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Abstract: We consider a monomer-dimer system with a strong attractive dimer-dimer
interaction that favors alignment. In 1979, Heilmann and Lieb conjectured that this model
should exhibit a nematic liquid crystal phase, in which the dimers are mostly aligned,
but do not manifest any translational order. We prove this conjecture for large dimer
activity and strong interactions. The proof follows a Pirogov-Sinai scheme, in which
we map the dimer model to a system of hard-core polymers whose partition function is
computed using a convergent cluster expansion.

1. Introduction

Ina 1979 paper, Heilmann and one of us [HL79] attempted to construct a simple statistical
mechanical lattice model of a liquid crystal phase transition. Such a model would have
to have the property that the constituent ‘molecules’ would have to show no long-range
order at high temperature and, at low temperature, have a transition to a phase in which
there is long-range rotational order of the molecules, but no long-range translational
order. In other words, the molecules are nearly parallel, but their centers show no long-
range correlations. Such a model had not been constructed before then, although there
was the 1949 heuristic ultra-thin, ultra-long molecule model of Onsager [On49].

In the model considered in [HL79], the molecules are represented by interacting
dimers or fourmers on a square or cubic lattice. It was shown, by reflection positivity
and chessboard estimates, that, for several different models, the system exhibits long-
range orientational order at low temperature. Thus, if we specify the orientation of one
dimer somewhere in the lattice, any other dimer is oriented in the same way with large
probability. It was not proved, however, that this rotational order is not accompanied
by translational order. That is, it was not proved that fixing a dimer somewhere on the
lattice does not induce correlations in the position of distant dimers, even though it does
induce a preference for their orientation.
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Since then, there have been many new developments in the field, though a complete
proof of the lack of translational order for any of the models considered in [HL79] was,
until now, still lacking. In [AH80], a new three-dimensional model was added to the
list by extending one of the two-dimensional models in [HL79]. In [AZ82,Za96], the
result was extended to a model of elongated molecules on a lattice admitting continuous
orientations, with short- (in three dimensions) and long- (in two dimensions) range
attractive interactions. A liquid crystalline (also called nematic) phase was later proved
to exist [BKLS84] (that is, both orientational order and a lack of translational order are
shown) in a model of infinitely thin long molecules in two dimensions admitting a finite
number of orientations (although the discussion in [BKL84] is limited to a remark in the
concluding section of the paper). This behavior was also shown to occur in an integrable
lattice model of rods admitting two orientations and of varying length [TVZ06] or of a
fixed, long length [DG13]. Finally, in [ACM14], a mean-field interacting dimer model
was introduced and solved.

There has also been some progress towards proving the conjecture in [HL79]. Most
efforts have focused on one of the models in [HL79], model I (see Fig. 1), which is
two-dimensional, and involves an interaction between collinear, neighboring dimers.
In [AI16], D. Alberici tweaked this model by making the activity of horizontal and
vertical dimers different, thus favoring one orientation, and showed the emergence of a
liquid crystalline phase. There have also been numerical results [PCF14] supporting the
conjecture.

In this paper, we shall prove the conjecture in [HL79] that there is no long-range
translational order in model 1. There is little doubt that similar proofs could be devised
for the other models and other dimensions for which orientational order was proved
in [HL79].

Let us describe the model in more precise terms. It is a monomer-dimer system on the
square lattice, in which a dimer is an object that covers exactly two neighboring vertices,
and a monomer covers a single vertex. No two objects are permitted to cover the same
vertex. Monomers are to be thought of, in this context, as empty sites, whereas dimers
represent molecules. The dimer-activity z is large, which favors dimers heavily, but the
presence of monomers is crucial. In addition we introduce a strong attractive force that
favors alignment. Without this interaction, as was shown in [HL72], the monomer-dimer
model would not have phase transitions at positive temperature, and thus, would exhibit
no liquid crystalline ordering.

The attractive interaction assigns a negative energy —J to every pair of dimers that
are adjacent and aligned, that is, that are on the same row or the same column, see
Fig. 1. We offer two interpretations of this model. One is of polar molecules of length 1,
represented by individual dimers; the other is of molecules of varying length, modeled
by chains of adjacent and aligned dimers.

We choose boundary conditions that favors vertical dimers, and focus on the param-
eter regime J > z > 1. We first prove that horizontal dimers are unlikely in the bulk, in
accordance with the result of [HL79]. The method of proof is completely different from
that in [HL79]; in particular we do not use reflection positivity. We further show that the
probability of finding a vertical dimer on a given edge is, in the thermodynamic limit,
independent of the position of the edge. Furthermore, the joint probability of finding a
dimer at an edge e and another at ¢/, up to a constant, decays exponentially in the distance
between e and ¢’ with a rate 2> e3/ z_% . This proves the absence of translational order.

The proof follows a Pirogov-Sinai [PS75] scheme, which is an extension of the Peierls
argument. The main idea is to map the interacting dimer model to a system of hard-core
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Fig. 1. An example of a dimer configuration. Interacting dimers are depicted as connected by a red (color
online) wavy line

polymers, and show that the effective activity of these polymers decays sufficiently fast
in their size. We then use a cluster expansion to compute the partition function of the
model in terms of an absolutely convergent series, and estimate the one- and two-point
correlation functions.

This paper is organized as follows. In Sect. 2, we define the model in precise terms,
state our main theorem and provide a detailed sketch of the proof. Section 3 describes the
solution to an ancillary model in which only one dimer orientation is allowed, which plays
an important role in the rest of the proof. In Sect. 4, we map the interacting dimer model
to the polymer model. In Sect. 5 we prove bounds on the polymer activity and entropy,
and compute the partition function of the polymer model in terms of an absolutely
convergent cluster expansion. Finally, the proof of the main theorem is concluded in
Sect. 6.

2. The Model

2.1. Definition of the model. A dimer configuration is a collection of non-overlapping
edges of Z2. In order to define these formally, we denote the set of edges of a subset
A C 7Z? by

E) = {{x,x"}, x,x" € A, |x =Xl =1} e))

in which || - || denotes the Euclidean distance. The edges of A are either horizontal
(h-edges) or vertical (v-edges), and given a set of edges E C £(A) and g € {h, v}, we
denote the set of g-edges in E by D, (E). We then define the set of dimer configurations
in A as

Q(A)={ECEA), VYe#e cE, ene =0} (2)
(see Fig. 1 for an example).

1 - Interaction. We introduce a strong interaction between dimers, that favors con-
figurations in which dimers are aligned, collinear and neighbors (see Fig. 1). Every such
pair of dimers contributes —J to the energy of the configuration, and J will be taken to
be large.
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Fig. 2. The boundary condition. Here, we have taken ¢ = v and £ = 4. There can be no horizontal dimers
in the cyan (color online) region. Some of the vertices on the boundary, depicted as large red (color online)
discs, are magnetized: they contribute —J to the energy when they are occupied

2 - Boundary condition. We choose the boundary condition in such a way that
either vertical or horizontal dimers are favored. To determine which it is, we introduce
a variable ¢ € {v, h} which is set to v if vertical dimers are favored and h if horizontal
ones are. In addition, we define —q as the opposite of g, that is, if ¢ = h, then —g = v
and vice-versa. The boundary condition consists of two forces: first, —g-dimers are not
allowed to be too close to the boundary, and g-dimers may be attracted by certain parts
of the boundary.

Note that we could consider different boundary conditions, as long as they favor
horizontal or vertical dimers. It would require an extra computation, which we have
chosen not to carry out, as we have achieved our goal of showing that there are two
extremal Gibbs states in which the rotational symmetry is broken, but the translational
one is not.

In order to define the boundary condition precisely, let us first define the boundary
of a bounded subset A C 72, denoted by 9 A, as the set of edges {x,x'} € & (Zz)
with x € A and x’ € Z*\ A. In addition, we define the ¢-distance between two points
x,x' € Z?, denoted by 0,(x,x") € R U {oo}, in the following way. If x and x’ are
in the same g-line (a v-line is a vertical line and an h-line is a horizontal one), then
9, (x,x") = |lx — x'||, and if they are not, then 9, (x, x") = co. We can now define the
boundary condition, which, we recall, consists of two forces (see Fig. 2 for an example).

— We fix a length scale £y > 1 and require that every —g-dimer in A be separated
from the boundary of A by a g-distance of at least £y. We denote the set of dimer
configurations satisfying this condition by

2q.60(A) :={8 € 2(A), 9;,(D_4(8),3A) = Lo} 3)

(In this paper, we will use the convention that the distance between two sets is the
smallest distance between the elements of the set. Furthermore, we will use this
convention recursively to define the distance between sets of sets, and so forth...)

— In addition to this condition, we will allow part or all of d A to be magnetized, by which
we mean that parts of the boundary may attract g-dimers, as if there were g-dimers
right outside it. Formally, we introduce a subset o C dA of edges on the boundary
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which are magnetized, and, given a dimer configuration § € §2, ¢,(A), we define the
set of dimers that are bound to the boundary as

By(8.0) :=1{d €8, 0,(d,0)=0}. “)

Every dimer in B, (3, o) contributes —J to the interaction, as if every such dimer
interacted with a phantom dimer outside A.

The boundary condition is thus specified by the triplet (g, o, £9) = q, and we will
use the shorthand 24 = £2, ¢, and By (8) = B, (3, 0).

3 - Observables. In this paper, we will compute the grand-canonical partition func-
tion of the system, defined as

Zalg = Y e M08 ®
éGQq(A)
with L
e Wo® . H g2/ 1di~dy) Bq(d) = l_[ e’ ©
didres deBgy(d)
in which

— z > 01is the dimer activity,

— J > 01is the interaction strength, (the factor % accounts for the fact that each pair is
counted twice)

— |8| denotes the number of dimers in §,

— 1(d1 ~ d») € {0, 1} identifies which pairs of dimers interact: it is equal to 1 if and
only if 3¢" € {v, h} such that d; and d, are both ¢’-dimers and are at ¢’-distance 1
from one another.

In addition, we will compute the n-point correlation functions, defined as follows.
We fix a set of edges 7" = {vy, ..., vn} C E(A), and define

1
1, ---1 . = Z|§|E—WO(§)% (8). (7
< vy v >A,q Z(A|q) SEQX‘]%A) q
=Y

The infinite-volume limit of this correlation function is defined by considering a square
L x L box Ap and taking the L — oo limit
<]1UI ...nUn)q =

<]1U] "’]lvn> (8)

Ll>moo AL.q”
We will assume that the different v; are at a distance of at least £ from each other (this
assumption is merely a technical requirement). Note that the partition function of dimers
in A that contain 7" can, equivalently, be viewed as the partition function on A\ (|, <y v)
with a special boundary condition. Namely, the endpoints of v are magnetized, in the
sense discussed above, but, unlike the boundary of A, which excludes —g-dimers at a

distance £, the boundary of v does not exclude any dimers. Formally, defining

AT = A\ (Uyer v) ©)

and

Qi (M) = (8 € 24,0(A). V8 €8, 5 AT (10)
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we have (recall that we assume that different v;’s are not neighbors (so that sources do
not interact directly))

zM(Alg)
Ty, -1y, == 2 Z(T)(A|q) =" Zléle—Wo@)%(T)((g)
( v1 Ur >A,q Z(Alq) %; q =
sea” ()
1D
in which ‘Bflr) (&) includes the interactions with the sources:
B©®) =B | [] Bgayuin® [T Begipww®| 02

vely (T7) veD_4(T7)

in which 9; = D, (d) (by which we mean that for any set X, 9, X = ID; (X)) (note that
the index £ is redundant; we have kept it in in order not to have to introduce yet another
notation for the boundary condition q = (g, 0, £o)).

