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Abstract— Present-day minimally-invasive surgical robots,
such as the da Vinci®, cannot directly sense interaction between
the robotic instruments and the patient anatomy. This includes
the instrument grasping force and the 6 degree-of-freedom
(DOF) force/torque (wrench) between the instrument and the
environment. Previous works have investigated model-based or
data-driven methods that use available measurements, such as
joint positions, velocities and torques, to estimate either the
grasping force or the 6 DOF wrench. This paper extends prior
work by developing and evaluating a data-driven (learning-
based) method to simultaneously estimate the grasping force
and external wrench. This task is complicated by the mechanical
coupling between the gripper and other wrist joints, but the
network is able to simultaneously estimate external forces,
torques, and gripper force with RMS errors of 1.4 N, 0.04 Nm,
and 0.1 N, respectively. In addition, transfer learning is shown
to enable the neural network to quickly adapt to different
instruments.

I. INTRODUCTION

Robotically assisted minimally invasive surgery systems
(RAMIS) make use of teleoperated patient side robotic
endoscopes and instruments boasting similar articulation
capability to the human wrist and the ability to pass through
small incisions to operate intracorporeally. They provide the
benefits of conventional laparoscopic surgery to patients, such
as reduced side effects, blood loss, scarring and recovery
times. For the surgeons they provide increased ergonomy,
better control over the surgical instrument through immersive
3D visual displays, direct mapping between hand motions
and the instruments to eliminate the mirrored motion problem,
wrist articulation, increased precision by motion scaling and
tremor filtering. However, an important feature missing in the
state of the art is that the interaction forces between the robotic
instrument and the patient body cannot be felt by the surgeon
operators while they are commanding the robots via the master
interfaces. While in conventional laparoscopy the forces
are transmitted to the surgeon’s hand directly through the
instruments, this is not possible with commercially available
RAMIS systems due to several technical problems. One of the
major obstacles is the difficulty in developing miniaturized
force sensors that can be placed on the instrument tips,
and although some research groups have successfully built
force sensors [1]-[7] that can be placed on the instruments,
it is difficult to maintain such systems in practice as the
instruments are frequently changed during operations, need
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to be sterilized and have extremely limited useful lives. This
would make sensorization a costly endeavour.

An alternative approach to solve the force sensing issue is
sensorless force estimation which can be achieved through
proprioceptive robot measurements such joint positions ob-
tained from encoders. Force estimation techniques have to
account for the dynamics of the patient side manipulators,
which can be difficult to identify due to the cable/pulley
transmissions utilized for articulated wrist motions. For
instance, commercially available robotic surgery systems
like the da Vinci make use of Endowrist instruments which
have designs that couple some of the roll-pitch-yaw-grasping
motions with cable pulley transmissions. Furthermore, these
transmissions suffer from nonlinear behavior such as slack
and slip due to cable elasticity. Different mechanical designs
have been proposed to overcome the coupling in the wrist and
gripper joints in [8]-[11]. In [12]-[15], decoupling algorithms
and methods have been proposed for specially developed
surgical robots. However, these systems have yet to find
widespread commercial applications in robotic surgery. The
question then remains whether it is possible to account for
dynamic coupling in wrist-gripper axes of commercially
available robotic surgery systems.

Open source research platforms such as the da Vinci
Research Kit [16], [17], and Raven II [18] can be used
to develop methods to address this problem. In [19], the
use of end-to-end learning is proposed by training machine
learning algorithms with force sensor measurements to obtain
accurate 3 DOF Cartesian force estimates on the dVRK. An
alternative approach is to identify the dynamics of robot
manipulators and to estimate the external force from joint
torque measurements and the robot Jacobian by filtering out
the dynamic torques. Model based approaches can be utilized
for identification as suggested in [20], [21] for the dVRK
and [22] for Raven II. These approaches have been used to
obtain Cartesian 3 DOF [23] and 6 DOF [24] force estimation.
While these methods can accommodate for the cable elasticity
to some extent, they assume either that the coupling between
the robot wrist and gripper is only due to dynamics, or that
any non-dynamic coupling, such as due to the transmission,
has been corrected. In the case of dVRK, it is well known
that the joint-actuator coupling matrix provides the kinematic
description of the coupling in the joints, however it is not
clear whether the coupling matrix is adequately compensating
for this effect. In [25], [26], end-to-end deep learning with
ground truth force/torque sensors have been proposed to
estimate 1 DOF grip forces and [25] addresses decoupling in
the gripper axis of da Vinci Endowrist instruments implicitly



