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Abstract
Purpose Using the da Vinci Research Kit (dVRK), we propose and experimentally demonstrate transfer learning (Xfer) of
dynamics between different configurations and robots distributed around the world. This can extend recent research using
neural networks to estimate the dynamics of the patient side manipulator (PSM) to provide accurate external end-effector
force estimation, by adapting it to different robots and instruments, and in different configurations, with additional forces
applied on the instruments as they pass through the trocar.
Methods The goal of the learned models is to predict internal joint torques during robot motion. First, exhaustive training is
performed during free-space (FS) motion, using several configurations to include gravity effects. Second, to adapt to different
setups, a limited amount of training data is collected and then the neural network is updated through Xfer.
Results Xfer can adapt a FS network trained on one robot, in one configuration, with a particular instrument, to provide
comparable joint torque estimation for a different robot, in a different configuration, using a different instrument, and inserted
through a trocar. The robustness of this approach is demonstrated with multiple PSMs (sampled from the dVRK community),
instruments, configurations and trocar ports.
Conclusion Xfer provides significant improvements in prediction errors without the need for complete training from scratch
and is robust over a wide range of robots, kinematic configurations, surgical instruments, and patient-specific setups.

Keywords Surgical robotics · Dynamic identification · Tactile sensing · Transfer learning

Introduction

Identification is a technique for obtaining models from mea-
surements [1]. In robotics, dynamic identification is used
for model-based control approaches like computed torque
schemes [2] or external force estimation [3].
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Robot-assisted minimally invasive surgery (RAMIS) sys-
tems enable surgeons to teleoperate patient side manipula-
tors (PSMs), which are purpose-built robotic manipulators
that can perform spherical motion about incision ports
(remote centers of motion) and actuate articulated instru-
ments that mimic the human wrist. Because the instruments
pass through ports and trocars with diameters in the range
of 5–15mm, they have to be remotely actuated through
cable transmissions. Mechanically, these robots significantly
differ from industrial manipulators due to the use of flex-
ible transmissions, counterbalancing weights and springs.
Furthermore, they are always in contact with the patient
body/trocar during operations. Therefore, more advanced
identification techniques are required.

Dynamic identification is an active research subject in
robotic surgery, especially with the widely adopted da
Vinci Research Kit (dVRK) [4,5] and Raven II [6] open
research platforms. In [7], identification of friction on a
da Vinci instrument and in [8–10] parametric identification
of the dVRK patient side manipulators were achieved with
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least square methods. In [11], a convex optimization-based
dynamic identification package was proposed for the dVRK.
In [12–14] identification of cable transmission dynamics on
theRaven platformwas also performed.However, all of these
works employ model-based parametric approaches that are
robot specific and do not take into account different surgical
setups and patient interactions.

When the robot structures are complicated with several
nonlinearities it is oftenmore practical to obtain lumpedmod-
els through nonparametric identification [1]. The methods
for nonparametric identification include frequency response
techniques [15], gray box [16,17] and black box models
[17] including neural networks [3,18,19]. With the recent
advances in machine learning and deep learning techniques,
learning-based identification of robotmanipulators is becom-
ing more common [20–23]. In machine learning, a recently
emerging trend is transfer learning, which aims to exploit
skills learned in one application in other applications with
similar characteristics for speed and efficiency [24]. In [21],
transfer learning was applied to the identification of robot
joint dynamics with harmonic drives.

We previously proposed a neural network-based dynamic
identification method on dVRK for force estimation [25],
and subsequently a correction network for trocar interactions
on an abdominal phantom [26]. In this paper, we show for
the first time that dynamic identification of surgical robots
in clinical settings can be accelerated by transfer learning.
More specifically, we show that models pre-trained in nom-
inal conditions can be transferred and quickly fine-tuned
for robots operating on phantoms with different instruments
and kinematic configurations. Also, with the support of the
dVRK community, we demonstrate dynamic identification
using transferredmodels from other dVRKPSMs distributed
around the world. While generally similar, dVRK systems
can have variations in their mechanical structures, electron-
ics, actuators, control systems as well as the instruments and
this paper presents the first dynamic analysis comparison
between different dVRK setups.