4 - Oriented dimer model. As was shown in [HL79], when the interaction strength
is sufficiently large, the probability of horizontal and vertical dimers coexisting is low.
In fact, the main idea is to compute how much the partition function of the model with g-
boundary conditions differs from that of a similar model in which there are only g-dimers
and monomers, and to show that, in a sense to be made precise, this difference is small.
We first formally define the oriented dimer model, in which only one of the two dimer
orientations is allowed: let ®,(A) C $2(A) denote the set of g-dimer configurations on
A:

O4(A) == {8 € 24(A), § € Dy(E(A)) (13)
in terms of which the partition function of the g-dimer model is
3((17”)(/‘) =" Z Z\é\e—Wo@sB&T) (3). (14)
8€@,(AM)
In order to compare Z7) (A|q) and Sg)(A), we will compute the ratio
ZM(A
—m( D (15)
3q (A)

Note that, in the oriented dimer model, since different columns of vertical dimers and

different rows of horizontal dimers do not interact, in order to compute 351T) (A), it
suffices to compute the partition function of dimers on a one-dimensional chain.

2.2. Result. Our mainresultis that, at large activities and yet larger interaction strengths,
this model exhibits nematic order, that is, it exhibits long-range orientational order, yet
no long-range translational order. This is stated precisely in the following theorem.

Theorem 1 (Nematic phase). Let v = (v, 0, £g), which corresponds to open boundary
conditions coupled with the condition that no horizontal dimers come within a distance
Lo of the boundary. There exist large constants (which, in principle, can be worked out)
C1, Co > 0 such that, if

J>Ciz and z > Cy (16)

then, taking £y = C3e%]ﬁ for some constant C3 > 0 (£g is of the order of the
correlation length of the oriented dimer model), the following statements hold.
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— Let ey € Dy(E(Z?)) be a vertical edge, (]lev )v is independent of the position of ey, and

(Le,), = % (1 +0 ( ;‘,)) : (17)

In other words, the probability of finding a dimer at a given edge is independent of the
position of that edge, and most vertices are occupied by a vertical dimer (if the lattice
were fully packed, then half the edges are occupied).

— Let ey, € Dy(E(Z?)) be a horizontal edge,

(Le,), = 0. (18)

Thus, horizontal dimers are unlikely. This implies orientational order (in particular,
this implies that (]leh]lev)v = 0(e?).
— For any pair of edges e, ¢' € E(Z?) which are at a distance of at least £,

(Teler)y — (Ledy (Lor)y = O (e Codisteey (19)
for some constant C4 > 0, in which the distance distyy is that induced by the norm

G, )l = x| + 65 3] (20)

This means that the probability of placing two dimers at e and €' is equal to a term

that does not depend on the position of the edges plus a term that decays exponentially

with the distance between them. There is, thus, no long-range translational order. The
3 1

decay rate is of order J > 1 in the horizontal direction and e” 27772 < 1 in the

vertical.

2.3. Sketch of the proof. Before discussing the proof that is carried out in this paper, let
us mention two simpler approaches we have tried which have failed.

In [HL79], orientational order was proved using reflection positivity and chessboard
estimates. The main difficulty with extending this method to prove the lack of transla-
tional order is that, as can be seen from Theorem 1, the correlation length of the system

is very large: o ~ 3’ /7, and the lack of order is only visible on that scale, and seems
difficult to see using only reflection positivity.

Another natural approach to the problem is to integrate out the vertical dimers and
manipulate the resulting effective horizontal dimer model. The idea being that, if vertical
dimers are favored on the boundary, then they should dominate, so the horizontal dimer
model would be a rarefied gas, which could be treated by standard cluster expansion
methods. However, since horizontal dimers are subjected to a surface tension, they tend
to bunch together into large swarms. In order for this approach to be successful, the
swarms would have to pay an energetic price proportional to their volume, in order to
counterbalance their entropy. Unfortunately, they do not do so. Note, however, that if
we made the activity of horizontal dimers slightly smaller than that of vertical ones, as
in [Al16], then the horizontal swarms would have a sufficiently large volume cost, and
this approach would be successful.

Instead, we opted for a Pirogov-Sinai argument.

The main idea of the proof is to estimate how much the partition function of the
full dimer model differs from that of the oriented dimer model, which is integrable, and
to show that the dominant contribution to the observables in theorem 1 come from the
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oriented dimer model. The oriented dimer model is integrable, and one easily shows
that the local dimer density is invariant under translations and satisfies (17). In addition,

pair correlations decay in the vertical direction with a rate £ D x em3! z*%, and are
identically zero in the horizontal direction. Therefore, (19) holds in the oriented dimer
model, with the improvement that the decay rate in the horizontal direction is infinite,
rather than of order J. The full model does have horizontal correlations, mediated by
horizontal dimers. In order to bound the difference in the partition functions of the
oriented dimer model and the full one, we will compute the ratio of the dimer partition
function to the oriented dimer partition function (15) in terms of absolutely convergent
series.

Obviously, the difference between the full and the oriented dimer models is that there
are both horizontal and vertical dimers in the former. With that in mind, we consider
dimer configurations in terms of horizontal and vertical phases and defects (see Fig.-
7). A vertical phase is a region of Z? that is occupied only by vertical dimers (and
monomers); similarly, a horizontal phase is occupied by horizontal dimers. The interface
between a vertical and a horizontal phase is a defect. This point of view is similar to
the Peierls argument for the ferromagnetic Ising model, in which one can consider a
spin configuration as a collection of contours which delineate regions containing only +
or — spins. Unlike the Ising model, the configuration in a uniform phase is not unique
(because they can contain monomers), but, since the oriented dimer model is integrable,
we can compute the partition function in these regions (this is reminiscent of the models
considered in [BKL84,BKLS85]). In addition, given that we are computing the ratio (15),
the partition functions in uniform phases appearing in the numerator are approximately
canceled out by the oriented dimer partition function in the denominator, leaving an
effective weight for the defects.

The dominant contribution to the weight of a defect comes from the fact that most
dimers in the denominator of (15) interact with a neighboring dimer (because the dimer
activity is large), which means that almost every other vertical edge (we choose g = V)

. .. . J
contributes a factor e/. We can keep track of these factors by assigning a weight e to
each endpoint of a dimer. On the other hand, the dimers on either side of a defect have
different orientations, and, therefore, do not interact. By cutting these interactions, a

defect of length |/| contributes a factor ~ ezl (see Fig. 7). This is encouraging: in the
language of Pirogov-Sinai theory [PS75], this would indicate that the system satisfies the
Peierls condition with a large decay rate %, which is a sufficient condition for general
Pirogov-Sinai constructions [KP84,BKL84] to apply.

There is, however, one important complication. As was mentioned earlier, the parti-
tion functions in the uniform phases only approximately cancel. Indeed, in the numerator,
one has a product of oriented partition functions over a partition of A, whereas, in the
denominator, there is only one oriented partition function over all of A. However, the
partition function in a region depends on its geometry. In addition, while correlations
in the oriented dimer model decay exponentially, they have a large correlation length

Ly ~ 3’ /7. There are, therefore, two length scales at play in this system: the micro-
scopic size of a dimer, and the mesoscopic correlation length of the oriented dimer
model. Therefore, the dependence of the oriented dimer partition function on the geom-
etry of the region which it describes is strong when the diameter of the region does not
exceed £o. As a consequence, defects interact with each other, with an exponentially
decaying interaction that has a very small decay rate £, ' In order to deal with this
interaction, we use the Mayer trick [Ur27,Ma37] (that is, we write the pair interaction
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e as (e — 1) + 1 and expand) and split defect configurations into isolated bunches
of interacting defects, called polymers, which interact only via a hard-core repulsion.
We represent polymers graphically as a collection of defects connected to each other by
lines representing the interaction (see Fig. 10). The effective activity of the polymers can

then be shown to be ~ e~ 2 /1-tg id where |/| is the total length of the defects and |o|

. . — . _J
is the total length of the interaction lines. This looks much worse than e~ 2 "l: the decay
rate is now ~ £, ! which is extremely small and may not, a priori, suffice to control the

entropy of the polymers: in a model of arbitrary polymers with activity e~ 1 it would
be likely to find polymers, whereas we need them to be rare.

The key ingredient to overcome this difficulty is that the interaction is one-
dimensional: it comes from the oriented dimer model, and takes place over vertical
or horizontal lines, so the contribution to the entropy of a polymer from its interactions
is only a one-dimensional sum. In addition, interaction lines are always connected to a
defect, which has a very small weight. In fact, the smallest possible defect is of length
6, so the largest possible weight for a defect is ¢=3/. On the other hand, the sum over

the length of the interaction lengths yields ), o't~ £o. Now, since every new inter-
action line must connect to a new defect, the overall contribution of the interaction line
along with the defect to which it is connected, is, at most, 606_31 &« 1. This allows
us to control the entropy of the polymers, even though the decay rate of the interaction
lines is small. Having done so, we use a cluster expansion [Ru99, GBG04,KP86,BZ00]
to compute the partition function of the polymer model and (15).

There are some more technical complications that arise in the proof. One of these is
standard in Pirogov-Sinai theory: unlike the Ising model, the partition function of the
oriented dimer model may take different values for vertical and horizontal boundary
conditions, which prevents us from using a straight Peierls argument. In order to avoid
long-range interactions in the defect model, we must flip the boundary condition inside
each defect back to the vertical, and, in doing so, introduce an extra factor in the activity of
the defect that depends on the partition function of the full dimer model inside the defect
with both boundary conditions. We then show that this term is, at most, exponentially
large in the size of the defect with a rate that is much smaller than i, and thereby causes
no trouble. To do so, we must bound the partition function inside the defect from above
and below, which we do by induction, and is the main reason why we compute the
ratio (15) instead of merely bounding it.

In addition, we have found it necessary to avoid interaction lines of length < £. This
is due to the fact that the polymer model we have constructed contains trivial polymers,
which do not contain any defect and consist of a single interaction line going all the way
through A. Whenever such lines are of length < £o (which may occur since, in order to
carry out the inductive argument mentioned above, we cannot restrict our attention to
A’s of large volume), their activity can be close to £1. This causes a number of issues,
which we have opted to remedy by ensuring that no short trivial polymers may arise.
This can be accomplished by grouping defects that are closer than £y from each other
into bunches, called contours (see Fig. 8).

Finally, the introduction of sources to compute correlation functions comes with its
share of pesky complications, which we will not comment on here. In fact, readers who
are not interested in the fine details of the proof are invited to consider only the case
Y =, and skip the source-specific paragraphs on a first reading.
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3. Solution of the One-Dimensional Problem

In this section, we compute the partition function of the oriented dimer model on a finite,
connected chain {1, ..., £} C Z, with various boundary conditions.

In order to specify the boundary condition, we introduce the following notation. We
introduce a real vector space,

A = span{Jr), 1) , [x)} 2y

Given a pair of vectors w = (w1, wy) € A?, we define the partition function Y@ () in
the following way.

— If w; = |r), |1) or | x), then the first vertex must be covered by, respectively, a half-
dimer pointing right, a half-dimer pointing left or a monomer;

— For symmetry reasons, ey is defined the other way around (this notation may seem
slightly counter-intuitive, but it will be useful in the following): if wy = |r), |l) or
| x), then the last vertex must be covered by, respectively, a half-dimer pointing left,
a half-dimer pointing right or a monomer.

— Y@ (¢) is bilinear in w.

For example, the partition function with open boundary conditions is obtained by taking
w = (Ir) + %), [r) +[x)).

Lemma 1. For every £ > 1, we have, for = (w1, wy) € A2,

W (0) = vy ()i (@bl + V- (@1)v_(@)b- 2L +vo(@n)vo(@)bory  (22)

with
1
Ay = ( zel + 5e1> (1+ 0(e 7 e?)),
1
A = (— ze! + Ee_J> (1+ 0@’ €%)), (23)
M=1—e A+ +0E e
in which 1
€= —— 24)
Vzel
and, fori € {+, —, 0},
Z
= 25
S G - D v on =
vi(w;) is linear in w;, and
A
vi(lr) = A =1, vi(ll) = ?()Li =D, vi(lx) =1 (26)

Proof. We will use a transfer matrix approach.

