
Model-Free Reinforcement Learning for Optimal Control of Markov
Decision Processes Under Signal Temporal Logic Specifications

Krishna C. Kalagarla, Rahul Jain, Pierluigi Nuzzo
Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles

Email: {kalagarl,rahul.jain,nuzzo}@usc.edu

Abstract— We present a model-free reinforcement learning
(RL) algorithm to find an optimal policy for a finite-horizon
Markov decision process (MDP) while guaranteeing a desired
lower bound on the probability of satisfying a signal temporal
logic (STL) specification. We propose a method to effectively
augment the MDP state space to capture the required state
history and express the STL objective as a reachability ob-
jective. The planning problem can then be formulated as a
finite-horizon constrained Markov decision process (CMDP).
For a general finite-horizon CMDP problem with unknown
transition probability, we develop a reinforcement learning
scheme that can leverage any model-free RL algorithm to
provide an approximately optimal policy out of the general
space of non-stationary randomized policies. We illustrate our
approach in the context of robotic motion planning for complex
missions under uncertainty and performance objectives.

I. INTRODUCTION

Markov decision processes (MDPs) [1] offer a natural
framework to express sequential decision-making problems
and have increasingly been combined with temporal logic
specifications [2] to rigorously express complex mission
objectives or constraints. In particular, signal temporal logic
(STL) [3] is a rich temporal extension of propositional logic
that can express continuous-time continuous-valued signals
and can be used, for instance, to unambiguously capture
bounds on physical variables or time-sensitive objectives.

Previous efforts have focused on maximizing the prob-
ability of satisfying a given STL specification [4]–[6], for
example, by maximizing a log-sum-exp approximation of
the satisfaction probability. However, in many applications,
mission-critical requirements, involving stronger guarantees
on the satisfaction of temporal logic objectives, must be
paired with performance constraints, such as smoothness
of motion, or fuel consumption rates, usually expressed
in terms of cost functions [7]. The focus of this paper is
on these composite tasks where a total cost on an MDP
must be minimized while guaranteeing a lower bound on
the probability of satisfying a given STL specification. In
particular, we consider a bounded-time fragment of STL that
allows up to two layers of nested temporal operators and is
expressive enough to capture objectives such as “eventually
reach a location within t1 minutes and remain there for t2
minutes.” To the best of our knowledge, this is the first paper
addressing this problem formulation.

Our contribution is twofold. We first propose a method that
extends and modifies a previously proposed technique [4] to
efficiently augment the state space of the MDP and reduce
STL satisfaction to a reachability objective for a finite-
horizon MDP. We can then cast the logically-constrained op-
timal control problem as the problem of controlling a finite-

horizon constrained Markov decision process (CMDP) [8].
As in previous approaches [4], [5], we augment the MDP
state space to be able to reason about the satisfaction of
the STL formula. However, our method allows formulating
probabilistic constraints on STL satisfaction and additional
cost objectives which could not be expressed within a log-
sum-exp formulation.

For a general finite-horizon CMDP problem with un-
known transition probability, we further introduce a model-
free reinforcement learning (RL) scheme that produces an
approximately optimal policy out of the general space of non-
stationary randomized policies. Specifically, we formulate
the CMDP problem as a min-max game between a player uti-
lizing a no-regret algorithm and a player using a model-free
RL algorithm [1], [9]. Our scheme can use any model-free
RL algorithm and provides guarantees that the performance
of the returned policy can be made arbitrarily close to that
of the optimal policy.

A min-max game formulation was also used in the past
to find optimal mixed deterministic policies in the context
of offline RL for discounted CMDPs [10] as well as fea-
sible policies satisfying a set of convex constraints without
optimality guarantees with respect to a cost objective [11].
Differently from these efforts, we focus on finite-horizon
CMDPs and use the concept of occupancy measures [8], [12]
to obtain an approximately optimal policy out of the general
space of non-stationary randomized policies. We illustrate the
applicability of our approach on two cases studies, showing
that the returned policies very closely satisfy the probabilistic
STL constraints and have performance comparable to that of
the optimal policies.