While least squares or convex optimization methods
[8,11] use optimal or Fourier series-based excitation tra-
jectories, our previous work involved identification with
trajectories obtained from extensive training with human
inputs through teleoperation. To scale this approach in this
work, automated trajectories are also proposed and deployed
on different dVRK platforms. These trajectories are shown
to yield comparable identification results with teleoperation
trajectories, thus eliminating the need for operator supervi-
sion in identification. Furthermore, it is also experimentally
shown that the proposed method can achieve more accurate
and faster intra-operative adaptation in a pseudo-clinical set-
ting compared to a model-based approach.

Methods

Transfer learning-based dynamic identification

The proposed method aims to identify the inverse dynamics
model of a dVRK Patient Side Manipulator (PSM) in joint
space by using neural networkswhich can later be transferred
to other surgical setups and updated. The dynamic model
of the PSM can be described by the following generalized
equation:

M(q)q̈ + C(q, q̇) + G(q) + F(q̇) + τint + τext = τ (1)

where q, q̇ and q̈ denote the joint position, velocity and
acceleration vectors. M , C and G represent the mass/inertia
matrix, Coriolis, centrifugal force/torque and gravity vec-
tors, respectively,while F represents the friction force/torque
vector, τint represents the unmodeled internal robot dynamic
forces/torques and τext represents any unmodeled external
forces/torques. In [8,10,11], the inertial terms M , C and G
as well as friction were parameterized, and cable tension was
simply modeled as a linear spring. In [9], the cable model
obtained for aRaven robot [13]was applied to a dVRK.How-
ever, it may be difficult to capture the dynamics of different
cable-pulley transmissions on the dVRK with a single para-
metric model; therefore a complete analytical description for
τint is difficult to obtain. Furthermore, during operation, the
PSMs are always in contact with the patient at the trocar
and depending on the configuration of the robot and interac-
tion geometry with the patient, this effect may be impossible
to capture analytically. In our previous work [25,26], we
proposed the use of neural networks to nonparametrically
identify the joint torques, τ̂ , from joint position and velocity
measurements. The trocar interactions or cable flexibilities
can be internalized as a part of the internal dynamics of the
robot, τint, as assumed in our prior work. The external esti-
mates to be used in operator feedback can then be obtained
by subtracting from joint torque measurements the total esti-
mated dynamic torques: τ̂ext = τ − τ̂ . Also, in a surgical
operation different instruments can be used whose dynam-
ics can be significantly different. As dynamic identification
is a computationally expensive and time-consuming task, in
order to deal with the changes intraoperatively, we introduce
transfer learning in this paper. Transfer learning refers to the
transfer of trained networks between different robots/robot
configurations and adaptation to any variations or changes in
the setup with quick and efficient local updates.

Accurate models of PSMs can be identified in large
workspaces in free-space motion with large networks given
enough training and computation power. Networks trained
before the surgical operation, in free space and without
patient interactions, to capture robot dynamics, are referred
to as FS in this paper. Inputs to the FS networks are PSM joint
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Fig. 1 Transfer learning-based dynamic identification (Xfer) on the dVRK

positions and velocities, and the last three joint positions of
the setup joints (SUJ), which determine orientation of the
PSM base and thus the effect of gravity. The outputs of the
networks are joint torque predictions. During training, robot
joints are grouped based on their joint position, velocity and
torque ranges (G1:J1; J2,G2:J3,G3:J4,G4:J5; J6), and sep-
arate but identical networks, implemented using PyTorch, are
trained for each group. In each network of FS, as shown in
Fig. 1, we used an LSTM layer to capture critical details from
time-series data. The LSTM output with 256 hidden dimen-
sions is forwarded to fully connected (FC) layers. There are
8 FC layers in total with ReLU activation functions and the
output layer is also a linear layer for regression.

