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We solve the time-dependent Schrodinger equation describing the emission of electrons from a
metal surface by an external electric field E, turned on at r = 0. Starting with a wave function
v (x, 0), representing a generalized eigenfunction when E =0, we find y(x, f) and show that it
approaches, as t — oo, the Fowler-Nordheim tunneling wavefunction y . The deviation of y from
v decays asymptotically as a power law 1~2. The time scales involved for typical metals and fields
of several V/nm are of the order of femtoseconds. We plot the short-time evolution of the current
and density. Published by AIP Publishing. https://doi.org/10.1063/1.5066240

I. INTRODUCTION

The emission of electrons from a cold metal surface sub-
jected to a constant (or oscillating) electric field is a subject
of great practical and theoretical interest.' The microscopic
theory of such emissions by a constant field was developed
by Fowler and Nordheim (FN) in the early days of quantum
mechanics® (referred to then as the “new mechanics™). They
considered an idealized situation in which the electrons in
the conduction band are treated, a la Sommerfeld, as free
independent particles. Their energies are described by a
Fermi distribution with maximum energy Er = hzkﬁ /2m; the
deviation from this zero-temperature distribution is negligible
at room temperatures. In the absence of an external field,
the electrons are confined by an external potential (caused by
the positive ions) of magnitude U = Er + W, where W is the
work function, i.e., the energy necessary to extract an elec-
tron from the metal.

Considering emissions perpendicular to a flat surface at
x =0, obtained when applying an external field E for
x = 0, assuming that the metal occupies all space x < 0,
leads to a one-dimensional tunneling problem in a triangular
potential (see Fig. 1). The one-dimensional Schrodinger
equation describing an electron moving in this potential is
then given by

1
Oy (x, 1) = {—53,% + V(x)} v(x, 1) (1)
(we write 0, = a%), where

Vo=

in atomic units (& = m = |e| = 1).

x <0,

x>0 @
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When E = 0, the potential is, simply, a step function.
The Schrodinger equation (1) with £ = 0 has stationary solu-
tions with energies k%/2 < U, w(x, 1) = e "y (x), with
k>0 and

) éX 4+ Roe ™ x <0, 3)
X) =
Yo TO(/,f\/ZUszx’ x>0,

in which Ry and T are the reflection and transmission coeffi-
cients (we use a normalization in which the amplitude of the
incoming wave with k > 0 is 1)

o VUK Dik "
"Tu—vau-k ' k—-Vau-ie

These constants ensure that y(x) and 0,y (x) are continuous
at x = 0. Note that, in this state, the current vanishes

Jo() = iy Ok — WoOiy) = 0. ®)

When E > 0, there is the possibility for an electron

moving in the +x direction, with kinetic energy k*/2 < U,

to tunnel through the potential barrier and be emitted. This

will then produce an electron current in the +x-direction. To

obtain the probability of tunneling, FN computed the station-
ary solutions y(x, t) = ekt v (x) by solving

H@% PO~ E) K |yp0 =0, (©)

[®(x) is the Heaviside function, which is equal to 1 if x > 0
and 0 otherwise] whose solution is

eikx +RE€_ikx,
Tg®(x),

x <0,

>
x>0 k>0, )

yE() = {
in which ®(x) is proportional to the Airy function Ai(x) (or the
equivalent expression in terms of Hankel or Bessel functions),
which decays when x — oo, and yet has a constant positive
current for all x. This solution, see also Refs. 1 and 5, yielded
the tunneling probability D(k) = 1 — [Rg|* of the electron
as a function of k, U, and E. Integrating kD(k) over the
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FIG. 1. The shape of the potential V(x).

“supply function” corresponding to the density of electrons
in the Fermi sea moving in the +x direction with energy
k?/2 leads to an expression for the total steady state current
j& in a static field E. An approximate expression for jz is"°

jg A~ B2 E. (8)

The FN formula for jg, with various corrections for the ide-
alizations made, e.g., flat surface, independent electrons,
neglecting the Schottky effect, etc., serves as the backbone
of cold electron emission theory and experiment. There is a
vast literature on the subject (the original FN paper® has
more than 6000 citations). We cite here only a few”>’ and
refer the reader for more information to the recent book by
Jensen® and references therein.