II. PRELIMINARIES

We denote the sets of real, non-negative real and natural
numbers by R, R+ and N, respectively. The indicator func-
tion 1s0(s) evaluates to 1 when s = s0 and 0 otherwise. The
probability simplex over the set S is denoted by ∆S .
Signal Temporal Logic (STL). We use a fragment of signal
temporal logic (STL) [3], a temporal extension of proposi-
tional logic, to specify complex tasks. The STL formulae in
this paper are constructed inductively as follows:

Φo := F[0,To]Φin | G[0,To]Φin,

Φin := Φin ∧ Φin | Φin ∨ Φin | F[0,Tin]ϕ | G[0,Tin]ϕ,

ϕ := true | p | ¬ϕ | ϕ ∧ ϕ, (1)

where To, Tin ∈ R+, Φo,Φin, and ϕ are STL formulae, and
p is a predicate of the form f(σ) < d, where σ : R+ → Rn
is a signal and f(σ) : Rn → R is a function mapping a
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signal value to the real line. Further, ∧ and ¬ are the logic
conjunction and negation, and F and G are the eventually
and always temporal operators.

The Boolean semantics of our STL formulae are inter-
preted over finite-length signals. Let σ(t) be the value of the
signal at time t, (σ, t) be the suffix of the signal σ starting
from time t, and σt1:t2 be the segment of the signal from time
t1 to time t2. Informally, signal (σ, t) satisfies a predicate p,
written (σ, t) |= p, if the signal value at time t, σ(t), satisfies
p. The signal (σ, t) satisfies F[a,b]φ if there exists a ≤ t′ ≤ b
such that (σ, t+ t′) satisfies φ. Finally, signal (σ, t) satisfies
G[a,b]φ if (σ, t+ t′) satisfies φ for all a ≤ t′ ≤ b.

Let ((σ, t) |= φ) evaluate to 1 if true and 0 otherwise.
Then, we have the following equivalences:

∃ t′ ∈ [a, b] , (σ, t′) |= φ ⇐⇒ max
t′∈[a,b]

((σ, t′) |= φ) = 1,

∀ t′ ∈ [a, b] , (σ, t′) |= φ ⇐⇒ min
t′∈[a,b]

((σ, t′) |= φ) = 1,

(σ, t) |= φ1 ∧ (σ, t) |= φ2 ⇐⇒ min
i=1,2
{(σ, t) |= φi} = 1,

(σ, t) |= φ1 ∨ (σ, t) |= φ2 ⇐⇒ max
i=1,2
{(σ, t) |= φi} = 1.

While allowing for only two layers of nested temporal
operators, this STL fragment allows specifying a rich set of
time-bounded and safety requirements. The horizon hrz(φ)
[3] of an STL formula φ is the minimum time length needed
to certify whether a signal satisfies the formula or not.
Finite-Horizon MDPs. We consider finite-horizon MDPs
[1], which can be formally defined by a tuple M =
(S,A, H, s0, p, c), where S and A denote the finite state
and action spaces, respectively. The agent interacts with the
environment in episodes of length H + 1, each episode
starting with the same initial state s0. The non-stationary
transition probability is denoted by p where ph(s′|s, a) is
the probability of transitioning to state s′ upon taking action
a at state s at time step h ∈ {0, . . . ,H}. The deterministic,
non-stationary cost of taking action a in state s at time step
h is ch(s, a) ∈

[
0, C̄

]
.

A non-stationary randomized policy π = (π0, . . . , πH) ∈
Π, where πi : S → ∆A, maps each state to a proba-
bility simplex over the action space. For a state s ∈ S
and time step h ∈ {0, . . . ,H} the value function of a
non-stationary randomized policy V πh (s; c) is defined as
V πh (s; c) = E

[∑H
i=h ci(si, ai)|sh = s, π, p

]
, where the ex-

pectation is over the environment and policy randomness. In
the following, we omit π and c when they are clear from the
context. The total expected cost of an episode under policy π
with respect to cost function c is the respective value function
from the initial state s0, i.e., V π0 (s0; c). There always exists
an optimal non-stationary deterministic policy π∗ [1] such
that V π

