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At birth, infants discriminate most of the sounds of the world’s lan-
guages, but by age one, infants become language-specific listeners.
This has generally been taken as evidence that infants have learned
which acoustic dimensions are contrastive, or useful for distinguish-
ing among the sounds of their language, and have begun focusing
primarily on those dimensions when perceiving speech. However,
speech is highly variable, with different sounds overlapping substan-
tially in their acoustics, and after decades of research, we still do
not know what aspects of the speech signal allow infants to differ-
entiate contrastive from non-contrastive dimensions. Here, we show
that infants could learn which acoustic dimensions of their language
are contrastive, despite the high acoustic variability. Our account is
based on the cross-linguistic fact that even sounds that overlap in
their acoustics differ in the contexts they occur in. We predict that
this should leave a signal that infants can pick up on, and show that
acoustic distributions indeed vary more by context along contrastive
dimensions compared with non-contrastive dimensions. By estab-
lishing this difference, we provide a potential answer to how infants
learn about sound contrasts, a question whose answer in natural
learning environments has remained elusive.

phonetic learning | language acquisition | distributional learning

L anguages differ in the speech sound inventories they use
to reliably convey meaning. For example, Hindi has a
distinction between unaspirated retroflex [t] vs. dental [t] that
is used to distinguish meanings (e.g., [tal] means ‘postpone’,
while [tal] means ‘beat’), but English does not. Adult speakers
are generally tuned to the properties of the language(s) they
speak. For example, while most adult Hindi speakers can
hear the difference between [t] and [t], most English-speaking
adults cannot (1). Because speech sound inventories differ
across languages, listeners must learn about the speech sounds
of their language from the input they hear.

The first signs of this phonetic learning appear within the
first year of life. During their first couple of months, infants
can discriminate most sounds of the world’s languages, showing
similar perceptual abilities regardless of their language experi-
ence. For example, both newborn English-learning and Hindi-
learning infants can hear the distinction between retroflex [ta]
vs. dental [ta], a speech contrast that exists in Hindi, but
not English. However, over the course of the first year of
life, this changes. Infants become language-specific listeners,
starting to more closely resemble adults in their discrimination
abilities. Their ability to discriminate non-native contrasts
(e.g. between retroflex [ta] and dental [ta]) for English-learning
infants) declines (2-4), whereas their ability to discriminate
contrasts in their own language improves (5).

These perceptual changes have generally been taken as
evidence that infants are learning which acoustic dimensions
are contrastive in their language: that is, which acoustic
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dimensions have multiple categories along them (6). Speech
sounds differ in how they are acoustically produced and one
or more acoustic dimensions will be used to signal differences
between sound contrasts. The idea, then, is that infants
become aware of which acoustic dimensions are used to contrast
the meaningful sounds in their language, and begin primarily
focusing on those dimensions when perceiving speech.
Decades of research into how infants learn about contrastive-
ness in their first year of life has built a wealth of knowledge
in this area; however, we still do not know what aspects of
the speech signal allow infants to make these inferences from
the acoustically variable speech they hear in their daily lives.
One of the most well-studied current proposals for how in-
fants learn which dimensions of their language are contrastive
is known as distributional learning (6). It proposes that in-
fants learn the contrastive dimensions of their language by
tracking the frequency distribution of sounds along acoustic
cue dimensions. If an infant observes a bimodal (two-peaked)
distribution along a dimension, then they learn that the dimen-
sion is contrastive, whereas if an infant observes a unimodal
(one-peaked) distribution, then they learn that the dimension
is not contrastive. This account has experimental support:
distributions of sounds affect infants’ discrimination in the
lab (6-9). In addition, when bimodality is present in the in-
put, computational models successfully learn correct contrasts
(10, 11). However, a key assumption underlying this proposal
is that contrastive dimensions do indeed exhibit bimodality,
and while this is the case for some contrasts, recent work
looking at naturalistic speech corpora has shown that this is
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not a universal property of child-directed speech (12, 13).

For example, in Japanese, vowel length is contrastive (14),
meaning that two different words like /toko/ (bed) and /toko:/
(travel) can be distinguished solely by how long a vowel is.
However, analyses of a spontaneous corpus of Japanese child-
directed speech reveal that the distribution along the duration
dimension is unimodal despite being contrastive (12) (Fig. la;
note that infants do not have access to the individual color-
coded short and long vowel distributions shown in this figure,
only the combined overall distribution). A similar finding has
been reported for Dutch vowel length (13), as well as many
other contrasts (5, 15, 16). That is, although infants are able
to use distributional information for learning when available,
it is not available for all of the contrasts they learn about, so
distributional learning is not sufficient.

Many follow-up theories have been proposed to explain
how infants learn in cases where bimodality is not present.
This has included theories arguing that bimodality might be
present when considering only the most prominent sounds (e.g.,
stressed vowels) (17), when normalizing for effects of neigh-
boring sounds or other factors (18), or when using word-level,
visual, or referential information (13, 19-23). While many
of them have experimental support and work on controlled
lab speech, over the past 40 years, it has proven difficult to
identify a learning mechanism that works on the true speech
infants hear. (13) takes an important step in that direction
by showing that, in Dutch, average vowel durations by word
type are often longer in word types with long vowels than
word types with short vowels (and, thus, that short and long
vowels may be separable). However, we still do not have a
measure that consistently separates vowels with a contrast
from vowels without a contrast across corpora, languages, and
vowel qualities. This problem is so extreme that recent work
has suggested that infants might not actually be learning how
many phonetic categories there are along a dimension at all,
because this signal is not present in their input in a way that
they have access to (24).

In this paper, we show that the necessary signal to learn
which acoustic dimensions are contrastive may be present in
naturalistic input and accessible to infants. Our proposal takes
advantage of the contextual information of a sound, which
infants are sensitive to (20-22, 25-29). In this work, we take
the context of a sound to include factors like its neighboring
sounds, its prosodic position in a word/utterance (i.e., if it
immediately borders a word or utterance boundary), and its
word frame; however, we think of context more broadly as any
information that listeners track about where a sound occurs or
who spoke it. When an acoustic dimension is contrastive, there
are multiple categories along it and the relative proportion
of those categories may differ across contexts (e.g., if two
categories are present, one context may be 50% category 1 and
50% category 2, whereas another context may be 90% category
1 and only 10% category 2). We show that such differences
in category frequency—which are extremely common across
languages (30-32)—can help infants distinguish contrastive
from non-contrastive dimensions.

