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Bedform segregation and locking increase storage of natural and synthetic particles in rivers
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Abstract

While the ecological significance of hyporheic exchange and fine particle transport in rivers is
well established, these processes are generally considered irrelevant to riverbed
morphodynamics. We show that coupling between hyporheic exchange, suspended sediment
deposition, and sand bedform motion strongly modulates morphodynamics and sorts bed
sediments. Hyporheic exchange focuses fine-particle deposition within and below mobile
bedforms, which suppresses bed mobility. However, deposited fines are also remobilized by
bedform motion, providing a mechanism for segregating coarse and fine particles in the bed.
Surprisingly, two distinct end states emerge from the competing interplay of bed stabilization
and remobilization: a locked state in which fine particle deposition completely stabilizes the
bed, and a dynamic equilibrium in which frequent remobilization sorts the bed and restores
mobility. These findings demonstrate the significance of hyporheic exchange to riverbed
morphodynamics and clarify how dynamic interactions between coarse and fine particles
produce sedimentary patterns commonly found in rivers.

Introduction

Rivers carry both dissolved and particulate material from the continents to the oceans.
Terrestrial particulate matter plays a key role in structuring alluvial river channels?, maintaining
deltaic coastlines?, and supporting aquatic ecosystems*. Particulate organic matter is retained
in riverbeds and floodplains®, buried in deltaic clinoforms® and stored in marine sediments’8,
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Consequently, internal river system dynamics regulate the metabolism of carbon, yielding an
annual efflux of 5.1 Pg of carbon from rivers to the atmosphere, and delivering 0.9 Pg° of
terrestrially-derived carbon to the oceans>®%12, Land development and agriculture have
substantially increased soil erosion and delivery of particulate matter to rivers!3. Excessive
accumulation of these fine particles in sediments (siltation, embeddedness) is one of the major
causes of impairment of aquatic ecosystems today'#*°. These impacts are greatly exacerbated
when the particles are themselves toxic (e.g., metal mine tailings)®. Concurrently, large
guantities of plastics have been introduced into aquatic systems, yielding extraordinary
numbers of small particles, fragments, and fibers — collectively termed microplastics — that are
transported through and accumulate within fluvial systems!”!8, The storage times of such
synthetic particles and their long-term consequences for aquatic ecosystems are currently
unknown.

Terrestrial, aquatic, and anthropogenic particles are subject to a wide range of
conditions during transport from river headwaters to coastal ecosystems, including sunlight and
oxygen variations in the water column, physical abrasion, strong redox gradients, and diverse
microbial metabolism in the riverbed!%2!, Dissolved and particulate organic matter is
transformed both in the stream and within the hyporheic zone — the highly bioactive region of
the riverbed where river water mixes with groundwater!®. Hyporheic exchange facilitates
microbial metabolism by delivering oxygen, carbon, and nutrients to benthic and hyporheic
microbial communities®®. The rate and extent of hyporheic exchange are controlled by river
flow, channel morphology, and riverbed permeability. Nevertheless, hyporheic flux and storage
timescales have not been incorporated into numerical and conceptual models for the dynamics
of particulate organic matter or microplastics in rivers?2-2>,

To date, deposition of fine (diameter < 50 um) and light (specific gravity ~1) inorganic,
organic, and synthetic particles in riverbeds has not been considered because it is generally
assumed that they remain suspended in the water column due to low settling velocities?®.
Though early studies indicated that particles that are fine and/or light may impact bed
morphodynamics?’ and fines are known to modulate fluid properties?®, they are commonly
assumed to only interact minimally with riverbeds?®. Increasingly, there is awareness that fine
particles can impact bed morphodynamics, as recent studies have shown that fines can change
bed slope®® and interact with bed sediments as part of the bedload3'32, Moreover, fine
suspended particles are transported into riverbeds by hyporheic exchange and accumulate in
the subsurface3336,

Here we show that fine particle dynamics, hyporheic exchange and riverbed
morphodynamics are highly coupled, and this coupling drives the system to one of two
asymptotic end states: bedform locking in which fine particles accumulate within bedforms and
completely stabilize the bed, and segregation in which fine particles propagate down through
bedforms completely restoring bed morphodynamics and forming buried depositional layers.
Both end states leave a distinctive depositional pattern that can be detected via sediment cores
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Further, these end states control both particle retention timescales and bed remobilization
frequencies, which regulate both the breakdown and ecological impact of fine particles in
rivers.