∗

h (s) = V ∗h (s) = infπV πh (s).
Since the STL formulae are defined over a continuous

time as opposed to discrete-step MDPs, we discretize the
continuous time space by considering a step size ∆t. Without
loss of generality, we take ∆t = 1. A finite run ξt of the
MDP at time t ∈ N is a sequence of states and actions
s0a0s1, a1 . . . st up to time t. Given an MDPM and an STL
formula Φ, a finite run ξt = s0a0 . . . st, t ≥ hrz(Φ), of the
MDP under policy π is said to satisfy Φ if the signal s0:t =
s0s1 . . . st generated by the run satisfies Φ. The probability

that a run of M satisfies Φ under policy π is denoted by
PrπM(Φ), i.e., PrπM(Φ) = PrπM(s0:hrz(Φ) |= Φ).
Finite-Horizon Constrained MDPs. A finite-horizon con-
strained MDP (CMDP) [8] is a finite-horizon MDP with an
additional constraint expressed by a pair of cost function
and threshold {d, l}. For simplicity, in this paper, we con-
sider a single constraint. Extensions to the case of multiple
constraints are straightforward. The cost of taking action a
in state s at time step h ∈ {0, . . . ,H} with respect to the
constraint cost function is dh(s, a) ∈

[
0, D̄

]
.

Solving a CMDP problem consists in finding a policy
which minimizes the total expected objective cost such that
the total expected constraint cost is less than or equal to its
threshold l. Formally,

π∗ ∈ argmin
π∈Π

V π0 (s0; c)

s.t. V π0 (s0; d) ≤ l.
(2)

The optimal value is V ∗ = V π
∗

0 (s0; c). The optimal policy
may be randomized [8], i.e., an optimal deterministic policy
may not exist as in the case of finite-horizon MDPs.
Occupancy Measures. Occupancy measures [8] allow for
an alternative representation of the set of non-stationary
randomized policies and a formulation of the optimization
problem (2) as a linear program (LP). The occupancy mea-
sure qπ of a policy π in a finite-horizon MDP is defined
as the expected number of visits to a state-action pair
(s, a) in an episode at time step h. Formally, qπh(s, a) =
Pr [sh = s, ah = a|s0 = s0, π].

The occupancy measure qπ of a policy π satisfies linear
constraints [8] expressing non-negativity and conservation
of probability flow through the states. The space of the
occupancy measures satisfying these constraints is denoted
by ∆(M) and is convex. A policy π generates an occupancy
measure q ∈ ∆(M) if

πh(a|s) =
qh(s, a)∑
b qh(s, b)

, ∀(s, a, h). (3)

Thus, there exists a generating policy for all occupancy
measures in ∆(M) and vice versa. Further, the total expected
cost of an episode under policy π with respect to cost
function c can be expressed in terms of the occupancy
measure as V π0 (s0; c) =

∑
h,s,a q

π
h(s, a)ch(s, a).

III. PROBLEM FORMULATION

For a given finite-horizon MDP and STL specification, we
are interested in finding a policy which minimizes the total
expected cost such that the probability of satisfying the given
STL specification is above a given threshold. We assume that
the MDP horizon exceeds by one step the horizon of the STL
specification. Our formulation can be trivially extended to
longer MDP horizons. We then define the following problem.
Problem 1. Given the MDP M = (S,A, H, s0, p, c), the
STL formula Φo with horizon H = hrz(Φo) + 1, and the
satisfaction threshold pthres, find a policy π∗ such that

π∗ ∈ argmin
π∈Π

E

[
H∑
i=0

ci(si, ai)|s0 = s0, π

]
s.t. PrπM(Φo) ≥ pthres,

(4)
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where PrπM(Φo) is the probability of satisfying Φo under
policy π.

Because the objective in (4) is not additive in nature and
the dependence on the history for determining the probability
of satisfying the STL formula is non-Markovian, we need to
extend the state space of the MDP to capture the necessary
history and evaluate the satisfaction of the formula. In
the extended state space, we show that the probability of
satisfaction is equal to the probability of reaching a set of
states, which can be expressed by a cost function on the
extended MDP. The cost function c of the original MDP can
also be trivially extended, leading to a standard finite-horizon
CMDP formulation. We detail this reduction in Section IV. In
Section V, we introduce a model-free reinforcement learning
(RL) algorithm to find an ε-optimal policy for a given finite-
horizon CMDP. This algorithm is then applied to the CMDP
resulting from our original problem.

