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At birth, infants discriminate most of the sounds of the world’s lan-
guages, but by age one, infants become language-specific listeners.
This has generally been taken as evidence that infants have learned
which acoustic dimensions are contrastive, or useful for distinguish-
ing among the sounds of their language, and have begun focusing
primarily on those dimensions when perceiving speech. However,
speech is highly variable, with different sounds overlapping substan-
tially in their acoustics, and after decades of research, we still do
not know what aspects of the speech signal allow infants to differ-
entiate contrastive from non-contrastive dimensions. Here, we show
that infants could learn which acoustic dimensions of their language
are contrastive, despite the high acoustic variability. Our account is
based on the cross-linguistic fact that even sounds that overlap in
their acoustics differ in the contexts they occur in. We predict that
this should leave a signal that infants can pick up on, and show that
acoustic distributions indeed vary more by context along contrastive
dimensions compared with non-contrastive dimensions. By estab-
lishing this difference, we provide a potential answer to how infants
learn about sound contrasts, a question whose answer in natural
learning environments has remained elusive.
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Languages differ in the speech sound inventories they use1

to reliably convey meaning. For example, Hindi has a2

distinction between unaspirated retroflex [ú] vs. dental [t”] that3

is used to distinguish meanings (e.g., [úal] means ‘postpone’,4

while [t”al] means ‘beat’), but English does not. Adult speakers5

are generally tuned to the properties of the language(s) they6

speak. For example, while most adult Hindi speakers can7

hear the difference between [ú] and [t”], most English-speaking8

adults cannot (1). Because speech sound inventories differ9

across languages, listeners must learn about the speech sounds10

of their language from the input they hear.11

The first signs of this phonetic learning appear within the12

first year of life. During their first couple of months, infants13

can discriminate most sounds of the world’s languages, showing14

similar perceptual abilities regardless of their language experi-15

ence. For example, both newborn English-learning and Hindi-16

learning infants can hear the distinction between retroflex [úa]17

vs. dental [t”a], a speech contrast that exists in Hindi, but18

not English. However, over the course of the first year of19

life, this changes. Infants become language-specific listeners,20

starting to more closely resemble adults in their discrimination21

abilities. Their ability to discriminate non-native contrasts22

(e.g. between retroflex [úa] and dental [t”a]) for English-learning23

infants) declines (2–4), whereas their ability to discriminate24

contrasts in their own language improves (5).25

These perceptual changes have generally been taken as26

evidence that infants are learning which acoustic dimensions27

are contrastive in their language: that is, which acoustic28

dimensions have multiple categories along them (6). Speech 29

sounds differ in how they are acoustically produced and one 30

or more acoustic dimensions will be used to signal differences 31

between sound contrasts. The idea, then, is that infants 32

become aware of which acoustic dimensions are used to contrast 33

the meaningful sounds in their language, and begin primarily 34

focusing on those dimensions when perceiving speech. 35

Decades of research into how infants learn about contrastive- 36

ness in their first year of life has built a wealth of knowledge 37

in this area; however, we still do not know what aspects of 38

the speech signal allow infants to make these inferences from 39

the acoustically variable speech they hear in their daily lives. 40

One of the most well-studied current proposals for how in- 41

fants learn which dimensions of their language are contrastive 42

is known as distributional learning (6). It proposes that in- 43

fants learn the contrastive dimensions of their language by 44

tracking the frequency distribution of sounds along acoustic 45

cue dimensions. If an infant observes a bimodal (two-peaked) 46

distribution along a dimension, then they learn that the dimen- 47

sion is contrastive, whereas if an infant observes a unimodal 48

(one-peaked) distribution, then they learn that the dimension 49

is not contrastive. This account has experimental support: 50

distributions of sounds affect infants’ discrimination in the 51

lab (6–9). In addition, when bimodality is present in the in- 52

put, computational models successfully learn correct contrasts 53

(10, 11). However, a key assumption underlying this proposal 54

is that contrastive dimensions do indeed exhibit bimodality, 55

and while this is the case for some contrasts, recent work 56

looking at naturalistic speech corpora has shown that this is 57
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not a universal property of child-directed speech (12, 13).58

