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Application of Hausdorff fractal derivative to the 1 

determination of the vertical sediment concentration 2 

distribution 3 

 4 

Abstract:  5 

The Rouse formula and its variants have been widely used to calculate the steady-state vertical 6 

concentration distribution for suspended sediment in steady sediment-laden flows, where the 7 

diffusive flux is assumed to be Fickian. Turbulent flow, however, exhibits fractal properties, 8 

leading to non-Fickian diffusive flux for sediment particles. To characterize non-Fickian dynamics 9 

of suspended sediment, the current study proposes a Hausdorff fractal derivative based 10 

advection-dispersion equation (HADE) model, where the Fickian diffusive flux in the Rouse 11 

model is replaced by a fractal derivative re-scaled using a constant diffusivity. The order of the 12 

Hausdorff fractal derivative is designed to characterize the influence of the multi-fractal 13 

turbulence structure on sediment diffusion. Applications show that the HADE model, with the 14 

analytical solution expressed using a stretched exponential function, can accurately describe the 15 

observed vertical concentration profiles for suspended sediment with different sizes. This 16 

improvement well captures the non-exponential decay of the vertical sediment concentration in 17 

turbulent flow. Further analyses of measured sediment concentration profiles reveal that the 18 

Hausdorff fractal order decreases with the Rouse parameter, which describes the stronger impact 19 

of turbulent flow and a more uniform sediment concentration profile for smaller particles. Model 20 

comparisons also show that the HADE model provides better performance in describing the 21 

sediment concentration profiles than the improved Rouse formula and the standard fractional 22 

derivative advection-dispersion equation (FADE), which either under- or over-estimates vertical 23 

displacement of sediment particles, likely due to coherent turbulent structures. 24 

Key words: Anomalous diffusion; Hausdorff fractal derivative; Vertical concentration distribution; 25 

Suspended sediment; Metric transform  26 

1. Introduction  27 

Quantification of the vertical distribution of suspended sediment concentration under 28 

turbulent flow conditions, which is one of the essential parts of morphological computations, has 29 
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been a research focus for decades in the hydraulics and environmental science communities 30 

(Cheng et al., 2018; Chien & Wan, 1999; Czuba et al., 2015; Nowacki et al., 2015; Park & 31 

Latrubesse, 2015). Various theoretical or empirical formulas have been applied to model the 32 

steady-state, vertical density/concentration profile of suspended sediment (Boudreau & Hill, 2020; 33 

van Rijn, 1984; Rouse, 1937). For example, Umeyaina (1992) investigated the vertical distribution 34 

of suspended sediment in uniform open-channel flow using a mixing length hypothesis, which can 35 

fit the experimental data for both fine and coarse sediment particles. Wang and Fu (2004) 36 

developed a kinetic model to quantify sediment suspension in solid/liquid two-phase flows, as 37 

well as the particle velocity distribution function in steady flows (Fu et al., 2005; Wang & Fu, 38 

2004; Wang & Ni, 1991). Mazumder and Ghoshal (2006) proposed a theoretical model based on 39 

the Hunt equation to capture the profiles of velocity and sediment. More information on empirical 40 

formulas and theoretical results on the vertical distribution of suspended sediment concentration 41 

can be found in related references (Boudreau & Hill, 2020; Dey et al., 2018). The existing 42 

formulas are mainly built upon the Fick's law based diffusive flux to describe the vertical 43 

movement of suspended sediment (Chien & Wan, 1999; Coleman, 1986; Kumbhakar et al., 2017). 44 

The standard models for the vertical distribution of suspended sediment concentration in 45 

sediment-laden flows were derived from the advection-dispersion equation (ADE), which reduces 46 

to the following form under steady-state conditions:  47 

 0,sy
SS
y

 


 


  (1) 48 

where 1 S ML    denotes the sediment volumetric concentration,  y L  is the vertical 49 

coordinate, 1LT     is the sediment settling velocity, and 2 1
sy L T    is the sediment 50 

turbulent diffusion coefficient along the y direction. Equation (1) assumes that, when reaching 51 

equilibrium, the downward settling flux of sediment due to gravity is balanced by upward, Fickian 52 

diffusive flux due to turbulence. The diffusion coefficient of sediment, sy , whose value cannot be 53 

directly measured, was simplified as a parabolic function (Rouse, 1937), a linear function or 54 

constant (Larras, 1969), or a parabolic function or constant (van Rijn, 1984). Assuming a parabolic 55 

function  * 1sy u y h y    (where *u is the shear velocity, h is the water depth, and   is 56 
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the Von Karman constant), in the solution for the classical Rouse Eq. (1) takes the following form 57 

(Rouse, 1937; Vanoni & Brooks, 1957):  58 

 

*1
,
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h
S y

hS
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

 
 

  
 
  

  (2) 59 

where aS  is the reference concentration at reference level a, sy m   is the inverse of the 60 

sediment Schmidt number, and m  is the fluid eddy viscosity. The determination of   is an 61 

important topic in the investigation of the vertical distribution of the suspended sediment 62 

concentration. Previous literature has revealed that   depends on the normalized settling 63 

velocity (Jain et al., 2018), may also depend on the reference level and reference concentration 64 

(Pal & Ghoshal, 2016). It may be larger than 1 or less than 1 in different cases (Cellino & Graf, 65 

