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Abstract: We consider a system of anisotropic plates in the three-dimensional contin-
uum, interacting via purely hard core interactions. We assume that the particles have
a finite number of allowed orientations. In a suitable range of densities, we prove the
existence of a uni-axial nematic phase, characterized by long range orientational order
(the minor axes are aligned parallel to each other, while the major axes are not) and no
translational order. The proof is based on a coarse graining procedure, which allows us
to map the plate model into a contour model, and in a rigorous control of the resulting
contour theory, via Pirogov-Sinai methods.

1. Introduction

The mathematical theory of liquid crystalline (LC) phases, even just of their equilibrium
properties, is still in a primitive stage: most of the predictions on the phase diagram of
systems of anisotropic molecules are based on density functional, or mean field theo-
ries. The approximations underlying the derivation of the corresponding effective free
energy functionals are typically uncontrolled: there is no systematic way of improving
the precision, and no rigorous theorem quantifying the error. Ideally, as in any equilib-
rium statistical mechanics problem, one would like to start from a microscopic model
of interacting particles, described in terms of (say) a grand-canonical partition function
at inverse temperature β and activity z, and derive bounds on the large distance decay
of correlations, both for the orientational and the translational degrees of freedom of the
particles, for different choices of (β, z). Given an inter-particle interaction, one would
like to exhibit values of (β, z) at which the correlation functions of the system dis-
play broken orientational order and unbroken (or partially broken) translational order.
Depending on the specific nature of the broken orientational order, and/or of the unbro-
ken/partially broken translational order, one names such a phase ‘uni-axial nematic’, or
‘bi-axial nematic’, or ‘smectic’, or ‘chiral’, etc. Essentially none of these phases has
ever been mathematically proved to arise in any model of interacting particles in the
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Fig. 1. The plates and their six allowed orientations

three-dimensional continuum. The purpose of this paper is to report some progress in
this direction. Part of our motivation comes from the renewed interest of the condensed
matter community on the nature of bi-axial nematic phases, which was stimulated by
the experimental observation of a bi-axial phase in systems of elongated, boomerang-
shaped, particles [1,15,16].

Let us specify more precisely the context we consider. As is well known, the micro-
scopic interactions responsible for the onset of liquid crystalline phases have electrostatic
origin. Electrostatic interactions among the microscopic constituents of a liquid crystal
are typically strong and repulsive at short distances, and weak and attractive at larger
distances (London, or Van der Waals, forces). Depending on the specific system under
consideration, either the short range repulsion, or the long range attraction, plays a pre-
dominant role on the onset of the LC phase. It is customary to focus the attention on just
one of the two effects, in order to understand which of those is responsible for which
LC transitions, if any. Of course, if one is after quantitative results, it is important to
consider both effects. In this paper, for simplicity, we focus on the effect of repulsive
forces, which we model as pure hard-core interactions. As a consequence, in the model
we consider, the temperature plays no role, and the only relevant parameter is the density.
We also restrict our attention to the case in which the particles have a finite number of
allowed orientations, which is a popular, although drastic, simplification. It is of great
importance to drop this assumption and understand the phenomenon of continuous sym-
metry breaking in LC, as well as in other, phases of matter. We hope to report results in
this direction in the future, but this goes beyond the purpose of this paper.

The model Let us now define our model more precisely: we consider a system of hard
parallelepipeds of size 1×kα ×k for some α ∈ [0, 1], which we call boards. If α < 1/2,
a board will be called a rod and, if α > 1/2, a plate. The position of each board is given
by the position of its center x ∈ R

3, and its orientation, which is characterized by a pair
of indices (i, j) ∈ {1, 2, 3} × {a, b} =: O (see Fig. 1).

We will use the following notation: (i, j) ≡ i j , and a board oriented along i j will
also be said to be “in the direction i j”. Boards oriented in the direction ia or ib will
be collectively said to be “of type i”. The boards interact via a hard core interaction.
We shall denote the density of board centers by ρ. As the density ρ and the anisotropy
exponent α are varied, the system is expected to display a variety of different phases,



Plate-Nematic Phase in Three Dimensions 329

0 0.25 0.5 0.75 1

I

N+

N−

Nb

α

Fig. 2. Schematic phase diagram for the hard plate model. The phase labeled by I is the isotropic (no orien-
tational order), N− is the plate-like nematic (order in the minor axis), N+ the rod-like nematic (order in the
major axis), and Nb the biaxial nematic (order in both axes). In the ‘question mark’ region we have no specific
prediction about the nature of the phase. The region which is grayed out corresponds to densities that are too
high for plates to coexist without overlapping

ranging from an isotropic liquid one, to uni-axial and bi-axial nematic, as summarized
in Fig. 2.

In this paper, we focus on the case of plates, α > 1/2. For technical reasons, we
will restrict to the sub-case α > 3/4; the significance of the exponent 3/4 will become
clear in the course of the proof. Our main result is a rigorous proof of the existence of
a uni-axial nematic phase, for k large, 3

4 < α ≤ 1, and the density in a suitable, (k, α)-
dependent, regime, see below for details. In principle, it should be possible to extend
our analysis to smaller values of α, most notably to the case of rods. It should also be
possible to extend it to the case of larger values of the densities, thus substantiating the
conjectured existence of a bi-axial nematic phase in our model. In both cases, the coarse
graining procedure that we employ in the proof is insufficient for a rigorous control of the
pressure and correlation functions. We hope to report progresses on the phase diagram
of the system for more general values of ρ and α in a future publication.

Before specifying our main results more precisely, let us first give a heuristic idea of
why a sequence of transitions from isotropic to nematic phases is expected in our model,
as the density is increased from zero to its maximum, that is ρmax = k−1−α . We focus
on the case of very anisotropic plates, 1

2 < α < 1 (the ‘very’ stands for the condition
that α < 1). A similar heuristic discussion can be repeated for rods, and is left to the
reader.

Given a plate (x, o) ∈ R
3 × O, we define the excluded set on plates of orientation

o′, as the set of points y ∈ R
3 such that the plate (y, o′) intersects the plate (x, o). The

excluded volume is the volume of the excluded set; it depends on the pair (o, o′). If, for
instance, o = 3a , then the excluded volume on plates of different orientations are the
following:

– the excluded volume produced by 3a on 1a is of the order k2+α ,
– the excluded volume produced by 3a on 1b is of the order k2+α ,
– the excluded volume produced by 3a on 2a is of the order k2+α ,
– the excluded volume produced by 3a on 2b is of the order k1+2α ,
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– the excluded volume produced by 3a on 3b is of the order k2,
– the excluded volume produced by 3a on 3a is of the order k1+α ,

and similarly for the other choices of (o, o′). Note that for k large and 1
2 < α < 1,

these excluded volumes are well separated in scales, and ordered as follows: k1+α �
k2 � k1+2α � k2+α . This separation of scales, together with the assumption that the
distribution of the particle centers in space is approximately homogeneous, plays a
prominent role in the heuristic explanation of the expected sequence of transitions. The
sequence of expected transitions can be read from Fig. 2 above, and is summarized for
the reader’s convenience here:

ρ
1

k2+α0 1
k1+2α

1
k2

1
k1+α ≡ ρmax

I ? N− Nb

The letters I , N− and Nb stand for: isotropic phase, uni-axial nematic phase (the −
indicates that the minor axes are aligned), and bi-axial nematic phase, respectively. The
‘question-mark’ phase has a nature that we cannot establish on the basis of a simple
heuristic argument. The logic behind this conjectured phase diagram is the following.

– Suppose that k−2 � ρ � k−1−α . Given a plate (x, o), which, without loss of
generality, we assume to be in the direction 3a (that is, minor axis along direction 3
and major axis along direction 1), there will, typically, be many other plates in the
set

J := x +
{
(y1, y2, y3), |y1| < k

2 , |y2| < k
2 , |y3| <

kα

2

}
(1)

since the volume of J is of the order k2+α and ρk2+α � 1.
By the hard core constraint, the plates whose centers are in J cannot have orientation
1a : their orientations can only be 3a , 3b, 1b, 2a or 2b. In general, plates in different
directions can coexist within J . However, the coexistence is unlikely to happen. In
fact, suppose for simplicity that only plates in the directions 3a and 3b coexist within
J ; then, due to the hard core constraint, one needs to leave a region of volume ∼ k2,
at the interface between the regions occupied by 3a-plates and 3b-plates, free of
any plate center, an event that is very unlikely, since typically any region of such a
volume contains many plate centers (because ρk2 � 1). Similarly, if only plates in
the directions 3a and 2b coexist, one needs to leave a region of volume∼ k1+2α , at the
interface between the region occupied by 3a-plates and 2b-plates, free of any plate
center, an event that is very unlikely, since typically any region of such a volume
contains many plate centers (because ρk1+2α � 1). Analogously, the coexistence
between pairs or triplets of plates in different directions can be shown to be unlikely.
Therefore, a typical plate configuration in J consists of many plates, all in the

direction 3a , with centers distributed approximately uniformly, since their interaction,
once we prescribe the direction of their axes, is very weak: they ‘just’ have a hard core
repulsion that prevents a plate from occupying an excluded region of volume ∼ k1+α

around the center of another plate; on the other hand, any region of volume k1+α

within J has very small probability of being occupied at all, because ρk1+α � 1.
We can now repeat the same argument for a translate J ′ of J that has intersection

of order k2+α with J itself: since the intersection typically contains many plates,
all oriented in the direction 3a , we conclude that also the plates in J ′ are all in the
direction 3a , and their centers are distributed almost uniformly. Proceeding like this,
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we conclude, at least heuristically, that the whole space should be covered mostly
by plates in the same direction, namely with both the minor and major axes oriented
parallel to each other: such a phase is named biaxial nematic phase, and denoted by
the symbol Nb in the phase diagram.