We test our proposal on two test cases, Japanese and Dutch,
which have been most problematic for both distributional
learning and additional previous theories, and show that our
proposal explains how infants could nonetheless learn the
contrast from information available to them within their first
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year of life. Complemented by previous findings that (1) infants
are sensitive to distribution shapes and contextual information,
and (2) changes in the relative proportion of sounds across
contexts is a cross-linguistically widespread property of sound
categories, these results are promising and suggest that infants
may be able to learn about contrastiveness from naturalistic
speech input, thus pointing towards a possible answer to a
long-standing question in the field.

Distributional Learning Across Contexts

The inspiration for our proposal comes from a finding show-
ing that the context a sound occurs in (neighboring sounds,
prosodic position, speaker, etc.) is predictive of its identity:
just knowing what context a Japanese vowel appears in can
predict its length with around 95% accuracy (33). This means
that short and long vowels appear in different proportions in
different contexts. Most contexts have almost all short vowels
(e.g. Context 1 in Fig. 1b), whereas some contexts have almost
all long vowels (e.g. Context 2 in Fig. 1b), and some are in
between (e.g. Contexts 3-4 in Fig. 1b). Figure 1b reveals
that these changes in the relative proportion of short and long
vowels can change the overall shape of the frequency distribu-
tion in the context. All of the distributions in Figure 1b are
unimodal, despite the fact that there are two categories. Thus,
they would not be conducive to the distributional learning
theory proposed by (6). However, this is only one aspect of
a distribution’s shape, and across contexts, the distributions
differ in how wide or peaky they are, where they peak, and so
forth. This arises because of two facts: (i) when a dimension is
contrastive, the overall frequency distribution in each context
is the sum of the short vowel distribution and the long vowel
distribution, (ii) short and long vowels have different distribu-
tions, as can be seen in Figure 1. Taken together, this means
that in a language like Japanese, where there is a contrast,
we would expect different relative proportions of short vowels
and long vowels across different contexts, and since short vow-
els and long vowels have different acoustic distributions, we
would expect the overall distribution to change across different
contexts. On the other hand, in a language like French (where
there is no length contrast), shape changes cannot arise from
different relative proportions of short and long vowels because
there is no short vs. long vowel distinction.

In light of this, we propose that infants might learn that
a dimension is contrastive by tracking the acoustic distribu-
tion along that dimension across different contexts. They
could compare the shapes of the distributions across those
contexts, and infer that a dimension is contrastive if the shape
varies substantially across contexts, but infer that it is not
contrastive if the shape is largely the same across contexts.
We operationalize a sound’s context as (i) its (immediately)
neighboring sounds, its prosodic position (whether it falls at a
word or utterance boundary), and its quality (learned before
length), or (ii) its word frame, due to evidence that infants are
sensitive to this information in their input (20-22, 25-29, 34).
However, we are not tied to these particular factors. Any con-
textual factors that infants track, and that change the relative
proportion of sound category membership, could work.

It is important to note that the learning outcome of this
proposal is the same as in (6), but differs from the learning out-
comes of some phonetic learning theories that have arisen since
then (19). In particular, the learning outcome here is whether
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Fig. 2. Distribution of Earthmover’s distances by test case. Each datapoint represents the pairwise Earthmover’s distance (EM) between distributions from two different
contexts (e.g., we show the comparison for Fig. 1b’s Context 1 vs. Context 2, which has a high Earthmover’s distance, and Fig. 1b’s Context 3 vs. Context 4, which has a small
Earthmover’s distance). Across all test cases, the tail of the contrastive boxplot (left) is longer than that of the non-contrastive boxplot (right), suggesting that there are more
extreme distribution shape changes across contexts when the acoustic dimension is contrastive. P+NS+VQ = prosodic position + neighboring sounds + vowel quality.

or not an acoustic dimension is contrastive - i.e. whether it is
used to distinguish multiple categories. The learning outcome
of some other theories included this knowledge implicitly, but
often also included knowledge about what those categories
were. Certainly listeners eventually learn about the categories,
and a full learning account would need to eventually explain
how that happens. However, the discrimination behavior in-
fants exhibit in (2) does not require them to have learned
categories (2, 24, 35), so we follow the original literature and
focus on how infants learn which dimensions are contrastive
in their language.

In what follows, we ask whether the necessary signal for
this learning account is present in naturalistic speech; that
is, whether there are larger distribution shape changes across
contrastive dimensions than non-contrastive dimensions. We
focus on three test cases, which each involve some data in
which vowel length is contrastive, and some data in which
vowel length is not contrastive. We look at vowel length for
two reasons. First, it has a largely agreed upon primary cue
(duration) that can be easily extracted from any annotated
corpus. Second, it is possibly the best known case of extreme
overlapping categories that cannot be explained by previous
theories like distributional learning (12). We focus on the test
cases that have been problematic for past phonetic learning
theories, but argue in the General Discussion that this same
approach to phonetic learning is likely to be effective across a
wide range of languages and contrasts.

Results

Our results confirm that in spontaneous speech there are more
extreme distribution shape changes across contexts when a
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dimension is contrastive than when it is not.

For all of the corpora we study, we extract the acoustic
distributions across a number of contexts, and compare them
pairwise, using Earthmover’s distance (36), a commonly used
metric of distribution shape difference (see Supplementary
Materials for discussion of results using an alternative metric,
KL divergence, instead). We operationalize ‘context’ in two
different ways, both of which rely on information that infants at
the relevant age are sensitive to: (i) a combination of prosodic
position, neighboring sounds, and vowel quality (P+NS+VQ)
and (ii) word frames (WF).

We first compare a spontaneous speech corpus of Japanese
(which has a vowel length contrast) against a spontaneous
speech corpus of French (which does not). We then test two
spontaneous Dutch corpora. Dutch has the property that a
subset of its vowels has a length contrast, whereas a different
subset does not. Comparing the subset that has a contrast
against the subset that does not allows us to control for any
effects that may arise due to differences in how the French and
Japanese corpora were collected and annotated. Two of our
tests examine adult-directed speech (ADS) corpora because
they allow us to test this proposal on large-scale, spontaneous
speech corpora which do not exist for infant-directed speech
(IDS), but we include results from a small corpus of infant-
directed Dutch as well.

A. Japanese vs. French ADS. We first compared Japanese and
French, defining context as a combination of prosodic position,
neighboring sounds, and vowel quality (Fig. 2). Each data-
point contributing to the boxplot represents the Earthmover’s
distance between a pair of contextual acoustic distributions.
For example, the comparison between Context 1 and Context
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Context Percent Long  Count  Frequency Rank
Phrase-initial, word-final /e/ 64.7 1357 18
Phrase-initial, phrase-final /a/ 56.7 255 95
Phrase-initial, phrase-final /e/ 87.9 244 100

Table 1. Information about the Japanese contexts that drive the tail
in the case of the P+NS+VQ analysis, including what percentage of
vowels in that context are long, how many times that context oc-
curred (Count), as well as its frequency rank out of all contexts that
occurred.