IV. REDUCTION TO CMDP

The STL formula Φo is of the form F[0,To]Φin or
G[0,To]Φin. Let Φin include n sub-formulae Φiin of the form
F[0,Tin]ϕ

i or G[0,Tin]ϕ
i, i = 1, . . . , n. Each of these sub-

formulae has horizon hrz(Φiin) = Tin, ∀ i, n. Therefore, the
horizon of Φin is also equal to Tin, while the one of Φo is
H̃ = Tin + To. We then obtain
s0:H̃ |= Φo

⇐⇒


max
t∈[0,To]

((s, t) |= Φin) = 1,Φo = F[0,To]Φin,

min
t∈[0,To]

((s, t) |= Φin) = 1,Φo = G[0,To]Φin
,

⇐⇒


max

t∈[Tin,H̃]
(st−Tin:t |= Φin) = 1,Φo = F[0,To]Φin,

min
t∈[Tin,H̃]

(st−Tin:t |= Φin) = 1,Φo = G[0,To]Φin,

⇐⇒


max

t∈[Tin,H̃]
Sat(st+1,Φin),Φo = F[0,To]Φin,

min
t∈[Tin,H̃]

Sat(st+1,Φin),Φo = G[0,To]Φin.
(5)

where Sat(st,Φin) evaluates to 1 if the signal segment
st−Tin−1:t−1, i.e., the previous Tin+ 1 steps of the signal at
time step t satisfies Φin, and evaluates to 0 otherwise.

We introduce a flag variable fin which, at time step
t + 1, is equal to mink∈[Tin,t] Sat(sk+1,Φin) for Φo =
G[0,To]Φin and equal to maxk∈[Tin,t] Sat(sk+1,Φin) for
Φo = F[0,To]Φin. This flag fin takes values in the set
FIN = {0, 1,⊥}. We introduce the placeholder ⊥ since
Sat(st′ ,Φin) is undefined for t′ ≤ Tin. We similarly define
Sat(st,Φ

i
in), i = 1, . . . , n, which evaluates to 1 if the signal

segment st−Tin−1:t−1 satisfies the STL formula Φiin and
0 otherwise. By the syntax in (1) and the assumption that
all sub-formulae have the same horizon, we can determine
Sat(st,Φin) recursively as:

Sat(st′ ,Φ
i
in ∨ Φjin) = max(Sat(st,Φ

i
in), Sat(st,Φ

j
in)),

Sat(st′ ,Φ
i
in ∧ Φjin) = min(Sat(st,Φ

i
in), Sat(st,Φ

j
in)). (6)

We further associate a flag f i which takes values in the set
F i = {0, 1, . . . , Tin} with each sub-formulae Φiin. These
flags are used to evaluate Sat(st,Φ

i
in) and are updated

according to the following function

f it+1 =
Tin + 1, if s(t) |= ϕi, Φiin = F[0,Tin]ϕ

i,

max(f it − 1, 0), if s(t) 6|= ϕi, Φiin = F[0,Tin]ϕ
i,

min(f it , Tin) + 1, if s(t) |= ϕi, Φiin = G[0,Tin]ϕ
i,

0, if s(t) 6|= ϕi, Φiin = G[0,Tin]ϕ
i.

(7)

By the definitions of G and F, Sat(st,Φiin) can be evaluated
from f it as follows

Sat(st,Φ
i
in) =

1, if f it > 0, Φiin = F[0,Tin]ϕ
i,

0, if f it = 0, Φiin = F[0,Tin]ϕ
i,

1, if f it = Tin + 1, Φiin = G[0,Tin]ϕ
i,

0, if f it < Tin + 1, Φiin = G[0,Tin]ϕ
i.

(8)

By the definition of fin we also obtain its update rule
fint+1 =
⊥, t < Tin,

Sat(st+1,Φin), t = Tin,

min(Sat(st+1,Φin), fint), t > Tin, Φo = G[0,To]Φin,

max(Sat(st+1,Φin), fint), t > Tin, Φo = F[0,To]Φin.

(9)

By the definition of the flag variables above, we obtain
from (5) that s0:H̃ |= Φo if and only if finH̃+1 = 1, that is,
s0:H̃ satisfies Φo if and only if the flag variable fin is equal
to 1 at time H̃ + 1, where H̃ = hrz(Φo). The satisfaction
of the specification has then been reduced to a reachability
condition.