– Suppose now that k−1−2α � ρ � k−2. We proceed as in the previous item: given
a plate (x, o), which, without loss of generality, we assume to be in the direction 3a ,
there will, typically, be many other plates in the set J defined in (1). By the hard core
constraint, as before, the plates whose centers are in J can only be in the directions
3a , 3b, 1b, 2a or 2b. However, in order to accomodate plates with orientation 1b, 2a or
2b within J , one needs to leave a region of volume ∼ k1+2α free of any plate center,
an event that is very unlikely, since typically any region of such a volume contains
many plate centers, because ρk1+2α � 1. We conclude that, typically, J contains
only plates in the directions 3a and 3b (that is, of type 3): therefore, a typical plate
configuration in J consists of many plates, all of type 3, with centers distributed
approximately uniformly, since their interaction, once we prescribe the direction of
their minor axes, is very weak: they ‘just’ have a hard core repulsion that prevents
a plate from occupying an excluded region of volume ∼ k2 around the center of
another plate; on the other hand, any region of volume k2 within J has very small
probability of being occupied at all, because ρk2 � 1.
In conclusion, we expect that most of the plates in J are oriented in the directions

3a or 3b. Reasoning as in the previous item, we conclude that the whole space should
be covered mostly by plates of the same type, that is, with their minor axes aligned,
a phase named uni-axial, or plate-like, nematic (N−) phase.

– If ρk2+α � 1, then there are few enough plates that they will almost never be in
one another’s interaction set, so the system is in an isotropic (I ) phase.

Note that in the list above there is a ‘gap’ in the densities: in fact, in the range
k−2−α � ρ � k−1−2α , the reasoning above does not allow us to draw any definite
conclusion about the expected nature of the corresponding phase. As far as we know,
even numerically, there is no clear evidence about the existence and nature of long range
ordering in this range of densities.

Another range of densities that is not discussed in the previous list, is the one very
close to close-packing. In analogy with the two-dimensional case [8], we expect no
orientational order at very high densities. It would be very interesting to clarify the
(glassy?) nature of the very dense phase, and possibly identify a hidden order parameter
characterizing its behavior.

We are finally ready to state, informally, our main result. For a more quantitive
statement, see the next section.

Main result (informal statement): In the context described above, we consider a
system of anisotropic plates of size 1× kα × k, with k � 1 and 3

4 < α ≤ 1, interacting
via purely hard-core interactions. If the density is well within the range where uni-axial
nematic ordering is expected, that is, more precisely, if k−3α log k � ρ � kα−3 (note
that, for k large, and for the values of α under consideration, k−1−2α � k−3α log k and
kα−3 ≤ k−2), then the system is, in fact, in a uni-axial, plate-like, nematic (N−) phase:
in particular, we prove the existence of long range orientational order for the minor axes
of the plates, and the absence of translational order, namely, exponential decay of the
truncated center-center correlations.

The main idea of the proof is to map the model to a coarse-grained contour model and
prove that we can compute its partition function and the expectation of local observables
using a convergent cluster expansion. To that end, we will first split the lattice Λ into
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cubes of size � := k/2. In the range of densities we are studying, each cube contains,
on average, many plates (since ρk3 � 1). We will then define a contour as the union
of cubes that either do not contain one and only one type of plates, or that touch other
cubes which contain plates of a different type. Our endgame will then be to prove that
the presence of contours is unlikely, which will imply the main result.

In essence, contours are unlikely because, as we will show below, the probability
that a cube contains plates of different types is low. In order to deduce the unlikeliness
of contours from the unlikeliness of the cubes of which it is made, and to control the
entropy of the contours, we will use methods coming from the Pirogov-Sinai theory of
phase transitions.

The strategy of the proof is very similar to the one of [6], in which a system of hard
rods in two dimensions was considered. The main technical novelty lies in the proof that
a cube of side � containing plates of different types (a ‘bad cube’) has exponentially small
probability in the big parameter ρk2+α . Once this is proved, the rest of the proof follows
closely the one in [6] and, therefore, we will not spell out all the details of the proofs,
and, instead, refer the reader to [6] in which very similar arguments are expounded.

As far as we know, our result is the first rigorous one for the onset of a nematic-
like phase in systems of finite-size particles, with finite-range interactions, in the three
dimensional continuum. For previous results, see [2,4,10,11,20,22]. We refer to the
introduction of [6] for a thorough, comparative, discussion of previous results. See also
[12] for a recent proof of the existence of nematic-like order in a monomer-dimer system
with attractive interactions.

Our inability to rigorously control the bi-axial nematic phase, as well as the optimal
range of densitieswhere uni-axial nematic is expected, is related to the highly anisotropic
shape of the excluded regions created by the hard core interaction around any given plate.
For instance, consider the range of densities between k−2 and k−1−α , where bi-axial
nematic order is expected. From the heuristic discussion above, it would be tempting to
think of the ‘uniformlymagnetized’ regions, where both the axes of the plates are mostly
aligned in a common direction, as a union of elementary slabs, each ofwhich is a translate
and/or rotation of the region J in (1). Even if natural, this choice creates difficulties in
the treatment of the ‘transition layers’ between different uniformly magnetized regions:
these layers, which are the basic constituents of the ‘Peierls’ contours’ generically have
a wild geometric shape, which does not allow us to derive simple bounds on their
probability, depending only on their volume. At least, the methods of this paper did not
allow us to overcome these difficulties: therefore, we limited ourselves to a range of
densities where paving the space in cubes allow us to derive effective bounds on the
probabilities of the ‘transition layers’, that is, of the connected components of the union
of bad cubes.

2. The Model and Main Results

We consider a finite cubic boxΛ ⊂ R
3 of side L , such that L +2� is divisible by 8�, with

� := k/2. This specific choice is technical and is motivated by the definitions of bad
regions and contours, see Definitions 2 and 3 below; it is conceptually unimportant, since
wewill eventually send L to infinity.We recall that plates are anisotropic parallelepipeds
of size 1×kα ×k, with k � 1 and α ∈ ( 34 , 1], with six possible orientations, as in Fig. 1.
We introduce the following notations. Given a plate p = (x, o) ∈ Λ × O =: ωΛ, let
Rp ⊂ R

3 denote the geometric support of the plate. Given X ⊂ R
3, p is said to belong

to X if x ∈ X ; p is said to intersect X (p ∩ X �= ∅) if Rp ∩ X �= ∅; p is said to be
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contained in X if Rp ⊂ X . In addition, given another plate p′, p is said to intersect p′
(p ∩ p′ �= ∅) if Rp ∩ Rp′ �= ∅.

The grand canonical partition function of the model at activity z > 0 with open
boundary conditions is defined as

Z0(Λ) = 1 +
∑
n≥1

zn

n!
∫

ωΛ

dp1 · · ·
∫

ωΛ

dpn ϕ(p1, . . . , pn) (2)

where
∫
ωΛ

dp is a shorthand for
∫
Λ
dx
∑

o∈O, and

ϕ(p1, . . . pn) =
∏
i< j

ϕ(pi , p j ), ϕ(p, p′) =
{
1 if p ∩ p′ = ∅,

0 if p ∩ p′ �= ∅.
(3)

Aswe shall see below, see thefirst remark afterTheorem1,fixing the activity is equivalent
to fixing the densities, at least in the range of densities we are interested in.

In order to prove the main result, we will pick boundary conditions in such a way that
one of the types of plates is favored over the others. We will then construct the various
infinite volume states by varying the boundary condition. In order to define the boundary
condition, we must introduce some additional notation.

We pave Λ by cubes of side �, called “blocks”, and by cubes of side 8�, called
“smoothing cubes” (since L +2� is divisible by 8�, the smoothing cubes actually exceed
the boundary ofΛ by 1 block). The lattice of the centers of the blocks is a lattice of mesh
�, called Λ′ and the lattice of the centers of the smoothing cubes is a lattice of mesh 8�,
called Λ′′. Given ξ ∈ Λ′, the block centered at ξ is denoted by Δξ , and given a ∈ Λ′′,
the smoothing cube centered at a is denoted by Sa . Given a set X ⊆ Λ that is a union
of blocks, we denote the coarse-grained version of X by X ′:

X =
⋃
ξ∈X ′

Δξ . (4)

We denote the L∞ distance on Λ by

d∞((x1, x2, x3), (y1, y2, y3)) := max{|xi − yi |, i ∈ {1, 2, 3}} (5)

and the rescaled L∞ distance on Λ′ by

d ′∞(ξ, η) := d∞(ξ, η)

�
. (6)

We introduce a coarse-grained spin model on Λ′: let ΘΛ′ denote the set of spin
configurations σ ≡ {σξ }ξ∈Λ′ with σξ ∈ {0, 1, 2, 3, 4}. Given a spin configuration σ ∈
ΘΛ′ and a plate configuration P ∈⋃n≥0 ωn

Λ =: ΩΛ, P is said to be compatible with σ

if it is such that, ∀ξ ∈ Λ′,

– if σξ = 0, then no plates belong to Δξ ,
– if σξ = i with i ∈ {1, 2, 3}, then every plate that belongs to Δξ is of type i (this
includes the case in which no plates belong to Δξ ),

– if σξ = 4, then Δξ contains at least two plates of different type.
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The set of plate configurations that are compatible with a given spin configuration
σ is denoted by ΩΛ(σ). In addition, given a block Δξ and a plate configuration P , we
denote the restriction of P toΔξ by Pξ , and we define the set of Pξ ’s that are compatible
with σξ by Ω

σξ

Δξ
(for example, Ω1

Δξ
⊂ ΩΔξ is the set of plate configurations in Δξ

consisting either of plates of type 1 or of the empty configuration). The subset of Ω
σξ

Δξ

consisting of configurations with n plates is denoted by Ω
n,σξ

Δξ
.

We rewrite the grand canonical partition function (2) in Λ with open boundary con-
ditions in terms of spin configurations:

Z0(Λ) =
∑

σ∈ΘΛ′

∫

ΩΛ(σ)

dP ϕ(P)z|P| (7)

and ∫

ΩΛ(σ)

dP :=
∏
ξ∈Λ′

∫

Ω
σξ
Δξ

dPξ ,

with
∫

Ω
σξ
Δξ

dPξ = z0(σξ ) + 1(σξ �= 0)
∑
nξ ≥1

1

nξ !
∫

Ω
nξ ,σξ
Δξ

dp1 · · · dpnξ (8)

in which 1(σξ �= 0) ∈ {0, 1} is equal to 1 if and only if σξ �= 0, and

z0(1) = z0(2) = z0(3) = 1, z0(0) = −2, z0(4) = 0. (9)

The value of z0 is the contribution of the empty configuration to the partition function,
and the fact that it equals −2 for spin-0 blocks compensates for the fact that the empty
configuration is over-counted by σξ = 1, 2, 3.