2 in Fig. 1b has a high Earthmover’s distance, whereas the
distance for Contexts 3 and 4 is much small because they are
very similar.

The boxplot corresponding to Japanese (where vowel length
is contrastive) has a much larger tail, extending upwards to-
wards large Earthmover’s distances, than the boxplot corre-
sponding to French (where vowel length is not contrastive).
This means that, as predicted, there are many more pairs of
contexts that have substantially different shapes (like Context
1 vs. Context 2 in Fig. 1b) when there is a contrast than when
there is not. The maximum distance, the mean distance, and
the distance variance are all larger for Japanese than French
(max = 0.43 vs. 0.16; mean = 0.05 vs. 0.02; variance = 0.003
vs. 0.0004). Analyzing the contents of the tail in Japanese
reveals that the tail is driven by contexts that have a much
higher percentage of long vowels than observed overall and
that occur frequently in the input (see Table 1 for frequency
counts and ranks of the contexts that drive the signal).

These same patterns hold when we continue looking at
French vs. Japanese, but instead use word frames as contexts.
As before, there are more contexts with more extreme dis-
tribution shape changes in Japanese than French (i.e. along
contrastive than non-contrastive dimensions), as seen by the
longer tail in the second pair of boxplots in Fig. 2. As before,
the maximum distance, the mean distance, and the distance
variance are all larger for Japanese than French (max = 0.27
vs. 0.12; mean = 0.04 vs. 0.02; variance = 0.001 vs. 0.0002).

B. Dutch ADS and IDS. To test our proposal using a within-
language comparison, we compare the subset of Dutch vowels
that do contrast in length and the subset of Dutch vowels
that do not. We find that the predicted pattern still holds -
and it holds for both ways of defining context and both the
ADS and IDS corpora (Fig. 2). This confirms that the results
are not merely an artifact of using different corpora, as in
the French vs. Japanese case, but seem to reflect something
inherent to the existence or nonexistence of categories along
an acoustic dimension. It is worth noting that Dutch-learning
infants would not be able to perform this exact analysis to
learn whether there is a length contrast, because they would
not yet know enough to separate the vowels into contrastive
and non-contrastive subsets. We return to the issue of what a
learning account might look like in the Discussion. Meanwhile,
we conclude from this analysis that the signal our account
predicts exists in Dutch: contrastive dimensions differ from
non-contrastive dimensions.

Despite the qualitative similarity in results across all test
cases, the scale of the difference in tail length varies. For
example, in the French vs. Japanese P+NS+VQ case, the
maximum Earthmover’s distance in the contrastive Japanese
case is 0.43, whereas for the other ADS cases, the maximum
is less than 0.3. In the Dutch IDS corpus, which only has 284
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Fig. 3. Bootstrapped analyses reveal that observed differences between contrastive
(top/blue line) vs. non-contrastive (bottom/orange line) dimensions are meaningful,
but that input size does matter. “C” refers to the number of contexts included in the
analysis. The maximum input size for which data is shown depends on the corpus
size: 284 for Dutch IDS, 21187 for Dutch ADS, and 132037 for Japanese vs. French.

vowel tokens, the maximum is only around 0.1. One possibility
is that these differences arise because of the large differences
in corpus size. The Japanese vs. French corpora considered
132,037 tokens and the Dutch ADS corpus considered 21,187
tokens, but the Dutch IDS corpus only considered 284 tokens.

C. Corpus size analyses. To test how corpus size impacts
results, we used bootstrap samples to run each analysis 50
times for 10 different corpus sizes ranging from the size of
smallest corpus (284) to the size of the largest corpus (132,037).
This also allowed us to test how much the size of the tail varied,
and whether differences observed between contrastive vs. non-
contrastive cases were meaningful. Fig. 3 shows these results
when calculating the maximum Earthmover’s distance across
all 50 runs; analogous plots for mean are provided in the
Supplementary Materials. First, this analysis reveals that the
differences observed are meaningful: across many runs, at
large enough corpus sizes, the contrastive line is higher than
the non-contrastive line. That being said, in the Japanese vs.
French case, the difference does not emerge until around 2000
vowel tokens have been observed, so input size does matter.
Second, this analysis reveals that differences in scale may
be partially, but are not entirely, due to corpus size. When
subsetted to the size of the Dutch ADS corpus, the Japanese
vs. French word frame maximum matches the remaining ADS
results. However, the results are less clear for Dutch IDS:
subsetting the Dutch ADS corpus to the size of the Dutch
IDS corpus yields results more in line with each other for the
P+NS+VQ analysis, but less so for the word frames analysis.

From a learning perspective, this means that an ideal learner
would need to observe around 2000 vowel tokens and track
the acoustic distribution within the 20 most frequent contexts
in order to observe the difference (though we discuss potential
ways to reduce the memory demands of the proposal next as
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Fig. 4. Results are similar when we relax our assumptions about infants’ knowledge.
Here, instead of studying a combination of factors, we study (a) prosodic position (P),
(b) neighboring sounds (NS), and (c) vowel quality (VQ) individually (left: contrastive
dimension; right: non-contrastive dimension). While less clear for vowel quality, we
see the same pattern of results in the prosodic position and neighboring sounds only
cases.

well as in the General Discussion).

D. Relaxing our assumptions about infants’ knowledge. Our
analyses so far have been conducted assuming that (a) infants
can track acoustic distributions across combinations of three
contexts (prosodic position, neighboring sounds, and vowel
quality), (b) infants can perfectly identify neighboring con-
sonants, and (c) infants can perfectly segment words from
speech. Although some of these assumptions have yet to be
tested (e.g., we don’t know whether infants can track distri-
butions along multiple contextual dimensions), we know that
others are likely overestimating infants’ prior knowledge when
learning about contrastive dimensions. Here, we show that
the same qualitative results still emerge even when we weaken
these three assumptions.

The first assumption we revisit is whether infants can track
distributions across combinations of contexts (i.e., prosodic
position, neighboring sound, and vowel quality). We test what
happens when we study each of these three factors individually.
Fig. 4 shows that, especially for prosodic position, but also
for the other factors, the same patterns, for the most part,
emerge. While it is still quite conceivable that infants track
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Status
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Japanese/French Dutch(ADS) Dutch(IDS)
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Fig. 5. Results are similar when we relax our assumptions about infants’ knowledge.
Here, we define neighboring sounds by their broad class (stop, fricative, etc.) and add
noise to the prosodic position with a noise rate of 20% (left: contrastive dimension;
right: non-contrastive dimension).

distributions across combinations of contexts, these results
suggest that this need not be the case in order for our account
to be successful. It suffices to track distributions across indi-
vidual contexts (e.g., word frames or prosodic position). From
a learning perspective, this means that infants would only
need to be tracking the acoustic distribution across ~4-10 con-
texts (rather than ~20 as observed before), and these contexts
include extremely prominent contexts (e.g., utterance-final,
utterance-initial tokens).