We define a flag-augmented MDP M× =
(S×,A×, H×, s×0 , p×, d×, c×), where S× = (S × F 1 ×
. . .×Fn×FIN), with s× = (s, f1, . . . , fn, fin), A× = A,
s×0 = (s0, 0, . . . , 0

n times
,⊥), and H× = hrz(Φo) + 1. For the

transition probability function p×, the s component of s×
is updated according to the original probability transition
function p, while the flag variables are updated according
to (6)-(9). The cost function d× is defined such that the
expected cost with respect to d× is the probability of
reaching states with flag variable fin equal to 1 at time
H×. Thus,

d×h (s, f1, . . . , fn, fin, a) =

{
1, if h = H× and fin = 1,

0, otherwise.

Similarly, the objective cost function c of the original MDP
can be extended to the augmented MDP M× as follows:

c×h (s, f1, . . . , fn, fin, a) = ch(s, a).

By the derivations above, we can state the following result.

Theorem 1. For given MDP M = (S,A, H, s0, p, c),
STL formula Φo, and desired satisfaction threshold pthres,
Problem 1 reduces to the following CMDP problem for the
extended MDP M×.

π∗ ∈ argmin
π∈Π×

V π0 (s×0 ; c×)

s.t. V π0 (s×0 ; d×) ≥ pthres.
(10)
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V. THE CMDP LEARNING PROBLEM

We consider the setting where an agent repeatedly interacts
with a finite-horizon CMDP M = (S,A, H, s0, p, c, {d, l})
in episodes of fixed length H , starting from the same initial
state s0. We assume that the cost functions c, d are known
to the learning agent, but the transition probability p is
unknown. The main objective is to design a model-free
online learning algorithm returning an ε-optimal policy. A
policy π is said to be ε-optimal if the total expected objective
cost of an episode under policy π is within ε of the optimal
value, i.e., V π0 (s0; c) ≤ V ∗ + ε, and the constraints are
satisfied within an ε tolerance, i.e., V π0 (s0; d) ≤ l + ε. We
make the following assumption of feasibility, which can be
verified for our problem by computing the maximum STL
satisfaction probability [4], [5].

Assumption 1. The given CMDP M is feasible, i.e., there
exists a policy π such that the constraints are satisfied.

The optimization problem (2) can be formulated in terms
of occupancy measures as:

q∗ ∈ argmin
q∈∆(M)

C(q)

s.t. D(q) ≤ l,
(11)

where C(q) =
∑
h,s,a qh(s, a)ch(s, a) and D(q) =∑

h,s,a qh(s, a)dh(s, a).
The Lagrangian of this optimization problem is L(q, λ) =

C(q) + λ(D(q) − l), where λ ∈ R+ is the La-
grangian multiplier. Following standard results from op-
timization theory [13], the optimization problem (11)
can be formulated as the following min-max problem:
minq∈∆(M) maxλ∈R+

L(q, λ). Further, the functions C(q)
and D(q) are linear in q and the set of occupancy
measures ∆(M) expressed by linear constraints is con-
vex. Therefore, by strong duality [13], the optimization
problem (2) is also equivalent to the max-min problem
maxλ∈R+

minq∈∆(M) L(q, λ).
The latter problem can be viewed as a zero-sum game

between a λ-player, who seeks to maximize L(q, λ), and a q-
player, who seeks to minimize L(q, λ). We use a previously
proposed approach [14] for solving such a game. In this
approach, the λ-player plays a no-regret online learning
algorithm [15] against the best response strategy played
by the q-player. In no-regret online learning, the difference
between the cumulative gain of the player and that of the
best fixed decision in hindsight is sub-linear in the number
of plays or iterations. Specifically, for each t, given λt played
by the λ-player, the q-player plays the best response qt
with respect to the loss function L(q, λt). The λ-player then
observes the gain function lt(λ), which is the Lagrangian
L(qt, λ) = C(qt) + λ(D(qt) − l). With this feedback, the
λ-player updates the Lagrange multiplier λ according to a
no-regret online learning algorithm. We refer to the extended
version of this paper [16] for further details.

The best response above is the occupancy measure which
minimizes the current Lagrangian L(q, λt), i.e.,

argmin
q∈∆(M)

L(q, λt) = argmin
q∈∆(M)

C(q) + λt(D(q)− l).