Results
Fine suspended particles deposit in the bed and alter bed morphodynamics

We simultaneously observed bed morphodynamics and deposition of fine particles
(kaolinite clay) in recirculating laboratory flumes under conditions typical of small sand-bed
streams (Methods). We first observed the morphodynamics of sand alone (before adding clay)
to assess distributions of bedform celerity and morphology under each flow condition (Fig. 1 a,
b). We then added dispersed clay to the freestream and observed streamflow, clay deposition,
and changes in bed morphodynamics using a combination of imagery (bedforms and clay),
acoustic Doppler velocimetry (flow and bedform statistics at-a-point), water clay concentration
measurements (real time) and bed clay content (at the conclusion of the experiments). Clay
was transported into and through the bed along hyporheic flow paths and deposited at the
location of maximum hyporheic influx to each bedform and within bedform troughs
(Supplemental Data Fig. 1, Supplemental Data Video I). Clay accumulation stabilized the bed,
reducing the bedform celerity (Fig. 1 a, b), and altering bed morphology (Fig. 1c). This type of
stabilization has been observed in granular mixtures3”38 and is known to result from particle-
particle interactions (cohesion) as clay deposits fill pores and form bridges between sand
grains**3, We were not able to observe these microscale processes directly in our large-scale
experiments, but clay deposition patterns, reduced bedform celerity, and altered bedform
morphology all demonstrate the effects of stabilization (Fig. 1, Fig. 2, Supplemental Data Fig. 2).

In experiments with relatively low shear velocities (U= = 0.013 m/s), clay accumulation
completely stabilized the bed, locking bedforms in place (Supplemental Data Video 1). Locking
occurred when cohesion increased to such an extent that the imposed fluid shear was no
longer sufficient to mobilize the bed. Bedform celerity decreased as clay accumulated in the
bed (Fig. 1, Fig. 2), and exhibited stochastic behavior as the transport rate neared zero.
Complete locking was preceded by periods of incipient locking, in which the bed became fully
stabilized locally at the observation location but remained mobile upstream. The resultant
sediment transport propagated through the system and episodically remobilized the bed in the
measurement area (Fig. 1a-c). As the bed approached a locked state, partial stabilization
substantially changed the bed morphology. Bedform wavelengths increased when bed
sediment transport slowed (Supplemental Data Fig. 2). Further, during the period of bedform
locking, a small amount of sand remained in transport over the locked bedforms. This
combination of sand deposition in bedform troughs and overall lengthening of the bedforms
reducing bedform lee angles (Supplemental Data Fig. 2). Clay deposition ultimately locked the
bed completely, halting sediment transport everywhere in the system. Fully locked bedforms
had visibly different shapes and morphological properties than either clay-free or sorted clay-
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sand bedforms, as they are elongated, and the lee angle is reduced noticeably. (Fig. 1c,
Supplemental Data Fig. 2).

The extent of stabilization of the bed depended on the imposed fluid shear as well as
the amount of deposited clay (Fig. 2); while clay floc size increased slightly with mass of clay
used in each injection and salinity, floc size did not noticeably impact bed stabilization. Bedform
celerity decreased in all cases, but complete locking only occurred under relatively low-shear
conditions in which stabilization dominated the return of clay to the water column via
hyporheic exchange and bedform scour (remobilization) (Fig. 2a). We assessed the change in
bedform dynamics in terms of a stabilization ratio 1, defined as the ratio of the clay fraction in
the bed (M) (a proxy for the cohesive force associated with clay deposition) and the
mobilization force imposed by the fluid (nondimensional Shields stress, t,). The normalized bed
celerity (ratio of the mean celerity of the clay-sand bed <C> relative to sand alone <Cy>)
decreased linearly with the stabilization ratio (Fig. 2b). Stabilization of mobile sediment beds
solely by deposition of fine particles from the water column has not previously been quantified.
These findings indicate that fine particle deposition and remobilization episodically regulate the
morphodynamics of sand-bed rivers.

Discussion
Clay-sand bed end states: competition between segregation and locking

Under conditions of high bed mobility (i -> 0), deposited clay is frequently remobilized
from within bedforms, and long-term deposition only occurs in a horizontal layer below the
active region of bed sediment transport. For this case, we observed a peak in clay accumulation
at the location of the most frequent (modal) scour depth (Fig. 3a). This can be considered the
result of a stochastic process in which passage of a random series of bedforms induces both
downward motion of suspended particles along hyporheic flow paths and remobilization of
deposited particles though scour. This remobilization can be considered a type of winnowing
process removing fine particles from the sediment bed. However, repeated passage of
bedforms moves clay particles deeper into the bed, and ultimately into regions from which
they are not remobilized**. The resulting clay accumulation layer is horizontal because it is
formed by the passage of many bedforms, which homogenizes the effects of hyporheic
exchange processes*®. Conversely, when stabilization dominates, there is extensive deposition
of clay within each bedform and the resulting strong local stabilization slows and ultimately
stops bed sediment motion. For the locked case, we observed that clay accumulation decreased
monotonically with depth in the bed (Fig. 3b), as expected for a process driven by flux of
sediment particle from the water column*®47,

