFc that goes over the boundary
of Λ,

b(Λ)
μ (Λ∞) �

∑

γ ′∈Cν (Λ∞)

Γγ ′ ∩Λ �=∅
Γγ ′ ∩(Λ∞\Λ) �=∅

|ζ (z)
μ (γ ′)|

∑

γ�Cμ(Λ∞)

∣∣∣∣∣∣
ΦT ({γ ′} � γ )

∏

γ∈γ

ζ (z)
μ (γ )

∣∣∣∣∣∣
(99)
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(for the purpose of an upper bound, we can reabsorb the sum over m in (94) in the sum
over γ ) so, by (53),

|b(Λ)
μ (Λ∞)| �

∑

γ∈Cν (Λ∞)

Γγ ∩Λ �=∅
Γγ ∩(Λ∞\Λ) �=∅

|ζ (z)
μ (γ ′)|ea(γ ′) (100)

which, rewriting, as we did earlier ea(γ ′) = e−d(γ ′)ea(γ ′)+d(γ ′) and using d(γ ′) �
−ξ logα, implies, similarly to the derivation of (74),

|b(Λ)
μ (Λ∞)| � αξςc2|∂Λ|. (101)

4-2-3 Thus, inserting (98) and (101) into (93) and (92), provided

2αξςc2 � 1 (102)

we find that

log

(
Ξ

(μ)
Λ (z)

Ξ
(ν)
Λ (z)

)
� |∂Λ|. (103)

By combining this bound with (91) and (89), we find that (60) holds with

ς = 1 + 2n(e2
c1
n + 1). (104)

��

3.3. High-fugacity expansion. We now conclude this section by summarizing the valid-
ity of the high-fugacity expansion as a stand-alone theorem, which is a simple conse-
quence of Lemmas 1, 2 and 3, and showing how it implies Theorem 1.

Theorem 2 (High-fugacity expansion). Consider a non-sliding hard-core lattice par-
ticle system and a boundary condition ν ∈ {1, . . . , τ }. We assume that z(x) takes the
same value z for every x ∈ Λ∞ except for a finite number n of sites (x1, . . . , xn) (that
is, z(x) = z for every x ∈ Λ∞\{x1, . . . , xn}). There exists z0, c1 > 0 such that if

|z| > z0, e− c1
n |z| � |z(xi )| � e

c1
n |z| (105)

then the following hold.
The partition function (27) can be rewritten as

Ξ
(ν)
Λ (z)

zν(Λ)
= exp

⎛

⎝
∑

γ�Cν (Λ)

ΦT (γ )
∏

γ∈γ

ζ
(z)
ν (γ )

⎞

⎠ (106)

where zν(Λ) and ζ
(z)
ν (γ ) were defined in (39) and (40), and ΦT was defined in (52).

In addition, (106) is absolutely convergent: there exist ε,C2 > 0, such that, for every
γ ′ ∈ Cν(Λ),

∑

γ�Cν (Λ)

∣∣∣∣∣∣
ΦT ({γ ′} � γ )ζ

(z)
ν (γ ′)

∏

γ ′′∈γ

ζ
(z)
ν (γ ′′)

∣∣∣∣∣∣
� C2ε

|Γγ | (107)

and ε → 0 as y ≡ z−1 → 0.
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Remark. The quantities z0, ε and C2 depend on the model. They are computed above
(see Lemma 3), although we do not expect that the expressions given in this paper are
anywhere near optimal. Instead, the take-home message we would like to convey here,
is that these constants exist, and that ε is arbitrarily small (at the price of making the
activity larger).

Theorem 1 is a corollary of Theorem 2, as detailed below.

Proof of Theorem 1. 1. By (106), the finite volume pressure is given by

p(ν)
Λ (z) = 1

|Λ| logΞ
(ν)
Λ = 1

|Λ| log zν(Λ) +
1

|Λ|
∑

γ�Cν (Λ)

ΦT (γ )
∏

γ∈γ

ζ (z)
ν (γ ). (108)

Furthermore,
log zν(Λ) = ρm |Λ| log z. (109)

Now, by (40), ζ
(z)
ν (γ ) is a rational function of y, and, by (50), it is bounded by 1 for

small y, uniformly in γ . It is, therefore, an analytic function of y for small y. In addition,
p(ν)
Λ (z) converges in the Λ → Λ∞ limit uniformly in y, indeed, splitting into bulk and

boundary terms as in (93), we find that the bulk term 1
|Λ|B

(|Λ|)
ν (Λ∞) is independent of

Λ, and that the boundary term 1
|Λ|b

(Λ)
ν (Λ∞) vanishes in the infinite-volume limit (101).