This best response can be calculated by finding the optimal

Algorithm 1 Meta-Algorithm
Initialize λ1

for t = 1, . . . , T do
qt ← Best-Response(λt),
λ-player is given the gain function L(qt, λ),
λt+1 ← OnlineLearning(λ1, q1, . . . , λt, qt).

Return 1
T

∑t=T
t=1 qt.

policy of the MDP with respect to cost function c+λtd. The
optimal policy is then translated into its associated occupancy
measure which is the desired best response.

A. Occupancy-Based Model-Free Constrained Reinforce-
ment Learning (OB-MFC) Algorithm

We summarize the above approach in Algorithm 1. The
Best-Response function is implemented in two steps.
First, we use a model-free RL algorithm [1], [9] to find an
optimal policy with respect to a scalar cost function c+λtd.
To ensure finite completion time for the RL algorithm, we
can make the simple assumption that the RL algorithm
Best-Response-Policy returns an ε-optimal policy.

Assumption 2. Given cost functions c, d and λ ∈ R+, the
RL algorithm Best-Response-Policy returns a policy
π such that V (π) < minπ′∈Π V (π′) + εbr, where V (π) is
the total expected return with respect to cost function c+λd.

As a second step, the corresponding occupancy mea-
sure qt of policy πt, which is the desired output of the
Best-Response function, is estimated by Monte Carlo
estimation following the definition of an occupancy measure,
i.e., qπh(s, a) = Pr [sh = s, ah = a|s0 = s0, π]. We make
a further assumption that an Occupancy-Estimator
returns a good estimate of the occupancy measure. This can
be ensured by a sufficiently large number of roll-outs for
accurate Monte Carlo estimation.

Assumption 3. Given policy π, Occupancy-Estimator
returns an occupancy measure estimate q̂ such that ‖q −
q̂‖1 ≤ εoe, where q is the occupancy measure of policy π.

Most online convex optimization algorithms [15] make
a decision from a bounded convex space. We thus require
λ ≤ B, where B is a hyper-parameter to be chosen.
The scalar λ is then augmented by one more dimension
corresponding to B − λ to give a bidimensional vector
(λ[1], λ[2]). The cost function d can also be seen as being
augmented by 0. The online learning agent then chooses λ
such that ||λ||1 = B.

We use the Exponentiated Gradient (EG) [17] online
learning algorithm, which is known to be a no-regret al-
gorithm, to implement the OnlineLearning function of
Algorithm 1. This algorithm utilizes the sub-gradient ∂lt of
the revealed gain function lt(λ), namely, L(q̂, λ) = C(q̂t) +
λ[1](D(q̂t)− l), which is nothing but [(D(q̂t)− l), 0]

T . We
denote by q̂t the estimate of qt, the occupancy measure
associated with πt, obtained by Occupancy-Estimator.
This estimate is used to approximate the sub-gradient ∂lt
by using D(q̂t) =

∑
h,s,a q̂h(s, a)dh(s, a). By putting all

this together, we obtain the occupancy-based model-free
constrained reinforcement learning (OB-MFC) Algorithm 2.
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Algorithm 2 OB-MFC Reinforcement Learning
Input: Bound B, learning rate η, number of roll-outs N , number
of iterations T .
Initialize λ = (B

2
, B

2
).

for t = 1, . . . , T do
πt ← Best-Response-Policy(λt),
q̂t ← Occupancy-Estimator(π,N),
D(q̂t)←

∑
h,s,a q̂h(s, a)dh(s, a),

βt = [(D(q̂t)− l) , 0]T ,
λt+1 [i]← B λt[i]e

ηβt[i]∑
j λt[j]e

ηβt[j]
for i = 1, 2.

q̃ ← 1
T

∑T
t=1 q̂t,

π̃h(a|s)← q̃h(s,a)∑
b q̃h(s,b)

, ∀(s, a, h).
Return π̃.

B. Optimality of OB-MFC RL Algorithm

In this section, we provide guarantees that the performance
of the returned policy with respect to the given CMDP
problem can be arbitrarily close to that of the optimal policy.
The proofs of the following results can be found in the
extended version of the paper [16]. We first show that the
difference between the Lagrangian functions L(q, λ) and
L(q̂, λ) with respect to the true occupancy measure q and
the estimated occupancy measure q̂ is small.