In this note, we shall be concerned with a different
problem, which, as far as we know, has not been investigated
fully before. As an initial condition, we take a stationary sol-
ution of the Schrodinger equation at E = 0, y(x) in (3), and,
at t =0, we turn the field on and study the time evolution.
In particular, we will investigate how long it will take, if
ever, for the initial state y(x, 0) to approach the stationary
state y(x) in (7). Of course, turning on E instantaneously is
an idealization, which we shall accept here. (In Ref. 8, this
initial condition is considered, but the analysis then focuses
mostly on the stationary solution.)

In what follows, we shall prove that, for y(x, 0) =
vo(x), w(x, ) approaches, for long times, the wp(x) of
(7), i.e.,

wix, 1) ~ e”%kzle(x). 9

In fact, this holds for a wider class of initial conditions,
in which the initial incident wave is ¢ and the initial
reflected and transmitted waves are arbitrary. The deviation
w(x, ) — wg(x) decays asymptotically as 172, The actual time
dependence, of course, depends on the exact form of y(x, 0).
We shall calculate this for the y(x, 0) = y(x) given in (3)
for different values of the parameters.

Roughly speaking, we find that for U~9eV,
hzk}%/Zm =FEp~45¢eVand E ~ 4-8 V-nm™!, the time for
the density |w|* and the current j(r) to approach its final
FN value is of the order of femtoseconds. The exact value
depends on the position x where we measure the current: for
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larger x, the time it takes for the current to stabilize is larger
(see Fig. 3). Such time scales are of practical relevance for
short pulses of the order of femtoseconds or less. These are
now common for oscillating laser fields for which the initial
value problem will be considered in a later paper. (The
“steady state” solution for laser fields was investigated in
detail by Faisal et al.g; see also Ref. 10.)

Il. SOLUTION OF THE INITIAL VALUE PROBLEM

In order to emphasize the role of each term in the initial
condition, we will split w(x, 0) into three terms: an incoming,
a reflected, and a transmitted wave.

w(x, 0) = y O, 0) + y®(x, 0) + yP(x, 0)  (10)
with

yP(x, 0) = 0(— 0™,  y®(x, 0) = RO(—x)e™,

yD(x, 0) = To@)e VU, k>0

Y

[recall that ©(x) is the Heaviside function, which is equal to
1 if x = 0 and O otherwise]. Since the Schrodinger equation
is linear, its solution will be the sum of the solutions for each
term in y(x, 0).

To obtain y(x, 1), we solve for t]/p(x), the Laplace trans-
form of w(x, 1),

o0

¥, (x) := J dt e Py(x, 1), (12)
0
which we obtain in closed form. We then compute, by invert-
ing the Laplace transform, the long time asymptotics analyti-
cally and the short time behavior numerically. This method
provides an integral representation of the solution which can
be evaluated numerically. It is thus better for our purposes
than direct computations of the solution of (1). The latter
requires cutoffs for the non-square integrable functions we
are dealing with and cannot be used for long times. The
Laplace transform of y satisfies the equation

{—%@f +O)(U — Ex) — ip |, (x) = —iy(x,0).  (13)

The physical solution to this equation is

) = { Ci(p)eY 7" + FO() + RyF®(x)  if x <0,
) =

C(p)e,(x) + TOFéT)(x) if x>0,
(14)
where Ry and Ty are given in (4),
2jetkx 2je~tkx
FOQ) = ————— FRx)=———— (5
» (0 i » () i (15)
47T x )
FO(o) - — J d —\V2U-K2y
b () 25} {qop(x) . y n,(n)e
+np(x)J dy qop<y>e‘“”—"”] (16)
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and

@, (x) = Ai{zée-%” [E%x _EHU - ip)} } (17)

() = e’%’Ai{—Z% [E%x —E3WU - ip)} } (18)
are two independent solutions of (—19? + U — Ex—ip)f =0.
The phases e¢~5 and —1 are cube roots of —1. The constants
Ci(p) and Cy(p) are set so that ¥, and 0,y are continuous
atx =0,

o 2T,

T 2ipe,(0) — 9, (0)

V2U —K2¢,(0) + dg,(0) [ e
( —2i11;+k2 . +L A e
(19)

and

Colp) = — 2iT, V2U —k*++/=2ip

A 2ipg,(0)— 0e,(0) ip+k?

2i - 2

(20)

where J¢,(0) = % ‘x:O and similarly for 0On,(0). The
square root is defined with a branch cut along the positive
imaginary axis, in such a way that v/—2ip has a branch cut
along the real negative axis.

