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We solve the time-dependent Schrödinger equation describing the emission of electrons from a

metal surface by an external electric field E, turned on at t ¼ 0. Starting with a wave function

ψ(x, 0), representing a generalized eigenfunction when E ¼ 0, we find ψ(x, t) and show that it

approaches, as t ! 1, the Fowler-Nordheim tunneling wavefunction ψE. The deviation of ψ from

ψE decays asymptotically as a power law t�
3
2. The time scales involved for typical metals and fields

of several V/nm are of the order of femtoseconds. We plot the short-time evolution of the current

and density. Published by AIP Publishing. https://doi.org/10.1063/1.5066240

I. INTRODUCTION

The emission of electrons from a cold metal surface sub-

jected to a constant (or oscillating) electric field is a subject

of great practical and theoretical interest.1–3 The microscopic

theory of such emissions by a constant field was developed

by Fowler and Nordheim (FN) in the early days of quantum

mechanics4 (referred to then as the “new mechanics”). They

considered an idealized situation in which the electrons in

the conduction band are treated, a la Sommerfeld, as free

independent particles. Their energies are described by a

Fermi distribution with maximum energy EF ¼ �h2k2F=2m; the
deviation from this zero-temperature distribution is negligible

at room temperatures. In the absence of an external field,

the electrons are confined by an external potential (caused by

the positive ions) of magnitude U ¼ EF þW , where W is the

work function, i.e., the energy necessary to extract an elec-

tron from the metal.

Considering emissions perpendicular to a flat surface at

x ¼ 0, obtained when applying an external field E for

x 5 0, assuming that the metal occupies all space x , 0,

leads to a one-dimensional tunneling problem in a triangular

potential (see Fig. 1). The one-dimensional Schrödinger

equation describing an electron moving in this potential is

then given by

i@tψ(x, t) ¼ �1

2
@2
x þ V(x)

� �

ψ(x, t) (1)

(we write @x ;
@
@x), where

V(x) ¼ 0, x , 0,

U � Ex, x . 0

�

(2)

in atomic units (�h ¼ m ¼ jej ¼ 1).

When E ¼ 0, the potential is, simply, a step function.

The Schrödinger equation (1) with E ¼ 0 has stationary solu-

tions with energies k2=2 , U, ψ(x, t) ¼ e�i1
2
k2t
ψ0(x), with

k . 0 and

ψ0(x) ¼
eikx þ R0e

�ikx, x , 0,

T0e
�
ffiffiffiffiffiffiffiffiffiffi

2U�k2
p

x, x . 0,

�

(3)

in which R0 and T0 are the reflection and transmission coeffi-

cients (we use a normalization in which the amplitude of the

incoming wave with k . 0 is 1)

R0 ¼
ik þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2U � k2
p

ik �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2U � k2
p , T0 ¼

2ik

ik �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2U � k2
p : (4)

These constants ensure that ψ0(x) and @xψ0(x) are continuous

at x ¼ 0. Note that, in this state, the current vanishes

j0(x) ¼ i(ψ0@xψ
�
0 � ψ

�
0@xψ0) ¼ 0: (5)

When E . 0, there is the possibility for an electron

moving in the þx direction, with kinetic energy k2=2 , U,

to tunnel through the potential barrier and be emitted. This

will then produce an electron current in the þx-direction. To

obtain the probability of tunneling, FN computed the station-

ary solutions ψ(x, t) ¼ e�i1
2
k2t
ψE(x) by solving

�1

2
@2
x þ Θ(x)(U � Ex)� 1

2
k2

� �

ψE(x) ¼ 0; (6)

[Θ(x) is the Heaviside function, which is equal to 1 if x 5 0

and 0 otherwise] whose solution is

ψE(x) ¼
eikx þ REe

�ikx, x , 0,

TEΦ(x), x . 0,

�

k . 0, (7)

in which Φ(x) is proportional to the Airy function Ai(x) (or the

equivalent expression in terms of Hankel or Bessel functions),

which decays when x ! 1, and yet has a constant positive

current for all x. This solution, see also Refs. 1 and 5, yielded

the tunneling probability D(k) ¼ 1� jREj2 of the electron

as a function of k, U, and E. Integrating kD(k) over the
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“supply function” corresponding to the density of electrons

in the Fermi sea moving in the þx direction with energy

k2=2 leads to an expression for the total steady state current

jE in a static field E. An approximate expression for jE is3,6

jE � c1E
2e�

c2
E : (8)