Once such a model is obtained, it is later transferred to
a robot which is deployed for operation (with possible vari-
ations as shown in Fig. 1) and locally updated. In transfer
learning, some layers of the transferred networks are frozen
by setting their learning rates to zero and the rest are trained
to update the network. Also, extra layers may be added to the
transferred networks and their weights can be determined
with local training. In our implementation, we maintain the
LSTM layer as well as the first two feedforward layers from
FS, and append 6 feedforward layers to the end of the trans-
ferred networks, which can be updated with new training
data. This forms our transfer learning method (Xfer), as
shown in Fig. 1.

Experiment design

To evaluate the performance of transfer learning and show
its potential as a plug and play identification tool across the
dVRK community, several experiments were designed and
conducted.

First, we examined the identification of different instru-
ments using a common free space network and instrument-
specific transfer learning network inside the phantom to
investigate performance deterioration during intraoperative
instrument changes. Second, we examined identification
performance with different port placements and kinematic
configurations to evaluate the combined effect of patient
interactions and gravity. Third, to evaluate the feasibility of
robot to robot transfer learning, we compared the identifica-
tion results using free space networks trained on PSMs from
the dVRKcommunity on our systems, and then applied trans-
fer learning to investigate the performance improvements.
Additionally, to see the combined effect of all the variations,
we implemented a network from another PSM in the dVRK
community on our setup, with a different instrument, in the
abdominal phantom. Fourth, we performed Pareto optimal
hyper-parameter tuning with different batch, window, and
sample sizes to reduce intra-operative data collection to 15s
and training times to about 30 s. Fifth, we compared our
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results to a model-based parametric Least Squares identi-
fication method used in the literature [8,11].

We generated seven excitation paths in joint space, around
15min in total, to move the robot in free space. For the
experiments excluding robot to robot transfer, we replayed
each excitation path in 7 different configurations to collect
training data (PSM joint positions and velocities, and setup
joint positions) to enable our FS network to learn the gravi-
tational force changes in the robot dynamics. The free space
excitation data are split into training (13x7 min), evaluation
(1x7 min), and test (1x7 min). In addition, a 1min teleop-
eration data is generated for testing. All free space training
data collection is done using a Large Needle Driver (LND)
and the training process takes approximately 5h. For the first
two transfer learning experiments, three manual teleopera-
tion paths in joint space are recorded and replayed inside the
phantom. The data are split into training (3min), evaluation
(1min), and test (3min). The transfer network training takes
1min with this dataset. For the robot to robot transfer learn-
ing experiment, we only used one FS configuration from the
other dVRK sites because most were unable to provide setup
joint positions. To generate excitation paths that could be
replayed at different locations with different PSMs, we used
a random number generator with a nonrepeatable uniform

output and smoothed the output signal with two low pass fil-
ters. Joint limits were considered to provide a motion within
the robot workspace.

To evaluate the performance of the proposed method,
the normalized root-mean-square errors (NRMSE) between
the actual and estimated joint forces/torques were calcu-
lated using the formula given in [10]. Each experiment was
repeated ten times and error means and standard deviations
are presented in the tables. The results are discussed in the
next section.

Results

Different instruments

To demonstrate the effectiveness of the transfer learning net-
work to adapt to potential intraoperative instrument changes,
we experimented with the following 8 instruments inside
the phantom through a common port: Large Needle Driver
(LND), Small Clip Appliers (SCA), Resano Forceps (RF),
Monopolar Curved Scissors (MCS), Maryland Bipolar For-
ceps (MBP), Prograsp Forceps (PF), Cadiere Forceps (CF),
and Long Tip Forceps (LTF), which are shown to the left of
Table 1.