For example, in Japanese, vowel length is contrastive (14),59

meaning that two different words like /toko/ (bed) and /toko:/60

(travel) can be distinguished solely by how long a vowel is.61

However, analyses of a spontaneous corpus of Japanese child-62

directed speech reveal that the distribution along the duration63

dimension is unimodal despite being contrastive (12) (Fig. 1a;64

note that infants do not have access to the individual color-65

coded short and long vowel distributions shown in this figure,66

only the combined overall distribution). A similar finding has67

been reported for Dutch vowel length (13), as well as many68

other contrasts (5, 15, 16). That is, although infants are able69

to use distributional information for learning when available,70

it is not available for all of the contrasts they learn about, so71

distributional learning is not sufficient.72

Many follow-up theories have been proposed to explain73

how infants learn in cases where bimodality is not present.74

This has included theories arguing that bimodality might be75

present when considering only the most prominent sounds (e.g.,76

stressed vowels) (17), when normalizing for effects of neigh-77

boring sounds or other factors (18), or when using word-level,78

visual, or referential information (13, 19–23). While many79

of them have experimental support and work on controlled80

lab speech, over the past 40 years, it has proven difficult to81

identify a learning mechanism that works on the true speech82

infants hear. (13) takes an important step in that direction83

by showing that, in Dutch, average vowel durations by word84

type are often longer in word types with long vowels than85

word types with short vowels (and, thus, that short and long86

vowels may be separable). However, we still do not have a87

measure that consistently separates vowels with a contrast88

from vowels without a contrast across corpora, languages, and89

vowel qualities. This problem is so extreme that recent work90

has suggested that infants might not actually be learning how91

many phonetic categories there are along a dimension at all,92

because this signal is not present in their input in a way that93

they have access to (24).94

In this paper, we show that the necessary signal to learn95

which acoustic dimensions are contrastive may be present in96

naturalistic input and accessible to infants. Our proposal takes97

advantage of the contextual information of a sound, which98

infants are sensitive to (20–22, 25–29). In this work, we take99

the context of a sound to include factors like its neighboring100

sounds, its prosodic position in a word/utterance (i.e., if it101

immediately borders a word or utterance boundary), and its102

word frame; however, we think of context more broadly as any103

information that listeners track about where a sound occurs or104

who spoke it. When an acoustic dimension is contrastive, there105

are multiple categories along it and the relative proportion106

of those categories may differ across contexts (e.g., if two107

categories are present, one context may be 50% category 1 and108

50% category 2, whereas another context may be 90% category109

1 and only 10% category 2). We show that such differences110

in category frequency—which are extremely common across111

languages (30–32)—can help infants distinguish contrastive112

from non-contrastive dimensions.113

We test our proposal on two test cases, Japanese and Dutch,114

which have been most problematic for both distributional115

learning and additional previous theories, and show that our116

proposal explains how infants could nonetheless learn the117

contrast from information available to them within their first118

year of life. Complemented by previous findings that (1) infants 119

are sensitive to distribution shapes and contextual information, 120

and (2) changes in the relative proportion of sounds across 121

contexts is a cross-linguistically widespread property of sound 122

categories, these results are promising and suggest that infants 123

may be able to learn about contrastiveness from naturalistic 124

speech input, thus pointing towards a possible answer to a 125

long-standing question in the field. 126

Distributional Learning Across Contexts 127

The inspiration for our proposal comes from a finding show- 128

ing that the context a sound occurs in (neighboring sounds, 129

prosodic position, speaker, etc.) is predictive of its identity: 130

just knowing what context a Japanese vowel appears in can 131

predict its length with around 95% accuracy (33). This means 132

that short and long vowels appear in different proportions in 133

different contexts. Most contexts have almost all short vowels 134

(e.g. Context 1 in Fig. 1b), whereas some contexts have almost 135

all long vowels (e.g. Context 2 in Fig. 1b), and some are in 136

between (e.g. Contexts 3-4 in Fig. 1b). Figure 1b reveals 137

that these changes in the relative proportion of short and long 138

vowels can change the overall shape of the frequency distribu- 139

tion in the context. All of the distributions in Figure 1b are 140

unimodal, despite the fact that there are two categories. Thus, 141

they would not be conducive to the distributional learning 142

theory proposed by (6). However, this is only one aspect of 143

a distribution’s shape, and across contexts, the distributions 144

differ in how wide or peaky they are, where they peak, and so 145

forth. This arises because of two facts: (i) when a dimension is 146

contrastive, the overall frequency distribution in each context 147

is the sum of the short vowel distribution and the long vowel 148

distribution, (ii) short and long vowels have different distribu- 149

tions, as can be seen in Figure 1. Taken together, this means 150

that in a language like Japanese, where there is a contrast, 151

we would expect different relative proportions of short vowels 152

and long vowels across different contexts, and since short vow- 153

els and long vowels have different acoustic distributions, we 154

would expect the overall distribution to change across different 155

contexts. On the other hand, in a language like French (where 156

there is no length contrast), shape changes cannot arise from 157

different relative proportions of short and long vowels because 158

there is no short vs. long vowel distinction. 159

In light of this, we propose that infants might learn that 160

a dimension is contrastive by tracking the acoustic distribu- 161

tion along that dimension across different contexts. They 162

could compare the shapes of the distributions across those 163

contexts, and infer that a dimension is contrastive if the shape 164

varies substantially across contexts, but infer that it is not 165

contrastive if the shape is largely the same across contexts. 166

We operationalize a sound’s context as (i) its (immediately) 167

neighboring sounds, its prosodic position (whether it falls at a 168

word or utterance boundary), and its quality (learned before 169

length), or (ii) its word frame, due to evidence that infants are 170

sensitive to this information in their input (20–22, 25–29, 34). 171

However, we are not tied to these particular factors. Any con- 172

textual factors that infants track, and that change the relative 173

proportion of sound category membership, could work. 174

It is important to note that the learning outcome of this 175

proposal is the same as in (6), but differs from the learning out- 176

comes of some phonetic learning theories that have arisen since 177

then (19). In particular, the learning outcome here is whether 178
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Fig. 1. (a) The frequency distribution of sounds along the duration dimension in Japanese is unimodal, despite vowel length being contrastive. (b) Vowel frequency distributions
along duration, for four Japanese contexts (defined by prosodic position, neighboring sounds, and vowel quality). The relative proportion of phonemically short and long vowels
changes substantially across contexts, which results in differently shaped distributions. The short vs. long categories are color-coded for the reader’s benefit. Infants (and our
analyses) do not have access to this color information when learning, only the overall distributions.
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Fig. 2. Distribution of Earthmover’s distances by test case. Each datapoint represents the pairwise Earthmover’s distance (EM) between distributions from two different
contexts (e.g., we show the comparison for Fig. 1b’s Context 1 vs. Context 2, which has a high Earthmover’s distance, and Fig. 1b’s Context 3 vs. Context 4, which has a small
Earthmover’s distance). Across all test cases, the tail of the contrastive boxplot (left) is longer than that of the non-contrastive boxplot (right), suggesting that there are more
extreme distribution shape changes across contexts when the acoustic dimension is contrastive. P+NS+VQ = prosodic position + neighboring sounds + vowel quality.

or not an acoustic dimension is contrastive - i.e. whether it is179

used to distinguish multiple categories. The learning outcome180

of some other theories included this knowledge implicitly, but181

often also included knowledge about what those categories182

were. Certainly listeners eventually learn about the categories,183

and a full learning account would need to eventually explain184

how that happens. However, the discrimination behavior in-185

fants exhibit in (2) does not require them to have learned186

categories (2, 24, 35), so we follow the original literature and187

focus on how infants learn which dimensions are contrastive188

in their language.189

In what follows, we ask whether the necessary signal for190

this learning account is present in naturalistic speech; that191

is, whether there are larger distribution shape changes across192

contrastive dimensions than non-contrastive dimensions. We193

focus on three test cases, which each involve some data in194

which vowel length is contrastive, and some data in which195

vowel length is not contrastive. We look at vowel length for196

two reasons. First, it has a largely agreed upon primary cue197

(duration) that can be easily extracted from any annotated198

corpus. Second, it is possibly the best known case of extreme199

overlapping categories that cannot be explained by previous200

theories like distributional learning (12). We focus on the test201

cases that have been problematic for past phonetic learning202

theories, but argue in the General Discussion that this same203

approach to phonetic learning is likely to be effective across a204

wide range of languages and contrasts.205

Results206

Our results confirm that in spontaneous speech there are more207

extreme distribution shape changes across contexts when a208

dimension is contrastive than when it is not. 209

For all of the corpora we study, we extract the acoustic 210

distributions across a number of contexts, and compare them 211

pairwise, using Earthmover’s distance (36), a commonly used 212

metric of distribution shape difference (see Supplementary 213

Materials for discussion of results using an alternative metric, 214

KL divergence, instead). We operationalize ‘context’ in two 215

different ways, both of which rely on information that infants at 216

the relevant age are sensitive to: (i) a combination of prosodic 217

position, neighboring sounds, and vowel quality (P+NS+VQ) 218

and (ii) word frames (WF). 219

We first compare a spontaneous speech corpus of Japanese 220

(which has a vowel length contrast) against a spontaneous 221

speech corpus of French (which does not). We then test two 222

spontaneous Dutch corpora. Dutch has the property that a 223

subset of its vowels has a length contrast, whereas a different 224

subset does not. Comparing the subset that has a contrast 225

against the subset that does not allows us to control for any 226

effects that may arise due to differences in how the French and 227

Japanese corpora were collected and annotated. Two of our 228

tests examine adult-directed speech (ADS) corpora because 229

they allow us to test this proposal on large-scale, spontaneous 230

speech corpora which do not exist for infant-directed speech 231

(IDS), but we include results from a small corpus of infant- 232

directed Dutch as well. 233

A. Japanese vs. French ADS. We first compared Japanese and 234

French, defining context as a combination of prosodic position, 235

neighboring sounds, and vowel quality (Fig. 2). Each data- 236

point contributing to the boxplot represents the Earthmover’s 237

distance between a pair of contextual acoustic distributions. 238

For example, the comparison between Context 1 and Context 239
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Context Percent Long Count Frequency Rank
Phrase-initial, word-final /e/ 64.7 1357 18

Phrase-initial, phrase-final /a/ 56.7 255 95
Phrase-initial, phrase-final /e/ 87.9 244 100

Table 1. Information about the Japanese contexts that drive the tail
in the case of the P+NS+VQ analysis, including what percentage of
vowels in that context are long, how many times that context oc-
curred (Count), as well as its frequency rank out of all contexts that
occurred.