The next two assumptions we revisit are whether infants
can perfectly encode the identity of neighboring sounds, and
whether they have a solid enough grasp on word segmentation
to have access to the prosodic position information we use.
On the one hand, prosodic boundaries are one of the first
signals that infants are sensitive to (26, 27); however, there
is concurrent evidence that infants make missegmentation
errors (37-39). To address these two assumptions, we test
what happens when we re-run the P4+NS+V(Q simulations,
with neighboring sounds defined by their broad class (i.e.,
stop, fricative, vowel, approximant, etc.) rather than their
particular identity (e.g., /k/, /g/, /b/) and with noise added
to the prosodic information (we simulate a 20% error rate
here, such that 20% of the time, the infant misrepresents
the prosodic position of the vowel, but the results generalize
across error rates). Fig. 5 shows that these differences do not
qualitatively change the results, suggesting that even with a
more rudimentary grasp on contextual factors, infants could
still use this method to learn the sound contrasts.

Overall, we show that the necessary linguistic knowledge
and capabilities can be considerably reduced and yet the
correct finding still emerges. This suggests that this finding is
a robust one that immature learners could learn from even in
noisy learning environments.

E. Analyses with long vowels removed. Finally, to test
whether these results arose because of the contrast, we re-
moved all vowels labeled as long from the corpora and reran
the same analyses. We predicted that removing the long vowels
would cause the tail for the contrastive dimension to disappear,
such that the results for the contrastive dimension with long
vowels removed (i.e. with the contrast artificially removed)
would resemble those of the non-contrastive dimension. As
can be seen in Fig. 6, in Japanese and in Dutch IDS (the
two hand-annotated corpora we use), the tail disappears or
is reduced once the long vowels are removed, suggesting that
it is at least partially the presence of the long vowels that
causes these large changes in distribution shape. However,
this is not case in Dutch ADS: the contrastive dimension still
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Fig. 6. Results from artificially removing long vowels. Within each case, the left
boxplot corresponds to the contrastive dimension, the middle boxplot corresponds to
the non-contrastive dimension, and the right boxplot corresponds to the contrastive
dimension with long vowels removed. We observe that the tail length is reduced for
the Japanese/French and Dutch IDS analyses; however, against predictions, not for
the Dutch ADS analysis.

has a longer tail even when long vowels are removed. While
this is not predicted by our account, there are a number of
reasons why we may observe this result here. One possibility
is that the annotations are imperfect. The remaining datasets
studied here include hand-corrected segmental annotations,
while the Dutch ADS data included force-aligned annotations
which were not validated for their duration. Another possi-
bility is that it has to do with the fact that these data were
phonetically annotated, rather than phonemically annotated.
That is, some phonemically long vowels were marked as being
short. In fact, (40) reports that as many as 20% of word
tokens that had long vowels underwent a shortening process.
Especially combined with the fact that these data were au-
tomatically annotated, this could mean that we are unable
to actually remove all long vowels and that some long vowels
remain which are driving the differences observed. Finally,
another possibility is that the presence of long vowels in a
context changes the distribution of short vowels. For example,
if a context is 50% short vowels and 50% long vowels, then
the short vowels may be pronounced with shorter durations
than in a context with 90% short vowels and only 10% long
vowels (i.e. to better differentiate the vowel types). If this is
the case, then even if we remove the long vowels, we should
expect to see differences in the short vowel distributions across
contexts. However, this finding is nonetheless different from
what our account predicts and more work should be done with
hand-annotated corpora to see whether this finding remains
and, if so, what is driving it.

Nonetheless, across the board, we do observe that the con-
trastive dimensions have a longer tail than the non-contrastive
case, suggesting that contrastive dimensions exhibit more ex-
treme distribution shape changes across contexts (even though
all distributions are unimodal) than non-contrastive dimen-
sions. These results show that contrastive dimensions look
different than non-contrastive dimensions, and that infants
would learn the correct generalization about their language by
using this signal. As such, this is one of the first pieces of signal
that has been shown to successfully differentiate contrastive
and non-contrastive dimensions using spontaneous speech.

Discussion

In this paper, we proposed a new account for how infants
could learn which acoustic dimensions of their language are
contrastive. The idea is that infants track the frequency
distributions of sounds in different contexts, and that
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they learn that an acoustic dimension is contrastive if the
distribution shape along that dimension varies substantially
across different contexts. For this account to work, it needs
to be the case that the distribution shape varies more across
contexts when a dimension is contrastive than when it is not.
We tested this prediction in three test cases, with two different
definitions of context. Across the board, our results show that
the distribution shape along an acoustic dimension changes
more across different contexts when that dimension is con-
trastive than when it is non-contrastive. This is a signal that
differentiates contrastive and non-contrastive dimensions, and
it is the kind of signal that listeners are likely to be sensitive to.
As such, this is one of the first phonetic learning accounts that
has been shown to work on spontaneous data and suggests
that infants could be learning which acoustic dimensions are
contrastive after all. In the remainder of the paper, we discuss
the promise and open questions of this proposal, including its
generalizability, evidence on whether infants have the neces-
sary sensitivities, and how infants could use this signal to learn.