Lemma 1. Let q be the occupancy measure associated with
a policy π and q̂ be its empirical estimate such that the
L1 estimation error is small, i.e., ‖q − q̂‖1 ≤ εoe. Then,
|L(q̂, λ) − L(q, λ)| ≤ εest for all ||λ||1 = B, where εest =
(C̄ +BD̄)εoe.

We next show that the primal-dual gap falls below a de-
sired threshold εol after a suitably large number of iterations
T of the algorithm.

Lemma 2. After T iterations of the algorithm, we have

max
λ∈R2

+,||λ||1=B
L(q̃, λ)− L(q̄, λ̃) ≤ εol/2,

min
q∈∆(M)

L(q, λ̃)− L(q̄, λ̃) ≥ εol/2.

Thus, the following holds for the primal-dual gap

max
λ∈R2

+,||λ||1=B
L(q̃, λ)− min

q∈∆(M)
L(q, λ̃) ≤ εol,

where q̃ = 1
T

∑T
t=1 q̂t, q̄ = 1

T

∑T
t=1 qt, λ̃ = 1

T

∑T
t=1 λt, and

εol = 2εbr + 2εest + o(T )
T .

We can thus make the primal dual gap arbitrarily small by
reducing εbr and εest and increasing the number of iterations
T . Let the number of iterations T be large enough such that
o(T )
T < εreg. Then, we obtain εol < εreg + 2εbr + εest.

We now show that the returned average occupancy measure
approximately satisfies the constraint and has an expected
return close to that of the optimal policy.

Lemma 3. Under Assumption 1, the returned occupancy
measure estimate q̃ approximately satisfies the given con-
straint

D(q̃) ≤ l +
2(C̄(H + 1) + εol + εest)

B
.

Further, the objective value returned by q̃ is close to that of

the optimal policy

C(q̃) ≤ C(q∗) + εreg + εbr + εest.

The returned q̃ is an estimate of the desired occupancy
measure q̄. Thus, q̃ may not be a valid occupancy measure,
i.e., it may not correspond to a valid policy. Nevertheless, we
show that the occupancy measure associated with the policy
π̃ generated from q̃ is close to q̄.

Lemma 4. Let q̄ be the occupancy measure associated with
a policy π and q̃ be its empirical estimate such that the
L1 estimation error is small, i.e., ‖q̄ − q̃‖1 ≤ εoe. Then,
for a policy defined as π̃h(a|s) = q̃h(s,a)∑

b q̃h(s,b) ,∀(s, a, h), the
L1 error between its associated occupancy measure ˜̃q and
q̄ is also small, i.e., ‖˜̃q − q̄‖1 ≤ 2(H + 1)εoe. Furthermore,
‖˜̃q − q̃‖1 ≤ (2H + 3)εoe holds.

From Lemmas 3 and 4, we have:

Theorem 2. Under Assumption 1, the returned policy π̃
approximately satisfies the given constraint

D(π̃) ≤ l + D̄(2H + 1)εoe +
2(C̄(H + 1) + εol + εest)

B
.

Further, the expected objective cost under π̃ is close to that
of the optimal policy, i.e.,

C(π̃) ≤ C(π∗) + C̄(2H + 3)εoe + εreg + εbr + εest.

The above result shows that the performance of the re-
turned policy can be made arbitrarily close to that of the
optimal policy by making the errors εol, εest, εreg arbitrar-
ily small and the Lagrange multiplier bound B suitably
large. We can attain arbitrarily small εol, εest, and εreg by
using a sufficiently large number of iterations T , a better
Occupancy-Estimator, and by running the model-free
RL algorithm longer to obtain a policy closer to the optimal
best response.

VI. EXPERIMENTAL RESULTS

We implemented our framework in PYTHON and used the
LP solver provided by GUROBI to find the optimal cost of a
CMDP with a known transition probability. We evaluate our
framework on two case studies involving motion planning of
a mobile robot. The experiments are run on a 1.4-GHz Core
i5 processor with 16-GB memory.