2 in Fig. 1b has a high Earthmover’s distance, whereas the240

distance for Contexts 3 and 4 is much small because they are241

very similar.242

The boxplot corresponding to Japanese (where vowel length243

is contrastive) has a much larger tail, extending upwards to-244

wards large Earthmover’s distances, than the boxplot corre-245

sponding to French (where vowel length is not contrastive).246

This means that, as predicted, there are many more pairs of247

contexts that have substantially different shapes (like Context248

1 vs. Context 2 in Fig. 1b) when there is a contrast than when249

there is not. The maximum distance, the mean distance, and250

the distance variance are all larger for Japanese than French251

(max = 0.43 vs. 0.16; mean = 0.05 vs. 0.02; variance = 0.003252

vs. 0.0004). Analyzing the contents of the tail in Japanese253

reveals that the tail is driven by contexts that have a much254

higher percentage of long vowels than observed overall and255

that occur frequently in the input (see Table 1 for frequency256

counts and ranks of the contexts that drive the signal).257

These same patterns hold when we continue looking at258

French vs. Japanese, but instead use word frames as contexts.259

As before, there are more contexts with more extreme dis-260

tribution shape changes in Japanese than French (i.e. along261

contrastive than non-contrastive dimensions), as seen by the262

longer tail in the second pair of boxplots in Fig. 2. As before,263

the maximum distance, the mean distance, and the distance264

variance are all larger for Japanese than French (max = 0.27265

vs. 0.12; mean = 0.04 vs. 0.02; variance = 0.001 vs. 0.0002).266

B. Dutch ADS and IDS. To test our proposal using a within-267

language comparison, we compare the subset of Dutch vowels268

that do contrast in length and the subset of Dutch vowels269

that do not. We find that the predicted pattern still holds -270

and it holds for both ways of defining context and both the271

ADS and IDS corpora (Fig. 2). This confirms that the results272

are not merely an artifact of using different corpora, as in273

the French vs. Japanese case, but seem to reflect something274

inherent to the existence or nonexistence of categories along275

an acoustic dimension. It is worth noting that Dutch-learning276

infants would not be able to perform this exact analysis to277

learn whether there is a length contrast, because they would278

not yet know enough to separate the vowels into contrastive279

and non-contrastive subsets. We return to the issue of what a280

learning account might look like in the Discussion. Meanwhile,281

we conclude from this analysis that the signal our account282

predicts exists in Dutch: contrastive dimensions differ from283

non-contrastive dimensions.284

Despite the qualitative similarity in results across all test285

cases, the scale of the difference in tail length varies. For286

example, in the French vs. Japanese P+NS+VQ case, the287

maximum Earthmover’s distance in the contrastive Japanese288

case is 0.43, whereas for the other ADS cases, the maximum289

is less than 0.3. In the Dutch IDS corpus, which only has 284290

Fig. 3. Bootstrapped analyses reveal that observed differences between contrastive
(top/blue line) vs. non-contrastive (bottom/orange line) dimensions are meaningful,
but that input size does matter. “C” refers to the number of contexts included in the
analysis. The maximum input size for which data is shown depends on the corpus
size: 284 for Dutch IDS, 21187 for Dutch ADS, and 132037 for Japanese vs. French.

vowel tokens, the maximum is only around 0.1. One possibility 291

is that these differences arise because of the large differences 292

in corpus size. The Japanese vs. French corpora considered 293

132,037 tokens and the Dutch ADS corpus considered 21,187 294

tokens, but the Dutch IDS corpus only considered 284 tokens. 295

C. Corpus size analyses. To test how corpus size impacts 296

results, we used bootstrap samples to run each analysis 50 297

times for 10 different corpus sizes ranging from the size of 298

smallest corpus (284) to the size of the largest corpus (132,037). 299

This also allowed us to test how much the size of the tail varied, 300

and whether differences observed between contrastive vs. non- 301

contrastive cases were meaningful. Fig. 3 shows these results 302

when calculating the maximum Earthmover’s distance across 303

all 50 runs; analogous plots for mean are provided in the 304

Supplementary Materials. First, this analysis reveals that the 305

differences observed are meaningful: across many runs, at 306

large enough corpus sizes, the contrastive line is higher than 307

the non-contrastive line. That being said, in the Japanese vs. 308

French case, the difference does not emerge until around 2000 309

vowel tokens have been observed, so input size does matter. 310

Second, this analysis reveals that differences in scale may 311

be partially, but are not entirely, due to corpus size. When 312

subsetted to the size of the Dutch ADS corpus, the Japanese 313

vs. French word frame maximum matches the remaining ADS 314

results. However, the results are less clear for Dutch IDS: 315

subsetting the Dutch ADS corpus to the size of the Dutch 316

IDS corpus yields results more in line with each other for the 317

P+NS+VQ analysis, but less so for the word frames analysis. 318

From a learning perspective, this means that an ideal learner 319

would need to observe around 2000 vowel tokens and track 320

the acoustic distribution within the 20 most frequent contexts 321

in order to observe the difference (though we discuss potential 322

ways to reduce the memory demands of the proposal next as 323
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(a) Prosodic Position Only

(b) Neighboring Sounds Only

(c) Vowel Quality Only

Fig. 4. Results are similar when we relax our assumptions about infants’ knowledge.
Here, instead of studying a combination of factors, we study (a) prosodic position (P),
(b) neighboring sounds (NS), and (c) vowel quality (VQ) individually (left: contrastive
dimension; right: non-contrastive dimension). While less clear for vowel quality, we
see the same pattern of results in the prosodic position and neighboring sounds only
cases.

well as in the General Discussion).324

D. Relaxing our assumptions about infants’ knowledge. Our325

analyses so far have been conducted assuming that (a) infants326

can track acoustic distributions across combinations of three327

contexts (prosodic position, neighboring sounds, and vowel328

quality), (b) infants can perfectly identify neighboring con-329

sonants, and (c) infants can perfectly segment words from330

speech. Although some of these assumptions have yet to be331

tested (e.g., we don’t know whether infants can track distri-332

butions along multiple contextual dimensions), we know that333

others are likely overestimating infants’ prior knowledge when334

learning about contrastive dimensions. Here, we show that335

the same qualitative results still emerge even when we weaken336

these three assumptions.337

The first assumption we revisit is whether infants can track338

distributions across combinations of contexts (i.e., prosodic339

position, neighboring sound, and vowel quality). We test what340

happens when we study each of these three factors individually.341

Fig. 4 shows that, especially for prosodic position, but also342

for the other factors, the same patterns, for the most part,343

emerge. While it is still quite conceivable that infants track344

Fig. 5. Results are similar when we relax our assumptions about infants’ knowledge.
Here, we define neighboring sounds by their broad class (stop, fricative, etc.) and add
noise to the prosodic position with a noise rate of 20% (left: contrastive dimension;
right: non-contrastive dimension).