In the mobilization-dominated case, presence of clay in the mobile layer still decreased
bedform celerity over the timescale of the experiment (Fig. 2), but clay did not permanently
accumulate in this region. Instead, clay accumulated primarily below the active layer of sand
transport, at depths where clay was delivered by hyporheic exchange but only infrequently
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remobilized by the passage of larger bedforms. Clay accumulation stabilized the bed at this
depth, shifting the scour distribution upwards and reducing the mean bedform height
(Supplemental Data Fig. 4). These dynamics produced a segregated end-state in which clay
accumulates just underneath the active layer, while maintaining a mobile layer of sand
transport (Fig. 3a). Hyporheic exchange decreased by more than a factor of two at the depth of
clay accumulation but was maintained within the active layer (Supplemental Data Fig. 1,
Supplemental Data Video 2).

The two morphodynamic end states observed here — segregated and locked — represent
the asymptotic outcomes of stochastic forcing and internal dynamics in rivers. Bedforms
develop spontaneously from interactions between river flow, bed sediment motion, and
riverbed topography*®. While suspended and bed particle dynamics were previously thought to
be independent, our results show that hyporheic exchange and subsequent deposition of fine
particles strongly modulate local bed morphodynamics. Over longer timescales, extensive
repetition of these processes is expected to drive riverbeds to either the segregated or locked
state. Highly mobile sand-bed rivers have little clay in the active layer while bed sediments in
locked sand/silt/clay-bed rivers contain a mixture of coarse and fine particles*®. The results
presented here show that flow-bed-suspension dynamics reinforce these patterns. Further,
while clay-sand sorting is normally assumed to be driven by wash-out of fine particles from
mixed sediment beds, the results presented here show that fines are retained to a much
greater extent than previously believed and accumulate in buried depositional layers. Such
layered heterogeneity is known to occur in rivers and to strongly influence rates and patterns of
hyporheic exchange*, but available field data do not resolve the scales of heterogeneity
observed here>%°1,

Larger-scale variations in flow and sediment inputs are expected to reinforce local
bedform processes. Particles that are immobilized either by locking or by depositing below the
active layer can only be remobilized under higher fluid shear, e.g., in floods. Floods generate
larger bedforms with the capability to remobilize deposited fines from within stream
channels®>. However, floods also induce larger-scale hyporheic exchange processes and drive
fine particles deeper into the streambed34°2, Therefore, both the mobilization and deposition
processes observed here continue to occur during floods, and the wider ranges of flow and
morphodynamic conditions found in rivers are expected to increase the length and time scales
of the processes we observed. Moreover, our observations support the recent hypothesis that
fine sediment contributes to development of low-angle bedforms in large rivers, and provide an
additional mechanism for development of unusual dune morphologies and sedimentary
deposits®3.

Implications for storage and breakdown of natural and synthetic particulate matter

Both the locked and segregated end states have direct implications for fine particle
storage and metabolism in rivers. In the locked case, particles are trapped within bedforms
until a high-flow event exceeds the bed erosion threshold. This increases particle residence
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times within the hyporheic zone to flood recurrence timescales. Fine particle storage timescales
are expected to be even greater in larger rivers, as these rivers require a sustained increase in
discharge to modulate bedform morphodynamics, resulting in slow readjustment times>®. In the
segregated case, burial of fine particles beneath the active layer and the resulting limitation on
hyporheic exchange both favor long-term retention of natural and synthetic particulate matter
in rivers. Fine particles primarily deposit in a layer below the average scour depth and migrate
further downward over time. Repeated flood events will drive this material deeper into the bed
and form low-permeability strata underneath the river channel that restrict hyporheic
exchange and decrease delivery of solutes from the overlying river. This process provides a
mechanism for suspended particulate organic matter to be deposited, retained, and preserved
under river channels.

Both end states increase the opportunity for metabolism of organic matter relative to
current models that assume these particles remain in the water column. While particulate
organic carbon is known to be buried and stored within floodplains® and deltas>®, our
observations are the first to identify a clear mechanism for storage under active river channels.

This process likely contributes to the supersaturation of CO2 commonly found in rivers® and the
resulting high rates of outgassing to the atmosphere®.