We now define the partition function with q boundary conditions, q ∈ {1, 2, 3},
denoted by Z(Λ|q):

Z(Λ|q) =
∑

σ∈Θ
q
Λ′

∫

ΩΛ(σ)

dP ϕ(P)z|P| (10)

where Θ
q
Λ′ ⊂ ΘΛ′ is the set of spin configurations, that are such that σξ = q if

d ′∞(ξ, (Z3\Λ)′) ≤ 8. The number 8 appearing here is related to the choice of smoothing
cubes of side 8� and to the fact that L = 8�m − 2�, for some integer m. This specific
choice is motivated by the definitions of good/bad regions and contours, introduced in
Sect. 4. In fact, the requirement that σξ = q if d ′∞(ξ, (Z3 \ Λ)′) ≤ 8 is equivalent to
the condition that the ‘boundary smoothing cubes’ (i.e., those intersecting Λc) are all
good with magnetization q, that is, all the sampling cubes that they intersect are good
and have magnetization q, in the sense of Definition 2.

Remark. The definition of Z(Λ|q) in (10) does not require that Λ is a cube: it holds
in the more general case that Λ is a connected region obtained by taking a union of
smoothing cubes and removing all blocks whose center is at d ′∞-distance equal to 1
from the complement set.

In the following we will be interested in the n-point correlation functions with q-
boundary conditions, defined as

ρ
(q)
n (p1, . . . , pn) := lim

Λ↗R3
ρ

(q,Λ)
n (p1, . . . , pn) (11)



Plate-Nematic Phase in Three Dimensions 335

with

ρ
(q,Λ)
n (p1, . . . , pn) := 1

Z(Λ|q)

∑

σ∈Θ
q
Λ′

∫

ΩΛ(σ)

dP z|P|+nϕ
(
(p1, . . . , pn) ∪ P

)
. (12)

Theorem 1 (Nematic order).Given α ∈ ( 34 , 1], there exist positive constants c1,C1, c2,
c3, c4, such that if zk3−α ≤ c1 and zk3α/ log k ≥ C1, then for any q ∈ {1, 2, 3},
ρ

(q)
1 (x, o) and ρ

(q)
2

(
(x1, o1), (x2, o2)

)
exist and are invariant under translations, that is,

ρ
(q)
1 (x, o) = ρ

(q)
o and ρ

(q)
2

(
(x1, o1), (x2, o2)

) = ρ
(q)
o1,o2(x1 − x2). Moreover, letting

ε := max{(zk2)c2 , e−c3zk2+α } (13)

we have, for m �= q,

ρ
(q)
qa = ρ

(q)
qb = z(1 + O(ε)), ρ

(q)
ma = ρ

(q)
mb = O(zε) (14)

and
ρ

(q)
o1,o2(x1 − x2) − ρ

(q)
o1 ρ

(q)
o2 = ρ

(q)
o1 ρ

(q)
o2 O(εc4|x1−x2|/k). (15)

This theorem states that, in the presence of q boundary conditions, most particles
are of type q (existence of orientational order), and the truncated two-point correlation
function decays exponentially (absence of positional order).

Remark. The proof provides much more detailed information on the set of correlations
than what is explicitly stated: in fact, our construction may be applied to the computation
of the whole set of correlation functions in terms of a convergent cluster expansion,
analogous to the one given in Theorem 2. In particular, the equation for the total density
as a function of the activity, of the form ρ = 2z(1+O(ε)), can be inverted via the analytic
implicit function theorem, and leads to an equation of the form z = 1

2ρ(1 + O(ε)):
therefore, as anticipated above, fixing the activity or the density is equivalent. We also
expect that all higher order density correlations satisfy the cluster property, in analogy
with the two-point function in (15), hence the infinite volumeGibbs statewithq boundary
conditions is pure.

Remark. In order to compute the correlation functions, one can replace the activity zwith
a plate-dependent activity z̃(p) and express the n-point truncated correlation function in
terms of the partition function with the modified activities:

zn
δn

δz̃(p1) · · · δz̃(pn) log Z(Λ|q)

∣∣∣∣
z̃(p)≡z

. (16)

It is, therefore, sufficient to compute thepartition functionwith aplate-dependent activity.

2.1. Strategy of the proof. The proof of our main theorem will be split in several steps,
which are summarized here.

1. We first reformulate the model in terms of contours, which interact via an expo-
nentially decaying potential. The contours arise after coarse graining the hard plate
system to the spin model introduced above: the contours can be thought of as the
transition layers between different uniformly magnetized regions. The interaction
between contours is computed using a cluster expansion.
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2. We then map the interacting contour model to a hard core polymer model. In order to
compute the pressure of the effective interacting contour model, we perform aMayer
expansion of the multi-contour interaction, to quote D. Brydges [5]: “If at first you
do not succeed, then expand and expand again”. After this second expansion, the
polymer model has a purely hard core interaction.

3. The hard core polymer model can be treated by standard cluster expansion methods,
provided the activity of the contours is exponentially small in their size. This is
to be expected, because the transition layers contain many bad blocks, i.e., cubes
containing more than one plate orientations. The key technical lemma is a proof
that the probability of a single bad block is small, under the assumptions of our
main theorem (see Lemma 1). Building upon this, we obtain the desired estimate on
the activity of the contours. A subtle point is that the contour activities are defined
inductively, in the spirit of Pirogov-Sinai theory [13,18] therefore, obtaining the
bound on the contour activity from the single-block estimate requires an inductive
proof, starting from the smaller contours, and then working our way up to larger ones,
which may contain smaller contours in their interior(s).

The proof closely follows that in [6], in which a two-dimensional model of hard
rods was considered. The important novelty of the present work is to show that the bad
blocks mentioned above are, indeed, unlikely to exist (in [6], the analogous statement
was trivial). For this reason, we will first present, in Sect. 3, the proof that bad blocks
are improbable, and then present the remaining arguments, omitting those parts that are
mere repetitions of [6]. More precisely, in Sect. 4 we introduce the contour and hard core
polymer representations for the partition function with constant activities, and in Sect. 5
we prove their convergence. Finally, in Sect. 6, we discuss the minor differences arising
in the presence of a plate-dependent activity, which, as remarked above, is required
for the computation of correlation functions, and we explain how to prove the bounds
(14)–(15).

3. Bad Blocks and Dipoles

In this section we prove two basic bounds on the probability of bad blocks (that is, blocks
Δξ with spin σξ = 4) and bad dipoles (that is, pairs of neighboring blocks Δξ ,Δη with
spins σξ , ση ∈ {1, 2, 3} and σξ �= ση).

Lemma 1 (Bad blocks).Given a blockΔwhich, we recall, is a k/2×k/2×k/2 cube, let
Z≥2(Δ) denote the partition function of plate configurations inΔ containing at least two
different types of plates, and, for q ∈ {1, 2, 3}, let Zq(Δ) denote the partition function
of type-q plates in Δ:

Zq(Δ) =
∫

ΩΔ(q)

dP ϕ(P)z|P|. (17)

There exist positive constants c5, c6,C2 such that, if zk3−α ≤ c5 and zk3α ≥ C2 log k,
then

Z≥2(Δ)

Zq(Δ)
≤ e−c6zk2+α

. (18)

Proof of Lemma 1. The main idea of the proof is the following. In the uniformly magne-
tized system, the blockΔ containsmany plates in the two directions qa and qb.Whenever
two types of plates coexist, there must, because of the hard core interaction, be a bound-
ary layer between plates of different types, of thickness kα , in which only one of the
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two directions is allowed. The volume of this layer is of the order of k2+α , which means
that the volume that plates can occupy in Z≥2(Δ) is smaller than that in Zq(Δ) by k2+α .
Furthermore, since, as will be shown below, plate partition functions are exponential in
the volume of the available space, this yields a gain factor of order e−zk2+α

.
In order to estimate the partition functions appearing in this proof, a key tool will be

the Mayer expansion. The following estimates will often be used. Let S be a subset of
R
3, not necessarily a union of boxes. LetΩo

S , resp.Ω
q
S , be the set of plate configurations

of orientation o ∈ {1a, 1b, 2a, 2b, 3a, 3b}, resp. of type q ∈ {1, 2, 3}, and center in
S; we also denote by Ω

n,o
S , resp. Ω

n,q
S , the restriction of Ωo

S , resp. Ω
q
S , to the n-plate

configurations. Then,

log
∫

Ωo
S

dP ϕ(P)z|P| = |S|z(1 + O(zk1+α)),

log
∫

Ω
q
S

dP ϕ(P)z|P| = 2|S|z(1 + O(zk2)), (19)

where
∫
Ωo

S
dP = 1+

∑
n≥1

1
n!
∫
Ω

n,o
S

dp1 · · · dpn and
∫
Ω

q
S
dP = 1+

∑
n≥1

1
n!
∫
Ω

n,q
S

dp1 · · ·
dpn . This result is a simple extension of the convergence theorems proved for identical
particle systems in [9,17,19], and follows from the general theory of cluster expansions,
discussed at length in many references, among which [5,7,14,21], see also [6, Section
4.2] for a brief introduction. The factors zk1+α and zk2 come from the interaction volumes
among plates with the same orientation and same type, respectively.

TheMayer expansion allows us to estimate the partition function of uniformlymagne-
tized systems, but may not be used whenever several types of plates coexist. To treat this
last case, we proceed as follows. We split the block Δ into smaller kα/2× kα/2× kα/2
cubes, which we call pebbles. Because of the hard core interaction between plates, each
pebble may only contain plates of a single type. Since zk3α � 1 each pebble δ still
contains many plates, and the corresponding partition function can be evaluated by a
Mayer expansion: for q = 1, 2, 3 we have by (19),

Zq(δ) :=
∫

Ω
q
δ

dP ϕ(P)z|P| = e
1
4 zk

3α(1+O(zk2)) (20)

where we used the fact that the volume of the pebble is |δ| = k3α/8.
Given a configuration of plates inΔ, we color each pebble according to the following.

– Every pebble containing at least one plate of type 1 is colored red, of type 2 is
colored green, and of type 3 is colored blue.

– Empty pebbles are colored black.