by training in different configurations. In [27], a Gaussian
process regression for end-to-end learning has been proposed
to estimate the interaction forces on each jaw of the Raven II
surgical system. However, the mentioned techniques cannot
easily generalize to cases where the robot dynamics diverges
from the initial training, for instance when instruments are
changed during the operations.

To account for the uncertainty in the robot dynamics in a
clinical setting, we proposed the use of neural networks
[28] and transfer learning [29] for on the spot dynamic
identification of the patient side manipulators of the da Vinci
Research Kit (dVRK). However these works addressed force
estimation in 3 and 6 axes (Cartesian translation and rotation),
respectively, and like [19], [23], [24] neglected the gripper.

In this paper, we show that the gripping axis should
not be neglected during training for dynamic identification
and external force estimation, due to the inherently coupled
structure of the da Vinci and its Endowrist instruments. We
therefore propose an improved deep learning based dynamic
identification method which also utilizes data from the gripper
in training. With experiments and transfer learning we also
demonstrate successful identification of the gripper as well
as other joint dynamics with different instruments. The
contributions of this paper can be summarized as:

o Extending the prior 6 DOF neural network for dynamic
joint torque prediction to 7 DOF by adding gripper
torque.

o Experimental verification that the accuracy of 6 DOF
joint torque prediction is not significantly affected by
gripper torque when the neural network training data
includes gripper motion.

o Experimental verification that the grasping torque can be
estimated by subtracting the free-space gripper torque
predicted by the neural network from the measured
gripper torque, and that transfer learning can quickly
adapt this network to different instruments.

o Experimental evaluation of the accuracy of 7 DOF
Cartesian force/torque estimation, including both the
external 6 DOF wrench and 1 DOF grasping force.

The organization of the paper is as follows: Section II
presents background information, including a description of
the mechanical coupling in the dVRK, Section III introduces
the deep learning based identification and external force
estimation method, and Section IV provides the experimental
results.

II. BACKGROUND

The generalized dynamic equation of the dVRK Patient
Side Manipulator (PSM) can be described as:

M(q)q + C(Qv q) + G(Q) + F(Q) + Tint + Text = T (1)

where ¢, ¢ and ¢ denote the joint position, velocity and accel-
eration vectors. M is the mass/inertia matrix, C' represents
the Coriolis and centrifugal force/torque vector, and G is the
gravity vector, while F' represents the friction force/torque
vector, T;,: represents the unmodeled internal robot dynamic
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forces/torques and 7., represents any unmodeled external
forces/torques.

The forces/torques on each joint due to external (contact)
forces/torques are denoted with 7., whereas 7 denotes the
joint actuation force/torque vector. From (1), external forces
can be estimated:

Text =T — %dyn (2)

where 7ayn ~ M(q)§ + C(q,q) + G(q) + F(q) + Tint
represents the identified joint force/torques of the robot.
Finally, the external forces acting on the end-effector in
Cartesian space are computed using the Jacobian matrix (J)
of the robot:

Fea:t = J_T%ewt (3)

The above dynamics equation is expressed in the joint
space of the robot and, in general, can include dynamic
coupling between the joints because the mass/inertia matrix
M typically has non-zero off-diagonal elements and the
Coriolis/centrifugal and gravity vectors include coupling. Note
that the Coriolis/centrifugal term is often written in matrix-
vector form, C(q, ¢)g, in which case C' would be a matrix
and could contain non-zero off-diagonal elements.