Therefore,

p(z) = ρm log z +
1

|Λ|B
(|Λ|)
ν (Λ∞). (110)

Furthermore, by Lemma 2, the sums over γ ′ and γ in 1
|Λ|B

(|Λ|)
ν (Λ∞) (see (94)) are

absolutely convergent, which implies that p(z) − ρm log z is an analytic function of y
for small value of |y|.
2. By a similar argument, we show that the correlation functions are analytic in y for
smallvalues of |y| by proving that

∑

γ�Cν (Λ)

∂n

∂ log z(x1) · · · ∂ log z(xn)
ΦT (γ )

∏

γ∈γ

ζ
(z)
ν (γ ) (111)

converges to

∑

γ�Cν (Λ∞)

∂n

∂ log z(x1) · · · ∂ log z(xn)
ΦT (γ )

∏

γ∈γ

ζ
(z)
ν (γ ) (112)

uniformly in y, or, in other words, that their difference

∞∑

m=1

∑

γ ′∈Cν (Λ∞)\Cν (Λ)

∑

γ�Cν (Λ∞)\{γ ′}
∂n

∂ log z(x1) · · · ∂ log z(xn)
ΦT ({γ ′}m � γ )(ζ

(z)
ν (γ ′))m

∏

γ∈γ

ζ
(z)
ν (γ ) (113)

vanishes in the infinite-volume limit. It is straightforward to check (this is done in detail

for the first derivative in the proof of Lemma3, see (78)) that the derivatives of log ζ
(z)
ν (γ )
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are bounded analytic functions of y, uniformly in γ , and are proportional to indicator
functions that force Γγ to contain each of the xi with respect to which ζ is derived.
Therefore, the clusters {γ ′}�γ that contribute are those which contain all the xi and that
are not contained inside Λ. We can therefore bound (113) by

∑

γ ′∈Cν (Λ∞)
Γγ ′ �x1

∑

γ�Cν (Λ∞)

∣∣∣∣∣∣∣∣∣∣

ΦT ({γ ′} � γ )ζ
(z)
ν (γ ′)

∏

γ∈γ

vol({γ ′}�γ )�dist(x1,Λ∞\Λ)

ζ
(z)
ν (γ )

∣∣∣∣∣∣∣∣∣∣

(114)

in which vol({γ ′} � γ ) := |Γγ ′ |+∑
γ∈γ |Γγ |. By proceeding as in (101), we bound this

contribution by

c4α
ξdist(x1,Λ∞\Λ) (115)

for some constant c4 > 0, so it vanishes as Λ → Λ∞. Furthermore, by the same
argument, we show that the sum over γ in

∂n

∂ log z(x1) · · · ∂ log z(xn)

∑

γ�Cν (Λ∞)

ΦT (γ )
∏

γ∈γ

ζ (z)
ν (γ ) (116)

is absolutely convergent, so

∂n

∂ log z(x1) · · · ∂ log z(xn)

∑

γ�Cν (Λ)

ΦT (γ )
∏

γ∈γ

ζ (z)
ν (γ ) (117)

is analytic in y for small |y|. Finally,
∂n

∂ log z(x1) · · · ∂ log z(xn)
log zν(Λ) = 1(n = 1)1(x1 ∈ Lν ∩ Λ) (118)

which is, obviously, analytic in y. Therefore, the n-point truncated correlation functions
are analytic in y as well.

3. In particular, ρ(ν)
1 (x) is an analytic function of y, and its 0-th order term is the indicator

function that x ∈ Lν , which proves (31). Finally ρm − ρ is an analytic function of y,

ρm − ρ = c1y + O(y2), c1 = lim
Λ→Λ∞

1

|Λ|QΛ(1) � 1 (119)

(we recall that QΛ(1) is the number of particle configurations with Nmax − 1 particles,
which is at least |Λ|). Therefore y �→ ρm − ρ is invertible, so the correlation functions
and p − log(z) are also analytic functions of ρm − ρ. In addition, log(z) + log(ρm − ρ)

is analytic in ρm − ρ as well. ��
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