distributions across combinations of contexts, these results 345

suggest that this need not be the case in order for our account 346

to be successful. It suffices to track distributions across indi- 347

vidual contexts (e.g., word frames or prosodic position). From 348

a learning perspective, this means that infants would only 349

need to be tracking the acoustic distribution across ∼4-10 con- 350

texts (rather than ∼20 as observed before), and these contexts 351

include extremely prominent contexts (e.g., utterance-final, 352

utterance-initial tokens). 353

The next two assumptions we revisit are whether infants 354

can perfectly encode the identity of neighboring sounds, and 355

whether they have a solid enough grasp on word segmentation 356

to have access to the prosodic position information we use. 357

On the one hand, prosodic boundaries are one of the first 358

signals that infants are sensitive to (26, 27); however, there 359

is concurrent evidence that infants make missegmentation 360

errors (37–39). To address these two assumptions, we test 361

what happens when we re-run the P+NS+VQ simulations, 362

with neighboring sounds defined by their broad class (i.e., 363

stop, fricative, vowel, approximant, etc.) rather than their 364

particular identity (e.g., /k/, /g/, /b/) and with noise added 365

to the prosodic information (we simulate a 20% error rate 366

here, such that 20% of the time, the infant misrepresents 367

the prosodic position of the vowel, but the results generalize 368

across error rates). Fig. 5 shows that these differences do not 369

qualitatively change the results, suggesting that even with a 370

more rudimentary grasp on contextual factors, infants could 371

still use this method to learn the sound contrasts. 372

Overall, we show that the necessary linguistic knowledge 373

and capabilities can be considerably reduced and yet the 374

correct finding still emerges. This suggests that this finding is 375

a robust one that immature learners could learn from even in 376

noisy learning environments. 377

E. Analyses with long vowels removed. Finally, to test 378

whether these results arose because of the contrast, we re- 379

moved all vowels labeled as long from the corpora and reran 380

the same analyses. We predicted that removing the long vowels 381

would cause the tail for the contrastive dimension to disappear, 382

such that the results for the contrastive dimension with long 383

vowels removed (i.e. with the contrast artificially removed) 384

would resemble those of the non-contrastive dimension. As 385

can be seen in Fig. 6, in Japanese and in Dutch IDS (the 386

two hand-annotated corpora we use), the tail disappears or 387

is reduced once the long vowels are removed, suggesting that 388

it is at least partially the presence of the long vowels that 389

causes these large changes in distribution shape. However, 390

this is not case in Dutch ADS: the contrastive dimension still 391

Hitczenko et al. PNAS | March 26, 2022 | vol. XXX | no. XX | 5
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Fig. 6. Results from artificially removing long vowels. Within each case, the left
boxplot corresponds to the contrastive dimension, the middle boxplot corresponds to
the non-contrastive dimension, and the right boxplot corresponds to the contrastive
dimension with long vowels removed. We observe that the tail length is reduced for
the Japanese/French and Dutch IDS analyses; however, against predictions, not for
the Dutch ADS analysis.