We consider a robot moving with discrete actions in a
simple grid world with discrete states as shown in Fig. 1.
The set of actions available to the robot in each state is A =
(N,E,S,W,NE,NW,SE,SW, rest). The dynamics of the
robots is as follows. The action rest does not change the robot
state. Also, if the robot cannot move in the intended direc-
tion, then it remains in the same state. For all other actions,
the robot moves in the intended direction with probability
p = 0.93 and the remaining probability is equally divided
between the following choices: the two possible adjoining
directions and staying in the same state, as shown in Fig. 1.
For all time steps and states, the cost of action rest is 0, the
cost of the horizontal or vertical actions, i.e., (N,E,S,W) is
1, and the cost of the diagonal actions, i.e., NE,NW,SE,SW
is 2. We use the standard model-free Q-learning [1] al-
gorithm to implement Best-Response-Policy and
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Fig. 1. Robot dynamics for action SE.

Monte-Carlo estimation with 5, 000 trajectories to implement
Occupancy-Estimator.

A. Case Study 1: Bounded-Time Reachability
In this case study, we consider a grid world of size

(6×6) with the robot starting at (0.5, 0.5). The STL formula
Φo = F[0,7]G[0,1](x > 4∧y > 4) expresses a requirement of
the form “Eventually visit and remain for t1 units of time in
the desired region within t2 units of time.” The horizon of
the MDP problem is hrz(Φo) + 1 = 9.

We construct the extended MDP as described in Sec-
tion IV, resulting in an extended state space S× with
|S×| = 324, and consider two different thresholds for STL
satisfaction pthres, i.e., 0.5 and 0.9. Since the transition
probability is known by construction in both these cases,
an optimal policy and the true optimal total cost is obtained
by solving the LP formulation of the finite-horizon CMDP as
described in Section IV. The optimal cost for pthres = 0.5
and pthres = 0.9 is 5.881 and 7.494, respectively.

In the setting of unknown transition probability, an optimal
policy is obtained by using the model-free OB-MFC algo-
rithm. The resulting policies are used to generate 10, 000 tra-
jectories, and the satisfaction probabilities and expected total
costs are estimated. The estimated satisfaction probability for
pthres = 0.5 and pthres = 0.9 is 0.501 and 0.897, respec-
tively. The estimated total expected cost for pthres = 0.5 and
pthres = 0.9 is 6.284 and 7.589, respectively. In both cases,
the estimated satisfaction probability and total expected cost
of the returned policy is within a small, 6.8% tolerance from
the optimal value and satisfaction threshold.

B. Case Study 2: Bounded Time Patrolling
In this case study, we consider a grid world of size (4×4)

with the robot starting at (1.5, 1.5). The STL formula Φo =
G[0,12]

(
F[0,2](x > 1∧x < 2∧y > 3∧y < 4)∧F[0,2](x > 2∧

x < 3∧y > 2∧y < 3)
)

expresses a requirement of the form
“For all time t ∈ [0, t1], eventually visit region A in interval
[t, t+ h] and eventually visit region B in interval [t, t+ h].”
The horizon of the MDP problem is hrz(Φo) + 1 = 15.

Similarly to the first case study, we construct an extended
state space S× with |S×| = 768 and consider a threshold
for STL satisfaction pthres = 0.7. For known transition
probability, an optimal policy and the true optimal total cost
are obtained by solving the LP formulation of the finite-
horizon CMDP as described in Section IV. The optimal cost
for pthres = 0.7 is 16.875.

In the setting of unknown transition probability, an optimal
policy is obtained by using the OB-MFC algorithm. The re-
sulting policy is used to generate 10, 000 trajectories and the
satisfaction probability and expected total cost are estimated.
The estimated satisfaction probability for pthres = 0.7
is 0.702 and the estimated total expected cost is 17.215.

The estimated satisfaction probability of the returned policy
satisfies the given threshold and the estimated total expected
cost is within a small, 2.01% tolerance from the optimal
value.

VII. CONCLUSIONS

We designed and validated a model-free reinforcement
learning algorithm for a general finite-horizon constrained
Markov decision process and applied it to find a cost-optimal
policy for a finite-horizon Markov decision process such that
the probability of satisfying a given signal temporal logic
(STL) specification is beyond a desired threshold. Future
plans include the extension of the proposed method to more
general STL specifications and the optimization of the robust
satisfaction of STL formulae.
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