Table 1 NRMSE mean (standard deviation) of joint force/torques with different instruments

Joint 1 Joint 2 Joint 3
FS (%) Xfer (%) FS (%) Xfer (%) FS (%) Xfer (%)

LND 9.120(0.934) 6.155(0.537) 14.273(2.475) 10.440(1.965) 20.322(2.804) 16.493(1.997)
SCA 9.149(0.976) 6.446(0.859) 14.438(2.483) 10.153(1.715) 20.685(2.373) 17.250(3.139)
RF 9.185(0.946) 6.108(0.488) 14.226(2.451) 10.282(2.021) 20.647(2.969) 17.623(2.183)

MCS 8.788(0.890) 6.028(0.452) 14.444(2.603) 10.403(2.156) 21.178(2.407) 19.619(2.106)
MBF 8.967(0.914) 6.252(0.423) 14.382(2.500) 10.537(2.262) 20.770(2.689) 17.295(1.984)

PF 9.115(0.929) 6.081(0.484) 14.208(2.331) 10.226(1.964) 20.423(2.937) 16.993(1.795)
CF 9.153(0.928) 6.164(0.430) 14.551(2.515) 10.524(2.232) 20.871(3.286) 17.370(1.954)

LTF 9.057(0.888) 6.060(0.494) 14.518(2.451) 9.949(1.881) 19.275(2.628) 16.015(2.281)

Joint 4 Joint 5 Joint 6
FS (%) Xfer (%) FS (%) Xfer (%) FS (%) Xfer (%)

LND 6.785(1.196) 6.097(1.100) 15.232(0.900) 4.261(0.429) 21.460(2.250) 4.875(1.470)
SCA 11.014(1.802) 7.546(2.144) 13.943(2.294) 8.454(3.371) 12.115(1.496) 8.707(3.404)
RF 7.288(0.891) 6.103(0.935) 14.902(1.028) 5.812(1.185) 14.704(0.987) 6.141(1.482)

MCS 8.509(1.319) 7.231(1.329) 8.525(1.203) 5.882(0.484) 9.105(1.132) 8.788(1.461)
MBF 10.147(1.474) 7.052(1.555) 19.765(1.430) 11.795(1.124) 25.630(1.758) 11.080(1.797)

PF 7.635(1.079) 6.675(1.155) 8.707(0.987) 12.336(1.627) 19.572(1.322) 7.826(1.342)
CF 7.183(1.139) 6.361(1.333) 16.417(1.072) 11.966(1.101) 20.302(0.923) 12.511(1.670)

LTF 9.961(1.440) 7.504(1.240) 11.192(1.308) 6.362(2.300) 17.562(0.912) 13.139(2.271)

Table 2 NRMSE mean (standard deviation) of joint force/torques with different PSMs (R1, R2), port placements (P1–P4) and kinematic configu-
rations

Joint 1 Joint 2 Joint 3
FS (%) Xfer (%) FS (%) Xfer (%) FS (%) Xfer (%)

R1:P1 10.285(0.860) 7.610(1.096) 11.378(0.927) 8.618(0.971) 12.915(1.436) 9.505(0.713)
R1:P2 12.560(1.116) 7.786(0.960) 14.802(1.000) 9.098(1.316) 14.326(1.376) 9.742(0.513)
R1:P3 9.235(0.964) 8.188(0.948) 13.806(1.704) 9.807(1.634) 13.093(1.293) 9.924(0.473)
R2:P4 10.048(0.751) 8.371(0.589) 12.236(1.401) 9.338(0.785) 12.941(1.350) 11.064(0.577)

Joint 4 Joint 5 Joint 6
FS (%) Xfer (%) FS (%) Xfer (%) FS (%) Xfer (%)

R1:P1 5.932(0.740) 4.444(0.442) 19.231(0.972) 4.391(0.321) 27.422(2.204) 4.616(0.527)
R1:P2 7.151(1.104) 5.004(0.532) 19.997(2.367) 4.279(0.301) 31.501(2.393) 4.442(0.476)
R1:P3 6.466(0.703) 5.070(0.440) 18.734(0.718) 4.302(0.290) 27.630(2.321) 4.511(0.498)
R2:P4 6.555(0.766) 5.117(0.624) 19.311(0.935) 4.676(0.718) 28.663(2.573) 4.698(0.427)
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Table 3 NRMSE mean (standard deviation) of joint force/torques for FS and robot-to-robot Xfer at configurations (1) and (2) shown on left

Free Space Xfer
Network Name excita.(%) teleop.(%) excita.(%) teleop.(%)