The FN formula for jE, with various corrections for the ide-

alizations made, e.g., flat surface, independent electrons,

neglecting the Schottky effect, etc., serves as the backbone

of cold electron emission theory and experiment. There is a

vast literature on the subject (the original FN paper4 has

more than 6000 citations). We cite here only a few5,7 and

refer the reader for more information to the recent book by

Jensen3 and references therein.

In this note, we shall be concerned with a different

problem, which, as far as we know, has not been investigated

fully before. As an initial condition, we take a stationary sol-

ution of the Schrödinger equation at E ¼ 0, ψ0(x) in (3), and,

at t ¼ 0, we turn the field on and study the time evolution.

In particular, we will investigate how long it will take, if

ever, for the initial state ψ(x, 0) to approach the stationary

state ψE(x) in (7). Of course, turning on E instantaneously is

an idealization, which we shall accept here. (In Ref. 8, this

initial condition is considered, but the analysis then focuses

mostly on the stationary solution.)

In what follows, we shall prove that, for ψ(x, 0) ¼
ψ0(x), ψ(x, t) approaches, for long times, the ψE(x) of

(7), i.e.,

ψ(x, t) ≏ e�i1
2
k2t
ψE(x): (9)

In fact, this holds for a wider class of initial conditions,

in which the initial incident wave is eikx and the initial

reflected and transmitted waves are arbitrary. The deviation

ψ(x, t)� ψE(x) decays asymptotically as t�
3
2. The actual time

dependence, of course, depends on the exact form of ψ(x, 0).

We shall calculate this for the ψ(x, 0) ¼ ψ0(x) given in (3)

for different values of the parameters.

Roughly speaking, we find that for U � 9 eV,

�h2k2F=2m ¼ EF � 4:5 eV and E � 4-8 V � nm�1, the time for

the density jψ j2 and the current j(t) to approach its final

FN value is of the order of femtoseconds. The exact value

depends on the position x where we measure the current: for

larger x, the time it takes for the current to stabilize is larger

(see Fig. 3). Such time scales are of practical relevance for

short pulses of the order of femtoseconds or less. These are

now common for oscillating laser fields for which the initial

value problem will be considered in a later paper. (The

“steady state” solution for laser fields was investigated in

detail by Faisal et al.9; see also Ref. 10.)

II. SOLUTION OF THE INITIAL VALUE PROBLEM

In order to emphasize the role of each term in the initial

condition, we will split ψ(x, 0) into three terms: an incoming,

a reflected, and a transmitted wave.

ψ(x, 0) ¼ ψ
(I)(x, 0)þ ψ

(R)(x, 0)þ ψ
(T)(x, 0) (10)

with

ψ
(I)(x, 0) ¼ Θ(� x)eikx, ψ

(R)(x, 0) ¼ R0Θ(� x)e�ikx,

ψ
(T)(x, 0) ¼ T0Θ(x)e

�
ffiffiffiffiffiffiffiffiffiffi

2U�k2
p

x, k . 0

(11)

[recall that Θ(x) is the Heaviside function, which is equal to

1 if x 5 0 and 0 otherwise]. Since the Schrödinger equation

is linear, its solution will be the sum of the solutions for each

term in ψ(x, 0).