Every pebble that contains at least two plates with different orientations is called typical.
Pebbles that are not typical are called atypical: every such pebble may be empty, or
contain only plates with the same orientation. Atypical pebbles owe their name to their
low probability: given an atypical pebble δ and denoting the partition function of atypical
configurations in δ by Z (a)(δ) := ∑o∈O

∫
Ωo

δ
dP ϕ(P)z|P| − 5, where 5 compensates

the over-counting of empty configurations in the first addend, we have, by (19),

Z (a)(δ) = 6e
1
8 zk

3α(1+O(zk2)) − 5. (21)
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Hence
Z (a)(δ)

Zq(δ)
≤ 6e− 1

8 zk
3α(1+O(zk2)). (22)

Themain idea of the proof is to show that, whenever there are at least two types of plates,
Δ must contain a large number of atypical pebbles, from which we will prove (18).

Let us show that, if Δ contains at least two different types of plates, it contains at
least k2(1−α)/2 atypical pebbles: the proof is based on the two following properties of
colorings, which follow from simple geometric considerations:

(∗1) given a typical pebble of some color, the three k/2 × k/2 × kα/2 tiles that are,
respectively, orthogonal to directions 1, 2 and 3 and contain the pebble, cannot
contain a typical pebble of another color.

(∗2) given a non-empty atypical pebble of some color, at least one of the three k/2 ×
k/2 × kα/2 tiles that are, respectively, orthogonal to directions 1, 2 and 3 and
contain the pebble, cannot contain a typical pebble of another color.

We will now separately consider the cases in which there is only one color of typical
pebbles, and those in which there are at least two (if there are no typical pebbles then
there are, trivially, k3(1−α) atypical pebbles).

We first consider the case inwhich there is only one color of typical pebbles. By virtue
of the fact that Δ contains at least two types of plates, there exists a non-empty atypical
pebble δ of a different color. By property (∗2), there is at least one k/2 × k/2 × kα/2
tile containing δ that only contains atypical pebbles, of which there are k2(1−α).

Next, we consider the case in which there are typical pebbles of at least two different
colors. We denote the set of typical red, green and blue pebbles by Rt , Gt and Bt ,
respectively, and their projection in direction 3 onto the lower horizontal face of Δ (i.e.,
its ‘floor’) by rt , gt and bt . By property (∗1), rt , gt and bt are disjoint. We assume,
without loss of generality, that Rt �= ∅ and Gt �= ∅. There exists at least one pebble
δr in Rt above rt , and by property (∗1), all the pebbles at the same height as δr that
are not above rt are atypical: therefore, there are at least k2(1−α) − |rt | of them. If
|rt | ≤ k2(1−α)/2, then we are done. If not, then consider a pebble δg in Gt ; by property
(∗1), all the pebbles at the same height as δg that are above rt are atypical: therefore,
there are at least |rt | > k2(1−α)/2 of them.

Now, given a plate configuration P , we split

Δ =
(
Δ

(t)
1 (P) ∪ Δ

(t)
2 (P) ∪ Δ

(t)
3 (P)

)
∪ (δ1(P) ∪ · · · ∪ δN (P)) (23)

in which Δ
(t)
i (P) is the union of typical pebbles of type i , and δ j (P) is an atypical

pebble. By the discussion above, N ≥ k2(1−α)/2, whenever Δ contains at least two
types of plates. We thus have

Z≥2(Δ) =
k3(1−α)∑

N=k2(1−α)/2

∑

Δ(t)≡(Δ
(t)
1 ,Δ

(t)
2 ,Δ

(t)
3 )

δ≡(δ1,··· ,δN )

Z∗(Δ(t), δ) , (24)

in which the sum over Δ(t) and δ is the sum over subsets for which there exists a plate
configuration P such that Δ(t) ≡ Δ(t)(P) and δ ≡ δ(P), and Z∗(Δ(t), δ) is the partition
function of plate configurations P such thatΔ(t)(P) ≡ Δ(t) and δ(P) ≡ δ. Furthermore,
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Z∗(Δ(t), δ) ≤
(

3∏
i=1

Zi (Δ
(t)
i )

)⎛
⎝

N∏
j=1

Z (a)(δ j )

⎞
⎠ (25)

and, by (19) with |S| = |Δ(t)
i | ≤ k3/8, it holds for every i, q ∈ {1, 2, 3},
Zi (Δ

(t)
i ) = Zq(Δ

(t)
i )eO(zk3zk2). (26)

We now split the denominator Zq(Δ), which, we recall, is the partition function with at
most one type of plates. By (19),

Zq(Δ) =
(

3∏
i=1

(
Zq(Δ

(t)
i )eO(zk3zk2)

))
⎛
⎝

N∏
j=1

(
Zq(δ j )e

O(zk3αzk2)
)
⎞
⎠ . (27)

Thus, by (22), (25), (26), (27),

Z∗(Δ(t), δ)

Zq(Δ)
≤ eO(zk3zk2) 6Ne− N

8 zk
3α(1+O(zk2)) (28)

which we plug into (24), thus getting

Z≥2(Δ)

Zq(Δ)
≤ eO(zk3zk2)

k3(1−α)∑

N=k2(1−α)/2

(
k3(1−α)

N

)
e− N

8 zk
3α(1+O(zk2))(6C)N , (29)

for some constant C > 0. Here CN
(k3(1−α)

N

)
is an upper bound for the number of terms in

the sum overΔ(t) and δ. To see this, an observation that plays a key role is thatΔ(t)
1 ,Δ

(t)
2

andΔ
(t)
3 must bemutually disconnected, because of property (∗1) [note: two pebbles that

touch at an edge or a corner are considered as disconnected]. Therefore, each connected
component of Δ(t) = Δ

(t)
1 ∪ Δ

(t)
2 ∪ Δ

(t)
3 is either of type 1, or 2, or 3; moreover, it must

be adjacent to at least one atypical pebble, which implies that the number of connected
components of Δ(t) is certainly smaller than 6N (here 6 is the number of faces of an
atypical pebble). Given these observations, it is easy to count the number of terms in the
sum overΔ(t) and δ: in fact, we can first choose the atypical pebbles, which costs a factor

smaller or equal than
(k3(1−α)

N

)
, and then sum over the partitions ofΔ(t) into the three sets

Δ
(t)
1 ,Δ

(t)
2 ,Δ

(t)
3 . Such a sum over partitions costs at most a factor 3N

′
, where N ′ is the

number of connected components of Δ(t), and 3 is the number of ‘colors’ (that is, 1, 2
or 3) that we can attach to each connected component. As observed above, N ′ ≤ 6N ,
so that the constant C in (29) is smaller than 36. From (29) we immediately get:

Z≥2(Δ)

Zq(Δ)
≤ eO(zk3zk2)e− 1

32 k
2(1−α)·zk3α(1+O(zk2))

·
k3(1−α)∑
N=0

(
k3(1−α)

N

)
e− 1

16 Nzk3α(1+O(zk2))(6C)N

= eO(zk3zk2)e− 1
32 zk

2+α(1+O(zk2))
(
1 + 6Ce− 1

16 zk
3α(1+O(zk2))

)k3(1−α)

≤ exp

(
− 1

32
zk2+α

(
1 + O(zk3−α) + O(z−1k1−4αe− 1

17 zk
3α

)
)

,

)
(30)
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where the exponent 1
17 in the last line may be replaced by any exponent smaller than 1

16 ,

for zk2 sufficiently small. The last term can be bounded as follows z−1k1−4αe− 1
17 zk

3α =
1

zk3α
k1−αe− 1

17 zk
3α � k1−αe− 1

17 zk
3α

. This, provided zk3α � log k and zk3−α � 1,
implies (18). ��
Corollary 1 (Bad dipoles). Given two blocks Δ1 and Δ2 that have a common face, let
Z≥2(Δ1 ∪ Δ2) denote the partition function of plates in Δ1 and Δ2, that are such that
Δ1 and Δ2 are uniformly magnetized and have different magnetizations. There exist
positive constants c7, c8,C3 such that, if zk3−α ≤ c7 and zk3α ≥ C3 log k, then

Z≥2(Δ1 ∪ Δ2)

Zq(Δ1 ∪ Δ2)
≤ e−c8zk2+α

. (31)

Proof of corollary 1. Consider the k/2 × k/2 × k/2 cube Δ that has half its volume in
Δ1 and half in Δ2. Without loss of generality, we assume that Δ1 is to the left of Δ2
in direction 1. Since Δ1 and Δ2 are uniformly magnetized and have different magne-
tizations, the plate configuration restricted to the central cube Δ either has two plates
of different types, or is at least half empty. In the second case, we may assume without
loss of generality that all plate centers belong to the left half of the cube. Therefore, we
bound

Z≥2(Δ1 ∪ Δ2) ≤
∑

≤i, j≤3 :
i �= j

Z i (Δ1 \ Δ)
[
2Z1,∅(Δ) + Z≥2(Δ)

]
Z j (Δ2 \ Δ)

= 6 Zq(Δ1 \ Δ)
[
2Z1,∅(Δ) + Z≥2(Δ)

]
Zq(Δ2 \ Δ)eO(zk3zk2),

(32)

where Z1,∅(Δ) is the partition function of plate configurations in Δ, such that the plates
are all of the same type, and the right half of the box is empty, i.e., contains no plate
centers. Using (19), we find

Z1,∅(Δ) = 3Zq(Δ)e− 1
8 zk

3+O(zk3zk2) (33)

and
Zq(Δ1 ∪ Δ2) = Zq(Δ1 \ Δ)Zq(Δ)Zq(Δ2 \ Δ)eO(zk3zk2). (34)

The corollary then follows directly from these two equations and from Lemma 1. ��

4. The Contour Theory

In this section, we construct first the interacting contour model and then the hard core
polymer system that were mentioned above. The basic idea of the construction of the
contours is that a spin configuration can be seen as a union of connected ‘uniformly
magnetized regions’ (union of blocks that all have the same spin, equal to q ∈ {1, 2, 3}),
and boundary regions where either the spin changes, or there are ‘defects’ (blocks with
spin equal to 0 or 4). Contours will be defined as structures that comprise information
about the location and nature of these boundaries, as well as the value of the spin on
either side of the boundary. To make this precise, we must first locate the boundary,
which we do by defining the concepts of ‘good’ and ‘bad’ regions.
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Fig. 3. The sampling cube associated to the red (color online) block

4.1. Goodness, badness and contours.

Definition 1 (Sampling cubes). Given ξ ∈ Λ′, we define the sampling cube associated
to ξ as

Sξ =
⋃

η∈Λ′
0≤ηi−ξi≤�

Δη (35)

where ξi and ηi , i = 1, 2, 3, are the coordinates of ξ, η ∈ Λ′ (see Fig. 3). Note that if
d ′∞(ξ,Λ′

c) > 1, then Sξ contains exactly 8 blocks.