Generalizability. We considered the test cases of Japanese and
Dutch vowel length because they are famous problem cases
for many of the phonetic learning theories that already exist
(12, 41). However, they are unique contrasts in a number
of ways. They have low functional load in that they are not
frequently used to distinguish different meanings and they have
particularly overlapping acoustic distributions. In addition,
the Japanese contrast is primarily signaled by one acoustic
cue (i.e. duration), while most contrasts are signaled by more
(42, 43) and, as around 90% of Japanese vowels are short, it
is less balanced than many other contrasts. Future work will
need to test the generalizability of this proposal. Nonetheless,
we think it is likely that this signal will generalize to other
contrasts because the signal we illustrate in Fig. 1b does not
stem from these idiosyncrasies. Rather it arises because of a
handful of contexts that have particularly different frequency
distributions and we think these exist because of properties of
language have phonologists have argued are universal (30).
All languages are thought to have phonotactic or co-
occurrence constraints. For example, for the English contrast
[n]-[y] (e.g. sin vs. sing), [n] can occur at the beginning or end
of a syllable, while [g] can only occur at the end of syllables.
This means that the relative proportion of [n]’s and [g]’s will
change across those contexts, and could show patterns like
in Fig. 1. Similarly, sometimes sounds will be pronounced
differently based on their context. For example, if we con-
sider the contrast between [n]-[m], the [n] sound never occurs
before the sounds [p,b], but is instead pronounced as [m] in
those contexts (as in impossible). These types of phonological
alternations also create differences in which sounds occur in
which contexts and are cross-linguistically widespread (30-32).
Finally, there are systematic regularities based on the words in
the language. For example, for the [p]-[b] contrast in English,
[b] is more likely in the word frames _aby and _ar (baby is
a word, but paby is not and bar is more frequent than par),
whereas [p] is more likely in the word frames _lay and _in
(play is a word, but blay is not and pin is more frequent than
bin). Taken together, phonotactics, phonological alternations,
and word regularities all create systematic regularities in the
contexts that sounds occur in, such that different sounds occur
in different contexts and different contexts are made up of
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different ratios of sounds. This is currently thought to be true
of all contrasts - even those that are equally balanced, have
higher functional load, or are multidimensional - and will be
the case in adult- as well as infant-directed speech. Indeed, (33)
showed the context is similarly predictive of which category a
sound belongs to in both adult-directed and infant-directed
speech.

Nonetheless, while our results are promising, they ulti-
mately come from one acoustic dimension, one contrast type,
and only three languages. Furthermore, there are additional
complexities that we have not considered here, like how extra-
linguistic factors (e.g., speaking style/register, emotional con-
tent of speech, speech rate) could affect the signal and how
this proposal interfaces with other learning strategies that in-
fants have been shown to use (e.g., using visual and referential
information).

To test generalizability, future work should replicate these
findings on other data sets as they become available (we have
made our code publicly available to facilitate this effort). Par-
ticular focus should be placed on replicating these results on
a large ecological corpus of infant-directed speech, replicating
these results on other contrasts whose acquisition is difficult
to explain (e.g., Filipino nasals (44)), studying Dutch to un-
derstand why removing long vowels does not always change
the result, as well as replicating these results in languages
where the identity of a particular sound cannot be predicted
as well from its context, due to having fewer phonotactic and
other systematic restrictions (45). It will also be important to
test this proposal on contrasts that are signaled by multiple
acoustic dimensions (as the contrasts we study here are unique
in primarily being signaled by one: duration). In order for
this account to work in those cases, we would need to observe
the signal we report here along at least one of the acoustic
dimensions that signal the contrast (e.g., along VOT or FO
for stop contrasts). Alternatively, rather than operating over
individual acoustic dimensions, infants could search for this
signal along composite acoustic dimensions that are discov-
ered from the input by combining dimensions that are highly
correlated in the input (e.g., as discussed in (35, 46)). Fi-
nally, we note that Earthmover’s distance can be calculated
over multidimensional distributions, so it should be possible
to scale this approach up to multidimensional contexts if so
desired; however, for that to work, the infant would have to
first identify the relevant combinations of acoustic dimensions
they should focus on. Overall, it will be important to replicate
these findings across highly variable corpora that adequately
represent the full range of speech types that infants could
encounter.

Finally, it will also be important to test that these results
do not overgeneralize and wrongly label non-contrastive dimen-
sions as contrastive. Here, it will be particularly important to
test behavior on allophonic variation, where a particular sound
is realized differently depending on the context it occurs in.
While this pattern is similar to that of different phonemes oc-
curring in different contexts, our analyses provide preliminary
evidence that allophonic variation is not labeled as contrastive.
In particular, in French, vowel length varies allophonically
(vowels are lengthened depending on the following consonant)
(47), yet our analyses reliably treated French (allophonic vari-
ation in vowel length) differently from Japanese (phonemic
variation in vowel length). This suggests that this method
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may correctly differentiate contrastive and allophonic varia-
tion, though it will be important to study this further and
understand how it does so (if it does). We offer two specu-
lative reasons why allophonic variation may not be detected
to the same degree as phonemic variation, though they will
need to be tested. First, this proposal relies on contrasting
sounds having sufficiently different acoustic distributions (so
that changing the relative proportion of the sounds changes
the shape of the distribution). It is possible that allophonic
variation changes how a sound is produced to a lesser degree
than phonemic variation, though this may be difficult to assess.
A second possibility is that allophony often, though not always,
affects all of the sounds produced in a particular context (e.g.,
the duration of all French vowels is affected by neighboring
consonants). This may lead to a shift in distribution between
contexts, without a change in shape, which may lead to smaller
distribution shape changes as measured by Earthmover’s dis-
tance. Certainly, more research studying how this proposal
handles allophony will be crucial.

Could infants do this?. This proposal places higher computa-
tional and memory demands on infant learners than many past
theories have (e.g., distributional learning). Infants would need
to be able to track distribution shapes across many contexts
and then compare their shapes pairwise.

(1) Could infants track distributions across different con-
texts? Though this has not been tested, we know that listeners
track the shape of frequency distributions overall, and use this
for phonetic learning and processing. For example, infants
make different phonetic inferences depending on whether the
distribution they hear is bimodally- or unimodally- shaped
(6). Another study showed that adult listeners are sensitive
to the variance of the sound distributions they are exposed
to, another property of a distribution’s shape (48). In that
experiment, adults categorized sounds differently depending
on whether they heard a distribution with high or low variance,
though this has not been tested in infants.

In addition, we know that listeners are sensitive to the con-
text of a sound and use it for phonetic learning and processing.
Both toddlers 12 months and older and adults have been ar-
gued to track acoustic distributions across speakers (which can
be thought of as a context), can adapt to speakers who have
different accents (i.e. different distributions of sounds) (49-55),
and mirror the speech of their interlocutors. In addition, in-
fants are sensitive to phonotactics (56), as well as phonological
alternations - the fact that sounds tend to be pronounced dif-
ferently in different contexts (57, 58). Additionally, multiple
studies have shown that infants use the word frame of a sound
in phonetic learning (20, 22). That is, infants seem to assign
acoustically similar sounds to different categories if they occur
in different word frames, suggesting that infants can track
the context that a sound occurs in and use it for phonetic
learning. Adult speech perception is affected by contextual
factors, like neighboring sounds. For example, (59) showed
that Japanese perception of whether the final vowel in CoC’V
was phonemically short or long depended on the identity of
both C and C. Furthermore, (60) showed that adults contin-
ually track how informative particular acoustic cues are and
will selectively reweight these cues in some contexts but not
others (e.g., when categorizing /b-p/ in beer-pier, but not for
/d-t/ in deer-tier and vice versa). Indeed, listeners may even
track information across contexts defined by multiple factors.
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For example, in English, to learn whether a stop consonant
will be aspirated or not, the speaker must track whether the
sound is voiceless or voiced (akin to Vowel Quality), whether
it occurs at the start of a stressed syllable or not (akin to
Prosodic Position), and what the neighboring sounds are and
then notice the change in pronunciation/distribution across
those different contexts.