JHU PSM3 config1 12.998(0.358) 13.070(0.408) 6.889(0.190) 7.600(0.560)
JHU PSM3 config2 13.502(0.404) 13.562(0.382) 6.970(0.150) 7.723(0.477)

WFU PSM1 config1 17.442(1.834) 19.434(0.764) 6.784(0.482) 7.813(0.530)
WFU PSM2 config1 17.061(1.610) 19.410(0.600) 7.398(0.358) 8.465(0.693)
WFU PSM1 config2 17.468(1.848) 20.043(0.785) 6.855(0.450) 8.024(0.493)
WFU PSM2 config2 17.154(1.609) 19.902(0.532) 7.315(0.254) 8.408(0.647)

OU PSM1 config1 25.449(2.392) 27.015(0.776) 7.777(0.383) 9.041(0.646)
OU PSM2 config1 17.716(1.362) 18.030(0.848) 7.663(0.366) 8.636(0.693)
OU PSM1 config2 25.743(2.371) 28.097(0.909) 7.771(0.252) 9.112(0.723)
OU PSM2 config2 18.099(1.320) 18.932(0.909) 7.720(0.305) 8.661(0.666)

UCL PSM1 config1 15.570(0.862) 14.746(0.472) 8.075(0.364) 8.391(0.740)
UCL PSM3 config1 34.341(3.624) 31.895(1.211) 7.620(0.315) 8.134(0.632)
UCL PSM1 config2 15.298(0.813) 14.492(0.349) 8.291(0.374) 8.548(0.704)
UCL PSM3 config2 34.129(3.349) 32.140(1.067) 7.666(0.233) 8.081(0.642)
WPI PSM1 config1 16.716(0.604) 17.506(0.459) 9.847(0.254) 9.756(0.552)
WPI PSM3 config1 14.660(0.429) 15.735(0.580) 7.643(0.464) 8.120(0.689)
WPI PSM1 config2 16.964(0.679) 17.998(0.543) 9.853(0.258) 9.833(0.592)
WPI PSM3 config2 14.749(0.448) 16.379(0.583) 7.824(0.706) 8.261(0.725)

SSSA PSM1 config1 23.794(0.873) 22.325(0.610) 7.113(0.425) 7.792(0.529)
SSSA PSM1 config2 24.105(0.781) 23.280(0.650) 7.208(0.368) 7.829(0.548)
JHU PSM1 config1 13.468(1.318) 15.758(0.263) 4.598(0.095) 8.449(0.415)
JHU PSM1 config2 13.101(1.475) 15.537(0.216) 4.570(0.117) 8.473(0.566)

Table 1 shows the NRMSEs of identification using FS,
trainedwith LND, and tested on all instruments. For different
instruments, it would be natural to see errors in the last 2
joints, however, interestingly, when the LND instrument is
dismounted and remounted on the PSM for testing, variations
can occur in the dynamics of the same instrument as well.
Table 1 shows that FS identification results are not reliable
for any of the instruments after remounting, including the
LND, and with Xfer, significant improvement in all joints
can be seen and most importantly these improvements are
more pronounced in the last two joints.

Different port placements and configurations

To demonstrate the effectiveness of the transfer learning
network to adapt to different port placements, we selected
four different trocar insertion points, as shown to the left of
Table 2, using the LND instrument. For PSM1 and PSM2
with different port placements, we used the same free space
network but different transfer learning networks for each
port.

As shown in Table 2, for all the ports, the NRMSEs of
torque identification using Xfer are lower than that of FS,
which implies that Xfer is capable of adapting to changes
in gravitational force vector, friction, as well as kinematic
configuration, since some of the test ports require changes to
the PSM body frame from the training configuration.