Definition 2 (Good and bad regions). Given a spin configuration σ ∈ ΘΛ′ , a sampling
cube Sξ is said to be

– good if the spins inside Sξ are all equal, and σξ ∈ {1, 2, 3}. In this case, σξ is called
the magnetization of the sampling cube.
– bad otherwise, that is, every bad sampling cube either contains at least one spin
equal to 0 or 4, or it contains at least one pair of neighboring blocks with different
spins.

Furthermore, we define
B(σ ) :=

⋃
ξ∈Λ′: Sξ is bad

Sξ (36)

as the union of all bad sampling cubes, as well as the coarser set

Bs(σ ) :=
⋃

a∈Λ′′: Sa∩B(σ ) �=∅
Sa , (37)

(the lattice Λ′′ and the smoothing cubes Sa were defined in Sect. 2). Finally, we define
the “bad region” by adding a layer of blocks to Bs :

B̄(σ ) =
⋃

ξ∈Λ′: d ′∞(ξ,Bs (σ ))≤1

Δξ (38)

(see Fig. 4).
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Fig. 4. Example of a bad region (or, rather, a section of a (3-dimensional) bad region): the green (color online)
regions are the bad sampling cubes, the gray or green regions are the bad smoothing cubes, and the blue region
consists of the extra cubes added in (38)

Remark. In other words, the bad region is a coarse version of the set of blocks which
are either empty or contain several plate types, or whose neighbors have a different spin.
The reason why we made this set coarser is to ensure that plates in different connected
components of Λ \ B̄(σ ) do not interact directly, which simplifies the construction of
the contour expansion discussed below. Indeed, with our choice, different components
are at least at an L∞-distance 2�, see Fig. 4. Moreover, our choice guarantees that the
distance between two different connected components of B̄(σ ) is larger than 6�, which
implies that the effective interaction among contours, calledW (Λ)(∂) in Lemma 2 below,
is conveniently small, since it is mediated by at least three plates; this condition will be
used, in particular, in the proof of Lemma 4.

Let Γ be one of the connected components of B̄(σ ). Let hΓ + 1 ≥ 1 denote the
number of connected components of Λ \ Γ . One of these components is adjacent to
Z
3 \ Λ, and is, naturally, identified as the exterior of Γ , which we denote by Ext Γ .

When hΓ ≥ 1, the additional connected components of Λ \ Γ are called interiors of
Γ , which we denote by Int jΓ , j = 1, · · · , hΓ . For future reference, we denote by Int

the set of all possible such interiors, as we let the spin configuration σ vary in Θ
q
Λ′ , and

the box Λ grow. Note that Λ is in Int, and any element B ∈ Int satisfies the properties
spelled out in the remark after (10). By construction, if B ∈ Int, then B has no interior.

Definition 3 (Contours). Given q ∈ {1, 2, 3}, a spin configuration σ ∈ Θ
q
Λ′ and a plate

configuration P ∈ ΩΛ(σ), we associate a contour γ := (Γγ , σγ , Pγ ) to each connected
component of B̄(σ ). Here

– Γγ is the connected component of B̄(σ ), and is called the support of the contour;
– σγ is the restriction of the spin configuration σ to Γγ ;
– Pγ is the restriction of the plate configuration P to Γγ .

By the definition of B̄(σ ), all the blocks in

∂extΓγ :=
⋃

ξ∈Γ ′
γ : d ′∞(ξ,(ExtΓγ )′)=1

Δξ (39)
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have the same magnetization, which we denote by mext,γ ∈ {1, 2, 3}. Similarly, all the
blocks in

∂int, jΓγ :=
⋃

ξ∈Γ ′
γ : d ′∞(ξ,(Int jΓγ )′)=1

Δξ

have the same magnetization, which we denote by m j
int,γ . See Fig. 4, where the regions

∂extΓγ and ∂int, jΓγ are colored in blue. The collection of all the contours associatedwith
(σ, P) is called the contour configuration associated with (σ, P) and will be denoted by
the symbol ∂ .

Remark. A contour γ must satisfy a number of constraints. For instance:

– Γγ must be a union of smoothing cubes, of an external layer and (possibly, if
∪ j Int jΓγ �= ∅) of internal layers, compatibly with the definition of B̄(σ ), see (38);

– the spin configuration σγ must be such that every sampling cube intersecting ∂extΓγ

is good, with magnetizationmext,γ , and similarly for the sampling cubes intersecting
∂int, jΓγ ;

– the spin configuration σγ must be such that each smoothing cube contained in Γγ

intersects at least one bad sampling cube;
– Pγ must be compatible with σγ .

We denote the set of possible contour configurations with q boundary conditions,
excluding the empty configuration, by C(Λ|q): this is the set of non-empty contour
configurations ∂ for which there exist σ ∈ Θ

q
Λ′ and P ∈ ΩΛ(σ) such that ∂ is the

contour configuration associated to (σ, P). The contour configurations ∂ ∈ C(Λ|q) are
fully characterized by the following properties: each γ ∈ ∂ is possible (that is, there exist
σ ∈ Θ

q
Λ′ and P ∈ ΩΛ(σ) such that γ is one of the contours associated to (σ, P));Γγ and

Γγ ′ are disconnected, for all pairs of distinct contours γ, γ ′ ∈ ∂; the external/internal
magnetizations of the contours in ∂ satisfy a compatibility condition, namely, if Γγ ,
with γ ∈ ∂ , is immediately contained (We say that Γγ , with γ ∈ ∂ , is ‘immediately
contained’ in Int jΓγ ′ , with γ ′ ∈ ∂ , if Γγ ⊂ Int jΓγ ′ and there exists no other contour
γ ′′ ∈ ∂ such that Γγ ⊂ Int j ′Γγ ′′ ⊂ Int jΓγ ′ .) in the interior Int jΓγ ′ of another contour

γ ′ ∈ ∂ , then mext,γ = m j
int,γ ′ . In terms of these definitions, we can rewrite the partition

function (10) as
Z(Λ|q) = Zq(Λ) +

∑
∂∈C(Λ|q)

Z∂ (Λ|q) (40)

where Z∂ (Λ|q) denotes the partition function of plate configurations whose associated
contour configuration is ∂ . Note that the sum over C(Λ|q) is actually an integral, since
it includes an integral over the position of plates inside contour supports. This equality
is tautological, and, as such, not all that helpful. Indeed, the compatibility condition
among the external/internal magnetizations of the contours, mentioned above, induces
an effective long-range interaction between them, which prevents us from using a cluster
expansion to compute the partition function of the contour model. This interaction can
be eliminated, as stated in Lemma 2 below.

4.2. Interacting contour representation. In addition to C(Λ|q), we introduce another set
C(Λ, q) of contour configurations. We say that ∂ ∈ C(Λ, q), if the following properties
are verified: each contour γ ∈ ∂ is possible (in the same sense spelled out above, see a few
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lines above (40));Γγ andΓγ ′ are disconnected, for all pairs of distinct contours γ, γ ′ ∈ ∂;
the external magnetizationmext,γ is equal to q, for all γ ∈ ∂ . Note that, by definition, the
externalmagnetization of every contour in a contour configuration ∂ ∈ C(Λ, q) isq, even
in situations where a contour is immediately contained in another contour whose internal
magnetization is different from q. Therefore, the contour configurations in C(Λ, q) are
not possible contour configurations in the sense given in the previous section, but this is
not a problem. On the contrary, summing over the contour configurations in C(Λ, q) is
crucial to avoid long-range interactions between contours, thus allowing us to perform
a cluster expansion of the contour theory. The desired contour representation of the
partition function is summarized in the following lemma.

Lemma 2 (Contour expansion).The conditioned partition function Z(Λ|q), q = 1, 2, 3,
can be written as

Z(Λ|q)

Zq(Λ)
= 1 +

∑
∂∈C(Λ,q)

⎛
⎝∏

γ∈∂

ζ (Λ)
q (γ )

⎞
⎠ eW

(Λ)(∂) (41)

where:

– ζ
(Λ)
q (γ ) is the activity of γ :

ζ (Λ)
q (γ ) := ζ 0

q (γ ) exp

(
−
∫

Ω
q
Λ

dP ϕT (P)z|P|Fγ (P)

)
(42)

with

Fγ (P) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if there exist two plates p1, p2 in P such that
p1 belongs to Λ \ Γγ and p2 belongs to Γγ ,

1 if there exists a plate p1 in P that belongs to Ext Γγ

and a plate p2 in Pγ such that p1 ∩ p2 �= ∅,

0 otherwise

(43)

and

ζ 0
q (γ ) := z|Pγ |ϕ(Pγ )

Zq(Γγ )

hΓ∏
j=1

Z (γ )(Int jΓγ |m j
int,γ )

Z(Int jΓγ |q)
, (44)

in which Z (γ )(A|m), with A ∈ Int (recall that Int was introduced right before
Definition 3), is the partition function of plates in A with m-boundary conditions,
with the constraint that plates must not intersect plates in Pγ , defined in a way
analogous to (10) (cf. also with the remark after (10)):

Z (γ )(A|m) =
∑

σ∈Θm
A′

∫

ΩA(σ )

dP ϕ(P ∪ Pγ )z|P|. (45)

Moreover, the function ϕT (P) in (42) is the Ursell function: ϕT (∅) = 0 (hence
|P| ≥ 1), ϕT (p) = 1 and, if n ≥ 2,

ϕT (p1, · · · , pn) :=
∑

g∈GT (n)

∏
{ j, j ′}∈E(g)

(ϕ(p j , p j ′) − 1) (46)
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in which GT (n) is the set of connected graphs on n labeled vertices, and E(g) is the
set of undirected edges of the graph g. In particular, ϕT (P) vanishes if

⋃
p∈P Rp is

disconnected.
– W (Λ)(∂) is the interaction between the contours in ∂: if |∂| = 1, then W (Λ)(∂) = 0,
and if |∂| ≥ 2, then

W (Λ)(∂) =
∫

Ω
q
Λ

dP ϕT (P)z|P|∑
n≥2

(−1)n

n!
∗∑

γ1,··· ,γn∈∂

Fγ1(P) · · · Fγn (P) (47)

where the ∗ on the sum indicates the constraint that γ1, · · · , γn are all distinct.