has a longer tail even when long vowels are removed. While392

this is not predicted by our account, there are a number of393

reasons why we may observe this result here. One possibility394

is that the annotations are imperfect. The remaining datasets395

studied here include hand-corrected segmental annotations,396

while the Dutch ADS data included force-aligned annotations397

which were not validated for their duration. Another possi-398

bility is that it has to do with the fact that these data were399

phonetically annotated, rather than phonemically annotated.400

That is, some phonemically long vowels were marked as being401

short. In fact, (40) reports that as many as 20% of word402

tokens that had long vowels underwent a shortening process.403

Especially combined with the fact that these data were au-404

tomatically annotated, this could mean that we are unable405

to actually remove all long vowels and that some long vowels406

remain which are driving the differences observed. Finally,407

another possibility is that the presence of long vowels in a408

context changes the distribution of short vowels. For example,409

if a context is 50% short vowels and 50% long vowels, then410

the short vowels may be pronounced with shorter durations411

than in a context with 90% short vowels and only 10% long412

vowels (i.e. to better differentiate the vowel types). If this is413

the case, then even if we remove the long vowels, we should414

expect to see differences in the short vowel distributions across415

contexts. However, this finding is nonetheless different from416

what our account predicts and more work should be done with417

hand-annotated corpora to see whether this finding remains418

and, if so, what is driving it.419

Nonetheless, across the board, we do observe that the con-420

trastive dimensions have a longer tail than the non-contrastive421

case, suggesting that contrastive dimensions exhibit more ex-422

treme distribution shape changes across contexts (even though423

all distributions are unimodal) than non-contrastive dimen-424

sions. These results show that contrastive dimensions look425

different than non-contrastive dimensions, and that infants426

would learn the correct generalization about their language by427

using this signal. As such, this is one of the first pieces of signal428

that has been shown to successfully differentiate contrastive429

and non-contrastive dimensions using spontaneous speech.430

Discussion431

In this paper, we proposed a new account for how infants432

could learn which acoustic dimensions of their language are433

contrastive. The idea is that infants track the frequency434

distributions of sounds in different contexts, and that435

they learn that an acoustic dimension is contrastive if the 436

distribution shape along that dimension varies substantially 437

across different contexts. For this account to work, it needs 438

to be the case that the distribution shape varies more across 439

contexts when a dimension is contrastive than when it is not. 440

We tested this prediction in three test cases, with two different 441

definitions of context. Across the board, our results show that 442

the distribution shape along an acoustic dimension changes 443

more across different contexts when that dimension is con- 444

trastive than when it is non-contrastive. This is a signal that 445

differentiates contrastive and non-contrastive dimensions, and 446

it is the kind of signal that listeners are likely to be sensitive to. 447

As such, this is one of the first phonetic learning accounts that 448

has been shown to work on spontaneous data and suggests 449

that infants could be learning which acoustic dimensions are 450

contrastive after all. In the remainder of the paper, we discuss 451

the promise and open questions of this proposal, including its 452

generalizability, evidence on whether infants have the neces- 453

sary sensitivities, and how infants could use this signal to learn. 454

455

Generalizability. We considered the test cases of Japanese and 456

Dutch vowel length because they are famous problem cases 457

for many of the phonetic learning theories that already exist 458

(12, 41). However, they are unique contrasts in a number 459

of ways. They have low functional load in that they are not 460

frequently used to distinguish different meanings and they have 461

particularly overlapping acoustic distributions. In addition, 462

the Japanese contrast is primarily signaled by one acoustic 463

cue (i.e. duration), while most contrasts are signaled by more 464

(42, 43) and, as around 90% of Japanese vowels are short, it 465

is less balanced than many other contrasts. Future work will 466

need to test the generalizability of this proposal. Nonetheless, 467

we think it is likely that this signal will generalize to other 468

contrasts because the signal we illustrate in Fig. 1b does not 469

stem from these idiosyncrasies. Rather it arises because of a 470

handful of contexts that have particularly different frequency 471

distributions and we think these exist because of properties of 472

language have phonologists have argued are universal (30). 473

All languages are thought to have phonotactic or co- 474

occurrence constraints. For example, for the English contrast 475

[n]-[N] (e.g. sin vs. sing), [n] can occur at the beginning or end 476

of a syllable, while [N] can only occur at the end of syllables. 477

This means that the relative proportion of [n]’s and [N]’s will 478

change across those contexts, and could show patterns like 479

in Fig. 1. Similarly, sometimes sounds will be pronounced 480

differently based on their context. For example, if we con- 481

sider the contrast between [n]-[m], the [n] sound never occurs 482

before the sounds [p,b], but is instead pronounced as [m] in 483

those contexts (as in impossible). These types of phonological 484

alternations also create differences in which sounds occur in 485

which contexts and are cross-linguistically widespread (30–32). 486

Finally, there are systematic regularities based on the words in 487

the language. For example, for the [p]-[b] contrast in English, 488

[b] is more likely in the word frames _aby and _ar (baby is 489

a word, but paby is not and bar is more frequent than par), 490

whereas [p] is more likely in the word frames _lay and _in 491

(play is a word, but blay is not and pin is more frequent than 492

bin). Taken together, phonotactics, phonological alternations, 493

and word regularities all create systematic regularities in the 494

contexts that sounds occur in, such that different sounds occur 495

in different contexts and different contexts are made up of 496
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different ratios of sounds. This is currently thought to be true497

of all contrasts - even those that are equally balanced, have498

higher functional load, or are multidimensional - and will be499

the case in adult- as well as infant-directed speech. Indeed, (33)500

showed the context is similarly predictive of which category a501

sound belongs to in both adult-directed and infant-directed502

speech.503

Nonetheless, while our results are promising, they ulti-504

mately come from one acoustic dimension, one contrast type,505

and only three languages. Furthermore, there are additional506

complexities that we have not considered here, like how extra-507

linguistic factors (e.g., speaking style/register, emotional con-508

tent of speech, speech rate) could affect the signal and how509

this proposal interfaces with other learning strategies that in-510

fants have been shown to use (e.g., using visual and referential511

information).512

To test generalizability, future work should replicate these513

findings on other data sets as they become available (we have514

made our code publicly available to facilitate this effort). Par-515

ticular focus should be placed on replicating these results on516

a large ecological corpus of infant-directed speech, replicating517

these results on other contrasts whose acquisition is difficult518

to explain (e.g., Filipino nasals (44)), studying Dutch to un-519

derstand why removing long vowels does not always change520

the result, as well as replicating these results in languages521

where the identity of a particular sound cannot be predicted522

as well from its context, due to having fewer phonotactic and523

other systematic restrictions (45). It will also be important to524

test this proposal on contrasts that are signaled by multiple525

acoustic dimensions (as the contrasts we study here are unique526

in primarily being signaled by one: duration). In order for527

this account to work in those cases, we would need to observe528

the signal we report here along at least one of the acoustic529

dimensions that signal the contrast (e.g., along VOT or F0530

for stop contrasts). Alternatively, rather than operating over531

individual acoustic dimensions, infants could search for this532

signal along composite acoustic dimensions that are discov-533

ered from the input by combining dimensions that are highly534

correlated in the input (e.g., as discussed in (35, 46)). Fi-535

nally, we note that Earthmover’s distance can be calculated536

over multidimensional distributions, so it should be possible537

to scale this approach up to multidimensional contexts if so538

desired; however, for that to work, the infant would have to539

first identify the relevant combinations of acoustic dimensions540

they should focus on. Overall, it will be important to replicate541

these findings across highly variable corpora that adequately542

represent the full range of speech types that infants could543

encounter.544

Finally, it will also be important to test that these results545

do not overgeneralize and wrongly label non-contrastive dimen-546

sions as contrastive. Here, it will be particularly important to547

test behavior on allophonic variation, where a particular sound548

is realized differently depending on the context it occurs in.549

While this pattern is similar to that of different phonemes oc-550

curring in different contexts, our analyses provide preliminary551

evidence that allophonic variation is not labeled as contrastive.552

In particular, in French, vowel length varies allophonically553

(vowels are lengthened depending on the following consonant)554

(47), yet our analyses reliably treated French (allophonic vari-555

ation in vowel length) differently from Japanese (phonemic556

variation in vowel length). This suggests that this method557

may correctly differentiate contrastive and allophonic varia- 558

tion, though it will be important to study this further and 559

understand how it does so (if it does). We offer two specu- 560

lative reasons why allophonic variation may not be detected 561

to the same degree as phonemic variation, though they will 562

need to be tested. First, this proposal relies on contrasting 563

sounds having sufficiently different acoustic distributions (so 564

that changing the relative proportion of the sounds changes 565

the shape of the distribution). It is possible that allophonic 566

variation changes how a sound is produced to a lesser degree 567

than phonemic variation, though this may be difficult to assess. 568

A second possibility is that allophony often, though not always, 569

affects all of the sounds produced in a particular context (e.g., 570

the duration of all French vowels is affected by neighboring 571

consonants). This may lead to a shift in distribution between 572

contexts, without a change in shape, which may lead to smaller 573

distribution shape changes as measured by Earthmover’s dis- 574

tance. Certainly, more research studying how this proposal 575

handles allophony will be crucial. 576

Could infants do this?. This proposal places higher computa- 577

tional and memory demands on infant learners than many past 578

theories have (e.g., distributional learning). Infants would need 579

to be able to track distribution shapes across many contexts 580

and then compare their shapes pairwise. 581

(1) Could infants track distributions across different con- 582

texts? Though this has not been tested, we know that listeners 583

track the shape of frequency distributions overall, and use this 584

for phonetic learning and processing. For example, infants 585

make different phonetic inferences depending on whether the 586

distribution they hear is bimodally- or unimodally- shaped 587

(6). Another study showed that adult listeners are sensitive 588

to the variance of the sound distributions they are exposed 589

to, another property of a distribution’s shape (48). In that 590

experiment, adults categorized sounds differently depending 591

on whether they heard a distribution with high or low variance, 592

though this has not been tested in infants. 593

In addition, we know that listeners are sensitive to the con- 594

text of a sound and use it for phonetic learning and processing. 595

Both toddlers 12 months and older and adults have been ar- 596

gued to track acoustic distributions across speakers (which can 597

be thought of as a context), can adapt to speakers who have 598

different accents (i.e. different distributions of sounds) (49–55), 599

and mirror the speech of their interlocutors. In addition, in- 600

fants are sensitive to phonotactics (56), as well as phonological 601

alternations - the fact that sounds tend to be pronounced dif- 602

ferently in different contexts (57, 58). Additionally, multiple 603

studies have shown that infants use the word frame of a sound 604

in phonetic learning (20, 22). That is, infants seem to assign 605

acoustically similar sounds to different categories if they occur 606

in different word frames, suggesting that infants can track 607

the context that a sound occurs in and use it for phonetic 608

learning. Adult speech perception is affected by contextual 609

factors, like neighboring sounds. For example, (59) showed 610

that Japanese perception of whether the final vowel in CoC’V 611

was phonemically short or long depended on the identity of 612

both C and C’. Furthermore, (60) showed that adults contin- 613

ually track how informative particular acoustic cues are and 614

will selectively reweight these cues in some contexts but not 615

others (e.g., when categorizing /b-p/ in beer-pier, but not for 616

/d-t/ in deer-tier and vice versa). Indeed, listeners may even 617

track information across contexts defined by multiple factors. 618
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For example, in English, to learn whether a stop consonant619