2002). In current study, 1  is applied when using Eq. (1) for simplicity. Although the Rouse Eq. 66 

(1) has a clear physical meaning and has been widely used to study sediment transport, many 67 

studies showed that its solution Eq. (2) cannot accurately capture the sediment distribution near 68 

the river bottom and surface (Chien & Wan, 1999; Otsuka et al., 2017).  69 

The obvious shortcoming of the Rouse formula motivated various improvements in the last 70 

two decades. For example, Wang and Ni (1991) proposed a particle velocity distribution function 71 

in two-phase flows, and then derived a theoretical model for the vertical distribution of suspended 72 

sediment concentration using the kinetic theory. Cao et al. (1995) analyzed the velocity and 73 

sediment concentration distribution in open channel flows using the fundamental two-phase flow 74 

equation. Zheng et al. (2012) proposed a continuous distribution formula for suspended sediment 75 

concentration by modifying the van Rijn formula (van Rijn, 1984). Chen et al. (2013) found that 76 

anomalous turbulent diffusion plays an important role in suspended sediment transport, and 77 

further presented a fractional derivative advection-dispersion equation (FADE) model to describe 78 

the vertical distribution of suspended sediment concentration in steady turbulent flows. The 79 

fractional-derivative model can successfully describe the vertical distribution of suspended 80 

sediment concentration based on turbulent diffusion in steady flow (Chen et al., 2013; Kundu, 81 

2018; Nie et al., 2017). However, Sun and Chen (2009) argued that anomalous diffusion in 82 
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turbulence might be better described by the Hausdorff fractal derivative model (which is 83 

introduced in detail in the next section) than the FADE model, because the Hausdorff fractal 84 

derivative captures different dynamics for material transport. This conclusion, however, has not 85 

been checked against any real-world observations of sediment dynamics. Moreover, although the 86 

fractional derivative model has been successfully applied to describe anomalous diffusion, its 87 

nonlocal nature requires high computational cost in numerical simulations and is not 88 

easy-to-implement for hydrologists and engineers. These challenges may be solved by the new 89 

model using the Hausdorff fractal derivative, and, hence, it is an interesting topic to develop and 90 

check the fractal model to quantify the complex turbulence structure effects on dynamics of 91 

suspended sediment in turbulent flow.  92 

The Hausdorff fractal derivative model has been applied to describe complex dynamics 93 

observed in natural systems, including anomalous diffusion (Sun et al., 2017; Liang et al., 2019), 94 

soil moisture movement (Sun et al., 2013), turbulent flow (Sun & Chen, 2009), hydrodynamics 95 

(Balankin & Elizarraraz, 2012), and other fields (Balankin et al., 2013; Cai et al., 2016; 96 

Reyes-Marambio et al., 2016). The Hausdorff fractal derivative (representing a fractal time-space 97 

metric transform) is introduced from physics to describe anomalous diffusion (or transport) in a 98 

fractal structure (Kanno, 1998; Chen, 2006). Since the turbulent flow structure over rough beds is 99 

known to have fractal features, the Hausdorff fractal derivative model may provide an improved 100 

physically-based description of anomalous turbulent transport, relative to available models. In 101 

addition, the stretched exponential function, which forms the fundamental solution of the 102 

Hausdorff fractal derivative model, has been widely confirmed to characterize statistical physical 103 

quantities (e.g., velocity, acceleration, structure, and energy) of turbulent flow (La Porta et al., 104 

2001; Kellay, 2017; Zhou et al., 2006). These successful applications and statistical properties of 105 

turbulence motivated the current study to extend the Hausdorff fractal derivative to characterize 106 

the physical dynamics of suspended sediment transport in steady turbulent flows. 107 

This paper is structured as follows. Section 2 introduces the Hausdorff fractal derivative and 108 

the derivation of the Hausdorff fractal derivative model with an analytical solution for suspended 109 

sediment transport and the equilibrium concentration distribution in the vertical direction. Section 110 

3 checks the applicability of the newly derived model by fitting two sets of experimental 111 
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observations for sediment with different sizes. Section 4 discusses parameters of the Hausdorff 112 

fractal derivative model, and compares the new model with the improved Rouse model and the 113 

standard FADE model using more experimental data. Section 5 summarizes the main conclusions 114 

and discusses applications for steady-state vertical dynamics of suspended sediment. 115 

2. Hausdorff fractal derivative model 116 

The Rouse model (1) has two main limitations: 1) a debatable assumption of the Fickian type 117 

of turbulent flux and empirical assumptions for the eddy diffusivity, and 2) the inability to extend 118 

the suspended sediment distribution all the way to the bed (which results because the near-bed 119 

flow structure is more complex owing to wakes and other flow structures resulting from bed 120 

roughness). Various studies have confirmed that turbulence structure is complex and often exhibits 121 

fractal properties, which satisfy the conditions for the application of the Hausdorff fractal 122 

derivative (Lanotte et al., 2015; Sreenivasan & Meneveau, 1986). Further, it has been shown that 123 

anomalous turbulent diffusion can be well characterized by the Hausdorff fractal derivative model 124 