Microplastics will similarly become buried and retained for long periods of time in
riverbeds. Microplastics are colonized by biofilms3®, and the sorption of ions and organic
material to their surfaces leads to cohesive organic-inorganic aggregates that will contribute to
bedform segregation. Over alluvial river valley morphodynamic timescales, channel migration
leaves fluvial deposits buried within floodplains. The long-term structure formed by the
processes observed here will be discontinuous and elongated fine particle lenses, which will
retain the signature of human development in the form of extensive fine-particle deposits
containing large numbers of synthetic microplastic particles.

While the strength of bed cohesion will be modified by the cohesive strength and size of the
suspended sediment and the porosity of the sand bed, the suspended flocculated clay diameter
(< 50 um), suspended sediment concentrations (< 10 g/L ) and bed sediment diameter
(Dso 0.420 mm) used in this study are typical for many watercourses >8. Both segregated and
locked end states appear to occur with frequency in natural watercourses. Riverbeds often
contain largely sand bedforms overlying subsurface fine particle layers*®>%°, Field studies have
indicated that the formation of these deposits can be connected to the interplay between
hyporheic deposition and mobile bedform scour 3*35, Clay in intertidal bedforms, where these
layers are also present**, has been tied to slowdowns in bedform celerity®°. Beds in these
systems are composed of high fractions of cohesive-fine particles®*®* and are usually
immobile?8,

Our results show that complex feedbacks between fine particle deposition, hyporheic
exchange, and bedform morphodynamics increase the retention and burial of particles in rivers.

6
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The effects of bed segregation and locking processes need to be investigated in a variety of
rivers to improve assessment of particle cycling between terrestrial, freshwater, and marine
systems, re-evaluating the opportunity for metabolism of both terrestrially-derived and aquatic
organic matter in fluvial systems, and assessing the long-term ecological impacts of synthetic
particles. Riverine storage, siltation and metabolism of carbon, nutrients, and contaminants are
expected to become more important in the future as increasing land development and
precipitation intensity deliver more terrestrial particulate matter to rivers®. Our findings
provide a basis for incorporating self-organized subsurface heterogeneity and coupled fine-
coarse particle dynamics in models of riverine geomorphology, biogeochemistry, and
ecosystem impacts.
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Methods

Sediment transport within sand-bed rivers and streams occurs at high Shields stresses
(t. = t/(ps — p)gD) where flux occurs through the suspension of bed material and coherent
bedform motion 4423 and t is the shear stress (Pa), g is gravity (m/s?), D is a representative
grain size (m), and ps and p are the sediment and fluid density taken as 2,650 and 1,000 kg/m3,
respectively. Bed morphodynamics depend primarily on freestream properties (e.g., velocity,
depth), river reach geometry (e.g., slope, width) and the composition of the bed (grain size,
roughness).%%%” Fine suspended particles (diameter < 50 um) are typically considered to not
interact significantly with the bed based on an inferred low likelihood of deposition based on

the particle settling velocity (Us) and hydrodynamic mixing, typically represented by the
Us

BrU*
profiles in sand-bed rivers suggests that suspended and bed sediments are in dynamic
equilibrium32. Further, a growing body of evidence indicates that fine particles are transported
into and accumulate within the bed due to hyporheic exchange33-3°,

dimensionless Rouse number (P = ). However, a recent reanalysis of suspended sediment

To explore the interactions between suspended particle dynamics and bed
morphodynamics, we conducted experiments within two similar recirculating flumes at
Northwestern University (NU)* and Ben-Gurion University of the Negev (BGU) with mobile
sediment beds and freestream kaolinite clay with a median listed particle diameter of 0.5 um
and a flocculated diameter of < 50 um. Nine experiments were conducted at NU and three at
BGU. All experiments were conducted with a constant freestream velocity but different
background salinity, shear velocity, and the frequency and magnitude of clay injections
(Supplemental Data Table 1). All experiments started with a flat bed composed entirely of sand
with a Dsp of 0.420 mm, which was allowed to fully develop prior to the addition of kaolinite.
Shear velocity was was determined by fitting a log law velocity profile to a time-averaged
downstream velocity profile over the fully developed bed. Sand bed morphodynamics were
observed for at least 70 hours, which was the minimum time required for bedform statistics to
converge. After the bed was fully developed and baseline morphological measurements were
completed, suspended clay was added as either a single addition (7 runs) or in sequential
additions (5 runs).