1 - Every vertex may be in one of three states: it is either covered by a half-dimer
pointing right (r), a half-dimer pointing left (1), or no dimer (x). One easily checks that
the partition function can be written as

w@ned )y — o) . T o, 27
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where T is the transfer matrix, whose expression, in the (|r), |1}, | x)) basis, is

0 z O
T:=]e¢! 0 1 (28)
1 0 1
2 - By straightforward computation, we diagonalize T':
A+ 00
T=prP[0 i 0 |pP! (29)
0 0 X
where A4 and Aq satisfy (24),
Ay — 1 Ao —1 ro—1 ¥ 0 0
P=[20,-1) Z0G_-1 200-1 0 ? . (30)
1 1 1 0 0
and
Lo o EQe—1D a—11
a_ | a4 L Al
P =10 5 O TA-—-1 A —11 (31)
0 0
0

Bg—1) a-11

N; = ,/2ﬁ(x,- —12+1. (32)
Z

Therefore, the lemma holds with

with, for i € {+, —, 0},

1
b = el (@) = (@ P);. (33)

1

4. Dilute Hard-Core Polymer Model

In this section, we will map the high-density dimer model to a dilute model of polymers,
which only interact with each other via a hard-core repulsion. We proceed in five steps:
we first map the dimer model to a loop model, then to an external contour model, for
which we compute the activity and interaction of external contours, and then map the
contour model to a system of external polymers, and, finally, introduce the polymer
model.
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Fig. 3. An h-bounding loop. The loop is depicted as a thick line running through the edges that make it up.
The core of the loop is colored red and its mantle is colored cyan (color online)

4.1. Loop model. First of all, for ¢ € {v, h}, we define the c-support of § as the set of
vertices that are covered by c-dimers:

supp®) = | J (x.x) (34)

{x.x"}eD¢(9)
(recall that D, (8) is the set of c-dimers in §).

We construct a family £, (8) of bounding loops associated to §. A loop is a set of
edges [, such that there exists a simply connected (a simply connected set is a set whose
complement is connected) set/ C Z? such that / is the boundary of /: [ = 3I. To assign a
loop to §, we will proceed by induction. If § only consists of g-dimers, then £, (8) = @.
If not, then the boundary of supp_, (8) is a non-empty union of disjoint loops, denoted
by [ = {ly, ..., [jy}. From these, we extract the most external ones r={c,..., [ﬁ,l} cl
by discarding loops that lie inside other loops, that is, [; N [; # ¢ if and only if [[ = [;
(the fact that there is no prime in _[j or [; is not a typo: the [} are external to all loops).

These loops separate a g-phase from a —g phase, which implies some geometric
constraints. For one, the inside of each loop is lined with —g-dimers. To capture these
properties, we define the notion of a c-bounding loop for ¢ € {v, h}. To do so, we split
the interior of a loop into a region which must be covered by c-dimers (which we call
the mantle of the loop), and the rest (the core), see Fig. 3. Formally, the core is defined
as

IVW = {x €\ (Uperv), 2@ De@) 22, 0-c(x,D_c)) =1} (39)

(recall that 0. is the c-distance on ZZ) (remark: we do not count the sources as being
part of the interior) and its mantle as

Oc() = NI (1), (36)

A c-bounding loop is a loop whose mantle is disjoint from the sources |_J,,.,- v, and can
be completely covered by c-dimers (see Figs. 3 and 4). We denote the set of c-bounding
loops by £87(A), and the set of all bounding loops by £ (A) = £ (A)U 2}(17") (A).
(Note that some loops could be v-bounding loops as well as h-bounding loops. The index
¢ is meant as an extra structure, which is not a function of the geometry of the loop.)
The loops [ are —g-bounding loops and are disjoint. Finally, denoting the set of

dimers that are contained inside a bounding loop I/j by dn [;., we define, inductively,
(see Fig. 4)
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Fig. 4. The loops associated to the dimer configuration in Fig. 1. The dimers in the mantles are gray

Fig. 5. Nested bounding loops and their corresponding inclusion tree. The root of the tree is drawn in black.
The colors (color online) and labels of the nodes in the tree match with those of the loops. The tree is alternating
because the blue, teal, orange and green (a, ¢, f and g) loops are h-bounding loops and the red, cyan and magenta
(b, e and d) ones are v-bounding loops

14
Ly =rulJL,6nT). 37)
j=1

The loops in £, (8) are disjoint, and their mantles are disjoint.

These bounding loops are alternating, in the sense that g-loops may only encircle
—q-loops. It is useful, to define this notion, to introduce inclusion trees. The inclusion
tree associated to £, (9) is a tree T'(L,(8)) (see Fig. 5 for an example) that is such that

— T(L4(9)) has [£,(8)] + 1 nodes. One node corresponds to d A, and is called the root
of T'(L4(8)), while the | £, (8)| others each correspond to aloop [ € L, ().

— Foreach! e L,(3), the corresponding node has a unique parent, chosen in such a way
that every loop containing / is an ancestor of [ (aloop I’ contains aloop [ if | C € ()
(recall that £(I') is the set of edges in [")).
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The inclusion tree is alternating, in the sense that the children of a c-bounding loop
are —c-bounding loops. We define c(/) as the orientation of the loop [ (that is, / is a
c(/)-bounding loop), which we will also call the index of /.

Thus, given a dimer configuration, we have constructed a set of bounding loops £, (8).
Conversely, if we fix a family £, of bounding loops that are disjoint and whose mantles
are disjoint, whose most external loops are g-bounding loops, and are such that T'(£,)
is alternating, then the set of dimer configurations § such that £, (8) = £, is equal to
the set of configurations satisfying the following: for every loop [ € L,

— for every —g-dimer, there exists I € £, such that the dimer is in I,
— the mantle O () of | is completely covered by c(/)-dimers.

Therefore, we can rewrite the dimer partition function (15) as

7M) (A S M\ e T
WD s~ ] g 13 e D,

3517)(A) LceM(a) \I#'eL 35IT)( ) (38)
TT (@5 @3 ehe )
lel

in which, roughly (these quantities are formally defined below), @ex (I, I’) is a hard-core
pair interaction that keeps the loops or their mantles from intersecting, 1,(£) ensures

that 7 (L) is alternating and that the index of itsrootis ¢q, 3q 7 (A\Uje D) is the partition

function of g-dimers outside all loops, Qj ) ((O)c(l) (1)) is the weight of the ¢(/)-dimers in
(T) (T)

the mantle of /, and 3c(1) ()

loops.

(1, L)) is the partition function of ¢(/)-dimers in between

- o, 1I") € {0, 1} is equal to 1 if and only if / and !" are disjoint and their mantles are
disjoint.

- 1,(£) € {0, 1} isequal to 1 if and only if 7' (L) is alternating, and the index of its root
isq.

- LET)(I, L) is the padding of /, and is the space inside the loop [ that is external to all
other loops (see Fig. 6):

%)) (1, L) = ]Ic(l) (O\ (UZ/eL\{z} l ) (39)

(Note that one could restrict the union overl’ toloops inside [, but this is not necessary.)
— ¢(/) is the boundary condmon of ¢! LL o (l , £).Because the c()-dimers that are in O (/)

can interact with those in ¢! () (l , L), the entire boundary is magnetized (see Fig. 4): with
the notation of Sect. 2, ¢(I) := (c(1), 86(1)]1%)) (1), £o) (we recall that 9.y = D) (9)).

- QJEZ; (Ocqy (1)) is the weight of the dimers in O.()(/), which is packed with dimers
(see Fig. 4):
c(0) := Z\éc(@)le*WO(ﬁc(@))%g’)@C(@)) (40)

where §.(0) is the unique closely-packed c-dimer configuration in @, and %ar) is
the boundary term at the sources (see (6) and (12)).



Nematic Liquid Crystal Phase in a System of Interacting Dimers and Monomers 969

Fig. 6. The segments inside and outside the loops. The sets ¢y (/, £) are depicted in the same color (color
online) as the loop to which they correspond. The mantles of the loops are covered in black

4.2. External contour model. These bounding loops interact with each other through the
dimers in the space between them. Actually, as we will see in the following, g-bounding
loops that are at a —g-distance of less than £ interact strongly. In order to avoid dealing
with distinct objects that interact strongly, we group these loops together to form a larger
object, called a contour, which is a set of loops that are all at a distance < £ from each
other.

The interaction is one-dimensional, and is either horizontal or vertical. To represent it
graphically, it is convenient to introduce the notion of a segment. To that end, we define,
for y € Z?, the v- and h-lines going through y:

AV =1 x), x €Z), M i={(x.y). x €L} (41)

Put simply, a v-line is a vertical line and an h-line is a horizontal one. In addition, we
define a map X, that takes a bounded set A’ C 7> as an argument, and splits it up
into c-segments. Formally, given y € Z, we denote the set of connected components

of A’ N X(C) y O, y(A ) (that is (A') is a set whose elements are the connected

components of A" N xy C)) and define

’—cy

ey = Ja. (). (42)

YEL

We then define the set of segments in between the loops in £, () (see Fig. 6) as

ST (L, ) = (zq (Am\ (Upe £1)>) U (U Sy (), z:q@))) . 43)
lel

We wish to gather together the loops that are separated by segments of length < €.
To do so, we define the support of £, (8) as the pair

suppy ), (L4 () == (Ly(8). ST, (L,6))) (44)
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Fig. 7. The contour configuration associated to the dimer configuration in Fig. 1. Here, we took ¢ = v and
Lo = 4. There are three bounding loops. The two green (color online) bounding loops form a single contour
because the segments that separate the inner loop from the mantle of the outer one (drawn in green in the
figure) are of length 1 or 2, which is less than £(. The blue (color online) bounding loop forms its own contour,
but, since it is not external to the green one, it is dropped

in which Sg ~t (£4(9)) is the set of segments of length < £o:

SV (Lg®) = {0 € ST (Ly®). lo| < Lo} (45)

A contour is a subset of L, (8) that has a connected support, in the following sense. A
c-segment s is said to be connected to a bounding loop [ if 9.s N0,y (/) # ¥. Similarly,
two bounding loops /, [” are said to be connected if 00, (1) N 0, (") # ¥. Finally,
givenasetof segments S and aset £ of disjoint loops, (£, S) is said to be connected if, for
every x, y € SUL, there exists a path from x to y, that is, there exists p = (p1, .. ., pipl)
with p; € SUL, p1 = x, pjp| =y, pi and pj, are never both segments, and p; and
pi+1 are connected.

We then split £,(8) into connected components (see Fig. 7), r,© = {ry,...,
I r, ®)|}, that is, I C L4 (8), the support of I} is connected, I; N I'; = ) whenever
i#=j,INnu---u F\L; )| = L£4(8) and, finally, the support of I; U I'; is disconnected
when i # j (when two contours are disconnected from each other, we say they are
compatible).

The fact that the inclusion tree T'(£,(8)) is alternating induces a long-range inter-
action between contours: a g-bounding loop must lie inside a —g-bounding loop, inde-
pendently of the distance that separates them. In order to avoid this, we will call upon
a technique used in Pirogov-Sinai theory [PS75,KP84]. The first step is to focus on
the contours that are the most external, in the following sense. Two contours I, I' are
external to each other if every loop [ € I" and every I’ € I'’ are external to each other:
I NI’ = @. The set of external contours is denoted by L;(Q) ={I/,... IF’ (5)|} and

defined as the subset of I, (8) such that forevery /] € I and[; € I}, li Nl; # ¢ifand
only if I'/ = I'j. (Note that, even though we dropped the contours that are not external,

the contours we are left with may still contain several loops, and their inclusion tree is
alternating, see Fig. 8.)
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Fig. 8. Two contours, depicted in different colors (color online). Here, we have taken ¢y = 4 and g = v.
The segments in the support are drawn as thick lines, and the mantles have been filled in. These two contours
are compatible and external to each other. Comparing with Fig. 5, note that the cyan loop labeled as e is not
depicted here, since it would not be external to the other contours

Grouping the loops in (38) in this way, and dropping the contours that are not the
most external, we rewrite the partition function as

NGV Z l_[ Gext (I, ) T
Jq (4) rceDy \I'#r'el 3q (A)

T TT (05 @38 ) - THZV ) < @ Dle)
rerler
(46)
in which, roughly (see below for a formal definition of these quantities), gex((I", I"")
is a hard-core pair interaction that ensures that contours are compatible and external

to each other, 3((1T)(A\I (I)) is the partition function of g-dimers outside the con-
tours, @%; (O@¢@y()) is, as before, the weight of the c(/)-dimers in the mantle of /,

323 (LEZ; <o (I, I')) is the partition function of c(/)-dimers in the segments inside the
(M)

loop that are of length < £y, and Z (T)(‘c(l),> % (I, I')|e(l)) is the partition function of
dimers in the remainder of the loops.