(Chen, 2006; Sun & Chen, 2009). Therefore, here for the first time the Hausdorff fractal derivative 125 

is introduced into the Rouse model, leading to a new formula for quantifying the steady-state 126 

vertical distribution of the suspended sediment concentration under steady turbulent flow, which 127 

will then be compared in detail with previous models. 128 

The Hausdorff fractal space-time fabric is obtained by metric transform of the standard 129 

integer-order space-time fabric. The metric transformation is proposed based on two hypotheses: 130 

fractal invariance (meaning that physical laws are invariant under the fractal transformation) and 131 

fractal equivalence (where the influence of anomalous environmental fluctuations on physical 132 

behavior is assumed to be equal to the fractal time-space transform) (Chen, 2006). Under these 133 

hypotheses, the Hausdorff fractal derivative can be restated as the normal derivative using the 134 

following metric transform: 135 

 
ˆ ,
ˆ ,
t t
y y





 



   (3) 136 

where   and    0 , 1    represent the order of the Hausdorff fractal derivative in time 137 

and space, respectively. The Hausdorff fractal derivative indices   and  describe the 138 

Hausdorff dimensions of fractal time and fractal space, respectively. Here f scd d   and 139 
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fd  , where fd  is the fractal dimension of space and scd is the fractal dimension of regions 140 

excluding the holes in the fractal structure, based on the theoretical analysis in the (Kanno, 1998). 141 

The metric transform Eq. (3) leads to the following definition of the Hausdorff fractal derivative 142 

(Chen 2006; Sun et al., 2013):  143 
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1

1
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 




 

  (4) 144 

where f(t) is a function of variable t  and g(y) is a function of variable y .  145 

To accurately characterize suspended particle motion in the turbulent flow structure with 146 

fractal dimension, it proposed to use the corresponding fractal space-time  ,y t  . The 147 

underling hypothesis is that the diffusion of suspended sediment follows Fick's Law in the fractal 148 

dimension  H  . Under the steady-state condition (where the fractal time t can be deleted 149 

from the equation), the following Hausdorff fractal derivative based advection-dispersion equation 150 

(HADE) is obtained to model anomalous diffusion of suspended sediment:  151 

 0,sy
SS
y

 


 


  (5) 152 

where sy  represents a depth-averaged diffusivity which can upscale the depth-dependent sy in 153 

Eq. (1), considering the fact that anomalous diffusion usually happens in the entire model region 154 

(which is also called ''nonlocal'' in space). This effective diffusivity can be calculated by 155 

integrating the depth-variable sy in the Rouse model from the reference height a (where a = 0.05 h 156 

is widely accepted) to the water surface (y = h) (Chen et al., 2013), and 1LT     is the 157 

sediment settling velocity (Zhang, 1998) which are expressed by  158 

 
 *0.05 *
1 d 209 ,

0.95 1200

h

h
sy

u y h y y u h
h

 



 
   (6) 159 

 
2

13.95 1.09 13.95 .s w

w

gd
d d

  




 
   

 
  (7) 160 

where 2 1L T     is the kinematic viscosity ; 2g LT     is the gravitational acceleration;  d L   161 
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is the particle diameter; s  and w  are the specific weights of sediment and water, respectively. 162 

Under the condition   aS y a S  , the analytical solution of Eq. (5) can be obtained by using 163 

the variable substitution  ŷ y   164 

 
 

,0 1.sy
y a

a

S e
S

 




 

     (8) 165 

Note that the Hausdorff fractal derivative order   is a parameter in the analytical solution 166 

Eq. (8) which cannot be directly measured in the field or using existing flume experiments. Hence, 167 

the HADE model Eq. (5) contains one more parameter ( ) compared with the classical Rouse 168 

model Eq. (1). Notably, when 1  , the Eq. (8) reduces to the exponential expression that has 169 

previously been proposed for suspended sediment distributions based on empirical observations 170 

(Larras, 1969). 171 

Figure 1 shows the distribution of aS S  is sensitive to the order of the Hausdorff fractal 172 

derivative  . In general, a smaller  leads to a larger gradient of the vertical distribution of 173 

suspended sediment concentration (representing stronger turbulent diffusion), which can facilitate 174 

model fitting for river engineers using the observed concentrations of suspended sediment.  175 

 176 

Fig. 1. The normalized concentration 
aS S for suspended sediment (calculated using Eq. (8)) with different fractal 177 

indices . The other parameters (dimensionless in this case) are the same, which are 0.4  , 0.007sy  (L2/T), 178 

0.0047  (L/T), and 
* 0.05u  (L/T). 179 

3. Model applications and experimental data analysis  180 

To test the applicability of the HADE model Eq. (5) and its solution Eq. (8) in describing the 181 

vertical distribution of suspended sediment concentration, we consider two groups of experimental 182 

data were considered for natural sands (with different sizes) in fully developed, steady 183 

open-channel flows. To evaluate the difference between the experimental data and the model 184 

predictions, the root mean square error (RMSE) was used. More experimental data is checked in 185 

the next section. The experiments done by Einstein and Chien (1955) and Coleman (1986) are 186 

used for comparative purposes. The flow and sediment characteristics of the experiments are listed 187 

in Table 1. 188 
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 190 

 191 

Table 1. Flow and sediment characteristics in the experiments of Einstein and Chien (1955) and Coleman (1986). 192 

Run 

Number 

Depth, 

h (cm) 

Particle size, 

d (mm) 