Robot to robot transfer learning

To test robot to robot transfer learning,we collected data from
the dVRK community. For community members that do not

have the setup joints (or donot have the setup joint controller),
the PSM body frame is in its normal vertical position with
respect to the base frame, i.e., there is no rotation between
the PSM body frame and the world coordinate frame, and
thus the setup joint positions are set to zero. The network
name in Table 3 follows the convention: University Name
(A), Robot Name (B), and Configuration ID (C). This means
that the network is trained on data collected from PSM B
at school A, and tested on configuration C using our dVRK
setup. The universities providing training data are:Worcester
Polytechnic Institute (WPI),Wake Forest University (WFU),
Óbuda University (ÓU), University College London (UCL),
and Sant’Anna School of Advanced Studies (SSSA). The
average of the NRMSEs for all joints are provided in Table 3.

These results show that the NRMSE of free space torque
identification using FS networks trained on data from the
community are much higher than the FS network directly
trained on our dVRK setup (PSM1) at JHU, which implies
that there are significant variations in the robot dynamics.
Such differences are corrected using the transfer learn-
ing (Xfer) network, as it shows significant and consistent
improvement in torque identification when tested on both
excitation and recorded teleoperation paths.

To demonstrate the effectiveness of transfer learning to
adapt to identification in different kinematic configurations
for which the FS networks were not trained, we picked two
configurations of the setup joints to train our transfer learning
network, as shown to the left of Table 3. Configuration 1 is in
the standard position ([0 0 0] rad in the last 3 axes). Config-
uration 2 has a joint position of [−0.141, −0.435, −0.538]
rad in the last 3 axes. Table 3 shows that the transfer learning
network was able to correct the gravitational or inertial varia-
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Fig. 2 Robot to robot transfer learning identification results: FS: UCL and Xfer: JHU on a JHU PSM utilizing Resano Forceps inside an abdominal
phantom with a different configuration

tions in the dynamics resulting from training and testing with
different robots and kinematic configurations. The NRMSE
of free space torque identification using a network trained on
configuration 1 data from different robots within the dVRK
community shows consistent improvement after the transfer
learning network update, when tested at the target JHU robot
in configuration 2.

In addition, though our free space network is trained
for seven configurations (six more configurations than other
dVRK users in the community), results from Table 3 show
that transfer learning networks with local updates on other
robots’ free space networks are capable of achieving roughly
the same dynamic identification performance, with compa-
rable NRMSE. This suggests that it may not be necessary
to train the FS network using multiple SUJ configurations,
but rather that a single configuration may be sufficient, with
transfer learning (Xfer) to adapt to a new configuration.

Finally, to evaluate the combined effect of all variations,
a network trained on a UCL PSM was implemented on a
JHU PSMwith a different kinematic configuration, inside an
abdominal phantom and with a different instrument. Figure
2 shows the time series results from the experiment and the
first two rows of Table 5 provide the NRMSEs for each joint.
There are significant errors in joints 3–6 for the FS network,
which are compensated by Xfer.

Hyper-parameter optimization

We investigated the possibility of improving intra-operative
data collection and training times for transfer learning
through hyper-parameter tuning. The hyper-parameters used
in the tuning process are batch, LSTM window and training
sample sizes. To see the effect of training sample size, the
training dataset was divided into segments ranging from 4
to 450k samples where 1k samples roughly corresponds to
1s of data collection. Then, we set window size to 1500 and

Fig. 3 Pareto front analysis

Table 4 Pareto front parameters

P NRMSE (%) Train. time (s) Batch size Win. size

1 9.0270 26.4030 16 500

2 8.7546 26.8510 32 300

3 8.4400 27.6010 64 200

4 8.2639 28.3090 32 400

5 8.0680 37.4790 16 400

6 8.0002 45.0140 8 500

7 7.9829 71.5840 4 400

batch size to 1 and trained the networks for each training set
separately. In the training results, the NRMSE is over 20%
with 4k samples while the networks generated with 5–450k
samples provide similar results with NRMSE less than 10%.
Therefore, we decided to focus on sample sizes of 15k. In the
next step, we changed window sizes between 100 and 500
and batch sizes between 1 and the highest possible batch size
(restricted by sampling size/window size). Figure 3 shows
all results (blue circles) as a function of NRMSE and train-
ing time and identifies the Pareto front (red line) for optimal
hyper-parameter selection,with red circles (numbered from1
to 7) corresponding to Pareto optimal solutions (see Table 4).
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Table 5 Mean (standard deviation) NRMSE of joint force/torques in trocar