To obtain ψ(x, t), we solve for ψ̂p(x), the Laplace trans-

form of ψ(x, t),

ψ̂p(x) :¼
ð

1

0

dt e�pt
ψ(x, t), (12)

which we obtain in closed form. We then compute, by invert-

ing the Laplace transform, the long time asymptotics analyti-

cally and the short time behavior numerically. This method

provides an integral representation of the solution which can

be evaluated numerically. It is thus better for our purposes

than direct computations of the solution of (1). The latter

requires cutoffs for the non-square integrable functions we

are dealing with and cannot be used for long times. The

Laplace transform of ψ satisfies the equation

�1

2
@2
x þ Θ(x)(U � Ex)� ip

� �

ψ̂p(x) ¼ �iψ(x, 0): (13)

The physical solution to this equation is

ψ̂p(x) ¼
C1(p)e

ffiffiffiffiffiffiffi�2ip
p

x þ F(I)
p (x)þ R0F

(R)
p (x) if x , 0,

C2(p)wp(x)þ T0F
(T)
p (x) if x . 0,

(

(14)

where R0 and T0 are given in (4),

F(I)
p (x) :¼ � 2ieikx

�2ipþ k2
, F(R)

p (x) :¼ � 2ie�ikx

�2ipþ k2
, (15)

F(T)
p (x) : ¼ 4π

(2E)
1
3

�

wp(x)

ðx

0

dy ηp(y)e
�
ffiffiffiffiffiffiffiffiffiffi

2U�k2
p

y

þ ηp(x)

ð

1

x

dy wp(y)e
�
ffiffiffiffiffiffiffiffiffiffi

2U�k2
p

y

�

(16)

FIG. 1. The shape of the potential V(x).
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and

wp(x) ¼ Ai 2
1
3e�

iπ
3 E

1
3x� E�2

3(U � ip)
h in o

, (17)

ηp(x) ¼ e�
iπ
3Ai �2

1
3 E

1
3x� E�2

3(U � ip)
h in o

(18)

are two independent solutions of (� 1
2
@2
x þU�Ex� ip)f ¼ 0.

The phases e�
iπ
3 and �1 are cube roots of �1. The constants

C1(p) and C2(p) are set so that ψ̂p and @xψ̂p are continuous

at x ¼ 0,

C1(p)¼� 2iT0
ffiffiffiffiffiffiffiffiffiffi�2ip

p
wp(0)� @wp(0)

 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2U� k2
p

wp(0)þ @wp(0)

�2ipþ k2
þ
ð

1

0

dy wp(y)e
�
ffiffiffiffiffiffiffiffiffiffi

2U�k2
p

y

!

(19)

and

C2(p)¼� 2iT0
ffiffiffiffiffiffiffiffiffiffi�2ip

p
wp(0)�@wp(0)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2U�k2
p

þ ffiffiffiffiffiffiffiffiffiffi�2ip
p

�2ipþk2

 

� 2iπ

(2E)
1
3

�

ffiffiffiffiffiffiffiffiffiffi

�2ip
p

ηp(0)�@ηp(0)

�
ð

1

0

dywp(y)e
�
ffiffiffiffiffiffiffiffiffiffi

2U�k2
p

y

�

,

(20)

where @wp(0) ;
@wp(x)

@x

�

�

x¼0
and similarly for @ηp(0). The

square root is defined with a branch cut along the positive

imaginary axis, in such a way that
ffiffiffiffiffiffiffiffiffiffi�2ip

p
has a branch cut

along the real negative axis.

A simple calculation shows that, as expected,

lim
jpj ! 1

Re(p).0

pψ̂p(x) ¼ ψ(x, 0), (21)

which confirms that ψ̂p(x) is, indeed, the Laplace transform

of a function whose initial condition is ψ(x, 0).

We then invert the Laplace transform

ψ(x, t) ¼ 1

2iπ

ð

γþi1

γ�i1

dp e ptψ̂p(x), (22)

where γ . 0 is an arbitrary small parameter taken close to 0.

As is well known, the integral on the right hand side of

(22) can be computed deforming the integration contour as in

Fig. 2 and studying the singularities, poles, and branch

points of ψ̂p(x), lying in the half plane Re(p) �0. In particu-

lar, the only terms which do not decay as t ! 1 come from

poles on the imaginary p-axis. Analyzing (14)–(20), we find

that the singularities of ψ̂p(x) are, for k . 0,

• a pole on the imaginary axis, located at �ik2=2, coming

from (15), (20), and (21)

• poles with strictly negative real parts corresponding to the

roots of
ffiffiffiffiffiffiffiffiffiffi�2ip

p
wp(0)� @wp(0) appearing in the denomi-

nators of C1 and C2,

• a branch cut along the negative real axis coming from
ffiffiffiffiffiffiffiffiffiffi�2ip

p
.