Shear velocity, 

*u  (cm/s) 

Settling velocity, 

(cm/s) 

Von Karman 

Constant,    

S-1 13.8 1.300 11.47 13.96 0.322 

S-2 12.0 1.300 12.85 13.96 0.261 

S-3 11.7 1.300 13.26 13.96 0.246 

S-4 11.5 1.300 14.28 13.96 0.210 

S-6 14.3 0.94 11.82 11.29 0.295 

S-7 14.3 0.94 11.79 11.29 0.281 

S-8 13.9 0.94 11.53 11.29 0.263 

S-9 13.5 0.94 11.85 11.29 0.247 

Coleman 2 17.1 0.105 4.1 0.673 0.403 

Coleman 6 17.0 0.105 4.1 0.673 0.410 

Coleman 15 17.1 0.105 4.1 0.673 0.414 

Coleman 16 17.1 0.105 4.1 0.673 0.432 

Coleman 22 17.0 0.210 4.1 2.35 0.457 

Coleman 23 17.0 0.210 4.1 2.35 0.453 

Coleman 26 17.1 0.210 4.1 2.35 0.466 

Coleman 27 16.8 0.210 4.1 2.35 0.446 

 193 

3.1. Experimental Case 1 194 

This experiment was conducted in two-dimensional, fully developed, steady open-channel 195 

flows (Einstein & Chien, 1955). The mean size of sediment particles was 1.3 mm for experimental 196 

runs S-1 ∼ S-4 and 0.94 mm for S-6 ∼ S-9, representing coarse and medium sand, respectively. 197 

Detailed information on the experiment can be found in Fu et al. (2005). Here the applicability of 198 

the HADE model Eq. (8) is examined and the HADE model is compared with the classical Rouse 199 
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model Eq. (2). The reference height is selected at a = 0.02 h. The best-fit results of the HADE 200 

model (obtained by minimizing the RMSE) for the experimental datasets S-1 ∼ S-4 and S-6 ∼ S-9 201 

are depicted in Figs. 2 and 3, respectively. Figures 2 and 3 show that the HADE model generally 202 

matches the experimental data better than the Rouse model, especially for the regions near the 203 

river bed and surface. The improved performance of the HADE model is attributed to its improved 204 

ability to capture anomalous diffusion of sediment particles, which is driven by turbulent bursting 205 

and cannot be efficiently characterized by the use of Fick's law for diffusive fluxes in the Rouse 206 

model. 207 

 208 

Fig. 2. Case 1: Comparison of the vertical distribution of suspended sediment concentration fitted by the two 209 

models (the HADE model Eq. (8) and the classical Rouse model Eq. (2)) and the experimental data. The mean 210 

sediment size is d = 1.3 mm, and the Hausdorff fractal order is 0.93   for dataset S-1, and 0.99  for datasets 211 

S-2 ∼ S-4, with the reference height at a = 0.02 h (experimental data from Einstein and Chien (1955)). 212 

 213 

Fig. 3. Case 1: Comparison of the vertical distribution of suspended sediment concentration fitted by the two 214 

models (the HADE model Eq. (8) and the classical Rouse model Eq. (2)) and the experimental data. The mean 215 

sediment size is d = 0.94 mm, and the Hausdorff fractal order is 0.80  for datasets S-6 and S-7, and 0.88  for 216 

datasets S-8 and S-9, with the reference height a = 0.02 h (experimental data from Einstein (1955)). 217 

3.2. Experimental Case 2    218 

This experiment was done in a uniform flume, where the mean sediment size is 0.105 mm for 219 

Coleman Runs 2, 6, 15, and 16, and 0.210 mm for Coleman Runs 22, 23, 26, and 27, belonging to 220 

fine particles and medium particles (Coleman, 1986). Figures 4 and 5 provide the best-fit results 221 

of the HADE model for the four runs of each experiment. Similar to Case 1, here the fitting results 222 

also show that the HADE model can fit well the experimental data. The best-fit Hausdorff fractal 223 

derivative order is 0.73   for Coleman 2, 0.65   for Coleman 6, 0.53   for Coleman 15, 224 

0.51   for Coleman 16, and 0.99   for Coleman 22, 23, 26, and 27. This finding implies that 225 

fine particles experience stronger super-diffusion than medium sediment particles, because a fine 226 

particle has a higher probability to travel a long distance in turbulent flows. 227 

 228 
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Fig. 4. Case 2: Comparison of the vertical distribution of suspended sediment concentration fitted by the two 229 

models (the HADE model Eq. (8) and the classical Rouse model Eq. (2)) and the experimental data, where the 230 

sediment diameter is d = 0.105 mm, the best-fit fractal order: (a) 0.73  ; (b) 0.65  ; (c) 0.53  ; (d) 231 

0.51   and the reference height is a = 0.02 h (experimental data from Coleman (1986)). 232 

 233 

Fig. 5. Case 2: Comparison of the vertical distribution of suspended sediment concentration fitted by the two 234 

models (the HADE model Eq. (8) and the classical Rouse model Eq. (2)) and the experimental data, where the 235 

sediment diameter is d = 0.210 mm, the best-fit fractal order is 0.99  , and the reference height is a = 0.02 h 236 