Taken together, while these results do not provide direct
evidence that infants track distribution shapes across contexts,
they suggest that listeners can track complex statistical reg-
ularities across complex contexts and use them in real-time
phonetic learning and processing.

(2) Could infants compare distribution shapes? Finally, the
last skill necessary for the proposal is for infants to be able to
compare distributions. While this has again not been directly
tested, one possible clue is that listeners seem to reweight
acoustic cues depending on how variable/informative they
are, with cues that have narrower distributions being more
informative than cues with wider distributions (48, 61, 62).
Another possible clue is that toddlers and adults are able
to identify when they need to adapt their representations to
speech they hear. Being able to identify an accent implies
that listeners can identify when the speech they are hearing
differs from the speech they usually hear, a computation that
is likely to involve tracking at least some properties of the
distributions (63).

Overall, given infants’ demonstrated sensitivity to distribu-
tion shape and to changes across context, there is good reason
to believe that infants could be sensitive to the type of distribu-
tional information that our account assumes, but future work
should test whether infants/listeners can track distributions
across different contexts (defined by one or more contextual
factors) and compare distributions’ shapes. In addition to test-
ing whether infants can, in theory, perform the computations
this account requires, future work should also test whether
infants actually use them to learn about contrastiveness in
the way we propose here. One approach would be to test this
experimentally, by exposing infants to acoustic distributions
that differ or remain the same across contexts and seeing if
this affects their learning/behavior. Another approach would
be to use cross-linguistic corpora to identify contrasts that
should be easier/harder to learn according to our proposal
and compare that against age of acquisition and speech per-
ception/production data. For example, controlling for degree
of acoustic overlap, this theory would predict that contrasts
that have stronger phonotactic restrictions or that are more
predictable (i.e., it is easier to predict which member of the
contrast occurred based on the context it occurred in) should
be easier to learn through this method. These approaches
will allow us to overcome the next big hurdle for this account,
which is determining whether infants use this signal to learn.

Reducing the computational complexity of the proposal. It is
also possible that the memory and computational restrictions
of the proposal could be reduced. On the one hand, we saw
that considering individual contexts (e.g., just the most fre-
quent word frames or just prosodic position) was still effective,
as was introducing some parsing errors and considering broader
segment classes rather than individual neighboring sounds. On
the other hand, online approximations or metrics that do not
require the whole distribution to be tracked in order to get a
measure of distribution shape distance could also reduce the
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computational and memory complexity of the proposal. For
example, rather than exactly representing the distribution,
this proposal could operate over a compressed representation
of the distribution that keeps track of how many points fall
within larger bins/bands (similar to reducing the number of
bins in a histogram). It is likely that we would still observe
the critical pattern even with this less detailed representation
of distribution shape, and, as this only requires keeping track
of one number per bin (its count), it could reduce the size
of the representation of a distribution to just 5-10 numbers.
Even considering all 200 of the most frequent contexts, this
could involve storing as few as 1000 numbers. In addition,
there may be a way to zero in on the contexts that yield
the necessary signal without doing all of the pairwise com-
parisons represented in the boxplots. It is possible that the
“key” contexts that drive the signal are overrepresented in the
outliers of the overall distribution (i.e., particularly short or
particularly long vowels could be more likely to occur in a
context that drives the tail). If this were true, infants could
arrive at the same signal we observe here, by focusing in
on the contexts of outlier sounds, rather than tracking the
distribution across all contexts. Finally, another possibility
is that infants could compare contextual distributions using
higher-order measures of distribution shape (e.g., variance)
rather than tracking the entire distribution. The fact that the
distribution shape changes across contexts could also mean
that the variance of the distributions changes across contexts.
If so, infants could pick up on this difference without encoding
the entire distribution across contexts.

Moving from signal to learning account. The data we report
plots Japanese and French side-by-side, but most Japanese
infants do not get French input to compare against. Assuming
that this pattern generalizes to other contrasts and that infants
have the necessary sensitivities to detect this signal, how could
infants actually use it to learn?

One possibility is that infants use a built-in threshold to
determine whether a dimension is contrastive: if the metric
(this could be something like the average, range, variance, or
maximum Earthmover’s distance) exceeds the threshold, they
learn the dimension is contrastive; otherwise, they learn that
it is not. Another possibility is that infants compare against
other acoustic dimensions of their own language (instead of
against other languages, as we did). If these metrics turn out to
be larger for all contrastive dimensions than all non-contrastive
dimensions, infants could easily separate contrastive vs. non-
contrastive dimensions.

One complication for this possibility, however, is that the
metrics we report are sensitive to the scale of a dimension,
making it difficult to compare across dimensions with different
scales (e.g., formants vs. duration). To overcome this problem,
we tried z-scoring the dimensions, but found that the key
effect partially disappeared: the effect was retained for French
vs. Japanese and when considering only the most frequent
contexts, but when more contexts were considered, the pattern
reversed in Dutch ADS. This happened because z-scoring is
sensitive to variance, and as there was more variability along
the contrastive than non-contrastive dimensions, z-scoring
led to artificially lowered Earthmovers’ distances along the
contrastive (more variable) dimension. Nonetheless, a method
that standardizes the scales with less sensitivity to the overall
variance could allow for comparison across dimensions.
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Finally, given the overall distribution along an acoustic
dimension, infants could have a probabilistic model of how
different they should expect distributions to be across contexts,
depending on whether the overall distribution is made up of one
vs. two categories. With this, they could compare how likely a
one-category vs. two-category solution is to have generated the
observed Earthmover’s distances (controlling for phonological
processes, it would be unlikely for one category to produce
extremely different distribution shapes as in Fig. 1b).

One issue that should be considered in future work is
whether learners consider aggregate distributions across all
of the vowel qualities when comparing distribution shapes
across contexts. In our analyses of Japanese and French,
we have assumed that they do, and in fact, vowel quality
is one of the contextual factors we analyze. However, this
creates a potential problem for Dutch, because only a subset
of Dutch vowels contrast in length. If Dutch infants were to
initially rely on the aggregated distribution shape comparison
approach we put forth for Japanese, this might lead them to
conclude that vowel duration is a contrastive dimension that
they should tune into (as the context pairs that showed high
Earthmover’s distance would still be in this analysis), but

they would not realize that only some of the vowels contrast.