Remark. Note that Fγ (P) �= 0 only when either P has two intersecting plates, one of
which belongs to the contour’s support, and the other to its complement (hence |P| ≥ 2)
or P has a plate intersecting one of the plates in the contour (in this case we may have
|P| = 1).

Remark. Note that the second condition in (43) requires that p1 belongs to a block Δξ

such that d ′∞(ξ, Γγ ) ≤ 2.

Remark. As we will prove in the following, the interaction eW
(Λ)(∂) is a short-range

interaction, that is, it decays exponentially with the distance between contours. This
property is essential to the convergence of the cluster expansion of the contour model.

Remark. For future reference, we note that the constrained partition function in (45) can
be rewritten in a form that does not involve summation over spins:

Z (γ )(A|m) =
∫

Ωm
∂A

dP ϕ(P ∪ Pγ )z|P|
∫

ΩA◦
d P̃ ϕ(P̃ ∪ P)z|P̃|, (48)

where ∂A = ∪ξ∈A′:d ′∞(ξ,(ExtA)′)≤8Δξ is the layer of blocks that are uniformlymagnetized
by the boundary conditions, and A◦ = A \ ∂A. On the other hand, this expression is
equivalent to

Z (γ )(A|m) =
∫

Ωm
∂A\Vm (Pγ )

dP ϕ(P)z|P|
∫

ΩA◦
d P̃ ϕ(P̃ ∪ P)z|P̃|

=: Z(A \ Vm(Pγ ) |m), (49)

where Vm(Pγ ) is the excluded volume created by the plates in Pγ on those in P . Note
that A \ Vm(Pγ ) is an element of Int′, where

Int′ :=
{
A \ V : A ∈ Int and V ⊂ R

3 such that V ⊂
⋃

xi∈A′:
d ′∞(ξ,(ExtA)′)≤2

Δξ

}
. (50)

The idea of the proof is to first map the plate model to one of external contours, which
are contour configurations such that a contourmay not lie inside another.We then rewrite
the partition function as a sum over external contours of the activity of the contour times
the partition function inside each contour. Now, the boundary of this partition function
is dictated by the internal magnetizations of the contours. To remove this dependence,
we replace the boundary condition with q, at the price of including an extra factor in
the activity of the contour, which is the second ratio in (44). The construction is then
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iterated, and yields a model of contours whose external magnetization is always q. This
eliminates the long-range interaction between contours. The short-range interaction,
mediated by the plates between contours, which are, by construction, all of type q, is
then computed using a Mayer expansion.

The proof of this lemma is entirely analogous to that of [6, Lemma 1], and is left to
the reader.

4.3. Hard core polymer representation. The contours in (41) interact with each other,
due to the presence of the many-body potential W (Λ)(∂). In order to set up the cluster
expansion, we will first map the interacting contour model to a hard core polymer model.
In order to formulate our next technical lemma, we need a couple more definitions. We
letB(Λ) be the set of unions of blocks in Λ, andBT (Λ) the set of D-connected unions
of blocks in Λ (with the prefix “D” meaning “diagonal”): here we say that two blocks
are D-connected if they touch either on a face, or on an edge or at a corner; of course,
if they are not D-connected, we say that they are D-disconnected.

Lemma 3 (Polymer expansion). We have

Z(Λ|q)

Zq(Λ)
= 1 +

∑
n≥1

1

n!
∑

X1,...,Xn∈BT (Λ)

φ(X1, . . . , Xn)

n∏
i=1

K (Λ)
q (Xi ) (51)

where:

– φ({X1, · · · , Xm}) ∈ {0, 1} is equal to 1 if and only if Xi and X j are D-disconnected
for all i �= j .
– K (Λ)

q (X) is the activity of X:

K (Λ)
q (X) := K (Λ)

q,1 (X) + K (Λ)
q,≥2(X) (52)

with
K (Λ)
q,1 (X) :=

∑
γ∈C1(Λ,q)

Γγ =X

ζ (Λ)
q (γ ) (53)

and

K (Λ)
q,≥2(X) := ∑

X0,X1∈B(X)
X0∪X1=X

∑
∂∈C≥2(Λ,q)

Γ∂=X0

(∏
γ∈∂ ζ

(Λ)
q (γ )

)

·∑p≥1
1
p!
∑∗

Y1,··· ,Yp⊂BT (X)

Y1∪···∪Yp=X1

(∏p
j=1

(
eF∂ (Y j ) − 1

))
(54)

in which: C1(Λ, q) and C≥2(Λ, q) denote the sets of contour configurations with,
respectively, a single contour, and at least two contours; Γ∂ ≡ ⋃γ∈∂ Γγ ; the ∗ on
the sum indicates that the sets Y1, · · · ,Yp are different from each other;

F∂ (Y ) :=
∑
n≥2

(−1)n

n!
∗∑

γ1,··· ,γn⊂∂

∫

Ω
q
Λ

dP z|P|ϕT (P)Fγ1(P) · · · Fγn (P)IY (P) (55)

where IY (P) ∈ {0, 1} is equal to 1 if and only if Y is the smallest D-connected union
of blocks that is such that every plate is contained in Y (that is, the support of every
plate is a subset of Y ).
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Remark. The sets Y1, · · · ,Yp are not necessarily disconnected, but they are different
from each other. By the definitions ofF∂ (Y ) and Fγ (P), it follows thatF∂ (Y ) �= 0 (that
is, eF∂ (Y j ) − 1 �= 0) only if Y is D-connected with at least two contours in ∂: in order to
prove this fact, it is crucial that every plate is contained in Y . Therefore, the sum over
Y1, . . . ,Yp in (55) can be restricted to elements inBT (Λ) that are D-connected with at
least two contours in ∂ .

The proof of this lemma is fairly straightforward, and virtually identical to [6,
Lemma 2]. The key identity is

eW
(Λ)(∂) = e

∑
n≥2

(−1)n

n!
∑∗

γ1,··· ,γn∈∂

∫
Ω
q
Λ
dP ϕT (P)z|P|Fγ1 (P)···Fγn (P)

=
∏

Y∈BT (Λ)

[
(eF∂ (Y ) − 1) + 1

]
. (56)

The only real difference is that the sets Yi cover all the plates responsible for the inter-
action between contours, whereas in [6], only the extremal blocks are kept (in [6], the
analog of the sets Yi are denoted by Y i ). The details are left to the reader.

5. Convergent Cluster Expansion

In this section we prove the convergence of the contour expansions introduced above.
The results of this section justify a posteriori the definitions given in the previous section,
in particular the specific form of the contour representation and of the polymer expansion
that we chose and introduced. The key problem is to estimate the contour and polymer
activities, which is not trivial, since they involve ratios of partition functions in their
interiors, see (44), which must be estimated inductively. Once a smallness condition on
the activities is known, the convergence of the expansion is ‘trivial’, in the sense that it
follows from the classical theory of the cluster expansion. The main convergence result
of this section is summarized in the following theorem.

Theorem 2 (Polymer cluster expansion). Given α ∈ ( 34 , 1], if zk3−α and log k/(zk3α)

are sufficiently small, then
|K (Λ)

q (X)| ≤ ε̄|X ′| (57)

with
ε̄ := max{(zk2)c9 , e−c10zk2+α }, (58)

for suitable constants c9, c10 > 0. Furthermore,

log Z(Λ|q) = log Zq(Λ)+
∑
n≥1

1

n!
∑

X1,...,Xn∈BT (Λ)

φT (X1, . . . , Xn)

n∏
i=1

K (Λ)
q (Xi ) (59)

where φT is the Ursell function: φT (∅) = 0, φT (X) = 1 and, if n ≥ 2,

φT (X1, · · · , Xn) :=
∑

g∈GT (n)

∏
{ j, j ′}∈E(g)

(φ(X j , X j ′) − 1) (60)

in which GT (n) is the set of connected graphs on n labeled vertices, and E(g) is the set
of undirected edges of the graph g. In particular, φT (X1, . . . , Xn) vanishes if

⋃
i Xi is
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D-disconnected. Finally, the sum in the right side of (59) is absolutely convergent: for
all X0 ∈ BT (Λ), ∀m ≥ 1,

∑
n≥m

1

n!
∑

X1,...,Xn∈BT (Λ)

∣∣∣∣∣φ
T (X0, X1, . . . , Xn)

n∏
i=1

K (Λ)
q (Xi )

∣∣∣∣∣ ≤ C |X ′
0|ε̄500m, (61)

for a suitable constant C > 0, where 500 = 103/2 and (10�)3 is the value of |X | for
the smallest possible contour of non-vanishing activity.

Here we will focus on (57), since the rest of the theorem follows from the general
theory of cluster expansions for polymer models, which is standard (see, for instance,
[3,5,7,14,21]). We will proceed in two steps.

– The first is to prove that, provided the activity ζ
(Λ)
q (γ ) of a contour γ , defined in (42)

and (44), decays as e−(const.) zk2+α |Γ ′
γ |, then (57) holds. This follows from the fact that

the factor eF∂ (Y j ) − 1 appearing in (54) is exponentially small in the size of Y j , or,
in other words, that the interaction between contours is of short range.

– The second step is to prove that ζ (Λ)
q (γ ) is bounded by e−(const.) zk2+α |Γ ′

γ |. The basic
idea of the proof is that the number of bad blocks or dipoles in Γγ is proportional to
its rescaled volume |Γ ′

γ |, and the weight of a bad block or dipole is, by Lemma 1 and

Corollary 1, bounded by e−(const.) zk2+α
. A complication comes from the fact that the

bound on ζ
(Λ)
q (γ ) requires an inductive argument to estimate the ratio of partition

functions in (44): for this purpose, we use Theorem 2 inductively, starting from the
contours that are so small that their interior cannot contain other contours, and then
moving to larger and larger contours.

5.1. Polymer activity. Here we discuss the first step anticipated above: namely, we
assume the desired bound on the contour activity, and, on the basis of this hypoth-
esis, we deduce bounds on the polymer activity. From now on, C,C ′, . . ., and
c, c′, . . ., indicate universal positive constants (to be thought of as “big” and “small”,
respectively), whose specific values may change from line to line.