(experimental data from Coleman (1986)). 237 

4. Discussion 238 

4.1. Impact of parameters on sediment profiles and their correlation in the HADE model  239 

In this section, a number of available data sets are used to explore the impact of the 240 

Hausdorff fractal derivative order and the Rouse parameter ( *u  ) on vertical distributions of 241 

sediment, as well as the relation between these two major parameters in the HADE model. Four 242 

data sets representing a wide range of turbulent flow conditions and sediment sizes (from medium 243 

silt to very coarse sand) were selected, including the experimental data derived from Einstein and 244 

Chien (1955) (denoted as Case A for description simplicity), Coleman (1986) (denoted as Case B), 245 

Wang and Qian (1989, 1992) (denoted as Case C), and the authors measurements at Jianli Station 246 

of the Jingjiang River Reach (i.e., the upstream section of the Yongtze River), China (denoted as 247 

Case D). 248 

The fractal index in the HADE model is the core parameter describing the influence of 249 

turbulent bursting on suspended sediment, making estimation of this parameter important for 250 

application. The best-fit parameter listed in Table 2 varies from 0.51 to 0.99, depending on the 251 

turbulence characteristics and the sediment dimension.  252 

The measured Rouse parameter, *u  , listed in Table 2, which is a ratio characterizing the 253 

gravity and turbulent diffusion effects, ranges from 0.3800 to 4.6558. It affects the shape of the 254 

vertical profile for suspended sediment. An increase in the Rouse parameter, representing 255 

decreased dispersion relative to particle advection, results in a profile of suspended sediment with 256 

higher nonuniformity. 257 
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 259 

 260 

 261 

Table 2. Values for the best-fit Hausdorff fractal derivative index  in the HADE model, the measured sediment 262 

diameter, d, and the measured Rouse parameter (
*u  ). The detailed fitting results of the HADE model using the 263 

experimental and field measurement data are provided in Appendix A. 264 

Run number 
Hausdorff fractal 
derivative index   Particle size d (mm) 

Rouse parameter 

*u   

A1 0.93 1.300 3.7803 
A2 0.99 1.300 4.1629 
A3 0.99 1.300 4.2802 
A4 0.99 1.300 4.6558 
A5 0.80 0.940 3.2375 
A6 0.80 0.940 3.4074 
A7 0.88 0.940 3.7227 
A8 0.88 0.940 3.8568 
A9 0.82 0.274 0.9425 
A10 0.85 0.274 1.3547 
A11 0.86 0.274 1.4652 
A12 0.86 0.274 1.2295 
A13 0.88 0.274 1.4484 
B1 0.73 0.105 0.4073 
B2 0.65 0.105 0.4004 
B3 0.53 0.105 0.3965 
B4 0.51 0.105 0.3800 
B5 0.99 0.210 1.2542 
B6 0.99 0.210 1.2563 
B7 0.99 0.210 1.2300 
B8 0.99 0.210 1.2851 
C1 0.98 0.150 0.6411 
C2 0.97 0.150 0.6377 
C3 0.96 0.150 0.6576 
C4 0.99 0.960 0.5427 
D1 0.98 0.375 1.2885 
D2 0.80 0.175 1.6268 
D3 0.78 0.075 1.1969 
D4 0.56 0.025 0.7353 

 265 

The foregoing experimental data, grouped based on the sediment size (see Table 2), show that 266 

the Hausdorff fractal order, , increases approximately linearly with the Rouse parameter ( *u  ) 267 
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(Fig. 6). This positive relation might be due to the fact that a smaller or a smaller *u  can 268 

generate a more uniform vertical distribution of suspended sediment, which represents strong 269 

super-diffusion (upward jumps) due to turbulent coherent structures. But a universal regression 270 

model cannot be proposed based on the existing experimental data and limited knowledge. On one 271 

hand, as shown by Fig. 1, the fractal order  controls the overall trend of the sediment vertical 272 

profiles. When 1  (i.e., weak turbulence), the suspended sediment distributes as an 273 

exponential function with more mass near the river-bed. A smaller  indicates more anomalous 274 

transport of suspended sediment caused by stronger upward jumps that rapidly move the bottom 275 

sediment upward. When 0   (i.e., strong turbulence), sediment distributes uniformly along 276 

the vertical direction with a constant concentration 1aS S  . On the other hand, the Rouse 277 

parameter, *u  , acts as a scaling factor that controls the expansion of the sediment vertical 278 

profile: a smaller *u  indicates more anomalous transport of suspended sediment caused by 279 

stronger diffusive jumps (compared to advective jumps), which can smooth the sediment profile 280 

by decreasing the vertical concentration gradient. The sensitivity of the sediment vertical profile 281 

to syK   is shown in Fig. 7. Figure 7 shows that a smaller sy  , likely resulting from 282 

stronger turbulence, enhances anomalous transport (i.e., fast displacement) and results in a more 283 

uniform vertical concentration distribution.  284 

 285 

Fig. 6. The relation between the Hausdorff fractal derivative index (fitted) and the Rouse parameter
*u   286 

(measured). The line represents the best-fit linear relation for the various datasets (symbols). 287 

 288 

Fig. 7. Effect of syK   on the vertical distribution of suspended sediment (for Run S-8, d = 0.94 289 

mm, 0.88  , and 153.7739syK    , of the experimental data from Einstein and Chien (1955)). 290 