A. Long time behavior

The residue at �ik2=2 yields the only term which does

not decay in time: by an explicit computation, we find that

the residue is equal to

e�i1
2
k2t
ψE(x), (23)

where ψE is the FN solution (7).

The residues of the poles with a negative real part decay

exponentially in time [because of the factor e pt in (22)].

The integral along the branch cut decays algebraically,

as t�
3
2: we define, for p� iϵ [ R�,

α :¼ e
iπ
4

ffiffiffiffiffiffiffiffi

�ip
p

, f (α) :¼ ψ̂
α2
(x) (24)

[recall the definition of ψ̂p in (12)] and write the integral

along the branch cut as

ψ
(BC)(x, t) :

¼
ð�iϵ

�1�iϵ

dp e ptψ̂p(x)þ
ð�1þiϵ

iϵ

dp e ptψ̂p(x)

¼ 2

ð

1

0

dα e�α
2t
α[ f (α)� f (� α)]: (25)

By the Taylor expansion (in this context, this technique is

usually called Watson’s lemma),

ψ
(BC)(x, t) ¼ 4

ð

1

0

dα e�α
2t
α
2@f (0)þ O(t�

5
2)

¼ t

τE(x)

� ��3
2

þO(t�
5
2), (26)

with

τE(x) ¼
cE[w0(0)þ x@w0(0)]f g2

3 if x , 0,

cEw0(x)½ �23 if x . 0

(

(27)

FIG. 2. The deformed integration contour goes around the poles (one of

which is on the imaginary axis, at �ik2=2, while the others are in the nega-

tive real half-plane) and goes along the branch cut on the real negative axis.
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and

cE ¼ �
ffiffiffi

2
p

T0e
iπ
4

ffiffiffi

π
p ½@w0(0)�2

 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2U � k2
p

w0(0)þ @w0(0)

k2

þ
ð

1

0

dy w0(y)e
�
ffiffiffiffiffiffiffiffiffiffi

2U�k2
p

y

!

: (28)

All in all, we find that

ψ(x, t) ¼ e�i1
2
k2t
ψE(x)þ

t

τE(x)

� ��3
2

þO(t�
5
2): (29)

Therefore, the wave function tends to the Fowler-Nordheim

solution, with a rate t�
3
2.

B. Short time behavior

The behavior of ψ(x, t) for small t is more difficult to

study analytically, but the inverse Laplace transform (22)

yields an integral formula that can be efficiently approxi-

mated numerically using fast Fourier transforms.

In Fig. 3, we have plotted the density jψ(x, t)j2, current
jk(x, t) :¼ i(ψ@xψ

� � ψ
�@xψ), (30)

and integrated current (the current integrated over the supply

function at 0 temperature)

JkF (x, t) :¼
ðkF

0

dk jk(x, t) (31)

as a function of time at two different values of x:

x0 :¼ 2U�k2
F

2E
� 11 nm and 10x0 x0½ is the point at which

V(x0) ¼ k2
F

2
� and at two different values of E: 4 and

8 V � nm�1. We have normalized the current j by 2k, which

is the current of the incoming wave eikx, and the integrated

current J by k2F, which is the current of the incoming wave

integrated over the supply function. We find that there is a

transient regime that lasts a few femtoseconds before the

system stabilizes to the FN value. Note that the approach to

the FN regime has some ripples, which come from the

imaginary parts of the poles in the p-plane (see Fig. 2).

There is a delay before the signal reaches x0 and between x0
and 10x0. As expected, the asymptotic value of the current

is independent of x. Note that the current and density

depend strongly on the field E.