A simple calculation shows that, as expected,

lim  py,(x) = wi(x, 0), (1)

lp| — o0
Re(p)>0

which confirms that y,(x) is, indeed, the Laplace transform
of a function whose initial condition is w(x, 0).
We then invert the Laplace transform

y+ico

dp €, (), (22)

1

v =gz .
where ¥ > 0 is an arbitrary small parameter taken close to 0.

As is well known, the integral on the right hand side of
(22) can be computed deforming the integration contour as in
Fig. 2 and studying the singularities, poles, and branch
points of y,(x), lying in the half plane Re(p) <0. In particu-
lar, the only terms which do not decay as ¢t — oo come from
poles on the imaginary p-axis. Analyzing (14)—(20), we find
that the singularities of y,(x) are, for k > 0,

 a pole on the imaginary axis, located at —ik*/2, coming
from (15), (20), and (21)

* poles with strictly negative real parts corresponding to the
roots of \/=2ipe,(0) — d¢,(0) appearing in the denomi-
nators of C; and C»,

e a branch cut along the negative real axis coming from

v/ —2ip.
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FIG. 2. The deformed integration contour goes around the poles (one of
which is on the imaginary axis, at —ik?/2, while the others are in the nega-
tive real half-plane) and goes along the branch cut on the real negative axis.

A. Long time behavior

The residue at —ik*/2 yields the only term which does
not decay in time: by an explicit computation, we find that
the residue is equal to

ey (), (23)

where 1 is the FN solution (7).

The residues of the poles with a negative real part decay
exponentially in time [because of the factor e? in (22)].

The integral along the branch cut decays algebraically,
as 173: we define, forp —ie € R_,

o= ei\/—ip, fl@) = )

[recall the definition of l]/p in (12)] and write the integral
along the branch cut as

(24)

BC
y®O@, 1) :
—004-ie

dp e""ir,(x)

113

—ie
_ J dp ") +J

= 2J do e “'a[f(@) — f(— o). (25)
0

By the Taylor expansion (in this context, this technique is

usually called Watson’s lemma),

o0

yBOw, 1) = 4J da e 129f (0) + O(t™?)

0

t 7% s
= (TE(x)> +0(t2),

(26)

with

if x <O,
if x>0

tE(x) = { {cel@y(0) + x0py(0)]1}3 o)

[cE soo(x)]%
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and
V2Nt [V2U — K ey(0) + 0y(0)
V0@ (0)] 2

+J dy @o(y)e™V2U=FY (28)
0

All in all, we find that

w, ) = e Hy, (x)—|—< ()> Lo, (29

Therefore, the wave function tends to the Fowler-Nordheim
. . 3
solution, with a rate 2.

B. Short time behavior

The behavior of w(x, ) for small 7 is more difficult to
study analytically, but the inverse Laplace transform (22)
yields an integral formula that can be efficiently approxi-
mated numerically using fast Fourier transforms.

In Fig. 3, we have plotted the density |w(x, t)|2, current

Jix, 1) = i(woy™ — v o), (30)

and integrated current (the current integrated over the supply

J. Appl. Phys. 124, 213104 (2018)

function at O temperature)

kg
Jie(x, 8) 1= J dk ji(x, 1) @3
0

as a function of time at two different values of x:

Xo = ZL;EkF ~ 11 nm and 10xy [xp is the point at which
V(xo) F] and at two different values of E: 4 and
8V- . We have normalized the current j by 2k, which

is the current of the incoming wave ¢***, and the integrated
current J by k2, which is the current of the incoming wave
integrated over the supply function. We find that there is a
transient regime that lasts a few femtoseconds before the
system stabilizes to the FN value. Note that the approach to
the FN regime has some ripples, which come from the
imaginary parts of the poles in the p-plane (see Fig. 2).
There is a delay before the signal reaches xp and between xg
and 10xp. As expected, the asymptotic value of the current
is independent of x. Note that the current and density
depend strongly on the field E.