TD (s) J1 (%) J2 (%) J3 (%) J4 (%) J5 (%) J6 (%)

NN (FS) 2100 14.195 (1.94) 13.784 (1.92) 15.944 (0.76) 8.331 (1.03) 15.666 (0.93) 10.992 (1.61)

Xfer (3min) 60 8.294 (0.64) 9.533 (0.94) 9.183 (1.06) 5.061 (0.75) 5.706 (1.02) 5.527 (0.91)

Xfer (15 s) 28 10.609 (0.89) 11.302 (0.58) 10.419 (1.28) 5.791 (0.80) 10.009 (1.41) 11.906 (0.78)

LS (FS) 514 12.902 (1.38) 12.933 (1.63) 13.621 (1.04) 13.571 (1.91) 21.770 (2.49) 22.147 (2.45)

LS (3min) 228 8.558 (0.81) 9.674 (0.98) 12.938 (1.12) 7.690 (1.34) 18.436 (2.17) 20.524 (2.46)

LS (15s) 18 16.070 (4.29) 15.287 (3.79) 26.528 (3.93) 8.679 (1.25) 22.355 (3.16) 23.319 (3.31)

Least square (LS) versus proposed neural network (NN) in FS and with transfer learning (Xfer). TD training duration

As we place equal emphasis on error and training duration,
a batch size of 16–32 and window size of 400 provides a
Pareto optimal solution with training times of 28–38s.

Transfer learning versus least squares identification
in a clinical scenario

To demonstrate the advantages of the proposed method
over conventional model-based parametric identification
approaches in a clinical setting, we used data from the final
experiment in Section “Robot to robot transfer learning”with
different robots, instruments and an abdominal phantom.
We implemented a model-based parametric identification
using an LMI reformulation of the popular Least Squares
(LS) method proposed in [8] and implemented in [11] on
dVRK. We also implemented Xfer with the Pareto optimal
hyper-parameter set P4 obtained in Table 4, with only 15s
of intraoperative data. Table 5 shows the identification errors
comparing Xfer with LS. The first row of the table shows the
errors for the proposed network (NN) trained with compre-
hensive free space data obtained from UCL, with the second
and third rows showing the errors for Xfer trained with 3min
and 15s of intraoperative data, respectively. The fourth row
shows the errors for LS with identification performed using
the same free space data. The fifth and sixth rows show the
errors for LS where identification was performed with 3min
and 15s of intraoperative data, respectively. The results show
that the proposed networks have comparable performance
with LS when both utilize FS datasets from UCL. LS has
better performance in the first three joints, whereas the neural
networks have better performance in the wrist, where mod-
eling is prone to errors due to nonlinear behavior. Moreover,
with both 3min and 15s of intraoperative data, Xfer out-
performs LS decisively. Furthermore, for 15 s and 3min of
intra-operative data, Xfer training was completed in 28s and
60s, respectively, whereas the LS identification took 18s and
228s. LS also had much higher standard deviations in identi-
fication errors, indicating low robustness. This shows that it is
more feasible to use the proposed transfer learning approach
over model-based approaches in clinical settings.

Conclusion

In this work, we proposed a self-supervised transfer learn-
ing approach to transfer learned dynamics between different
surgical robots within the dVRK community, or different
configurations of the same robot (with different instruments,
kinematic configurations or port placements). Our studies
show that transfer learning provides significant improve-
ments in prediction errors without the need for complete
training from scratch and is robust over a wide range of
robots, kinematic configurations, surgical instruments, and
patient-specific setups. Furthermore, our work shows the
potential of achieving such accuracy with only 10–15s of
data collection and online training in the surgical theater,
givenmore computational power and parallel processing.We
hope to convert this work into a software package that the
dVRK community can use for quick dynamic identification.
Immediate applications of this method are in the develop-
ment of force estimation and haptic teleoperation algorithms
that can run on the dVRK.
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