It is possible that they could later learn which specific vowel
qualities contrast in length. It is also possible that Dutch
infants use a different strategy entirely for discovering the
vowel length contrast: those Dutch vowels that contrast
in length also contrast in vowel quality (e.g., [a] vs. [aI]

contrast in Dutch, but [a] vs. [a:] contrast in Japanese).

Having already separated [a] from [a:] using their vowel
qualities, Dutch infants could simply notice that these vowels
differ systematically in their durations, without doing any

distribution shape comparisons of the type we propose here.
Ultimately, we remain agnostic as to how exactly infants learn.

Given the complexity of the task infants are faced with as
well as past experimental findings showing infants use many
types of information in phonetic learning, it likely involves
a combination of strategies (e.g., using word-level, visual,
referential, and other distributional information in addition to
the types of analyses we report here). Having established that
a signal exists in naturalistic data, we hope future research
will investigate how this signal might best be used for learning
and how it integrates with other promising accounts.

Conclusion

Infants need to learn which acoustic dimensions of their
language are contrastive in order to learn the sound system of
their language. However, we still do not know what aspects
of naturalistic input provide the necessary signal for them
to do so. In this paper, we propose a potential account for
how infants learn this and show that there is a signal about
whether a dimension is contrastive in noisy, spontaneously
produced input. This account is particularly promising for
two reasons. First, the signal that we pick up on is a direct
consequence of multiple categories exhibiting properties that
hold true across most languages, so we think it is likely that
this result will generalize to other contrasts. In addition,
the signal is something that even infants may be sensitive
to. Past work has shown that infants track the shapes of
overall frequency distributions, and know about how sounds
are likely to sound in different contexts (6, 57, 58). Adults have
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been shown to track distributions across situations (i.e. across
different talkers) (49). In conclusion, we show that even when
two sounds overlap acoustically, the fact that they occur in
different contexts leaves signal to their contrastiveness. These
results provide initial support for a phonetic learning account
that works on highly acoustically variable spontaneous speech.

Materials and Methods

Methods. For each test case, one of the datasets (contrastive or
non-contrastive) was larger than the other. To correct for this, we
only considered the first N tokens of the larger dataset, where N
was the size of the smaller dataset. We extracted the duration,
the primary acoustic cue to length, of each vowel token in seconds,
rounding to the same degree of precision. In addition, we extracted
all contextual information that was available across all of the corpora
we study and that infants of the relevant age are sensitive to:

e Vowel quality: For Japanese, this was: /a/, /e/, /i/, /o/, or
Ju/. For French, this was: /a/, e/, /i/\ o/, [u/s /¥/, 9/,
/a/, /6/, or /@/. For Dutch, this was: /a-a/, /o-0/, [oe-0/,
/e-e/, J1/, Ju/, Jy/, or /i/. The first four listed pairs are
differentiated by quality and length, but we do not incorporate
these vowel quality differences into this paper. Vowel quality
is thought to be learned before vowel length (25).

o Prosodic position: We represented prosodic position (a
vowel’s position relative to prosodic boundaries) with four
indicator values: (1) whether the vowel was word-initial or not,
(2) whether the vowel was word-final or not, (3) whether the
vowel was phrase-initial or not, and (4) whether the vowel was
phrase-final or not. Infants have been shown to be sensitive to
prosodic boundaries quite early (26, 27).

e Neighboring sounds: We extracted the identity of the im-
mediately previous sound and the immediately following sound,
as labelled by the phonetic transcription, ignoring length infor-
mation. Again, vowel length contrast is thought to be learned
later than other types of contrasts (25).

¢ Word frame: We extracted the word frame that the vowel
occurred in, excluding all length information. For example,
one word frame could have been [b_i_ru], which would include
both [bi:ru] and [biru]. We chose to include word frames, as
infants know and can segment words early (28, 29, 34, 64), and
use word frames in phonetic learning (20-22).

We looked at two main ways of defining context, though we
do not have any commitments about which contexts infants would
compute over. In the first way of defining context, we used a
combination of vowel quality, prosodic position, and neighboring
sounds (e.g. /o/ vowels that follow a /t/ and precede a /k/ that
are word- and phrase-internal) - though we also consider each of
these three contextual factors individually. This combined set of
factors corresponds to the subset of factors considered in (33) that
were available for the corpora we study and that infants are most
sensitive to. In the second way of defining context, we used word
frames, as has been done in (19) and (13) among others.

Because most contexts occur very infrequently, we looked at
a subset of all possible contexts. We subsetted the contexts in
two qualitatively different ways: either by taking the top X most
frequent contexts, or by taking all contexts that had at least N
tokens, varying X and N. Results were qualitatively similar in all
cases, so we present results from including the 200 most frequent
contexts for the French vs. Japanese and Dutch ADS analyses, and
only the 5 most frequent contexts for the Dutch IDS analysis due to
its much smaller size. Once we had the contexts, we extracted the
vowel duration frequency distributions in each context (examples
shown in Fig. 1).

‘We compared the shape of each pair of contextual frequency
distributions, using a metric known as Earthmover’s distance or
Wasserstein distance (65, 66), which is commonly used to measure
the difference in shape between two distributions (see Supplemen-
tary Materials for methods and results using KL divergence instead).
Earthmover’s distance is often talked about in terms of two piles of
dirt, which represent the two distributions being compared. In this
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context, Earthmover’s distance can be thought of as the minimum
cost of turning one earth pile into the other, where cost corresponds
to a combination of the amount of earth being moved as well as the
distance it has to be moved. In other words, the distance is the min-
imum average distance a piece of dirt will have to be moved in order
to turn one pile into the other. A higher distance means there was a
greater shape mismatch. We plot the distribution of Earthmover’s
distances, and report its mean, variance, and maximum.

Having found that the distribution of Earthmover’s distances for
contrastive dimensions had a longer tail than for non-contrastive
dimensions, we qualitatively analyzed the contents of this long tail
to determine which individual contexts led to the pattern observed.
We identified the contexts that showed up most frequently in the
tail and analyzed how frequent they were (both in terms of absolute
count and their frequency ranking relative to all contexts), as well
as what the relative frequency of short and long vowels was in each
of these key contexts.