- QS;T) (A) is the set of contours, which is defined as the set of collections of loops I”
which are pairwise disjoint and have disjoint mantles, have an alternating inclusion
tree whose root label is g, and whose support is connected (see Fig. 8).

— @ext(I, T'") € {0, 1} is equal to 1 if and only if I" and I'" are compatible (that is,
disconnected from each other) and external to each other.

— Z(I") is the union of the interiors of the loops:

)= J YL (47)

rerler
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il) t (I, I') and L£T>) >0 (I, I') are the restrictions of LET) (I, I') to the parts of the seg-

ments that are of length, respectively, < £o and > £:
Wy ni= o e (20 =da N 0. @8)

c <€ c, <l

cez.(Va,r)
lol<lo

— ¢(l) and @((1) were defined at the end of Sect. 4.1.

4.3. Effective activity and interaction of the external contour model. We will now re-
organize and re-express the right side of (46). First of all, by inserting trivial identities,
we rewrite

1)
zAlg _ 3 [1 ¢t 1] AY 4. D)

r)
3q (M) rceay \F#r'el
ZOW 1, Mg

(COIACY) cl),24o
|||| By ey (e (1, 1)

q.c() Ve, 20 ), (1)
rerier 3q ey 0, 1))

(49)

in which Z > 0 will be defined later (see (87)) (since V4 appears in both the numerator
and denominator, it is not crucial, at this stage, to specify what it is, as long as it does
not vanish, which it does not),

ZMwe) 3487w

B () = - (50)
o 3370 2D
and
ADA. D) = =3I [] [T(20 ©@cw3g) o )
3 (A) rellel’

51)

for which we used the fact that
360 W) <00 G T3 O 5 0 1)) = 38 1) (L ). (52)

Recall thatq = (g, 0, £o) and o is a subset of d A, not of BL%)) >0 (I, I'). When q appears

in 3((1T) (¢) and the like, it is to be understood in the sense that the boundary of ¢ is not
magnetized, that is, o could be replaced with J (which is consistent with the notation
since the elements of o never come in contact with the dimers inside ¢).

r
The factors Bq el

A((lr)(A, I') contributes to both the activity and the interaction. In order to separate

)(LEZ)) >130) contribute to the activity of the contour, whereas

these contributions, we compute A((,T) (A, I') more explicitly.

1 - Let us first compute the partition function 3&“ (A") of the oriented dimer model,
for any bounded subset A’ C Z? and any boundary condition ¢ = (c, o, £o). Different

c-lines are independent, so 39’)(/&/ ) can be expressed as a product over c-lines. The
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boundary conditions of each line depends on ¢ and 7. To specify them, we first introduce
two 1-dimensional boundary conditions: wy and w; which correspond, respectively, to
open and magnetized boundary conditions:

wo =) +|x), o :=e’|r)+][x). (53)
We then define the boundary condition of a c-line o, @, v (0) = (zzrg)% (0), wé,l% (0)),
as follows. Let xo (o) denote the lower-left-most vertex of o, and x1 (o) the upper-right-
most. For j € {0, 1},

T P S L R (54)
in which 3™ 7" is the magnetized portion of the boundaries of the sources:
gmagy . U D, (dv) U U D_, (3v). (55)
veDy (T) veD_, (1)
We now reexpress 3&“ (A):
Bér)(A/) — Z\Tﬁ/\/l l_[ w(w@,r(ﬁ))(lo-D (56)

ceT (A

in which X, was defined in (42), and ¥ is the partition function of the one-dimensional
dimer model, computed in Sect. 3. Now, by (22),

! _WZU o
30 =T [T (v @) @)bille mar @) (57,
ceX (A

where, for v = (0@, V) € A2,

Wollal . 1 4 V=@ (@Db (2 7L @@ Mby (40! (58)
. V+(CU(0))V+(CU(1))I7+ At V+(w(0))V+(w(1))b+ At
and A and v were defined in Lemma 1.
2 - In addition, @g) (O,), which, we recall, is the partition function of close-packed
c-dimers in O, (see (40)), is equal to

DI, = (ze”)210le=271%C%l exp (J|{e € 8,0, N8 De(T) £ B (59)

with 9.D.(T") := UueDEm dev.

3 - We now plug (57) and (59) into (51) to compute Aq(A, I”). We split the resulting
terms into three contributions as follows.
3-1 - First, we focus on the terms involving A,. By definition, for any bounded
A" cZ*and ¢ € {v, h},

Z lo| = | A (60)

ceX (A)
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Fig. 9. In this example, one of the loops in the contour touches the mantle of the loop that contains it. The set
of edges at which this occurs is denoted by X (7). In the figure, X(I") is rendered as a thick red (color online)
line

so (recall (39) and (47))

[Toex,(aonzry) 4 Ty 310c0) ()] lo
= TTTT|@eH'%o [1 Ay

lo]
[ )y Ay >
TeX, (AM) rerier o€y,

(« /zed )Zfel“ Y ter 10y ()

= "

(61)

3-2 - We turn, now, to the terms involving b, and v,. For the moment, we will
ignore the sources. The factors in

0) (1
NI, A) = H"EZq(A\I(D) <v+(wg,w(0))v+(wg’w(g))b+>.

[loex, <V+(wé§?m) (U))V+(w;,lé (0))b+>

-1 0 1
JTTT |2 otao® T (v p@)vy) y@b.)

Feller € Ze) (1) (1L T)
(62)
with o(l) := 86(1)]1%)) (I) (the inside of the loops is entirely magnetized), regard the
boundaries of the lines o (see Fig. 6). They fall in one of the following categories.

— The terms that are attached to d, A appear in the numerator and the denominator and
cancel each other out.

— In addition, there are factors attached to the contours. These come in two flavors:
those coming from outside the contour, which have open boundary conditions, and
those coming from inside,which have magnetized boundary conditions. Thus, there
is a factor /b, v, (wp) associated with each edge of the outer boundary of the mantle
of a loop, provided that edge comes in contact with a segment. And there is a factor
Vbyvi(w) associated with each edge of the inner boundary of the mantle, again,
provided that edge comes in contact with a segment. The latter caveat is not innocuous:
there are cases (see Fig. 9) in which a loop in the contour comes in contact with the
inner boundary of the mantle of another loop, in which case there are no such terms.
To keep track of these events, we introduce the set

Xy = J 1'naeqyOca)®. (63)
I£Uel
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All in all,

D_.oy (I\X(I"
N, A) = 1‘[ 1‘[ <eéJ|l (\/Zu+(wo)e%1)' O OXI)|

rerler

100y T D\X(I)] 9
ey L. ) ( )
(\/lzw(w])e ) “ )
in which we used the identities
8ey Oy (1) = Deqry() U 3y I (1), 1 =Dy () UD ey (1) (65)

(and both unions are disjoint unions) and (since the edges in X appear on the inside of
the mantle of a loop and the outside of another loop (X is the interface between a mantle
and a loop that touches the mantle), see Fig. 9)

Z ID_cqy NX(IM))| = Z

lel’ lel’

c(zﬂlc(,) (I NX(I) (66)

which means that the e%J and e’%J in (64) that come from edges in X cancel each other
out.

3-3 - Let us now take the sources into account. Sources break up the segments,
and, in doing so, contribute their own boundary terms. The main contribution comes from
the sources v that are surrounded by an odd number of loops: indeed, in this case, v

contributes to the denominator 3q )(A) through the boundary terms on its g-boundary
dqv, whereas, in the numerator, if it is surrounded by an odd number of loops, then
it contributes boundary terms on its —g-boundary d_,v. In addition, in cases where
sources come in contact with contours, the boundary of the contour may be erased at
the source. Finally, the sources may interact directly with the dimers in the mantle of a
contour. We denote the product of all of these factors by u,(lr) (I"). To define u formally,
we will introduce the notion of contact points. Given a source v € 7" and a contour
I' € €,(A) the contact points of v and I" is the set of edges e that both intersect v
and neighbor the mantle of a loop of I". Formally, given ¢ € {v, h}, we define the set of
interior and exterior c-contact points of v and I” as

A, Ny = oev N0y, K. 1) =[] dv N30y (1) (67)
lel’ lel’
vel vél
and the set of c-contact points as

Re(v, ) = &1 (v, ) U &Y (v, IN). (68)

In addition, the background g(v, I") € {v, h} of a source v is defined in the following

way: foreach/ € I',ifv € S(L%))(l, I)), then g(v, I') is set to ¢(l). If there is no such
loop, then g(v, I') is set to g. Correspondingly, we split the set of sources into sources

in a vertical and horizontal background:

T=7"UYh, Te.:={veT, g TI)=c} (69)



976 I. Jauslin, E. H. Lieb

This allows us to express u, following the description given above:

4 2 ”D)q(qu)l_I]D)fq(qu)l
M)y _ [ Vi(@o)by ~ R, (W, 1)
U, (F)—(z— [0+ :

vi(w1)by ver

(ext) (int)
| | U+(a)1)_|ﬁq(v,F)\v+(w0) [Ry (U,F)|v+(w1)—|ﬁq (v, )|
veDy (1)

(ext) (int)
[T vetwo) R0 Dl ) RSPy, () 785 @)

veD, (T-y)

(int)
1_[ V+(wo)_‘ﬁ‘1(”’F)lwr(cuo)_‘ﬁ (UF)lv (1) 1B @D
veD_,(Yy)

(ext) (int)
l—[ Vi (1) TR0 @Dy (@) IR @Dy () TIR = 1]

veD_, (T—,)
cexp (T Y Yoo’ m+ Y 18w || 70
ceth,v} \vebD:(7y) veD:(T—4)

Thus, the actual contribution of the terms involving b, and v is

NI, A) =N, A) ]_[ ul" ). (71)
rer”

3-4 - We now put things together: by plugging (61), (64) and (71) into (51),
keeping track of the e~ W terms, and noting that the ZITOAT factors in (57) cancel out,
we find

L
— () Ay~ () ) ) e’

Aq(4. 1) =0 E T DD O [ 57—

rer 1er ey ey, >0 (L 1))
(72)

where |
y) -

W= [l —mrom 73)

oeZq(A) €

(recall (58)), and, if 3 = 0 U U, p aﬂf(’}) (D), (recall that q = (g, o, £o) is the boundary
condition) then

(T)(F) o 1—[ e_w(wé.'f((f))(lo.l) 1—[

T
oeSy ), () ler

D_cy(NX oI (D\X
T ((Botonet) ™" (e to) )

lel’

(W) [Ocqy (D]

At
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and ?ZH(T) is the effective interaction:

maﬂ(ﬂ) — 1—[ e*W(mQ‘T(U))(WD. (75)
o€ X, (ATN\T(D))
lo|>4o
4 - Finally, we are in a position to write the contour model in terms of an effective
activity and interaction: by inserting (72) into (49), and multiplying and dividing Z /34
by nt)
y g > we find

VASRION ) (1)
TS, AN 1 - Z 1_[ Gext (I, T") e Wa (D).
3a (A pefon \rrer 76)
1 {0 )1—[ ey 20 D)
3000, (. 1))
rer ler (c(l),>lo(’ )
in which N
3 =30 D) (77)
and ,
1) = O OO O T (Kl ) 5 T0e2)78)
lel”
with ~r)
ZM(Ae) 3q (A)
KA = X (79)

30y ZM g’
The factor nq )(F ) is the effective activity of I', @ext is a hard-core pair interaction

between the contours, and QU((]T)L) is a many-body, short-range effective interaction,
arising from the 1-dimensional partition functions of the dimer configurations separating
them.