In addition to dynamic coupling, the PSM contains coupling
in the transmission between the motors and joints of the
instrument. In particular, the first-generation PSM contains 4
motors that drive wheels that engage with an attached surgical
instrument (the most recent generation system has a similar
structure, but with additional degrees of freedom for the
instrument). There are multiple surgical instruments available
to perform different tasks during the surgical procedure. The
instruments typically define roll, pitch and yaw joints, as
well as a grasper (or gripper), as shown in Figure 1. The
mechanical design of the instrument introduces coupling
between some of the drive wheels and some of the instrument
joint motions. Thus, it is necessary to distinguish between
actuator space (motors) and joint space (instrument). On the
dVRK, the coupling between actuators and joints is one of the
parameters specified in a Javascript Object Notation (JSON)
file that describes a specific instrument. Figure 2 shows an
example of the coupling matrix for the Cadiere Forceps. This
coupling matrix converts actuator (motor) positions to joint
positions and its transpose converts actuator torques to joint
torques. The numeric values in the coupling matrix can vary
between different instruments, but the general form is the
same. For all currently supported instruments on the dVRK
(except the three “snake-like” instruments), the only non-zero
off-diagonal elements are as shown in Fig. 2.



"coupling" : {

"ActuatorToJointPosition" : [[ -1.5632, ©0.0000, ©.0000, ©.0000],
[ ©.0000, 1.0186, 0.0000, ©0.0000],
[ ©.0000, -0.8306, ©0.6089, 0.6089],
[ o0.0000, 0.0000, -1.2177, 1.2177]]

}

Fig. 2. Actuator to joint position coupling matrix for Cadiere Forceps, P/N
400049. Joint order is roll, pitch, yaw, gripper.

The inverse of the matrix in Fig. 2 indicates that motion
of the gripper joint requires coupled motion of the last two
motors. However, the inverse of the transpose (converting
joint torques 7; to actuator torques 7) is the following:

-0.6397 0.0 0.0 0.0
o 0.0 0.9817 0.6696  0.6696 "
“ 0.0 0.0 0.8212 0.8212| "/
0.0 0.0 —0.4106 0.4106

This indicates that gripper torques are mechanically coupled
with the last 3 motors. Thus, small errors in the coupling
matrix could cause gripper torques to affect both the yaw
and pitch joints.

We experimentally verified this hypothesis by moving
the PSM through the same path (on joints 1-6), with three
different configurations: (1) gripper at one of two fixed
positions (0° and 40°) where no torque is applied, (2) gripper
at -10°, where torque is applied on a piece of foam, and
(3) gripper moving but not applying torque to an object. We
generated the path by manually teleoperating the PSM with
the Cadiere Forceps installed. We recorded the commanded
position for each joint (except the gripper) and replayed the
motion for other configurations of the gripper. While the
manipulator is moving, joint position, velocity, and torque
are measured. The maximum joint position of the pre-defined
trajectory follows the maximal joint limit defined in the dVRK
user manual.

The results are shown in Fig. 3 and demonstrate that gripper
torques (including those due to motion) affect the measured
pitch and yaw torques, presumably due to imperfections in
the coupling matrix. The moving gripper also causes “noiser”
torque measurements on joints 3 (insertion) and 4 (roll),
which could be due to dynamic coupling effects from Eq. 1
or to other factors such as vibrations caused by the gripper
motion.

These results suggest that gripper states must be included
as input while generating PSM body networks for J3-J6 to
identify robot inverse dynamics because PSM joint dynamic
forces/torques change with gripper motion in these axes due
to the mechanical coupling and/or vibration.

III. LEARNING BASED DYNAMIC DECOUPLING AND
DYNAMIC IDENTIFICATION

The proposed method is to model the inverse dynamics of
a dVRK PSM by eliminating coupling between the wrist and
the gripper based on a learning approach.

In our previous work [28], [29], we proposed a neural
network-based dynamic identification method to estimate
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Fig. 3. Measured joint torques using the same excitation path for 4 cases:
Gripper moving, constant at 0°, 40° and -10° holding a thin piece of foam.
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joint force/torques excluding the gripper axis, which was not
moving or grasping objects in those experiments. However,
as discussed in Section II, the coupled structure of the dVRK
Endowrist instruments must be considered. Although the use
of a coupling matrix is intended to resolve the problem,
Section II demonstrated that coupling between the gripper
and other joints remains an issue. In this paper, we extend our
previous work by proposing an improved deep learning-based
method making use of gripper states in addition to the other
PSM joint states provided by the dVRK. Furthermore, during
operation, instrument changes are frequently necessary, and
therefore we propose a transfer learning-based identification
method that can quickly adapt the main network to the new
instrument (in addition to other patient/setup specific factors).