will be aspirated or not, the speaker must track whether the620

sound is voiceless or voiced (akin to Vowel Quality), whether621

it occurs at the start of a stressed syllable or not (akin to622

Prosodic Position), and what the neighboring sounds are and623

then notice the change in pronunciation/distribution across624

those different contexts.625

Taken together, while these results do not provide direct626

evidence that infants track distribution shapes across contexts,627

they suggest that listeners can track complex statistical reg-628

ularities across complex contexts and use them in real-time629

phonetic learning and processing.630

(2) Could infants compare distribution shapes? Finally, the631

last skill necessary for the proposal is for infants to be able to632

compare distributions. While this has again not been directly633

tested, one possible clue is that listeners seem to reweight634

acoustic cues depending on how variable/informative they635

are, with cues that have narrower distributions being more636

informative than cues with wider distributions (48, 61, 62).637

Another possible clue is that toddlers and adults are able638

to identify when they need to adapt their representations to639

speech they hear. Being able to identify an accent implies640

that listeners can identify when the speech they are hearing641

differs from the speech they usually hear, a computation that642

is likely to involve tracking at least some properties of the643

distributions (63).644

Overall, given infants’ demonstrated sensitivity to distribu-645

tion shape and to changes across context, there is good reason646

to believe that infants could be sensitive to the type of distribu-647

tional information that our account assumes, but future work648

should test whether infants/listeners can track distributions649

across different contexts (defined by one or more contextual650

factors) and compare distributions’ shapes. In addition to test-651

ing whether infants can, in theory, perform the computations652

this account requires, future work should also test whether653

infants actually use them to learn about contrastiveness in654

the way we propose here. One approach would be to test this655

experimentally, by exposing infants to acoustic distributions656

that differ or remain the same across contexts and seeing if657

this affects their learning/behavior. Another approach would658

be to use cross-linguistic corpora to identify contrasts that659

should be easier/harder to learn according to our proposal660

and compare that against age of acquisition and speech per-661

ception/production data. For example, controlling for degree662

of acoustic overlap, this theory would predict that contrasts663

that have stronger phonotactic restrictions or that are more664

predictable (i.e., it is easier to predict which member of the665

contrast occurred based on the context it occurred in) should666

be easier to learn through this method. These approaches667

will allow us to overcome the next big hurdle for this account,668

which is determining whether infants use this signal to learn.669

Reducing the computational complexity of the proposal. It is670

also possible that the memory and computational restrictions671

of the proposal could be reduced. On the one hand, we saw672

that considering individual contexts (e.g., just the most fre-673

quent word frames or just prosodic position) was still effective,674

as was introducing some parsing errors and considering broader675

segment classes rather than individual neighboring sounds. On676

the other hand, online approximations or metrics that do not677

require the whole distribution to be tracked in order to get a678

measure of distribution shape distance could also reduce the679

computational and memory complexity of the proposal. For 680

example, rather than exactly representing the distribution, 681

this proposal could operate over a compressed representation 682

of the distribution that keeps track of how many points fall 683

within larger bins/bands (similar to reducing the number of 684

bins in a histogram). It is likely that we would still observe 685

the critical pattern even with this less detailed representation 686

of distribution shape, and, as this only requires keeping track 687

of one number per bin (its count), it could reduce the size 688

of the representation of a distribution to just 5-10 numbers. 689

Even considering all 200 of the most frequent contexts, this 690

could involve storing as few as 1000 numbers. In addition, 691

there may be a way to zero in on the contexts that yield 692

the necessary signal without doing all of the pairwise com- 693

parisons represented in the boxplots. It is possible that the 694

“key” contexts that drive the signal are overrepresented in the 695

outliers of the overall distribution (i.e., particularly short or 696

particularly long vowels could be more likely to occur in a 697

context that drives the tail). If this were true, infants could 698

arrive at the same signal we observe here, by focusing in 699

on the contexts of outlier sounds, rather than tracking the 700

distribution across all contexts. Finally, another possibility 701

is that infants could compare contextual distributions using 702

higher-order measures of distribution shape (e.g., variance) 703

rather than tracking the entire distribution. The fact that the 704

distribution shape changes across contexts could also mean 705

that the variance of the distributions changes across contexts. 706

If so, infants could pick up on this difference without encoding 707

the entire distribution across contexts. 708

Moving from signal to learning account. The data we report 709

plots Japanese and French side-by-side, but most Japanese 710

infants do not get French input to compare against. Assuming 711

that this pattern generalizes to other contrasts and that infants 712

have the necessary sensitivities to detect this signal, how could 713

infants actually use it to learn? 714

One possibility is that infants use a built-in threshold to 715

determine whether a dimension is contrastive: if the metric 716

(this could be something like the average, range, variance, or 717

maximum Earthmover’s distance) exceeds the threshold, they 718

learn the dimension is contrastive; otherwise, they learn that 719

it is not. Another possibility is that infants compare against 720

other acoustic dimensions of their own language (instead of 721

against other languages, as we did). If these metrics turn out to 722

be larger for all contrastive dimensions than all non-contrastive 723

dimensions, infants could easily separate contrastive vs. non- 724

contrastive dimensions. 725

One complication for this possibility, however, is that the 726

metrics we report are sensitive to the scale of a dimension, 727

making it difficult to compare across dimensions with different 728

scales (e.g., formants vs. duration). To overcome this problem, 729

we tried z-scoring the dimensions, but found that the key 730

effect partially disappeared: the effect was retained for French 731

vs. Japanese and when considering only the most frequent 732

contexts, but when more contexts were considered, the pattern 733

reversed in Dutch ADS. This happened because z-scoring is 734

sensitive to variance, and as there was more variability along 735

the contrastive than non-contrastive dimensions, z-scoring 736

led to artificially lowered Earthmovers’ distances along the 737

contrastive (more variable) dimension. Nonetheless, a method 738

that standardizes the scales with less sensitivity to the overall 739

variance could allow for comparison across dimensions. 740
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Finally, given the overall distribution along an acoustic741