To assess the reliability of these differences between contrastive
and non-contrastive dimensions were reliable, we used bootstrap
statistics. We sampled (with replacement) particular vowel tokens
with their contexts, creating a new contrastive and a new non-
contrastive dataset. We then recalculated Earthmover’s distances
across the contexts using these bootstrap samples, repeating the
process 50 times. We plot the maximum Earthmover’s distance with
the standard deviation, which allows us to observe the reliability of
these differences. To study the effect of the input corpus size, we
varied the number of vowel tokens sampled from 284 vowel tokens
(the size of the Dutch IDS corpus) to 132037 (the size of the French
vs. Japanese corpora).

In our final simulation, we relaxed our assumptions about infants’
prior knowledge. First, while previous analyses used neighboring
segment identity directly (e.g., /k/, /t/, /s/), this simulation only
used the segment’s broad class (e.g., stop, fricative, vowel, etc.),
which infants are more sensitive to. Second, to simulate imper-
fect segmentation, we added noise to the prosodic position factor.
Prosodic position is represented with four indicator values (depend-
ing on whether the vowel in question is word/utterance-initial and
word /utterance-final). To add noise, we changed 20% of these val-
ues (making sure that the resulting prosodic position was real -
e.g., sounds considered to be utterance-final were necessarily also
considered to be word-final). We then used the same procedure
from above with these updated factors.

Corpora. The French vs. Japanese analysis compared the Corpus
of Spontaneous Japanese against the Nijmegen Corpus of Casual
French. The Dutch analyses looked at the Ernestus Corpus of
Spontaneous Dutch (ADS) and the Levelt/Fikkert corpus (IDS).

Corpus of Spontaneous Japanese (CSJ). The CSJ is a large corpus
of spontaneously produced adult-directed speech (67). Around 90%
of the speech consists of spontaneously produced monologues about
academic field, their favorite memory, and so forth. The remaining
10% consists of spontaneous dialogues either in free conversation
with the experimenter or engaged in a task. Our analysis focuses
on the core portion of the corpus, which was force-aligned and
hand-corrected with the segmental information required for our
analyses (see (67) for more details). The core portion consists of
811,731 total vowel tokens of which 89.1% are phonemically short
and 10.9% are phonemically long, but only the first 132,307 tokens
were used to match the size of the French corpus.

Nijmegen Corpus of Casual French (NCCFr). The NCCFr is a corpus
of spontaneously produced adult-directed speech (68). Unlike the
CSJ, however, the NCCFr consists exclusively of conversational
speech between close friends. Topics included upcoming exams,
travel plans, an ongoing strike, and so forth. The corpus consists of
speech by 46 French speakers, and includes 132,307 vowel tokens.
The corpus was orthographically transcribed by two professional
transcribers. The corpus was transcribed at the segmental level by
Martine Adda Decker (p.c. with M. Ernestus, January 14, 2019).

Ernestus Corpus of Spontaneous Dutch (ECSD). The ECSD consists
of adult-directed, conversational speech, with speakers talking with
a friend, at first freely, and then engaged in a task-oriented dis-
cussion (40). The corpus has speech by 20 different speakers, and
includes 60,955 tokens with a length contrast and 21,187 tokens
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without. Professional transcribers created a orthographic transcrip-
tion of the interactions, which was manually aligned to the speech.
The corpus was also phonetically transcribed using a forced align-
ment model (details can be found in (69)). Validations revealed a
14% discrepancy between manual annotations and forced-aligned
annotations, which is in the range of human disagreement. However,
these analyses did not directly validate durational information, so it
is unclear how accurate annotations of the start and end points of
the phones are. This could introduce some noise into our analyses,
as it could affect how accurate the vowel durations are, and how
accurately we can determine which word a vowel belonged to.

Fikkert/Levelt/Swingley IDS corpus. We also tested our account on
a corpus of Dutch IDS collected by Fikkert and Levelt (70, 71).
The annotated portion of this corpus is small: it contains a total of
300 utterances, with a total of only 1296 vowel tokens, but each of
the contrastive and non-contrastive datasets had to be subsetted
to 284 to make equally sized subsets. The corpus consists of natu-
ralistic longitudinal speech interactions with one child (Catootje)
aged 1;10. The corpus was transcribed at the word level. Time-
aligned phonetic annotations were created by Dan Swingley (DS)
(13). Given the transcriptions, the speech toolkit HTK (72) was
used to estimate the boundaries of the phones using the HVITE
forced-alignment tool. The output of the forced-alignment tool was
manually corrected by DS, a speaker of Dutch. KH time-aligned the
word-level transcription to the time-aligned phonetic transcriptions
based on the location of the phones in Praat (73).

Code for all analyses is available on  Github:
http://github.com/khitczenko/contextual-dl. Data are available by
request from the researchers who control their distribution.
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Supplementary Materials

Figure 3 in the main text reports our bootstrapping analysis results, treating the maximum Earthmover’s distance as the metric of interest
(i-e., showing how maximum Earthmover’s distance varies across 50 runs). In Figure S1, we provide analogous plots treating the mean
Earthmover’s distance as the primary metric instead. Results are similar: across input sizes the mean contrastive Earthmover’s distance is
greater than the mean non-contrastive Earthmover’s distance, suggesting that observed differences between contrastive vs. non-contrastive
dimensions are meaningful, but that input size does not matter.
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Fig. S1. Results from bootstrapped input size analyses. Across input sizes, the mean contrastive Earthmover’s distance is greater than the mean non-contrastive Earthmover’s
distance. “C” refers to the number of contexts included in the analysis. The maximum input size for which data is shown depends on the corpus size: 284 for Dutch IDS, 21187
for Dutch ADS, and 132037 for Japanese vs. French.

The analyses in the main text use Earthmover’s distance to compare distribution shapes across contexts. Figure S2 shows results using an
alternative metric, namely KL divergence (or Kullback-Leibler divergence). KL divergence is a measure of how different two probability
distributions are. As we do not have access to the closed-form probability distributions within each context (only samples), we estimated
KL divergence as follows. We divided the tokens in each context into 10 evenly-sized bins, and smoothed the counts in each bin (adding
a count of le-5 to each bin). We then used these counts to arrive at a probability distribution over the 10 bins, which were used to
calculated KL-divergence. As KL-divergence is not a symmetric measure, for each pair of contexts, we summed the KL-divergence of
Context 1 against Context 2 and the KL-divergence of Context 2 against Context 1 to arrive at a final measure, that is plotted in Figure
S2. We find that the expected qualitative pattern still emerges across all three test cases even using a different metric. It is, however,
interesting that the difference in magnitude across the test cases changes: here, Dutch ADS and IDS show the greatest KL divergences,
while Japanese/French showed the greatest Earthmover’s distances. This suggests that this effect is largely insensitive to the particular
metric used, but which metric is used could make a difference in specific predictions the account makes.
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