Bedform height (H), length (L) and celerity (C), and bed elevation were continuously
measured both before and after clay injection. Bedform morphodynamics were measured using
sidewall-mounted Nikon D5300 cameras. Images were processed using a simple black/white
thresholding procedure (MATLAB R2019a) to extract the interface between the overlying fluid
and the bedform. The peaks and troughs of each bedform were determined using a "find
peaks" algorithm (Python 3.7 SciPy). Bedform length was calculated as the average distance
between successive troughs, while celerity was determined via linear regression of the bedform
trough displacement over time. A Nortek Acoustic Doppler Velocimeter (ADV) profiler was also
used to continuously measure the bed elevation at single point. These data were processed
with a Savitzky-Golay filter and a “find peaks” algorithm allowed for the extraction of the peaks

8



247
248
249

250
251
252
253
254
255
256
257
258
259
260

261

and troughs. The troughs were used to generate the scour depth distribution for each run.
Bedform height H was determined as the difference between the bedform crest and
downstream (stoss side) trough.

The concentration of suspended clay in the freestream was measured continuously
using Xylem turbidity meters (WTW Visoturb 7001Q SW for low concentrations and WTW
Visolid 7001Q SW for high concentrations). Hyporheic exchange flux was measured periodically
via salt tracer injections, with the in-stream salt concentration measured using a salinity meter
(SM — Star Comm, resolution of 0.01 uS/cm). Hyporheic exchange was measured for the clean
sand bed (before clay addition) and at various intervals throughout the experiment?®’. Clay
concentration profiles in the bed sediment were obtained by taking cores at the conclusion of
each run following methods of Dallmann 2020%. Once removed, the cores were sectioned, and
the clay content of each section was measured by resuspending the deposited clay in DI water
and then measuring light absorbance with a spectrometer (Hach Company, DR/4000). A
calibration curve was used to relate sample absorbance to clay mass.
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Figure 1: Temporal evolution of bedforms towards a locked end state for experiment NU-8. (a) Bedform
troughs were continuously tracked both before (blue) and after clay additions (red). After the addition of
clay, bedforms slow and eventually lock in place. Red horizontal lines indicate immobile bedforms (i.e.,
celerity = 0). (b) Red and blue points represent bedform celerities calculated for the trough locations
shown in (a), while the solid black line represents the accumulation of clay within the bed. As the clay
accumulates, the bed temporally locks (celerities approach zero near 250 hours) and then bed movement
restarts due to upstream turbulent fluctuations. The bed relocks after sufficient clay accumulates in the
bed (near 410 hours). (c) From top to bottom, images showing clean bed mobile bedforms (50 hours),
post clay addition partially mobile bedforms (300 hours), and locked bedforms (450 hours), respectively.
Images have been color matched to aid in visualization of the clay layer. Under conditions of high bed
sediment transport rates, ongoing sand transport leads to a segregated end-state with mobile bedforms
propagating over a layer of deposited clay. However, in cases dominated by stabilization, extensive clay
deposition within bedforms produces a locked end-state.
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Figure 2: Interplay between shields stress, clay deposition, and bedform morphodynamics. (a) Three
examples of distributions of bedform celerity prior to (solid) and following (dashed) clay addition for low
(blue), medium (yellow), and higher (red) Shields stresses. The bedform celerity distribution decreases
following clay deposition, and the reduction is more pronounced under smaller imposed fluid shear (blue

lines). (b) Normalized bedform celerity decreases with the bedform stabilization ratio ) = TM, indicating
that the observed morphodynamic changes reflect a balance between cohesive forces and the fluid
Shields stress. Points represent the average of the 100 hours of bedform celerity data. Linear fit (R*=0.93)

with 95% confidence interval is shown. This relationship is consistent for both locking (stabilization
dominated) and segregating (mobilization dominated) conditions.
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Figure 3: Clay accumulation patterns for segregated and locked end states. Images on the left are
representative features of the two end states, while concentration profiles on the right represent average
flume clay accumulation (see methods). Red circles denote the median and shading represent the
interquartile range. (a) In the segregated end state (NU-3), clay accumulates in a defined layer just below
the active layer of sand transport. The peak of the clay concentration profile occurs just below the most
frequent bedform scour depth. Clay also deposits below the maximum scour depth (~0.075 m), as clay is
actively pumped underneath bedforms by hyporheic exchange. (b) In the locked end state (NU-8),
extensive clay accumulation within bedforms halts bed motion. The clay deposition patterns reflect
bedform-induced hyporheic pumping into the stoss slope and through the bedform. In this case, there is
no defined layer of buried clay and deposited clay concentration decreases monotonically from the bed
surface. Flow is from left to right in the images of bedforms. Images have been color matched to allow
for easier visualization of clay accumulation.
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