dimension, infants could have a probabilistic model of how742

different they should expect distributions to be across contexts,743

depending on whether the overall distribution is made up of one744

vs. two categories. With this, they could compare how likely a745

one-category vs. two-category solution is to have generated the746

observed Earthmover’s distances (controlling for phonological747

processes, it would be unlikely for one category to produce748

extremely different distribution shapes as in Fig. 1b).749

One issue that should be considered in future work is750

whether learners consider aggregate distributions across all751

of the vowel qualities when comparing distribution shapes752

across contexts. In our analyses of Japanese and French,753

we have assumed that they do, and in fact, vowel quality754

is one of the contextual factors we analyze. However, this755

creates a potential problem for Dutch, because only a subset756

of Dutch vowels contrast in length. If Dutch infants were to757

initially rely on the aggregated distribution shape comparison758

approach we put forth for Japanese, this might lead them to759

conclude that vowel duration is a contrastive dimension that760

they should tune into (as the context pairs that showed high761

Earthmover’s distance would still be in this analysis), but762

they would not realize that only some of the vowels contrast.763

It is possible that they could later learn which specific vowel764

qualities contrast in length. It is also possible that Dutch765

infants use a different strategy entirely for discovering the766

vowel length contrast: those Dutch vowels that contrast767

in length also contrast in vowel quality (e.g., [A] vs. [a:]768

contrast in Dutch, but [a] vs. [a:] contrast in Japanese).769

Having already separated [A] from [a:] using their vowel770

qualities, Dutch infants could simply notice that these vowels771

differ systematically in their durations, without doing any772

distribution shape comparisons of the type we propose here.773

Ultimately, we remain agnostic as to how exactly infants learn.774

Given the complexity of the task infants are faced with as775

well as past experimental findings showing infants use many776

types of information in phonetic learning, it likely involves777

a combination of strategies (e.g., using word-level, visual,778

referential, and other distributional information in addition to779

the types of analyses we report here). Having established that780

a signal exists in naturalistic data, we hope future research781

will investigate how this signal might best be used for learning782

and how it integrates with other promising accounts.783

784

Conclusion785

Infants need to learn which acoustic dimensions of their786

language are contrastive in order to learn the sound system of787

their language. However, we still do not know what aspects788

of naturalistic input provide the necessary signal for them789

to do so. In this paper, we propose a potential account for790

how infants learn this and show that there is a signal about791

whether a dimension is contrastive in noisy, spontaneously792

produced input. This account is particularly promising for793

two reasons. First, the signal that we pick up on is a direct794

consequence of multiple categories exhibiting properties that795

hold true across most languages, so we think it is likely that796

this result will generalize to other contrasts. In addition,797

the signal is something that even infants may be sensitive798

to. Past work has shown that infants track the shapes of799

overall frequency distributions, and know about how sounds800

are likely to sound in different contexts (6, 57, 58). Adults have801

been shown to track distributions across situations (i.e. across 802

different talkers) (49). In conclusion, we show that even when 803

two sounds overlap acoustically, the fact that they occur in 804

different contexts leaves signal to their contrastiveness. These 805

results provide initial support for a phonetic learning account 806

that works on highly acoustically variable spontaneous speech. 807

Materials and Methods 808

Methods. For each test case, one of the datasets (contrastive or 809

non-contrastive) was larger than the other. To correct for this, we 810

only considered the first N tokens of the larger dataset, where N 811

was the size of the smaller dataset. We extracted the duration, 812

the primary acoustic cue to length, of each vowel token in seconds, 813

rounding to the same degree of precision. In addition, we extracted 814

all contextual information that was available across all of the corpora 815

we study and that infants of the relevant age are sensitive to: 816

• Vowel quality: For Japanese, this was: /a/, /e/, /i/, /o/, or 817

/u/. For French, this was: /a/, /e/, /i/, /o/, /u/, /y/, /ø/, 818

/ã/, /õ/, or /ø̃/. For Dutch, this was: /A-a/, /O-o/, /œ-ø/, 819

/E-e/, /I/, /u/, /y/, or /i/. The first four listed pairs are 820

differentiated by quality and length, but we do not incorporate 821

these vowel quality differences into this paper. Vowel quality 822

is thought to be learned before vowel length (25). 823

• Prosodic position: We represented prosodic position (a 824

vowel’s position relative to prosodic boundaries) with four 825

indicator values: (1) whether the vowel was word-initial or not, 826

(2) whether the vowel was word-final or not, (3) whether the 827

vowel was phrase-initial or not, and (4) whether the vowel was 828

phrase-final or not. Infants have been shown to be sensitive to 829

prosodic boundaries quite early (26, 27). 830

• Neighboring sounds: We extracted the identity of the im- 831

mediately previous sound and the immediately following sound, 832

as labelled by the phonetic transcription, ignoring length infor- 833

mation. Again, vowel length contrast is thought to be learned 834

later than other types of contrasts (25). 835

• Word frame: We extracted the word frame that the vowel 836

occurred in, excluding all length information. For example, 837

one word frame could have been [b_i_ru], which would include 838

both [bi:ru] and [biru]. We chose to include word frames, as 839

infants know and can segment words early (28, 29, 34, 64), and 840

use word frames in phonetic learning (20–22). 841

We looked at two main ways of defining context, though we 842

do not have any commitments about which contexts infants would 843

compute over. In the first way of defining context, we used a 844

combination of vowel quality, prosodic position, and neighboring 845

sounds (e.g. /o/ vowels that follow a /t/ and precede a /k/ that 846

are word- and phrase-internal) - though we also consider each of 847

these three contextual factors individually. This combined set of 848

factors corresponds to the subset of factors considered in (33) that 849

were available for the corpora we study and that infants are most 850

sensitive to. In the second way of defining context, we used word 851

frames, as has been done in (19) and (13) among others. 852

Because most contexts occur very infrequently, we looked at 853

a subset of all possible contexts. We subsetted the contexts in 854

two qualitatively different ways: either by taking the top X most 855

frequent contexts, or by taking all contexts that had at least N 856

tokens, varying X and N. Results were qualitatively similar in all 857

cases, so we present results from including the 200 most frequent 858

contexts for the French vs. Japanese and Dutch ADS analyses, and 859

only the 5 most frequent contexts for the Dutch IDS analysis due to 860

its much smaller size. Once we had the contexts, we extracted the 861

vowel duration frequency distributions in each context (examples 862

shown in Fig. 1). 863

We compared the shape of each pair of contextual frequency 864

distributions, using a metric known as Earthmover’s distance or 865

Wasserstein distance (65, 66), which is commonly used to measure 866

the difference in shape between two distributions (see Supplemen- 867

tary Materials for methods and results using KL divergence instead). 868

Earthmover’s distance is often talked about in terms of two piles of 869

dirt, which represent the two distributions being compared. In this 870
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context, Earthmover’s distance can be thought of as the minimum871