Remark: While the time scale of the approach to the

FN solution is clearly of order of femtoseconds, we have not

attempted to compute a “tunneling time.” This is, as is well

known, a tricky business, with many possible definitions

FIG. 3. The density [(a) and (b)],

current [(c) and (d)], and integrated

current [(e) and (f)] as a function of

time at x ¼ x0 ;
2U�k2

F

2E
and x ¼ 10x0.

We have taken U ¼ 9 eV and

k2=2 ¼ k2F=2 ; EF ¼ 4:5 eV. In (a),

(c), and (e), the field is E ¼ 4 V � nm�1

and x0 � 11nm. In (b), (d), and (f),

E ¼ 8 V � nm�1 and x0 � 22 nm. In

(a), (c), and (e), the plots seem to indi-

cate that the curves converge to 0, but

they actually tend to small finite values.
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(see, e.g., Refs. 11 and 12). Defining such a time in terms of

the approach of the initial state to some steady state was

investigated by McDonald et al.13 Pfeifer and Fröhlich14

have computed rigorous bounds on the lifetimes of spatially

confined states.

III. POSSIBLE GENERALIZATIONS

A. Initial conditions

As is shown by the computation described above, the

long time asymptotic behavior of the wave function is inde-

pendent of the initial reflected and transmitted waves. That

is, the initial condition ψ(x, 0) ¼ ψ
(I)(x, 0) ¼ Θ(� x)eikx

leads to the same asymptotic formula

ψ(x, t) ≏ e�i1
2
k2t
ψE(x): (32)

Indeed, the reflected and transmitted initial conditions do not

actually give rise to any poles on the imaginary axis and

therefore, their contributions decay in time.

This leaves open the possibility to consider much more

general initial conditions than (10): one can change the

coefficients of the reflected and transmitted waves, add such

waves with different wave vectors, or remove them alto-

gether, without changing the asymptotic formula. Only the

incoming wave eikx affects it. In addition, one can add any

square-integrable function to the initial condition without

changing the long-time behavior. This is a consequence of

the RAGE theorem,15–17 which states that whenever the

Hamiltonian has absolutely continuous spectrum (as is

the case here), the solution of the Schrödinger equation

with a square-integrable initial condition vanishes point-

wise as t ! 1.

With this fact in mind, one can make an easy argument

why the asymptotic behavior of the wave function must coin-

cide with the stationary solution. Indeed, once we drop the

initial reflected and transmitted waves, the Laplace transform

of the wave function is of the form

ψ̂p(x)¼
�2i

�2ipþ k2
eikx þRe�

ffiffiffiffiffiffiffi

�2ip
p

x
	 


Θ(� x)þ Twp(x)Θ(x)
h i

,

(33)

where wp is the solution of

� 1

2
@2
x þ V(x)� ip

� �

wp(x) ¼ 0, x . 0: (34)

When p ¼ �ik2=2, (34) coincides with Eq. (6) for ψE .

Assuming that R and T do not introduce any new poles on

the imaginary axis (as we showed is the case), this implies

that ψ(x, t) converges to e�i1
2
k2t
ψE(x) as t ! 1.

B. Potentials

The exact form of the potential V(x) ¼ U � Ex was not

really used in much of the computation above, so it can be

carried out in very much the same way for many other V(x).

For instance, one could round off the triangular barrier

as occurs in the Schottky effect.7 We could also consider a

square barrier. The only real constraint on the potential is

that it does not introduce bound states. To make this into a

precise statement, one would also have to put constraints on

the regularity and asymptotic properties of V , which we will

not do here.

This leaves open the possibility of studying trains of

pulses, in which the field is turned on and off repeatedly. The

regime in which the field is off corresponds to a potential

V(x) ¼ UΘ(x), which can be studied using the method

described above. Provided the time between the pulses is

long enough, the system would stabilize to the stationary

state in the time between each field switching.

C. Time-dependent fields

It would be very interesting to consider a similar ques-

tion in the case of an oscillating laser field E ¼ e0 cos (ωt).

The stationary state of this problem was studied by

Faisal et al.,9 and we are currently working on showing that

the solutions of the initial value problem converge to this sol-

ution and studying the short-time behavior.
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