4.4. External polymer model. We have mapped the dimer model to a contour model
with hard-core and short-range (exponentially decaying) interactions. The next step is
to dispense with the short-range interactions. To that end, we re-sum the interaction

_op . C o
e~ ~"4 by inserting trivial identities into (75):

)
e—Qﬁq o 1_[ (wwgyy((r)(|0—|) +1) (80)

0eZ,(ATN\I(ID)
lo'|>¢o

where

_w®@o.r©)
e () T L B (81)

and expand e~ %

(M)
= Bq (D) . > [ wooreUoh. (82)

SCloeZy(ATNI(D)), lo|=to) O€S
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Fig. 10. An external polymer. It is obtained by joining the two contours in Fig. 8 by segments of length > £.
This polymer is connected to d A

Each term in the sum over S gives rise to a new object, called an external polymer,
which consists of contours joined together by segments in S (see Fig. 10). Formally, an
external polymer is a couple § = (I"(§), o (§)) with

- I'(§) = {I1,..., Ir)} is a (possibly empty) set of contours I; € QIEIT)(A), that
are pairwise compatible and external to each other,
- a(§) ={o1(),...,000)]} is a (possibly empty) set of g-segments

oi € [0 € 2, (A (Urerey Urer 1)) lo1 > 6o (83)

satisfying the following conditions.

— I'(¢) and o (¢) cannot both be empty.
— We define the support of £ as

r r
suppy )y ©) = (Urere) I ST ®)
(34)
5® =0® U (Urere Sy e, ()
The support of £ is required to be connected.
Denoting the set of external polymers in A by %[(]T) (A), we rewrite (76) as
ZT)(Alq)
Wq = Z 1_[ ¢ext($»§/)
3q () gcx{l () \§#8'€€
N (85)

ZOW 56, D)

JTa"® T1 H 30D

seé rer)ler c(l) >€0(l )

in which
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— @ext (€, &) € {0, 1} is equal to 1 if and only if & and &’ are compatible, by which we
mean that the support of §1 U & = (L7 (&1) U L' (&2), o (§1) U o (&2)) is disconnected,

{7 (&) is the activity of &:

(V@ = ] PO ] woureloh]. (86)

rer ) oea(§)
We will now define Z (T)(L%; >0 (I, I')|q), as the partition function of non-trivial
external polymers. Trivial polymers are g-segments that go all the way through
98 >0 (I, I'). By construction, every c(/)-segment in L%iﬂo (I, I') is of length > ¢y,
but this is not necessarily true of the g-segments. Since short segments give a poor gain,

we wish to avoid them, and, simply, define ZM (L?(;)) >0 (I, I')|q) without them: for any

finite A’ C 72,

ZD g 3

Eflr)(A’) 1_[ Qext (€, &)

RN 4n \EE€E
scX D (ay \EFEEE 87)

ZO) 50 @ D)

H (T)(E) H H (T)((T’)

get rer)ler Ly, (> T)

obtained from (85) by replacing .’{(ST) (A”) with %g) (A”), which is the set of non-trivial
polymers: ~
X)) =1 e 27 (), L(E) #0}. (88)

Remark. The reason that we can drop_the trivial polymers comes from the inductive
structure of the construction; we have Z(¢|q) instead of Z(t|c) in (85) because we have
multiplied and divided by Z(L|q) and incorporated Z(t|c) into the flipping term Kg c.

Therefore, at this stage, Z (t|q) could be, essentially, anything. Later on, we will need the
fact that Kg ¢ is, at most, exponentially large in the size of the boundary. This imposes
constraints on Z (t|q), which must not differ too much from Z(¢|c). In this context, ‘not
too much’ means that they only differ by boundary terms. Trivial polymers, which go
all the way through A, are boundary terms, which is why they can be dropped. This will
be proved in Lemma 7.

4.5. Polymer model. In order to move from external polymers to polymers, we proceed
recursively, by placing external polymers inside external polymers. Before defining the
set of polymers, let us first introduce a few more definition: an external polymer £ is said
to be connected to d A if the support of (0A U I"(§), o(£§)) is connected. In addition,
the core of & is defined as

1Ne = J JLgyo. (89)

rer)ler

Now, the set of polymers ‘,B;T) (A) is defined recursively. Roughly (see below for a
formal definition), a polymer consists of an external polymer with polymers inside it
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Fig. 11. A polymer. It consists of an external polymer, which is the one drawn in Fig. 10, and a smaller
polymer inside it. The smaller polymer consists of a single loop, and is connected to the external polymer by
two vertical lines, whose length are > ¢y = 4. Note that this loop is an h-bounding loop, even though it is
directly inside an h-bounding loop. Similarly, the smaller polymer is connected to the external one by vertical
lines, instead of horizontal ones. This comes from the recursive structure of the construction of polymers

(here, the word ‘external’ refers to the definition in Sect. 4.4: the external polymer
is, obviously, not external to the polymers inside it). The polymers inside the external
polymer are connected to it by segments.

— An external polymer is, itself, a polymer: ‘ﬁflr)(A) D %,(IT)(A).
— A polymer y € ‘,Bflr)(A)\.’{‘(]T)(A) that is not external, is the union of an external
polymer £(y) € I{SIT) (A) and of polymers g1, ..., 8, € ‘B(T) (]I,(]“) (&(y))) that are all

g-connected to 9, ]IEIQ) (£(y)), and compatible with £(y) and with each other. In this
case, we define g(y) ={g1,..., &}

— A polymer y € ‘Bér)(A) is said to be connected to 0 A if £(y) is connected to 9 A.

— Twopolymersy, y’ € ‘I?,(]Y)(A) are said to be compatible if, forany g € {§(y)}Ug(y)
and any g’ € {£(y")} U g(y'), g and g’ are compatible.

The activity of a polymer y is defined as

(N =¢PE) T oM ®@. (90)
geg(y)

We are now ready to state the main result of this section, namely the mapping to the
polymer model, stated in the following lemma.

Lemma 2 (Polymer model). Consider a bounded subset A C 7?* such that Z*\ A is
connected, and the boundary 0 A is a bounding loop. In addition, let q be a boundary
condition. If every q-segment of A is of length > Lo, that is, for every o € X;(A),
lo| = Lo, then

()
’ (T)(A|q) = Z H Py, v l_[ V) 1)
3q () yCP (M) \y#y'ey vey

in which ®(y,y’) € {0, 1} is equal to 1 if and only if y and y’ are compatible.
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Proof. We will actually prove that (87) can be rewritten as

ZM(A'g)
=00 ,q = X [T e [1e" (92)
30 (A g \ravey vey

in which ‘}~3((]T) (A) is the set of non-trivial polymers, which we define as follows. The set
of trivial polymers is the set of polymers that consist of a single trivial external polymer.
The set of non-trivial polymers is the complement of the set of trivial polymers. By (85),
this implies (91).

Equation (87) states that we can deduce the expression of the right side of (92)
from the same expression for smaller sets A" C A. It follows from the principle of
mathematical induction, that if we know (92) for the smallest possible sets, then we can
compute the left side of (92) for sets of any size. If A is so small that it cannot contain a
contour, then (92) follows immediately from (87) (both sides of the equation are equal
to 1). We now assume that (91) holds for every strict subset of A. By inserting (92)
into (87), we find

7(T)
z U > [T ¢exv. )| | [T& )

3(T)
Sq (A) ZC%EZT)(A) y#EV'ey YeY
(93)
1 T1 > [T e0.vh| [T a7
V€Y lesupp,(y) Lcﬁf,gzo(‘%))“ﬂ) n#v/ €y, V€Y,

Following the recursive structure of the definition of the set of polymers, we group the
unions of external polymers y and polymers y ; into a set of connected polymers that
are pairwise compatible. We thus conclude the proof of (92) for A from (92) for strict
subsets of A. O

5. Cluster Expansion of the Polymer Model

In this section, we will express the partition function of the polymer model (91) as an
absolutely convergent cluster expansion. To prove the convergence of the expansion, we
will proceed by induction: assuming that the cluster expansion is absolutely convergent
for strict subsets of A, we will prove that it converges for A. We split this result into
three lemmas (see Lemmas 4, 5 and 7). In the first, we prove a bound for the effective
activity of polymers, in the second, we bound the entropy of the polymers, and in the
third, prove the convergence of the cluster expansion.

5.1. Cluster expansion. The cluster expansion allows us to compute the logarithm of
the partition function (91) in terms of an absolutely convergent series. This is a rather
standard step in Pirogov-Sinai theory, and has been written about extensively. In this
work, we will use a result of Bovier and Zahradnik [BZ00, Theorem 1], which, using
our notations, is summed up in the following lemma.
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Lemma 3 (Cluster expansion). If there exist two functions a,d that map polymers
‘B,(IT)(A) to [0, 00) and a number § > 0, such thatVy € ‘Bér)(A),

)
GO <o <1 30 1PN < o)
y'ep )
Y'*y
(94)

in which y' % y means that y' and y are not compatible, then

Z(A
g<£)= Yo o"wm]]Ww 95)

A
3(1( ) ZEm((i}f)(A) 1454

inwhichy C ‘B(T) (A) (the symbol T is used instead of C) means that y is a multiset (a
multiset is similar to a set except for the fact that an element may appear several times in

a multiset, in other words, a multiset is an unordered tuple) with elements in ‘Bq )(A),
and @1 is the Ursell function, defined as (see [Ru99, (4.9)])

ot =0, oT({yh =1,

(96)
o (D= Y, [l @w.yn-D
Z geQT(n) {j.J"YeE(g)

inwhich GT (n) is the set of connected graphs on n vertices and E(g) is the set of edges of
g. In addition, for every y € ‘B,(]T)(A), and, ifny, is the multiplicity of y; in (y1, ..., Yn)»
1

then Ny! = ]_[7:1(’13’.1' ™ . In addition, for every y € €,(A),

> eTdriun [T (&00he'®)| < e O

yER () v'ey

where Ul denotes the union operation in the sense of multisets.

5.2. Bound on the polymer activity. We will now prove a bound on the activity g T of

a polymer. We will prove this bound under the assumptlon that K (T)(A ) is, at most,
exponentially large in [dA’[, a fact which we will prove in Lemma 7. (That proof is
based on a cluster expansion of Z and Z, in which the only clusters that contribute are
those which interact with the boundary.)

Lemma 4 (Bound on the polymer activity). If
e/ >z 1, 98)
and, 3Cs > 0 such that, for every A" C A,

|

’ -3J /
< Cs(leA'rtoe™ 9, A1) 99)
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then, Vy € ‘BEIT)(A),
P | < e (100)

where

1- _ . _
5N (y) = 5 TUy) +&s(y) = (] +log&m T (y) = Cstge™b(y)

(101)
— 70 ) = 1o () — ColT|
for some constant Cg > 0, with
J:=J—C7, k:=«Cg, &:=¢€Coy (102)
in which C7 > 2Cs5 and Cg, C9 > 0 are constants,
! <1 ! <1 (103)
€ 1= —— , K= —— .
vzel el/zel

and (the following definitions are recursive)

()= D D+ D U, syy= Y oI+ Y s(g (104)

reréy)ler 8<g(y) oea(§(y)) 8€8(y)

m(T)(y) = Z Z 1+ Z m(T)(g),

PeLEW ges), () 880 (105)

lo|=1

b() == Ly mmr )36, () —mT ().

o= Y 3(D_ (Y-l = DT+ Y v (g)  (106)

rer ¢y)) 8€g(y)
T T
o= Y 3 8T w, M+ Y i) (107)
el (&(y)) veDy(Y-)UD_4(7y) g<g(y)

in which R0 (v, ') := &7 (v, M) U &7 (v, I') (see (67)).