cost of turning one earth pile into the other, where cost corresponds872

to a combination of the amount of earth being moved as well as the873

distance it has to be moved. In other words, the distance is the min-874

imum average distance a piece of dirt will have to be moved in order875

to turn one pile into the other. A higher distance means there was a876

greater shape mismatch. We plot the distribution of Earthmover’s877

distances, and report its mean, variance, and maximum.878

Having found that the distribution of Earthmover’s distances for879

contrastive dimensions had a longer tail than for non-contrastive880

dimensions, we qualitatively analyzed the contents of this long tail881

to determine which individual contexts led to the pattern observed.882

We identified the contexts that showed up most frequently in the883

tail and analyzed how frequent they were (both in terms of absolute884

count and their frequency ranking relative to all contexts), as well885

as what the relative frequency of short and long vowels was in each886

of these key contexts.887

To assess the reliability of these differences between contrastive888

and non-contrastive dimensions were reliable, we used bootstrap889

statistics. We sampled (with replacement) particular vowel tokens890

with their contexts, creating a new contrastive and a new non-891

contrastive dataset. We then recalculated Earthmover’s distances892

across the contexts using these bootstrap samples, repeating the893

process 50 times. We plot the maximum Earthmover’s distance with894

the standard deviation, which allows us to observe the reliability of895

these differences. To study the effect of the input corpus size, we896

varied the number of vowel tokens sampled from 284 vowel tokens897

(the size of the Dutch IDS corpus) to 132037 (the size of the French898

vs. Japanese corpora).899

In our final simulation, we relaxed our assumptions about infants’900

prior knowledge. First, while previous analyses used neighboring901

segment identity directly (e.g., /k/, /t/, /s/), this simulation only902

used the segment’s broad class (e.g., stop, fricative, vowel, etc.),903

which infants are more sensitive to. Second, to simulate imper-904

fect segmentation, we added noise to the prosodic position factor.905

Prosodic position is represented with four indicator values (depend-906

ing on whether the vowel in question is word/utterance-initial and907

word/utterance-final). To add noise, we changed 20% of these val-908

ues (making sure that the resulting prosodic position was real -909

e.g., sounds considered to be utterance-final were necessarily also910

considered to be word-final). We then used the same procedure911

from above with these updated factors.912

Corpora. The French vs. Japanese analysis compared the Corpus913

of Spontaneous Japanese against the Nijmegen Corpus of Casual914

French. The Dutch analyses looked at the Ernestus Corpus of915

Spontaneous Dutch (ADS) and the Levelt/Fikkert corpus (IDS).916

Corpus of Spontaneous Japanese (CSJ). The CSJ is a large corpus917

of spontaneously produced adult-directed speech (67). Around 90%918

of the speech consists of spontaneously produced monologues about919

academic field, their favorite memory, and so forth. The remaining920

10% consists of spontaneous dialogues either in free conversation921

with the experimenter or engaged in a task. Our analysis focuses922

on the core portion of the corpus, which was force-aligned and923

hand-corrected with the segmental information required for our924

analyses (see (67) for more details). The core portion consists of925

811,731 total vowel tokens of which 89.1% are phonemically short926

and 10.9% are phonemically long, but only the first 132,307 tokens927

were used to match the size of the French corpus.928

Nijmegen Corpus of Casual French (NCCFr). The NCCFr is a corpus929

of spontaneously produced adult-directed speech (68). Unlike the930

CSJ, however, the NCCFr consists exclusively of conversational931

speech between close friends. Topics included upcoming exams,932

travel plans, an ongoing strike, and so forth. The corpus consists of933

speech by 46 French speakers, and includes 132,307 vowel tokens.934

The corpus was orthographically transcribed by two professional935

transcribers. The corpus was transcribed at the segmental level by936

Martine Adda Decker (p.c. with M. Ernestus, January 14, 2019).937

Ernestus Corpus of Spontaneous Dutch (ECSD). The ECSD consists938

of adult-directed, conversational speech, with speakers talking with939

a friend, at first freely, and then engaged in a task-oriented dis-940

cussion (40). The corpus has speech by 20 different speakers, and941

includes 60,955 tokens with a length contrast and 21,187 tokens942

without. Professional transcribers created a orthographic transcrip- 943

tion of the interactions, which was manually aligned to the speech. 944

The corpus was also phonetically transcribed using a forced align- 945

ment model (details can be found in (69)). Validations revealed a 946

14% discrepancy between manual annotations and forced-aligned 947

annotations, which is in the range of human disagreement. However, 948

these analyses did not directly validate durational information, so it 949

is unclear how accurate annotations of the start and end points of 950

the phones are. This could introduce some noise into our analyses, 951

as it could affect how accurate the vowel durations are, and how 952

accurately we can determine which word a vowel belonged to. 953

Fikkert/Levelt/Swingley IDS corpus. We also tested our account on 954

a corpus of Dutch IDS collected by Fikkert and Levelt (70, 71). 955

The annotated portion of this corpus is small: it contains a total of 956

300 utterances, with a total of only 1296 vowel tokens, but each of 957

the contrastive and non-contrastive datasets had to be subsetted 958

to 284 to make equally sized subsets. The corpus consists of natu- 959

ralistic longitudinal speech interactions with one child (Catootje) 960

aged 1;10. The corpus was transcribed at the word level. Time- 961

aligned phonetic annotations were created by Dan Swingley (DS) 962

(13). Given the transcriptions, the speech toolkit HTK (72) was 963

used to estimate the boundaries of the phones using the HVITE 964

forced-alignment tool. The output of the forced-alignment tool was 965

manually corrected by DS, a speaker of Dutch. KH time-aligned the 966

word-level transcription to the time-aligned phonetic transcriptions 967

based on the location of the phones in Praat (73). 968

Code for all analyses is available on Github: 969

http://github.com/khitczenko/contextual-dl. Data are available by 970

request from the researchers who control their distribution. 971
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Supplementary Materials1132

Figure 3 in the main text reports our bootstrapping analysis results, treating the maximum Earthmover’s distance as the metric of interest1133

(i.e., showing how maximum Earthmover’s distance varies across 50 runs). In Figure S1, we provide analogous plots treating the mean1134

Earthmover’s distance as the primary metric instead. Results are similar: across input sizes the mean contrastive Earthmover’s distance is1135

greater than the mean non-contrastive Earthmover’s distance, suggesting that observed differences between contrastive vs. non-contrastive1136

dimensions are meaningful, but that input size does not matter.1137
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Fig. S1. Results from bootstrapped input size analyses. Across input sizes, the mean contrastive Earthmover’s distance is greater than the mean non-contrastive Earthmover’s
distance. “C” refers to the number of contexts included in the analysis. The maximum input size for which data is shown depends on the corpus size: 284 for Dutch IDS, 21187
for Dutch ADS, and 132037 for Japanese vs. French.

The analyses in the main text use Earthmover’s distance to compare distribution shapes across contexts. Figure S2 shows results using an1138

alternative metric, namely KL divergence (or Kullback-Leibler divergence). KL divergence is a measure of how different two probability1139

distributions are. As we do not have access to the closed-form probability distributions within each context (only samples), we estimated1140

KL divergence as follows. We divided the tokens in each context into 10 evenly-sized bins, and smoothed the counts in each bin (adding1141

a count of 1e-5 to each bin). We then used these counts to arrive at a probability distribution over the 10 bins, which were used to1142

calculated KL-divergence. As KL-divergence is not a symmetric measure, for each pair of contexts, we summed the KL-divergence of1143

Context 1 against Context 2 and the KL-divergence of Context 2 against Context 1 to arrive at a final measure, that is plotted in Figure1144

S2. We find that the expected qualitative pattern still emerges across all three test cases even using a different metric. It is, however,1145

interesting that the difference in magnitude across the test cases changes: here, Dutch ADS and IDS show the greatest KL divergences,1146

while Japanese/French showed the greatest Earthmover’s distances. This suggests that this effect is largely insensitive to the particular1147

metric used, but which metric is used could make a difference in specific predictions the account makes.1148

Fig. S2. Distribution of KL divergences by test case. The same qualitative pattern holds, though the difference in magnitude changes across the three test cases. P+NS+VQ =
prosodic position + neighboring sounds + vowel quality.
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