It can be seen that both the fractal order,  , and the Rouse parameter, *u  , define the 291 

smoothness of sediment distribution. Notably, Fig. 6 implies that the suspension index, *u  , is 292 

not the only factor that can affect the Hausdorff fractal order. Other factors including the mean 293 

flow velocity and Reynolds number also play an important role in the random motion of 294 
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suspended particles in turbulent flows, generating, therefore, the sediment profile and determining 295 

the value of  . 296 

4.2. Model comparison 297 

The sediment Schmidt number,  , in the Rouse model relates the sediment diffusivity to the 298 

fluid eddy viscosity under steady-state and uniform flow conditions. Adjusting  in the classical 299 

Rouse model may reconcile the model solution to the measured data (Nie et al., 2017). In open 300 

channel flows,  may characterize the complex interactions between the fluid and the solid 301 

sediment grains in suspension. It may also act as a correction factor to fix the intrinsic modeling 302 

error due to the inability to directly simulate all relevant fluid-particle interactions based on 303 

real-world physical information (e.g., turbulence damping, hindered settling, and mobile-bed 304 

effects). Hence, an improved model for the Rouse formula can be obtained by adjusting  .  305 

Here the following formula is used to calculate  (Cheng et al., 2013)  306 

 
1
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Z
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
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



  (9) 307 

where 
*

Z
u



  is the Rouse parameter, the factor 1  , and 0.034  . Pal and Ghoshal (2016) 308 

developed a new expression for  , which is denoted as: 309 
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  (10) 310 

For comparison, the improved Rouse model and the M1 model has been obtained by using Eq. (9) 311 

and Eq. (10) to modify the Rouse model, respectively. 312 

 313 

Fig. 8. Solutions of three models (HADE, Improved Rouse, and M1 models) compared with the experimental data. 314 

The mean particle size is d = 0.94 mm, the Hausdorff fractal order is 0.93  , 1.3657  in the improved Rouse 315 

model, 1.4371   in the M1 model, and a = 0.02 h (experimental data from Einstein and Chien (1955)). 316 

The results show that the improved Rouse model can only adjust part of the sediment profile, 317 

especially the intermediate section, while the overall trend of the profile cannot be adjusted 318 

significantly (Appendix A). One example is shown in Fig. 8, where the improved Rouse model 319 

and M1 model still cannot capture the overall sediment concentration profile, and the HADE 320 



14 
 

model provides a better fit to the measured data than the improved Rouse model. 321 

The FADE model has been used to describe the vertical distribution of suspended sediment in 322 

steady turbulent flow (Chen et al., 2013) as follows:  323 

 0,sy
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
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
 


  (11) 324 

where   0 1    (dimensionless) denotes the order of the Caputo-type fractional derivative. 325 

The analytical solution of Eq. (11) is as follows (Chen et al., 2013): 326 
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  (12) 327 

Atangana and Baleanu (2016) developed the fractional derivative with Mittag-Leffler 328 

function kernel, which is defined as follows (Yu et al., 2018): 329 
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where  B   is a normalization function, ABC
a yD  is the Caputo fractional derivative 331 

which defined by the Atangana and Baleanu (2016).  f y  is the first derivative of 332 

function  f y ,  is the integral variable. So the corresponding Rouse equation can be 333 

expressed as: 334 

 0ABC
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Then the analytical solution of Eq. (14) can be expressed as: 336 
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where  E z
 denotes the Mittag-Leffler function, which can be written as: 338 
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The comparison results of three models is shown in Fig. 9. 340 

 341 
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Fig. 9. Solutions of three models (HADE, Fractional, and ABC Fractional models) compared with the 342 

experimental data. The mean particle size is d = 1.3 mm, 0.93   in the HADE model, 0.91   in the 343 

Fractional model, 0.9996   in the ABC Fractional model, and a = 0.02 h (experimental data from Einstein 344 

(1955)). 345 

The FADE model Eq. (11) differs from the HADE model Eq. (5) in at least two ways. First, 346 

the FADE model considers the nonlocality of particle motion in turbulence, while the HADE 347 

model is built upon a metric transform between normal and fractal structures. Second, the FADE 348 

model leads to a Mittag-Leffler (or power-law) type of sediment distribution, while the HADE 349 

model produces a stretched exponential distribution. The power-law density function for random 350 

motion yields much larger jumps, whereas the stretched exponential density function is weighted 351 

more towards smaller motions and is not heavy-tailed. This discrepancy results in the calculated 352 

concentration of the HADE model declining relatively faster than the standard FADE model. 353 

Suspended particles may move upward with coherent flow structures such as Kolk-Boil vortices 354 

while undergoing settling, resulting in a travel path distribution ''lighter'' than the power-law 355 

distribution assumed typically for cascade eddies, which suggests that the HADE model better 356 

describes the underlying motion than the standard FADE model. It is also worthwhile to 357 

emphasize that the stretched exponential density function is more physically justified here, since 358 

turbulence structures have defined scales (i.e., they break up or dissipate to the background 359 

turbulence). It is expected that this limited extent of non-locality can be better represented by a 360 

stretched-exponential model (i.e., the HADE model). 361 

Comparison among the HADE model, the FADE model (fractional derivative order,  ), and 362 

the improved Rouse model is shown in Fig. 10. The results show that the HADE model and the 363 