Proof. Werecall that ;(;T) (y) was defined in (90). We proceed by first bounding ;ér) y)

fory =£& ¢ .’{,(IT)(A), and conclude the proof by induction. To that end we bound the
terms appearing in (86) one by one.
1 - First of all, by (24),

A = Vzed (1 +x + O(%)), ’l—: = —(1 — k) + O(xe), i—j = ﬁ(l + O(e(lj(:;)

by (25),

1 b_ b
by = ——(140(€)), = = 1 —4e+82+5k+0(€3), = = 2z¢* (1+0(€)) (109)
27e2J b b

+ +
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and by (26) and (53),
v_(wo) A—  vo(wo) Ao
Vi (w0) = As, ==, == (110)
e ’ V4 (wo) At v (wo) At
and
ve(w1) = e’ Vzel (1+ 0(e)), v-lon) _ —(1+2€+2€>—3k) + 0(),
vy (w1)
s (111)
vo(wr) e 2/
= ——(1+0()).
U+((1)1) Zi
2 - We bound ' (I"), which was defined in (74): by (108) through (111),
1 1 1 1
Vbhivi(wp)e?! = 1+ 0E), Vb (w)e 2 = 1+ 0.
(112)
v ze!
< 1.
.
In addition, for any w = (a)(o), a)(l)) € {wg, w1 }2,
v (@) (0D)b ’ vo@ @by ) ) (113)
V(@) (D), V(@) (D),
so, by (58),
=W UD| < 14 0Ny, (114)

If |o| > 2, then O(e’€!?!) < 1, whereas if |o| = 1, it is of order O (e’*1°¢€) and may
be large. Therefore,

)mm(m (115)

|xflT)(1—v)| < (O(el+loge)

in which m(™) was defined in (105) (Each segment of length > 2 and < £ contributes,
at most, 1 + O (e’ €2), which we absorb into the Lz factors in (112), which we can do
since we can bound the number of segments by the lengths of the loops (or rather, by the
number of —c(l)-edges in the outer loop and the number of c(/)-edges on the boundary
of its core).)

3 - We now turn to u,(ZT)(F), defined in (70). By (112),

()] < O () Tle! @1 e ) (116)

in which v; was defined in (106) and (107).

4 - We will now bound K '), which was defined in (79). By (99),

o ()
Zlog Koety ey, >0 1)

lel’ (117)

T — T
< Cs Y 10eti) s D1+ Csboe ™ Y " gty <, 0 DI,
lel’ lel’
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Fig. 12. A polymer, in which we have highlighted one of the connected components of the padding (in cyan,
color online). Whereas most of the boundary of the padding is part of a loop (or of the boundary of the core
of aloop), some parts are segments of length < £y = 4. These are depicted as thicker red (color online) lines

(If ¢ = c(l), then this inequality is slightly suboptimal: only the first term is needed.
However, this bound is good enough for our purposes.) In addition, since every edge in
86(1)45))’2 t (I, I') is necessarily part of a loop (or, rather, of the boundary of the core
of a loop, but this distinction does not matter much since there exists an injective map
from the boundary of the core to its loop) or a source (see Fig. 10),

Y 18etl) s, (- DI < W) +4]7. (118)
ler

On the other hand, the edges in 9, LE‘Z; >t (I, I') are not necessarily in a loop or a source:

if ¢ # c(l), then portions of the g-boundary of LE](?)) >0 (I, I'") can consist of segments of
length < £ (see Fig. 12). However, we can bound the number of times this may happen,
as follows. Consider a connected component / of 80(1)L£8 >t (I, ) and a loop I in
91. We go through the edges in I’ in, say, clockwise order, which gives us an ordered
list of edges. The edges that intersect a segment of length < £ are called ‘bad’. We
then group consecutive bad edges together, and the edge immediately following a bad
group is called ‘good’. By construction, there is are least as many good edges as there
are groups of bad ones. In addition, since bad edges touch segments of length < £, each
group of consecutive bad edges contains < £( elements. Therefore,

#{bad edges} < €y x #{good edges} (119)

We then construct an injective map from the set of good edges to the set of edges in /
that are not connected to a segment of length 1. The map is defined as follows: given a
good edge e

— if e is already part of a loop, then the map returns e itself, which may not be con-
nected to a segment of length 1 (otherwise, it would not be part of the boundary of
) 004 1),

— if e is on the boundary of the mantle of a loop, then we use the mapping alluded to
earlier to map the boundary of the mantle of a loop to the loop itself (we have not
defined it formally, a task which we leave to the reader),
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— if e is on the boundary of a source, then that source must, itself, neighbor a loop or
its mantle (if it did not, then the loop I’ would simply go around the source and there
would be no bad edges), in which case, the map returns the edge at which the source
is connected to the loop (if that edge is on the boundary of a mantle, then we use the
map mentioned above).

All in all, this implies that
#{bad edges} < £o((I") — mT)(I)). (120)

Finally, this may only occur if I is large enough to contain a non-empty L%)) >0 that
is, if
() —mTr) = 6. (121)
Therefore,
3, T (D) < WD) +4]7|+1 L) —m™M (). (122
Z| q[C(l),ZZO(’ IS U +AT T+ Ly py— ) (ry> g, Lo (I —mi (). (122)

lel’

Thus, inserting (118) and (122) into (117), we find

T T CsQUIN+1 e () —m™(I))
T T T @ 1)) < S ion-nminza e =) o1y,

ORI
lel’
(123)
5 - We turn, now, to w, which was defined in (81). By (113), since |o| > o,
lwer (Jo )] = O (e I+l (124)
6 - By injecting (115), (124) and (99) into (86), we find
‘ {0 (g(y))‘ < O(e!ozeym M E() p= 3 TUEGNHCSQUEN e bEW),
(125)

o7 O €05 €M g (1T [] o@*+o@lel
sea(®)

We conclude the proof by induction. O

5.3. Bound on the polymer entropy. We now bound the number of possible polymers,
weighted by their activity.

Lemma 5 (Bound on the polymer entropy). For 0 < a, 8 < land y € ‘B,(IT)(A), let

ay) =a8T(y), dy):=pET(y) (126)

which are both positive. If
IJ>z>»1 (127)

and
ly = Car ™! (128)
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for some constant C3 > max{l, (O(Cg)_l} (in which Cg is the constant appearing in-
(102)), and

1
0:=1—a—2, Etgegl, t=1+0(zJH (129)
(1)
then, for every y € B, " (A),

> e <a) (130)

Y epy )
V' >y

in which y'  y means that y' and y are incompatible, which implies that (94), and,
consequently, Lemma 3 hold.

Proof. We will first focus on the sum over non-trivial polymers, and then turn to the
trivial ones.

1 - Let us, for the moment, neglect the sources, and discuss their role later on. We
will show that for every edge e € 72,

o e 0NN ¥ (131)

y'ePP ()
E(y)3e

in which 3& (y") := U peren -

1-1- Apolymery’ € ‘%f]@) (A) consists of loops and segments which are either of
length < £¢, in which case they connect two loops in the same contour, or their length is

> £p. By Lemma 4, loops come with a gain factor e_%J l |, and segments which are > £
come with a gain factor e ~<1°!. Shorter segments do not have such a gain, and segments
of length 1 actually come with a loss factor e/*+1°2€_ This loss is less dramatic than might
seem at first glance: segments of length 1 necessarily connect two loops (since loops are

at a distance > ¢ from the boundary), and, when taking the e_%] factors coming from
the endpoints of the segment, one finds that length 1 segments actually contribute O (¢€),
which is small. Nevertheless, this gain factor is much smaller than for longer segments,
which is a fact we will have to deal with. The trick is to consider loops that are at
distance 1 from each other as a single object, and introduce the notion of a head, which

isacontour I € @flm (A) whose segments (if any) are all of length 1: Vo € S%L & (r),

|o| = 1. Thus, a polymer y’ € ‘:]V3£1Q))(A) consists of heads and segments (see Fig. 13).
For simplicity of exposition, we will consider loops that are not separated by a segment
(see Fig. 13) as belonging to the same head.

We then define the set of backbones y’ of y’ as the set of polymers obtained from y’
by removing segments of length > 1 in such a way that, while the support of 7’ is still
connected, it would not be if we removed any more segments of length > 1. Among the
backbones in 7', we pick one arbitrarily, denote it by 7’ and call it the backbone of y’
(see Fig. 13). The main idea is to bound the entropy of the backbone, after which we
bound the entropy of the full polymer.

1-2 - The backbone 7’ consists of L > 1 heads and ng segments of length > 1,
and has a natural tree structure (see Fig. 13): if we associate a node to each head and a
branch to every pair of nodes that corresponds to heads that are connected by a segment,
then the resulting graph is a tree (a tree is a graph with no loops), denoted by T(7"). We
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Fig. 13. A backbone of the polymer in Fig. 10. The blue (a) loop is the root. The lollipops are depicted in
different colors and labeled by different letters. Each consists of a stem and a head, which consists of loops
which are at distance < 1 from each other. The tree structure of the backbone is drawn as well

call the head containing the edge e the root of the tree. Every other head has a unique
parent, which is defined as the unique neighbor of the head that is closest to the root
(using the natural graph distance on the tree). A head together with the segment that
connects it to its parent is called a lollipop, and the segment is called the stem of the
lollipop. The backbone is completely determined by the tree T ("), the shape of the root
head and the lollipops, and the points on the heads to which the lollipops are attached.

— The number of rooted trees with L nodes is bounded by
# trees with L nodes < 4L-1 (132)

(which can be proved rather easily by mapping the set of trees to 1-dimensional walks
with 2(L — 1) steps, see [GMO1, lemma A.1]).

— The number of possible shapes of a lollipop is estimated as follows. Let us focus on
the i-th lollipop I7. It consists of a stem of length ¢;, and a head, which is a union of
bounding loops. The head is connected to the stem atan edge ¢; (in the sense discussed

in Sect. 4.2). By definition, every segment in sY A ¢, (I') is of length 1, and every such
segment is connected to exactly 2 edges of the head. Conversely, every edge in the
head may be connected to 0 or 1 length-1 segments. We denote the number of edges
in the head that are connected to a length-1 segment by n, ;, and fix the number of
remaining edges to ny ;. Then, we estimate the number of possible heads with n ;
and ny; fixed. A head can be seen as a connected subgraph of a finite-degree graph:
for instance, consider the graph & whose vertices correspond to the edges of Z? and
whose edges correspond to every pair of edges of Z? that are at distance < 2 from
each other. A head is a connected subgraph of this graph and has n; + n,; vertices.
Therefore, the number of possible head shapes is bounded by

# lollipop head shapes < ¢} ™" (133)

for some constant ¢; > 0 (which depends only on the degree of the graph &).
— Once the tree structure and the shapes of the lollipops are fixed, we are left with
positioning the lollipops. Given a lollipop I3, the tree structure tells us to which other
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Fig. 14. Left: the smallest possible head has 6 edges. Right: the smallest h-loop that can contain an h-dimer
has 18 edges

lollipop I its stem is connected. Therefore, it suffices to bound the number ways I
can be connected to I"; by 2"/, Thus,

# lollipop positions < 2Mmi, (134)

13-

We now express the weight e 7% ) (see (101)) of the backbone in terms of lol-

lipops. We fix the lengths of the stems ¢, ..., £; > 2 (we take the convention that the
first head is the root, which does not have a stem), as well as the numbers ny 1, ..., 111
of edges in each head that are not connected to a length-1 segment, and the numbers
N1, ..., Nz 1 of edges in each head that are connected to a length-1 segment. We have
L L | L
(") = _Z(m,,- +n.0), s(7) = _Zz,-, m@ ) =2 Zln (135)
_ _ i
Therefore, by (101)
L | L
EP@Gh = Z( Tmi — logenu> +ic Y i — x(m) (136)
i=1 i=2
with
L
X(m) = Cstie > Is 500 Y i (137)
i=1
Note that, since z < J, this shows that Z@ (") > 0.
In addition, by simple geometric considerations, for every i € {1,..., L},
nyi =6 (138)

Indeed there are at least 6 edges in every head that can not be connected to a length-1
segment (see Fig. 14). Those edges are the g-edges with the largest g-component, the g-
edges with the smallest g-component, and the —g-edges with the largest g-component.
There are at least 2 of each, which adds up to 6.