Remark: While the time scale of the approach to the
FN solution is clearly of order of femtoseconds, we have not
attempted to compute a “tunneling time.” This is, as is well
known, a tricky business, with many possible definitions

(a) E=4V-nm™! (b) E=8V-nm™!
0.00016 - 0.005
r r=x9 —— F T =20
0.00012 z =102 —— 0.004 E z = 10x¢
E 0.003 |
W2 8x 105 [ [? E
F 0.002 H
-5 [ [
amil™ 0.001 F
0: .,AJ/\“.‘I i | 0: \.J//u\\‘ﬁuumxulmuwmxu
0 4 [§ 8 10 12 0 2 4 6 8 10 12
t (fs) t (fs)
(C) E=4V-nm! (d) E=8V-nm! )
0.00016 0.003 — FIG. 3. The density [(a) and (b)],
z =z r z =z current [(c) and (d)], and integrated
5 =10 ta 2 = 10k current [(e) and (f] as a function of
000012 0 0.002 0 time at x = xy = ng £ and x = 10xg.
y § r We have taken U =9eV and
o5 8% 1075 % [ K/2=k/2=Er=45¢eV. In (a),
0.001 (c), and (e), the field is E =4 V- nm™!
4% 10°° ' F and xp ~ llnm. In (b), (d), and (f),
[ J E=8V-nm' and xp~22nm. In
i 0 et (@, (). and (e), the plots seem to indi-
0 ) 4 6 8 10 12 cate that the curves converge to 0, but
t (fs) t (fs) they actually tend to small finite values.
(e) E=4V -nm™! ) E=8V-nm™!
4%x107% 0.0005
C T = T T = Xo
3x 103 L T = 10170 0.0004 x = 10xg
3 J 0.0003
: k20,0002
a3 0.0001
; 0 e N T T

0 2

4 6 8 10 12
t (fs)
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(see, e.g., Refs. 11 and 12). Defining such a time in terms of
the approach of the initial state to some steady state was
investigated by McDonald et al.'® Pfeifer and Frohlich'*
have computed rigorous bounds on the lifetimes of spatially
confined states.

lll. POSSIBLE GENERALIZATIONS
A. Initial conditions

As is shown by the computation described above, the
long time asymptotic behavior of the wave function is inde-
pendent of the initial reflected and transmitted waves. That
is, the initial condition w(x, 0) = yP(x, 0) = O — x)e*
leads to the same asymptotic formula

w(x, ) ~ e HFly (x). (32)

Indeed, the reflected and transmitted initial conditions do not
actually give rise to any poles on the imaginary axis and
therefore, their contributions decay in time.

This leaves open the possibility to consider much more
general initial conditions than (10): one can change the
coefficients of the reflected and transmitted waves, add such
waves with different wave vectors, or remove them alto-
gether, without changing the asymptotic formula. Only the
incoming wave ¢/** affects it. In addition, one can add any
square-integrable function to the initial condition without
changing the long-time behavior. This is a consequence of
the RAGE theorem,ls’17 which states that whenever the
Hamiltonian has absolutely continuous spectrum (as is
the case here), the solution of the Schrodinger equation
with a square-integrable initial condition vanishes point-
wise as t — 00,

With this fact in mind, one can make an easy argument
why the asymptotic behavior of the wave function must coin-
cide with the stationary solution. Indeed, once we drop the
initial reflected and transmitted waves, the Laplace transform
of the wave function is of the form

(0 = [(ef’“ 4 Re*VT"PX) O(—x)+ T, (00|,

—2ip + k?
(33)

where ¢, is the solution of
1
(— SO+ V) - ip) 9,0 =0, x>0. (34

When p = —ik?/2, (34) coincides with Eq. (6) for wp.
Assuming that R and T do not introduce any new poles on
the imaginary axis (as we showed is the case), this implies
that w(x, f) converges to e~k yp(x)ast — oo,

B. Potentials

The exact form of the potential V(x) = U — Ex was not
really used in much of the computation above, so it can be
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carried out in very much the same way for many other V(x).
For instance, one could round off the triangular barrier
as occurs in the Schottky effect.” We could also consider a
square barrier. The only real constraint on the potential is
that it does not introduce bound states. To make this into a
precise statement, one would also have to put constraints on
the regularity and asymptotic properties of V, which we will
not do here.

This leaves open the possibility of studying trains of
pulses, in which the field is turned on and off repeatedly. The
regime in which the field is off corresponds to a potential
V(x) = UO(x), which can be studied using the method
described above. Provided the time between the pulses is
long enough, the system would stabilize to the stationary
state in the time between each field switching.

C. Time-dependent fields

It would be very interesting to consider a similar ques-
tion in the case of an oscillating laser field E = ¢ cos (o?).
The stationary state of this problem was studied by
Faisal et al.,” and we are currently working on showing that
the solutions of the initial value problem converge to this sol-
ution and studying the short-time behavior.
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