The identification method makes use of free space net-
works (FS) trained with extensive data covering the robot’s
workspace. The purpose of this is to teach the robot the
general behavior of the robot dynamics. Since this training
is outside the patient, training and computation power do
not have any impact on the surgery. The initial experimental
results shown in Fig. 3 and discussed in Section II suggest
that the network for the last 4 joints must include the gripper



Train|Test I 12 13 74 75 J6
C 5.29(0.94)[5.73(0.60)| 7.72(0.90)[3.50(0.44)[3.69(0.46)[3.69(0.64)
M 6.50(0.92)6.98(0.66)| 5.72(0.70)|1.99(0.19)[3.34(0.57)]3.64(0.60)

6.63(0.83)(7.26(0.58)| 7.51(0.91)[5.79(1.03)[5.20(0.54)[7.33(0.83)

6.14(0.49)(7.73(1.08)(10.24(3.57)|3.99(0.68)(5.06(0.59)(7.71(0.89)

7.10(0.90)(7.07(0.47)| 6.11(0.94)[2.26(0.27)(3.57(0.48)|3.93(0.55)

6.04(0.82)(5.88(0.67)| 7.20(1.72)(3.67(0.45)(3.74(0.60)(3.81(0.54),
TABLE I

NRMSE RESULTS OF COUPLING EXPERIMENTS (%). M: GRIPPER IS

MOVING, C: GRIPPER IS CLOSED

M+C
M+C

a
P EEEERE

6DOF F/T
Sensor

(b)

Fig. 5. 7 DOF experimental setup: (a) Grasping the FSR mounted on the
apparatus attached to the ATI force sensor, (b) closeup view, (c¢) FSR held
by gripper while instrument pushes against side of apparatus.

axis, as shown in Fig. 4.

IV. EXPERIMENTAL SETUP AND RESULTS

This section presents the experiments. First, we evaluate the
accuracy of dynamic torque estimation of the robot joints (not
including the gripper) when the gripper is moving, to show
that higher accuracy is obtained when the neural network
training data includes a moving gripper. Next, we add a
neural network for dynamic gripper torque estimation and
show that transfer learning can adapt this network to different
instruments. Then, we show that subtracting the predicted
dynamic gripper torque from the measured gripper torque can
provide a reasonable estimate of grasping force. Finally, we
show that the proposed system can simultaneously estimate
the 6 DOF external wrench and 1 DOF grasp force.

For the data used in the free space training of the networks,
we generate excitation paths for the manipulators in the
joint space in order to move the robot at different velocities.
A random number generator with a nonrepeatable uniform
output created the raw path, which is smoothed by two low
pass filters to make the trajectory achievable on the dVRK.
The maximum and minimum values of the generator are
based on the specified joint limits of the dVRK so that the
path covers the entire workspace of the robot. In total, around
15 minutes of data (joint positions, joint velocities, and joint
torques) were collected and split into training, validation, and
test sets using a 5:1:1 ratio.

For some experiments, we used an ATT Gamma force/torque
sensor (ATT Industrial Automation, Apex, NC, USA), attached
to a fixed apparatus, to provide ground truth 6 DOF measure-
ments. In addition, we used a force-sensing resistor (FSR)
to measure grip forces. Figure 5 depicts the experimental

setups used for Sections IV-C and IV-D. The FSR sensor
feedback is calibrated using the ATI sensor. We attached the
FSR directly on the ATI and press the FSR to get readings
from both sensors. We fit a polynomial, as shown in eq. (5),
where zx is the raw FSR voltage reading (range 0-1 V) and
F is the force in Newtons, to calibrate the FSR with respect
to the ATI force.