FADE model match the data better than the improved Rouse model, and the HADE model gives 364 

better fitting results than the FADE model. Generally speaking, the FADE model describes a pure 365 

power-law distribution of vertical particle jumps, which overpredicts the vertical transport 366 

observed in the sediment profiles. The improved Rouse model with a adjustable Schmidt number 367 

can only slightly modify the intermediate range of the sediment profiles. The HADE model 368 

describes the particle’s vertical travel path distribution in the form of a stretched exponential 369 

function, which better matches the measured concentration distributions. Direct measurements of 370 
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particle vertical jumps under different flow conditions are needed to confirm the best 371 

mathematical description for sediment vertical diffusion in turbulent flows, as well as to better 372 

predict transport parameters (e.g., the Rouse parameter) for practical field applications in the 373 

future. 374 

 375 

 376 

 377 

Fig. 10. Solutions of three models (HADE, Fractional, and ABC Fractional models) compared with the 378 

experimental data. (a) d = 1.3 mm, 0.93  in the HADE model, 0.91  in the FADE model, and 379 

1.3657  in the improved Rouse model; and (b) d = 0.94 mm, 0.88  in the HADE model, 0.88  in the 380 

FADE model, and 1.3599  in the improved Rouse model. The parameter a = 0.02 h (experimental data from 381 

Einstein and Chien (1955)). 382 

4.3. Physical interpretation of particle jumps and feasibility of the HADE model 383 

The main assumption applied in the HADE model Eq. (5) is that the jump size distribution 384 

(or the travel path distribution during a single jump event) for suspended sediment particles 385 

follows a stretched exponential function, which is relatively lighter than the heavy-tailed (i.e., 386 

power-law) distribution assumed by the FADE model Eq. (11). Coherent turbulent structures (such 387 

as Kolk-Boil vortices, which are the underwater vortices created by rushing water passing an 388 

obstacle at the river-bed which can pluck sediment) may initiate from bed roughness elements and 389 

propagate upward in the water column, resulting in random vertical transport for suspended 390 

sediment particles that is ''heavier'' than the exponential distribution described by the classical 391 

Fickian diffusive flux. The random vertical jump of sediment particles, therefore, might be 392 

affected by the competition between gravity (which generates the settling velocity) and the stable 393 

vortices. While some of the vortices can reach the free surface of the water and result in a 394 

heavy-tailed distribution of travel paths over the entire water column, sediment particles might not 395 

completely follow these structures because of the concurrent downward settling. Hence, some of 396 

the particles may ''drop out'' of the vortex before reaching the water surface, resulting in a lighter 397 

than heavy-tail or power-law distribution (such as the stretched exponential function) of vertical 398 

particle jumps. 399 
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Limitations from the system geometry also suggest that a stretched exponential function is 400 

more appropriate than a heavy-tailed power law in capturing suspended particle movement in a 401 

finite bounded domain. The power-law distributed large displacements (with an infinite variance) 402 

of sediment particles would require large-scale, long-term coherent structures throughout the 403 

water column, but these structures are limited by the vertical boundaries, resulting in a new 404 

distribution with a finite variance such as the stretched exponential function. Such a truncation is 405 

common in hydrological processes, such as the truncated jumps for particles moving in fluvial 406 

systems where the ancient channel and floodplain deposits have a finite size (Zhang, 2010; Zhang 407 

& Meerschaert, 2011). 408 

In summary, the HADE model may better capture suspended sediment dynamics than either 409 

the standard FADE model (which assumes pure power-law jumps for particles driven by eddy 410 

cascades) or the Rouse model (which assumes that Fickian diffusion governs upward particle 411 

motion). These hypotheses need further validation, especially additional observations or 412 

simulation of the vertical jump distributions for suspended particle transport in rivers. 413 

It is also noteworthy that none of the suspended sediment transport studies that were analyzed 414 

in the current study provided observed turbulence structures or turbulence velocity fluctuations, 415 

and, hence, here only the qualitative relationship between the Hausdorff index,  , and turbulence 416 

properties can be proposed. Scale analysis of the Hausdorff model and its index   based on 417 

turbulence intensity and energy and space-time scales of coherent structures remains an open 418 

research question. 419 

5. Conclusions 420 

Suspended sediment exerts an important control on geomorphological and biogeochemical 421 

processes in rivers. Efficient quantification of suspended sediment dynamics remains a challenge. 422 

A non-Fickian transport model is proposed as an alternative to the classical Rouse model to 423 

capture complex dynamics for suspended sediment in steady sediment-laden flows. Model 424 

development, numerical analysis, real-world validation, and model comparison reveal the 425 

following three main conclusions. 426 

First, a HADE model, which is built upon the Hausdorff fractal derivative and can be solved 427 

analytically, is proposed to capture the steady-state vertical distribution of suspended sediment. 428 
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This novel stochastic model contains a single fitting parameter, the fractal order , to efficiently 429 

characterize non-Fickian dynamics likely due to turbulent flows. The fractal order can also capture 430 

the size-selective behavior of suspended sediment dynamics. 431 

Second, the fractal order controls the overall shape of the suspended sediment concentration 432 

profile, and the Rouse parameter (which is a measurable parameter in the HADE model) controls 433 