1-3 - Given abackbone, we can construct a family of polymers by adding segments
to it. The weight of an additional segment of length £ is < 1. In addition, the number of
ways in which on can add segments is bounded by

L
# polymers compatible with backbone < 1_[ 2mi (139)
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(the estimate corresponds to allowing for segments to be added to any point of a loop,
which is an over-counting).

1-3-1 - Thus, we bound, by (132) through (139),

o
SRRSCATS ST SUND S >
y/egﬁt(lﬂ)(A) L=1 N 1senhl L 260 Ny t,.ng 1 20 £, lp =2
ay’se (140)

L 1 7\""i L
LX) (l_[ (62 g—9§f> ' ) (

i=1

L
_lg\zi )
(6262 ) )EF(E,)

i=1

where ¢; > 0 is a constant, and

e Rt if ¢ > ¢,

Fo) = { 1 otherwise. (141)

1-3-2 - Let us now get rid of the X factor. If Zi ny,; = Lo, then the first
factor can be rewritten as

L ) ) .
| (e—(’%f)""' =T] (e—eéuacsz%e“)”hl (142)
i=1

i=I
and, since g = C3x ' and k~! = e%Jf,
Cst3e™ = C5C3z. (143)

Therefore, we can get rid of x by replacing 6 with (1 — 2Cs C32z Jh:

. L — .
X [ (87 )™ = [ (e oo™ )™ (144)

1-3-3 - Therefore, if z and J are large enough, since £y = C3x !, Y FW) =
0(9ic)~! and

oo
—9ED () —30J] 30T = — L1
Z e gz " < e 360J ZC?% (e 30](9K) 1) (145)
y'eBP ) L=1
dy’se

for some constant c3 > 0, and with 6 = 0(1 + O(zJ~")). Note that the first factor is
e=3% instead of 6_39(“0(“_'))]. This follows from the fact that,

— if L = 1, then the (1 + O(zJ ")) correction only arises if ny1 > £o, in which case

1 )8 .
the factor would be ¢~ 20(1+0@/ ") Jto > 30/

— if L > 1, then the correction can be absorbed in e3¢/ (1+0@/~)(L-1)
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In addition, provided z <« 6(69__3)1, which is true if = 0(1 + O(zJ 1)) > %, we have

PR 630_]_, from which (131) follows.
2 - We now take the sources into account, and show that

~ , =307 ie g
Z e_ga(T)(y) < eiej_ if dlstll(e, T)>3 (146)
ool e otherwise
V,qu (A)
0&(y)2e
in which dist; is the distance induced by the 1-norm: |(x, y)|; = |x|+|y|. For simplicity

of exposition, we will only consider the case in which there are two sources. This is
enough for the purpose of computing two-point correlations, and the argument can
easily be generalized to an arbitrary number of sources.

2-1 - We will first deal with v (see (100)). The key observation is that, in order
for [D_4(Y—4)| > O, the size of one of the heads of I" must be large enough:

() —2m@ (1) > 18]D_, (1T-,)|. (147)

Indeed, T_, is empty unless it is contained inside at least one —g-loop, and the smallest
—g-loop that can contain a —g-dimer is of length 18 (see Fig. 14). Furthermore, since
distinct sources are at distance > £ from each other, if a loop contains two sources,
then it is much larger than 2 x 18. Now, since [(I") — 2m®@ (I") > 6 (which is the size
of the smallest possible loop, see the discussion above), we have

1

1 1 3
1) = m?(ry — o) > 3 (5[(1“) - m(@)(l“)> 3 (148)

We can thus absorb v by replacing e=029mi ip (140) by e03Imi=037,

2-2 - After having thus absorbed v, the remaining contribution of sources comes
from loops that are in contact with a source (through v;, see (107)), or at distance 1 from
a source (from the 7"-dependence of m(*), see (105)). When such an event occurs, m?)
and vy give rise to a large factor, which is counter-balanced by the gain in the entropy
coming from the constraint that the loop in question is pinned down by the source.

The large factor produced by v is et |R(D) (v, I') (see (67)), that is, it is exponentially
large in the number of external contact points of each head. Consider a head which is
in contact with exactly one source, and does not encircle another source. Denoting its
length by n; (using the notation introduced above), we note that it can have, at most,
min(%nl — 1, 6) external contact points (since the head has to wind around the source
in order to have many contact points). A similar argument holds for the factor produced
by m‘™), which implies that the overall contribution of a head neighboring a source is

bounded by ¢2J minm=2.12) Gince the head does not encircle another source, there is
no need to absorb the contribution of v as we did above, and %[(F )y — m®@ () will
contribute %nl, instead of %nl + % as per (148). Thus, the overall contribution of this loop
to (140) is

eGJ_min(fl,f%nﬁG). (149)

Now, consider a head that either is in contact with both sources, or touches one
and encircles the other. Such a head must, therefore, be quite large: since sources are
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separated by at least £g, nj > 2£p. This time, we must absorb v as explained above,
and, by (148), find that the head will contribute
71 9
PRS2 BT (150)
When a head that is not the root (recall that, when counting the number of possible
backbones, we identified the head containing the edge e as the roof) is in contact with a
source, then there is no need to sum over the length of its stem. Equivalently, since the
sum over the length of a lollipop stem produces a factor proportional to  ~!, we can sum
over the length of the stem, and correct the weight of the loop by a factor proportional
tok.
Finally, we turn to the root head. The number of points at which it comes within a
distance 1 of a source v is bounded by %nl + 1 —dist; (e, v). Therefore, provided it only
comes in contact with a single source, and does not encircle another, it contributes

07 min(1—dist; (e,v),~1,— 5 n1+6) (151)

Note that, by a very similar argument, one checks that () (y’) > 0 even in the presence
of sources.
2-3 - Allin all, in the presence of sources, (140) becomes

ST RGACI TSI SUND SEND '

V/E‘f?f;r)(/\) L=1 AL MLL 20 g1,y 20 £, 00 22

n _lg\ =i = ny,
. () (l—[ <C2 629) ) (E F(Z,‘)) C211. (152

i=1

17 37 7 17 :
. (efezjn],lfejj (1 + ]lm’@%oeesf) + efejjmax(zdlst.(e,r)fz,z,m,lflz)),

ay’se

L
mi (—61in;—037 06J —01 T max(2,n;;-12
: <l_[ <02 : (e 4/ M=%y <1 + i1y >000 >+K€ 2J max(2.m;=12)

i=2

for some constant ¢4 > 0. The rest of the computation is identical to the case without
sources, and yields (146).

3 - We can now estimate the sum over non-trivial ¥’ that intersect a given y by
summing over the position of e in such a way that y’ is incompatible with y. Such
an incompatibility arises only if a loop of y’ is at a distance < £y from a loop of y,
or if a segment or loop of Y’ intersects a segment or loop of y. This yields a factor
O (Lol(y) + s(y)). However, if y’ is at a 1-distance that is < 3 from a source, then the
sum over its position yields a constant rather than O (£yl(y) + s(y)). Therefore,

—9E My 1 307 "y
Yoo e ET < e 0(y) +rs()) + 0y < aly).  (153)
y'eB ()
Yy
4 - Let us now turn to the contribution of trivial polymers y’ € &B((ir) (A)\‘if,r) A).
The activity of such polymers is bounded by

—_osM _ 0k _
e 05" (y") <e Ok lg —e 6C3Cg (154)
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where Cg was introduced in (102), and C3 in (128).

4-1 - If y is non-trivial, then ¥’ # y only if y’ intersects a loop of y. Indeed, y’
is a g-segment, and, in order for it to intersect a g-segment of y, it will have to intersect
the loops at its endpoints, and —g-segments of y must lie inside a loop of y. Therefore,

> FN =01 < a) (155)

Y eB (NB (4)
v'*ry

4-2 - If y is trivial, then there is only one position for ' that will intersect v, and

Z e—@E(T)(y’) < e 3G (156)
' e (NP (1)
Y'*y
whereas
a(y) > akly = aC3Cs > 1. (157)
O

5.4. Polymer-source interaction. In this section we introduce the notion of a polymer
interacting with a source, which will be useful in the following to compute observables
from the cluster expansion.

Definition 1 (Polymer-source interaction). First of all, we generalize the definition of
the polymer activity ;ér) (y) in (90), which, so far, has only been defined for polymers
y € ‘135]T)(A). We extend this definition to polymers with a different family of sources

T if y € P AN (A), then we set 27 () = 0.

Given a polymer y € s}3,(1T)(A) and a source E € £(A), we say that y interacts

with E if {é{E}) (y) # {ég) (). In this case, we write y & E. Note that, in order for y to
interact with E, it must either come within a distance £ of it or encircle it.

Lemma 6 (Entropy of a polymer interacting with a source). There exists a constant
C10 > 0 such that, for any E € E(A) and a family of sources T,

S kO ETD < e 14 max e (-0Fll (158)
Ies) an‘q(A(T/))
VE‘J;E,&E(A) 04(0,E)<1

fora < %t(see (129)).

Proof. As noted in definition 1, y may only interact with E if it surrounds it, or comes
within a distance £ of it. If y is trivial, then its activity is bounded by

max e (Im0klol (159)
oez, (AT)
2, (0,E)K1
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and there are fewer than 4 trivial polymers that interact with E. If y is non-trivial, let
us fix one edge e € 9&(y) of one of its external loops. Furthermore, if dist; (e, ) > 3,
then, since Yy & E, I(y) + s(y) = disty (e, E) — £o, which implies that,

ED(y) > k(disty (e, E) — £o). (160)

Therefore, for 8 € (0, %t — ) (see (129)),

—(1—a) 5™
Z |§(§T)(y)|ea()/) < Z Z e~ (1—0E ()

, ) =)
e () ¢ yePy (4)
y‘(f&E dist1 (€. 1)3" 52(1)5¢

+ Y efRdsuEeB—)  \T e (1=a=HET () (161)

ecE(h) yeB )
distj (e,7)>3 0&(y)2e
+4  max e (UKol
aezq(A(T/))
0,(0,E)X1

Thus, by (146),

Z |§.(§T)(y)| ea(y) < e—(l—ot—ﬁ)3j Z e—ﬂ/?(distl(e,E)—Zo)

) ecE(A)
7Ry W disty (,7)>3
veE 7 _ (162)
e (—a)J Z 1+4 max / e~ (1—0ilo|
ecE(A) ceX, (AT))
dist1 (e,7)<3 2, (0. E)<1

Finally, using (128),

Z e~ Pr(disti (e, E)—Lo) _ 0(Br)~! (163)

ecE(A)
dist;(e,7)>3

from which (158) follows, using k < e2J and taking 36 <1 —2«. 0O

5.5. Flipping term. We will now conclude the proof of the convergence of the cluster
expansion, by proving (99).

Lemma 7 (Bound on the flipping term). There exists a constant Cs > 0 such that, for
every boundary condition ¢ = (c, ¢, £y),

‘Ké?(A)‘ < C50cAHtoe™ 193 A (164)

Proof. The main idea of the proof is to compute Z) (A’ |c)/§g) (Ayand ZM(A'|q)/

Sfly)(A/ ) using the cluster expansion presented in Lemma 3 whose convergence is
ensured by Lemmas 4 and 5. We then isolate the bulk terms, which cancel out, and
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the boundary terms, which yield (164). As we will see, it suffices to consider only the
first term in (95) and bound the remainder according to (97).