Lemma 4 (Polymer activity). If zk2 and 1/(zk2+α) are sufficiently small and, for every
contour γ , ∣∣∣∣∣

∫

ΩΓγ (σγ )

dPγ ζ (Λ)
q (γ )

∣∣∣∣∣ ≤ e−c11zk2+α |Γ ′
γ | (62)

for some constant c11 > 0, then the polymer activity satisfies (57), that is,

|K (Λ)
q (X)| ≤ ε̄|X ′| (63)

where ε̄ was defined in (58).

Proof of lemma 4. The main idea of the proof is to extract from (eF∂ (Y ) − 1) an expo-
nential decay proportional to (zk2)c|Y ′|. This is due to the fact that the only plate con-
figurations P contributing to (55) are the connected ones (here we say that two plates
p, p′ are connected if p ∩ p′ �= ∅): therefore, the number of plates in P must be at
least proportional to |Y ′|. Since, as we will show below, every additional plate after the
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first one in P comes with a factor zk2, we find that F∂ (Y ) decays like (zk2)c|Y ′|, and
similarly for (eF∂ (Y ) − 1). After having extracted this exponential decay, we can insert
the bound on ζ as in (62) and perform the sum over X0, X1.

Recalling (52) and (53), we first bound

|K (Λ)
q,1 (X)| ≤ 5|X ′|e−c11zk2+α |X ′| (64)

in which the factor 5 comes from enumerating the spin configurations σγ in the contour
and we used (62) for integrating over the plate configurations at fixed σγ . This implies

the analog of (63) for K (Λ)
q,1 (X).

The key ingredient in the rest of the proof is the Mayer expansion of the plate model.
Once again, we will not discuss this expansion in detail, as it follows from the general
theory of cluster expansions [3,5,7,14,21]. Recalling the definitions of Ω

q
S and Ω

n,q
S

given right before (19), we let Ω
≥l,q
S = ∪n≥lΩ

n,q
S be the set of plate configurations of

type q with center in S and at least l plates. Using a Mayer expansion it can be proved
that, for any S ⊂ R

3,
∫

Ω
≥l,q
Λ

dP z|P||ϕT (P)|1(p1 belongs to S) ≤ Clz|S|(zk2)l−1 (65)

for some constant C > 0, where p1 is the first plate in P (recall that the integration
measure is symmetric under permutations of the plates in P). We now want to use this
estimate to bound (54). The key point is to estimate the sum over p in the right side of
(54). We claim that

∑
p≥1

1

p!
∗∑

Y1,··· ,Yp⊂BT (X)

Y1∪···∪Yp=X1

⎛
⎝

p∏
j=1

∣∣∣eF∂ (Y j ) − 1
∣∣∣
⎞
⎠ ≤ (zk2)

c0
2 |X ′

1|e|X ′
0|zk3O(zk2). (66)

To prove this bound we use (65) to estimate F∂ (Y ). Note that the L∞ distance between
the centers of two overlapping plates is, at most, k ≡ 2�. Since the distance between two
disconnected contours is, at least, 6�, and anyplate configuration P contributing toF∂ (Y )

must intersect plates belonging to the supports of at least two disconnected contours
(due to the constraints induced by the functions Fγi ), then any plate configuration P
contributing to F∂ (Y ) must contain at least 3 plates. Moreover, by a similar argument,
it must contain at least 1 + c0|Y ′| plates, for a suitable constant c0, which can be chosen,
e.g., to be 1/14. Note also that F∂ (Y ) is non zero only if dist(Y, X0) = 0, where dist is
the Euclidean distance. Therefore, letting: lY := 1+max(2, c0|Y ′|), N be the number of
contours in ∂ that are D-connected to the set Y ,Δξ1 be the ‘first’ block of Y (with respect
to any given order of its blocks) and SY the union of the sampling cubes intersecting
Δξ1 ,

|F∂ (Y )| ≤
N∑

n=2

1

n!
∗∑

γ1,··· ,γn⊂∂

∫

Ω
≥lY ,q
Λ

dP z|P||ϕT (P)|1p1 belongs to SY 1dist(Y,X0)=0

≤ 2N zk3(Czk2)max(2,c0|Y ′|)1dist(Y,X0)=0

≤ zk3(C ′zk2)max(2,c0|Y ′|)1dist(Y,X0)=0 (67)
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for some constants C,C ′ > 0, where we used (65) and, in the final bound, we used
N ≤ |Y ′|. Moreover we have

p∏
j=1

∣∣∣eF∂ (Y j ) − 1
∣∣∣ ≤ e

∑p
j=1 |F∂ (Y j )|

p∏
j=1

|F∂ (Y j )|, (68)

where
p∑

j=1

|F∂ (Y j )| ≤
∑

Y∈BT (X1)
dist(Y,X0)=0

|F∂ (Y )| ≤ C ′′zk3(zk2)2|X ′
0| (69)

and, using
∑

j |Y ′
j | ≥ |X ′

1|,
p∏

j=1

|F∂ (Y j )| ≤ (zk2)
c0
2 |X ′

1|
p∏

j=1

|F∂ (Y j )|(zk2)−
1
2 max(2,c0|Y ′

j |) (70)

Inserting these estimates in the sum over p

∑
p≥1

1

p!
∗∑

Y1,··· ,Yp⊂BT (X)

Y1∪···∪Yp=X1

p∏
j=1

|F∂ (Y j )|(zk2)−
1
2 max(2,c0|Y ′

j |)

≤
∑
p≥1

1

p!
( ∑

Y∈BT (X)
dist(Y,X0)=0

|F∂ (Y )|(zk2)− 1
2 max(2,c0|Y ′|)

)p

≤ exp

( ∑

Y∈BT (X)
dist(Y,X0)=0

|F∂ (Y )|(zk2)− 1
2 max(2,c0|Y ′|)

)
≤ ezk

3|X ′
0|O(zk2). (71)

Putting the terms together we get (66). Finally, inserting the bound (62) on ζ ,

|K (Λ)
q,≥2(X)| ≤

∑
X0,X1∈B(X)

X0∪X1=X, X0 �=∅

5|X ′
0|e−c11zk2+α(1+O(zk3−α))|X ′

0|(zk2)
c0
2 |X ′

1| (72)

where we used zk3zk2 = zk2+αzk3−α. This yields (63). ��

5.2. The activity of contours. We will now prove that (62) holds, which proves the
convergence of the cluster expansion, and concludes the proof of (57).

Lemma 5 (Contour activity). If zk3−α and log k/(zk3α) are sufficiently small, then
∫

ΩΓγ (σγ )

dP |ζ (Λ)
q (γ )| ≤ e−c11zk2+α |Γ ′

γ | (73)

where c11 is the same constant appearing in (62).
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Recall (see (42)) that

∫

ΩΓγ (σγ )

dPγ ζ (Λ)
q (γ ) =

∫

ΩΓγ (σγ )

dPγ

(
z|Pγ |ϕ(Pγ )

Zq(Γγ )

)⎛
⎝

hΓγ∏
j=1

Z (γ )(Int jΓγ |m j
int,γ )

Z(Int jΓγ |q)

⎞
⎠

· exp
(

−
∫

Ω
q
Λ

dP ϕT (P)z|P|Fγ (P)

)
. (74)

In order to prove Lemma 5, we bound each factor in (74), which is done in Lemma 6, 7
and 8, stated below.

Lemma 6. If zk2 is sufficiently small, then

exp

(
−
∫

Ω
q
Λ

dP ϕT (P)z|P|Fγ (P)

)
≤ eO(zk3zk2)|Γ ′

γ | (75)

Lemma 7. If zk3−α and log k/(zk3α) are sufficiently small, then
∫

ΩΓγ (σγ )

dPγ

z|Pγ |ϕ(Pγ )

Zq(Γγ )
≤ e−czk2+α |Γ ′

γ | (76)

for some constant c > 0.

Lemma 8. If zk3−α and log k/(zk3α) are sufficiently small, then, if A ∈ Int (recall that
Int was introduced right before Definition 3) and m, q ∈ {1, 2, 3},

Z(A|m)

Z(A|q)
≤ ec(zk

3zk2+ε̄C )|(∂ext A)′| (77)

for some constants c,C > 0, where ε̄ was defined in (58) and ∂ext A is defined in the
same way as (39).

Remark. The constrained partition function Z (γ )(Int jΓγ |m j
int,γ ) appearing in the right

side of (74) is smaller than the unconstrained partition function Z(Int jΓγ |m j
int,γ ). There-

fore, Lemma 8 is enough for bounding the ratio
∏hΓγ

j=1
Z (γ )(Int jΓγ |m j

int,γ )

Z(Int jΓγ |q)
in (74). Com-

bining this remark with Lemmas 6, 7 and 8, we obtain Lemma 5.

Proof of Lemma 6. Themain idea of the proof is to use theMayer expansion of the plate
model to extract a dominating term, which is negative, and bound the remainder.