F =3.712% — 4.632% + 2.57z 4+ 0.105V (5)

A. Dynamic Torque Estimation with Moving Gripper

The goal of this experiment is to determine whether it
is necessary to include gripper motion in the training data
used to estimate the dynamic torque for the robot joints,
especially for joints 3-6. We trained one set of neural networks
using the excitation path described above, without moving
the gripper or applying a grip torque (C). We then trained
another set of neural networks using the same excitation path,
but including gripper motion (M). Finally, we trained a third
set of neural networks using 3 datasets with a moving gripper
and 2 datasets with a closed gripper (C+M).

Table I shows the results of testing each of these networks
with trajectories that included (M) or did not include (C)
gripper motion. As expected, networks trained with only one
condition (C or M) performed well when tested under that
same condition, but poorly when tested under the opposite
condition, especially for J5 and J6 where the gripper torques
are mechanically coupled to those joints. However, some
decrease in performance is also seen in other joints. In
contrast, training the neural network with both conditions
(C+M) provides good performance when tested under either
condition. Some sample plots are shown in Fig. 6.

B. Transfer Learning for Gripper Dynamics Identification

The goals of this experiment are to demonstrate that the
neural network can be trained to estimate the dynamics torque
of an instrument gripper but, more importantly, that transfer
learning can be used to quickly adapt this network to different
instruments. The experiment was performed extracorporeally
with 8 different instruments: Large Needle Driver (LND),
Small Clip Appliers (SCA), Resano Forceps (RF), Monopolar
Curved Scissors (MCS), Maryland Bipolar Forceps (MBF),
Prograps Forceps (PF), Cadiere Forceps (CF), and Long Tip
Forceps (LTF), which are shown in Figure 7. Since each
instrument has different geometry, jaw limits and coupling
system, they have different dynamics properties. Therefore,
it is important to update the network quickly to adapt it to a
new dynamics in case of instrument changes during surgery.

The FS network was generated using a Large Needle Driver
(LND) and tested on all instruments. To eliminate the errors
caused by the differences due to the instrument changes,
individual transfer learning networks Xfer were trained using
the corresponding instruments. To train these networks, 3 min
training, 1 min evaluation and 1 min test sets were collected
and replayed for all of the instruments. To collect data, the
robot was moved to different poses with different velocities in
its workspace and the gripper was opened and closed during
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Fig. 6. Test results with trajectories that include a moving gripper. Top: Network trained with moving gripper. Bottom: Network trained with closed

gripper. As expected, network trained with closed gripper does not perform

Fig. 7. Different instruments utilized in the experiments: (a) Large Needle
Driver, (b) Cadiere Forceps, (c) Long Tip Forceps, (d) Monopolar Curved
Scissors, (e) Maryland Bipolar Forceps, (f) Prograsp Forceps, (g) Resano
Forceps, (h) Small Clip Appliers.

the motion. Table II shows the Normalized Root Mean Square
Error (NRMSE) of the test results and it can be seen that there
is a significant error in identification in case of the F'S network
for each instrument after remounting them, but Xfer provides
considerable improvement where NRMSE values vary from
5% to 8% in the gripper axis. Therefore, it can inferred that
Xfer is able to adapt the network to the instrument changes.

C. Gripper Force Estimation

We performed two experiments, using the Cadiere Forceps,
to evaluate the gripper force estimation, using the FSR as
a ground truth. The external gripper torque is estimated by
subtracting the free-space torque predicted by the neural

as well when tested with moving gripper.

=0.3653N
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Fig. 8. Comparison of the FSR force and estimated gripper force
network from the measured joint torque. Note, however, that
we estimate a gripper torque whereas the FSR measures a
gripper force. In principle, gripper force and torque can be
related if the distance between the torque axis (gripper pivot)
and the force contact point (i.e., d forc. in Fig. 1) is precisely
known. In practice, however, it can be difficult to accurately
measure d force, €specially since it may not be valid to model
the contact between the jaw and the FSR as a point contact.
Therefore, we empirically determined the scale factor between
gripper forces and torques.

In the first experiment, we show the dynamic performance
of the gripper torque estimation by grasping and releasing the
FSR, which is attached to the fixed apparatus, at a fixed pose

TABLE 11
MEAN (STD. DEV.) OF NRMSE OF ESTIMATED GRIPPER TORQUE FOR DIFFERENT INSTRUMENTS, WHEN ESTIMATED BY A NETWORK TRAINED WITH A
LARGE DATASET COLLECTED WITH THE LND INSTRUMENT (FS) AND A NETWORK TRAINED VIA TRANSFER LEARNING WITH A SMALL SAMPLE OF DATA
FROM THAT INSTRUMENT (XFER).