the spatial expansion of this profile. These two parameters are strongly correlated, which may 434 

improve the prediction performance of the HADE model. The full predictability of the complex 435 

stochastic process for suspended sediment, however, requires much more direct information on the 436 

motion of suspended particles in turbulent flows. 437 

Third, model comparisons show that the HADE model can fit the sediment concentration 438 

profiles better than both the improved Rouse formula and the standard FADE model, which either 439 

under- or over-estimates the vertical displacement of sediment particles in coherent turbulent 440 

structures. The competition between gravity and large-scale, long-term vortices, or the finite river 441 

depth, can limit large jumps of sediment particles and result in a jump size distribution ''lighter'' 442 

than the power-law function and ''heavier'' than the exponential function, motivating the 443 

application of the stretched exponential function in the HADE model. Further tests and 444 

experimental data are needed to check the feasibility of the HADE model for different river flows 445 

and morphologies.  446 
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Appendix A. Additional model results and comparison  451 

This appendix shows the best-fit results using the HADE model Eq. (5) and the other models 452 

for experimental and field measurement data listed in Table 2. Figures A1, A2, and A3 show the 453 

model results for the experimental sediment profiles measured by Einstein and Chien (1955), 454 

Wang and Qian (1989, 1992), and the authors’ field test, respectively. The RMSEs for the HADE 455 

model Eq. (5), the FADE model Eq. (11), and the improved Rouse model are listed in Table A1. 456 

Both the figures and RMSEs indicate that, for most cases, the HADE model can fit the sediment 457 
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concentration profiles better than the improved Rouse formula and the FADE model, a conclusion 458 

consistent with that found in the main text. 459 

To evaluate the fitting results of the models, the root mean square error (RMSE) is calculated 460 

as follow: 461 
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i ie
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S S
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where 0iS  represents the measured sediment concentration, ieS  represents the simulated 463 

sediment concentration, and N is the number of measured concentration data at the observation 464 

point. 465 

 466 

Fig. A1. Comparison of the vertical distribution of suspended sediment concentration computed using three 467 

models (HADE, Fractional (FADE), and Improved Rouse models), and the experimental data from Einstein and 468 

Chien (1955) for d = 0.274 mm. The best-fit parameters are: (a) 0.82   in the HADE model, 0.81   in the 469 

fractional-derivative model, and  1.0562  in the improved Rouse model; (b) 0.85  , 0.84  , 470 

and 1.1077  ; (c) 0.86  , 0.84  , and 1.1205  ; (d) 0.86  , 0.84  , and 1.0927  ; and (e) 471 

0.88  , 0.86  , and 1.1186  . 472 

Fig. A2. Comparison of the vertical distribution of suspended sediment concentration computed using three 473 

models (HADE, Fractional (FADE), and Improved Rouse models), and the experimental data from Wang and Qian 474 

(1989, 1992) for the sediment sizes d = 0.150 mm for SQ1 ∼ SQ3, and d = 0.96 mm for SM1. The best-fit 475 

parameters are: (a) 0.98  in the HADE model, 0.96   in the fractional-derivative model, and 1.0105  in 476 

the improved Rouse model; (b) 0.97  , 0.95  , and 1.0099  ; (c) 0.96  , 0.95  , and 1.0134  ; and 477 

(d) 0.99  , 0.97  , and 0.9921  . 478 

 479 

Fig. A3. Comparison of the vertical distribution of suspended sediment concentration computed using three 480 

models (HADE, Fractional (FADE), and Improved Rouse models), and field data from Jingjiang River at Jianli.  481 

(a) The mean sediment size d = 0.375 mm, 0.98   in the HADE model, 0.98    in the fractional-derivative 482 

model, and 1.0998  in the improved Rouse model; (b) d = 0.175 mm, 0.80  , 0.90  , and 1.1389  ; (c) 483 

d = 0.075 mm, 0.78  , 0.85  , and 1.0888  ; and (d) d = 0.025 mm, 0.56  , 0.63  , 484 

and 1.0621  . 485 
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 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

Table A1. The root mean square errors of fitting results using the HADE model, FADE model and the improved 495 

Rouse model for three groups of measurement data (note: S-1 ~ S-15 from Einstein and Chien (1955), SQ1 ~ SQ3 496 

and SM1 from Wang and Qian (1989, 1992), and Jianli1 ~ Jianli4 from the Jianli Station on the Jingjiang River). 497 

Run number 
RMSE 

(HADE model) 

RMSE 

(FADE model) 

RMSE 

(Improved Rouse model) 

S-1 0.1072 0.1324 0.4076 

S-8 0.2745 0.3034 0.9391 

S-11 0.0312 0.0310 0.0613 

S-12 0.1605 0.2220 0.5689 

S-13 0.4639 0.5167 0.7777 

S-14 0.2238 0.6448 1.2038 

S-15 0.9531 1.3673 2.3313 

SQ1 0.2052 0.1816 0.1932 

SQ2 0.5886 0.4736 1.3918 

SQ3 0.4390 0.3892 2.1554 

SM1 0.0070 0.0075 0.0197 

Jilanli1 0.0122 0.0124 0.0030 

Jilanli2 0.0268 0.0203 0.0358 

Jilanli3 0.0176 0.0142 0.0299 

Jilanli4 0.0729 0.0568 0.1931 
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