We split

−
∫

Ω
q
Λ

dP ϕT (P)z|P|Fγ (P) = −
∫

Ω
1,q
Λ

dp zFγ ({p}) −
∫

Ω
≥2,q
Λ

dP ϕT (P)z|P|Fγ (P)

(78)
where we recall that Ω1,q

Λ (resp. Ω≥2,q
Λ ) is the set of plate configurations of type q with

1 plate (resp. at least 2 plates). The first term is non-positive, and the second is bounded
by
∣∣∣
∫

Ω
≥2,q
Λ

dP ϕT (P)z|P|Fγ (P)

∣∣∣ ≤
∫

Ω
≥2,q
Λ

dP |ϕT (P)|z|P|1(p1 belongs to Sγ ), (79)
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where Sγ = ∪ξ :d ′∞(ξ,Γ ′
γ )≤2Δξ (here we used the second remark after Lemma 2). We

have |Sγ | ≤ 2|Γγ |. We are now in the position of applying (65), which gives

∣∣∣
∫

Ω
≥2,q
Λ

dP ϕT (P)z|P|Fγ (P)

∣∣∣ ≤ O(zk3zk2|Γ ′
γ |). (80)

��
Proof of Lemma 7. Let σγ be a spin configuration compatible with the fact that γ is a
contour. As a consequence, every smoothing cube contained in Γγ has non zero inter-
section with at least one bad sampling cube; moreover, by its very definition, each such
bad cube must contain either one block with magnetization equal to 0 or 4, or one pair of
neighboring blocks with magnetization q, q ′ ∈ {1, 2, 3} such that q �= q ′ (a ‘bad dipole’
in the sense of Corollary 1). Therefore, given σγ , it is possible to exhibit a partition P
of Γγ such that: (i) all the elements of the partition consist either of a single block or of
a bad dipole; (ii) ifMγ is the set of blocks in P with magnetization equal to 0 or 4 and
Dγ is the set of bad dipoles in P , then |Mγ | + |Dγ | ≥ c′|Γ ′

γ |, for a constant c′ that can
be chosen, e.g., equal to 8−4. We also let Nγ be the set of blocks in P that are not in
Mγ ∪ Dγ . We then bound

∫

ΩΓγ (σγ )

dPγ

z|Pγ |ϕ(Pγ )

Zq(Γγ )
≤
⎛
⎝ ∏

μ∈Mγ

2 + Z≥2(μ)

Zq(μ)

⎞
⎠
⎛
⎝ ∏

δ∈Dγ

Z≥2(δ)

Zq(δ)

⎞
⎠

⎛
⎝ ∏

n∈Nγ

Zσn (n)

Zq(n)

⎞
⎠ eO(zk3zk2)|Γ ′

γ | (81)

where the 2 in the first factor in the right side is due to the activity associated with spin

0, see (9), and the factor eO(zk3zk2)|Γ ′
γ | comes from splitting Zq into blocks and dipoles,

as per (19). We now use Lemma 1 and Corollary 1, and note that Zσn (n) = Zq(n), thus
getting

∫

ΩΓγ (σγ )

dPγ

z|Pγ |ϕ(Pγ )

Zq(Γγ )
≤ e−c′′zk2+α(|Mγ |+|Dγ |)eO(zk2+αzk3−α)|Γ ′

γ | (82)

for some constant c′′ > 0. The result follows from |Mγ | + |Dγ | ≥ c′|Γ ′
γ |. ��

Sketch of the proof of Lemma 8. The main idea of the proof is the following. If A did
not contain any contours, it would only contain a single type of plates, and we would be
able to express its partition function using a convergent Mayer expansion, and find that
the ratio of partition functions only involves clusters that straddle the boundary of A.
This gives us the appropriate bound, since clusters with at least two plates contribute a
weight zk3zk2.When A contains contours, we proceed by induction and use the fact that,
by the inductive hypothesis, the polymer theory inside A admits a convergent cluster
expansion. We then show that the only polymer clusters that contribute to the ratio of
partition functions are those that straddle the boundary.

The details of the proof are in direct analogy with the proof of [6, Lemma 5], and are
left to the reader. ��
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6. Nematic Order

In this section, we give the proof of Theorem 1, which follows from a simple modifica-
tion of the cluster expansion in Theorem 2. We recall that in order to compute density
correlations, we need to promote the activity to be plate-dependent, that is, it is a function
z̃(p). The expansions described in the previous sections hold also in this case with the
natural modifications, mostly of notational nature.

We first prove the estimate on the 1-point function, (14). Let p0 = (x,mi ), with
x ∈ R

3 and mi ∈ {1a, 1b, 2a, 2b, 3a, 3b}. Recall the definition of the 1-point correlation
function ρ

(q,Λ)
1 (p0) in the state with q boundary conditions, given in (12). Using (16),

we can write it as

ρ
(q,Λ)
1 (p0) = z

δ

δz̃(p0)
log Z(Λ|q)

∣∣∣∣
z̃(p)≡z

= z
δ

δz̃(p0)
log Zq(Λ)

∣∣∣∣
z̃(p)≡z

+ z
δ

δz̃(p0)
log

Z(Λ|q)

Zq(Λ)

∣∣∣∣
z̃(p)≡z

(83)

The Mayer expansion of the plate model implies that

z
δ

δz̃(p0)
log Zq(A)

∣∣∣∣
z̃(p)≡z

= δm,q z(1 + O(zk2)) (84)

for all finite A ⊂ R
3, uniformly in A, hence in particular for A = Λ. The analogue

of (14) at finite volume follows from the following lemma. Eq.(14) then follows from
taking the limit Λ ↗ R

3, which is easily obtained, using the uniform convergence of
the Mayer and polymer expansions.

Lemma 9. Let p0 be as above, q ∈ {1, 2, 3} and A ∈ Int′, see (50). If the constant ε̄ in
(58) is sufficiently small, then

∣∣∣∣∣z
δ

δz̃(p0)
log

Z(A|q)

Zq(A)

∣∣∣∣
z̃(p)≡z

∣∣∣∣∣ ≤ z O(ε̄C )1(A � x), (85)

for some C > 0, uniformly in A.

Proof. We argue by induction on the size of A or, more precisely, in the volume of Ā,
which is the smallest set in Int containing A. If Ā is so small that A cannot contain any
contours, then Z(A|q) = Zq(A) and (85) is trivially true. Assume now by induction that
(85) holds for all a ∈ Int′ such that |ā| < | Ā|, and let us prove (85). By the analogue of
Theorem 2 with Λ replaced by A ∈ Int′ and plate-dependent activities,

z
δ

δz̃(p0)
log

Z(A|q)

Zq(A)

∣∣∣∣
z̃(p)≡z

=
∑
n≥0

1

n!
∑

X0,...,Xn∈BT ( Ā)

φT (X0, . . . , Xn)

z
δ

δz̃(p0)
K (A)
q (X0)

∣∣∣∣
z̃(p)≡z

n∏
i=1

K (A)
q (Xi ). (86)

We claim that δ
δ z̃(p0)

K (A)
q (X)

∣∣∣
z̃(p)≡z

admits a bound similar to the one for K (A)
q (X),

namely
∣∣ δ

δz̃(p0)
K (A)
q (X)

∣∣∣∣
z̃(p)≡z

∣∣ ≤ ε̄ c|X ′|e−m dist′(X ′,ξx ), (87)
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for some constants c,m > 0, where ξx is the center of the block containing x . Inserting
(87) in (86), together with |K (A)

q (X)| ≤ ε̄ |X ′|, the result follows.We are left with proving
(87).

Recall that K (A)
q (X) = K (A)

q,1 (X) + K (A)
q,≥2(X). We consider K (A)

q,1 (X) first. Using the
definition (53), we need to estimate

δ

δz̃(p0)
K (A)
q,1 (X) :=

∑
γ∈C1(Λ,q)

Γγ =X

δ

δz̃(p0)
ζ (A)
q (γ ) (88)

for z̃(p0) = z. Recall that

ζ (A)
q (γ ) =

( z|Pγ |ϕ(Pγ )

Zq(Γγ )

)(
e
− ∫

Ω
q
A
dPϕT (P)z|P|Fγ (P)

)( hΓ∏
j=1

Z (γ )(Int jΓγ |m j
int,γ )

Z(Int jΓγ |q)

)
. (89)

If the derivative hits the first parenthesis, then it can either act on z|Pγ |, in which case it
produces an indicator function 1(Pγ � p0), or on Zq(Γγ ), in which case it generates an
extra factor δ

δ z̃(p0)
log Zq(Γγ ), which byMayer expansion is equal to 1(x ∈ Γγ )δmq(1+

O(zk2)).
If the derivative hits the second parenthesis, then it produces an extra factor

− δ

δz̃(p0)

∫

Ω
q
A

dP ϕT (P)z|P|Fγ (P),

whose absolute value is bounded from above by C(zk2)max{0, c dist′(ξx ,Γ ′
γ )−1}δmq , for

some C, c > 0.
If the derivative hits the third parenthesis, we get extra factors of the form

δ

δz̃(p0)
log

Z(Aγ

j |m j )

Zm j
(Aγ

j )
− δ

δz̃(p0)
log

Z(A j |q)

Zq(A j )
+

δ

δz̃(p0)
log

Zm j
(Aγ

j )

Zq(A j )
,

where, for short, we denoted A j = Int jΓγ , m j = m j
int,γ , A

γ

j = Int jΓγ \ Vm j (Pγ ) and
Vm j (Pγ ) is the excluded volume produced by the plates in Pγ . Now, the first two terms
are estimated by the inductive assumption. The third term can be computed explicitly via
Mayer expansion, and equals δm,m j (1 + O(zk2))1(x ∈ Aγ

j ) − δm,q(1 + O(zk2))1(x ∈
A j ).

Putting things together we get

∣∣ δ

δz̃(p0)
K (A)
q,1 (X)

∣∣ ≤ C ε̄ |X ′|e−m dist′((X∪ j Int j X)′,ξx ), (90)

for some C,m > 0. Now, note that, if x ∈ ∪ j Int j X , in which case dist′((X ∪ j
Int j X)′, ξx ) = 0, then |X ′| ≥ c dist′(X ′, ξx ) for some c > 0, hence (87) holds for

K (A)
q,1 (X).
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Finally, we consider K (A)
q,≥2(X). Using the definition (54) we see that the derivative

generates factors of the same form as above, plus an additional factor arising from the
derivative of F∂ (Y j ). By repeating the strategy leading to (67), we get

∣∣∣∣
δ

δz̃(p0)
F∂ (Y j )

∣∣∣∣ ≤ δmq1(x ∈ Y j )(C
′zk2)max(2,c0|Y ′|)1dist(Y,X0)=0. (91)

This leads to the desired bound, (87), for K (A)
q,≥2(X) and concludes the proof of the

lemma. ��
The computation of the 2-point correlation function is quite similar: let p1 = (x1, o1)

p2 = (x2, o2). We write

ρ
(q,Λ)
2 (p1, p2) − ρ

(q,Λ)
1 (p1)ρ

(q,Λ)
1 (p2) = z2

δ2

δz̃(p1)δz̃(p2)
log Z(Λ|q)

∣∣∣∣
z̃(p)≡z

(92)

and log Z(Λ|q) = log Zq(Λ) + log Z(Λ|q)
Zq (Λ)

, so that the derivative produces two terms:
the first is the second derivative of log Zq(Λ), which we compute using the Mayer
expansion, and the second is similar to the right side of (86), with two derivatives rather
than one. These two derivatives have the effect of pinning the clusters of polymers to
both x1 and x2 and, because of the exponential decay of their activity, this implies the
exponential decay in (15). The details are left to the reader. This concludes the proof of
Theorem 1.
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