1 - Sources. The first step is to eliminate the sources. We will focus on Z7)(A’|¢)/
Bér) (A"), the argument for the other ratio is very similar. Let, for ¢ € [0, 1],

Ll =16 + (1= 08 () (165)
and
T (4) = PO UPD (4) (166)

in terms of which

(1) (1) 1 S
(I () [ ey
0

304 37A =l 3
¢ ( ) ¢ (A) mflyegpir"’)m)Z[‘BEY’M)(A)\{V}

(1" ) (&) = ) mET P iy [T &0 0

vY'ey

167)

where {y}" is the multiset with m elements, all of which are y. Furthermore, by (100),

mle P " <1 (168)
so, by (97),

ZzM(Ale) zP(Ale)
log (W — log S0 < Y WP =],
¢ ¢ yeBL (A)

(169)
Furthermore, {c(T) (y)— ;c(”) (y) differs from O only if y interacts with at least one source
in 7" (see Definition 1). Therefore, by Lemma 6,

zM) (Ale) P (Ale)

The same bound holds for log(z @MA lq) /Eff’)(A’ )). We are thus left with estimating
K{e(A).

2 - Bulk terms. Some of the terms in the cluster expansion (95) are independent of
the boundary, and cannot contribute to K ((](/)c) (A) since it only involves boundary terms
(since the two ratios in (79) only differ through their boundary conditions). Let us now
make this idea more precise.

2-1 - Among the polymers, some are connected to the boundary, which we call
boundary polymers, while the others are not, and are called bulk polymers. Boundary
polymers depend on the boundary, since they are connected to it, so we partition

PP (A) = PO () UPL (), PP (4) =T (4) UPP (4) a71)

in which ‘.Bga)(A) and ‘i?t(]a) (A) are sets of boundary polymers, and rewrite (95) as

)
(M) = Be(PL) (4)) + Be(P (A), B (A)) (172)
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and

<Z<“>(A|q)
log | ———

=0 ) = BB () + By (B (A). B (A)) (173)
3q (A)

where 9B is the contribution of clusters involving only bulk polymers, and B is the
contribution of clusters that contain at least one boundary polymer:

ByP) =Y " [[ew. (174)

yCP yey

and

BB =) > Y oTymupelon [ &Peh. a3

m=1yeP yC(PU\{y} v'ey

Remark. When defining B, we separate out one of the polymers, y, and ask that it be a
boundary polymer. When doing so, we must sum over the multiplicity of y separately
(the sum over m in (175)). If we did not do so, we would be overcounting polymer
configurations (this can easily be seen on a simple example where the set of polymers
consists of only two objects). We do this because we are writing identities, but, in the
following, we will want bounds, for which we do not need to split the sum over the
multiplicity from the sum over y.

2-2 - Bulk polymers still depend on the boundary, because it restricts the polymers
to be inside A. To remove this dependence, we introduce the set of infinite-volume

polymers: ‘13;0)(00) is the set of finite polymers, defined as in Sect. 4.5, except that,
instead of requiring that the polymers be inside A, they are merely required to be finite.

In addition, given a vertex v € Z2, we define ‘B;°)(oo|v) as the set of polymers whose
upper-leftmost vertex is v. We then rewrite (95) as the sum over clusters of infinite-
volume polymers minus the sum over clusters of infinite-volume polymers which are
not contained within A:

By (P (A) =Ty (|AD — B4(A), Be(PL(A) =Fe(|A) — B.(4)  (176)

with

F0an:=> "> Y &Py >, eTunyup [N

veAm=1,,eqp(® ooy yOBY 0o\ y) v'ey
177)
which, by translation invariance, only depends on A through | A[, and

o0
G M)=> "% > &l DY oTdmun [T
veAm=1,ep (colv) OB o\ ) v'er
iy 2By ()
(178)
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Thus,

log K2(4) = (BB (1), B () — By (B (1), B (1))
(179)

+(Fe(AD = Fg(1AD) + (Bc(A) — B4(A)) .

2-3 - The cancellation of the bulk terms follows from the observation that

Sq(1AD =S (A (180)

which is obvious if ¢ = ¢, and follows from the invariance of the system under 5

rotations if ¢ # q. o
3 - Boundary terms. We now bound B (3@, ) and &.
3-1 - We isolate the dominant term in (175):

BB =Y )
yeP

2Py Y ety uy [T (0P o)

m=1yeP yC(BUD\{r} y'ey
(181)
in which we set d(y) := &) (y) as in lemma 5.

3-1-1 - Let us consider gq (53((13) (A), ‘}3((10) (A)). By lemma 5 and, more pre-
cisely, (131), for any 6 € (%t, 1],

Z e ED ) < Z Z F(d,(e, an))e—esm(y) < CSK—le—3oj|an|
veB () <A yeq” ()
§(y)ae
(182)
for some constant cs > 0, where F was defined in (141). In addition using the fact that,

by (101), for y € B (),
dy)=pET(y) =387 (183)
so that, by (97),

> ooy [T (000D oh) | < e e as4)
yEB () v'ey

in which we recall that a(y) = &) (y) (since we are interested in an upper bound,
we can reabsorb the sum over m into the sum over Y ), and, by (182),
Y P ) < eskle 30 19, A (185)
yePy” (1)

Thus ) .
B, (B (), B (AD] < esele M [, Al (1+e72F07) - (186)
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3-1-2 - We now turn to B, (q3£3) (A)‘]3£°)(A)). By lemma 5,

Z e 08 Z e 08w Z 02D

yept” (4) yeB” (4) yeBP (NP () (187)

<esk e 3719, A1 + €709, A
s0, by a similar reasoning as in the previous paragraph,

BB (A), B (A))]

< 0.4 ((6712&) +C5K*‘e*3j) + o BRL (eﬂ?éo(lfoz) +esiclem30-m)Y

(188)
3-2 - We now turn to &. We fix a vertex v € A. If 0,(v, 9, 4) < Lo, then,
proceeding in the same way as for ‘B, we bound

ool Y et [T e <™ (14e30m7),

yePBy (colv) yOPY (00) r'ey
Iy Z Py (4)

(189)
If 9, (v, 9. 4) > Lo, then the condition y Uy 7 (B (A) implies that
D) +5(v) = 04(v, 9g.4) — L. (190)
y'eyUy
In addition, [(y) > 6. Therefore
> ED () =301y +k@g(v. 9,4) — Lo — 4). (191)
v'ey
Therefore, proceeding as for B,
Yook Y eTdviun [ 1ol
yePy (colv) YRS (00) y'ey
iy By (4) (192)
< o PR (v.3,1)—L0) , =3 (1 +e—3(1—a)j).
Therefore,
164 (A)] < coloe 10, A (1 + e*3<‘*a>f) (193)

for some constant cg > 0.
4 - We conclude the proof by injecting (180), (186), (188) and (193) into (179), and
using the fact that k =1 < €o (128). O
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6. Nematic Phase

We are now ready to prove theorem 1. Let A by a square box of side-length L.
1- Given anedge e € £(AL), we have

34D AL ( (z“f”muq)) (Z(”)(ALIq)»
PTda,q==g——exp|log| =77 ) ~log| =55 (194)
A5 4 30D aL) 3P AL

1-1 - Letus first bound the exponent in the thermodynamic limit. As in Lemma 7,
we define

LD 10 = 168D (o) + (1 = ¢ () (195)
and
ﬁ(]{e}’@)(/\w = PN (AL UPPD (AL (196)

and, using the cluster expansion (95), we write
oo [P A | (27 (ALlg)
g\ =7 )| o8| —7H—"

349 A 30(AL)

1 00
zfo iy, 2 ) o ({y)"uy): (197)
e}y

M=y B () yEB A\ y)

(D) = &P @) mE P @1y T 80 .

v'ey

We split the sum into a bulk and a boundary contribution, similarly to Lemma 7. We

define %;{e}’m (00) as the set of polymers y for which 3L such that y is in ﬁ;{e}’w) (AL)
while not being connected to the boundary. We then split

(z“e})muq)) b (z“’”muq)

- - =719 _ROA)+RE (AL  (198)
38D Ar) 39 AL ) 1 ’

where

1 00
1© :=/O iy 3 > el uy):

m=1_, _(lel.h) D)
veP (00) yCPB (0)\{r}
! = (199)

.(Cé{e})(y) _ ;é(/ﬁ)(y))m(Eé{E},VJ)(y“))m—l 1—[ Eé{”’“)(y’lt)

v'ey
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1 o
RO = [y > T earup
({e

M=l T (00) YT o\ )

{y}muqu"”) AL) (200)
(P = P ) mE P iy T a8 o'
v'ey
and
R (Ar) :—f @y Y S ey uy)
m=ly M Ay YT "”(Am\{y}
i mg;{e} ) (201)
(a0 e ) m(cg{”*“)w))m T &0 0.
v'ey
By (100),
mle Py in"t <1 (202)
so, by (97),
19< Y |l o) - P er . (203)

—y
yeP, " (00)

Furthermore, ;é{E} ) (y)— ;“é@) (y) differs from O only if y interacts with e (see Definition-
1), so, by Lemma 6,

11©] < 2C e 10 (204)

In addition, the clusters yy, ..., ¥, that contribute to R or R, interact with e as well as
with the boundary of Ay . Therefore, for such clusters,

n

> E() = i (disty (e, 04) — 2¢0) (205)
i=0

which goes to co as L — oo. Therefore,
n n
11D @l < e PREisuEan=20) T] g~1-HF ) (206)
j=0 j=0
for B € (0, %t — «). We then use Lemmas 3 and 6 to bound
IR (A = 0 (e—ﬂk(distl(e,aA)—Mo)) (207
l

SO
R (AL + IR (A1) — 0. (208)
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Therefore,
zUD(ALlq) ZW(ALlg)
log< D —log| =5 Pty (209)
3q (AL 3q (AL)

which is independent of the position of e, and is bounded as per (204).

1-2 - We turn, now, to the ratio of 3’s, which can be computed explicitly from (77)
and (57): if e is vertical and L is large enough, then

3V
3@) (A1)
in which we used (108) through (111). If e is horizontal, then

=202 (w)by A% = %(1 + 0(€)) (210)

NP _
3V (AL
This proves that (1,) is independent of the position of e, as well as (17) and (18).

i wo)b2r[r = 0. (211)

2 - We now consider two edges e, ¢’ € £(Ay) which are at a distance of at least £g.
We have

<1eﬂe/>AL,q - (18)AL,q <Ile’)AL,q

303y (A KD (4 1) (212)
58D A3 A

= (ﬂe>AL,q (1e/>AL,q (

/ Z({e,e’}) A Z(ﬂ) A
KEO(ap) ::10g< Sl L|q>>+log( 4Ty
L 3q (Ar)

with

, 213)
Ctoe [ZM AL (20D ALl
&\ 50 4 E\ 50 '
3q (AL) 3q T(AL)
First of all, by (77) and (57),
F(fe.e’) 5®)
A A
3q " (AL)3q (AL) 214)

34V A3 (A

‘We then write K((f’e/) (Ar) using the cluster expansion (95), and note that the only clusters
Y0, - - - » Yn that contribute are those that interact with borh e and ¢’. For such clusters,
denoting the vertical and horizontal distances by dist, and disty (these are the induced
by the semi-norms ||(x, y)[lv := [y| and [|(x, y)[In := |x]),

n

> B = i (disty(e, ') — 2£0) + Jdisty (e, ) (215)
i=0

s0, by once again estimating

n n

—B(k(di N— 7di 4 —(1=BED (.
l—[ |§‘;T)(,yj)| < e Bk (dist (e,e’)—2Lp)+J disty (e,e’)) l—[e 1-8) (}/]) (216)
j=0 j=0



1002 I. Jauslin, E. H. Lieb

for B € (0, %t — o), and using Lemmas 3 and 6 to bound
|K((1L’,L’/)(AL)| — 0 (efﬂ(k(distv(e,e’)72€0)+jdisth(e,e’))) (217)

from which (19) follows. 0O
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