CF LTF MCS

MBF PF RF SCA

FS (%) | 26.662 (2.184) | 29.942 (2.951) | 29.087 (7.678)

30.919 (2.353)

20.750 (1.953) | 26.734 (2.267) | 38.384 (4.982)

Xfer (%) 6.033 (1.350) 7.722 (1.828) 5.039 (0.730)

7.768 (2.131) 4.985 (0.589) 6.878 (1.048) 5.391 (1.016)
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of the gripper, as shown in Fig. 5(a),(b). The result of this
experiment is shown in Fig. 8, with an empirically determined
scale factor of 50m ™! to convert the predicted torque (Nm) to
the predicted force (N). As shown in this figure, the gripper
force estimated by the network is in agreement with the
ground truth forces provided by the FSR. The normalized
RMS error (NRMSE, as defined in [24] and [28]) of gripper
force estimation is 8.73%, and the RMSE error is 0.37 N for
roughly 13 seconds of operation.

In the second experiment, we move the manipulator to 5
different configurations with the gripper holding the FSR at a
fixed angle. For these configurations, joints 1, 2 and 4 are fixed
at 0 degrees and joint 3 at 135 mm, while joints 5 and 6 are
varied. In this experiment, we hold the gripper at a fixed angle
and therefore expect that the force value should not change as
joints 5 and 6 are moved. We empirically determine the scale
factor between the estimated gripper torque and measured
FSR force at configuration 1 (J5 and J6 at 0 degrees) and use
this value for the other configurations. The result is shown
in Fig. 9. In the figure, it is evident that the force measured
by the FSR changes as the wrist is moved, even though
the desired gripper angle remained constant. Some of this
variation is due to the measured joint angle varying between
-9.70 and -9.84 degrees, presumably due to control system
error. Other potential factors include inaccuracy of the FSR,
changes in gravity and/or drag caused by the electrical wires
attached to the FSR, and uncompensated coupling between
the gripper and the other wrist joints. In other words, even
if the controller can maintain the gripper joint angle at a
constant value based on the measured joint angle, the actual
joint angle may vary due to coupling. Nevertheless, the figure
also shows that, in most cases, the estimated gripper force
closely follows the variation in the measured gripper force.

D. Estimation of 7 DOF External Forces/Torques

This experiment evaluates the performance of the neural
network for estimating both 6 DOF external force/torque
and 1 DOF gripper force. We moved the gripper to touch
the apparatus from multiple different directions several times
while holding the FSR at roughly the same angle during the
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Fig. 10. 7 DOF force/torque estimation results

experiment, as shown in Fig. 5(c). The apparatus was attached
to an ATI force sensor that provided 6 DOF ground-truth
force/torque measurement and the FSR provided 1D ground-
truth gripper force measurement. As shown in Fig. 10, the
RMSE for Cartesian space forces are less than 1.4 N whereas
the RMSE for Cartesian space torques are less than 0.06
Nm in each axis. This represents a small loss of accuracy
compared to our prior work [29], which did not include
estimation of grasping force.

V. CONCLUSION

In this work, we demonstrate that neural networks can
predict the dynamics torques of the gripper in addition to
the other 6 joints of the dVRK PSM, even though there
is mechanical coupling between the gripper and some of
the wrist joints. This enables simultaneous estimation of
the 6 DOF force/torque applied on the environment and
the 1 DOF grasp force. We also demonstrate that our self-
supervised transfer learning approach [29] can quickly adapt
the neural network to other instruments. External forces and
torques are estimated with RMS errors of 1.4 N and 0.04 Nm,
respectively, which represents a small decrease in accuracy,
due to the inclusion of an active gripper, with respect to
our prior work with a fixed gripper. Grasping forces were
estimated with an accuracy of approximately 0.1 N, after
empirically determining the scale factor between gripper
torque and applied force.
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