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Abstract. Structural accuracy of segmentation is important for fine-scale
structures in biomedical images. We propose a novel Topological-Attention
ConvLSTM Network (TACLNet) for 3D anisotropic image segmentation
with high structural accuracy. We adopt ConvLLSTM to leverage con-
textual information from adjacent slices while achieving high efficiency.
We propose a Spatial Topological-Attention (STA) module to effectively
transfer topologically critical information across slices. Furthermore, we
propose an Iterative Topological-Attention (ITA) module that provides a
more stable topologically critical map for segmentation. Quantitative and
qualitative results show that our proposed method outperforms various
baselines in terms of topology-aware evaluation metrics.
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1 Introduction

Deep learning methods have achieved state-of-the-art performance for image
segmentation. However, most existing methods focus on per-pixel accuracy (e.g.,
minimizing the cross-entropy loss) and are prone to structural errors, e.g., missing
connected components and broken connections. These structural errors can be
fatal in downstream analysis, affecting the functionality of the extracted fine-scale
structures such as neuron membranes, vessels and cells.

To address this issue, differentiable topological losses [I2J6/I3I27] have been
proposed to enforce the network to learn to segment with correct topology.
However, these methods have their limitations when applied to 3D images, due
to the high computational cost of topological information. Furthermore, we often
encounter anisotropic images, i.e., images with low resolution in z-dimension.
The topological loss cannot be directly applied to 3D anisotropic images. For
example, a tube in 3D may manifest as a series of rings across different slices
rather than a seamless tube. Directly enforcing a 3D tube topology cannot work.

In this paper, a novel 3D topology-preserving segmentation method is pro-
posed to address the aforementioned issues. Inspired by existing approaches for
anisotropic images [T9J28], we propose to first segment individual slices, and
then stack the results together as the 3D output. We use convolutional LSTM
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Fig. 1. An illustration of our method. From left to right: original image, ConvLSTM
segmentation result, topological attention map (overlaid with segmentation), result of
our method, and ground truth.

(ConvLSTM) [] as our backbone. Specifically designed for 3D anisotropic images,
ConvLSTM uses 2D convolution and exploits inter-slice correlation to achieve
high quality results while being more efficient than 3D CNNs. We incorporate
topological loss into each of the 2D slices. This way, the topological computation
is restricted within each 2D slice, and thus is very efficient.

However, simply enforcing topological loss at each slice is insufficient. A
successful method should account for the fact that the topology of consecutive
slices share some similarity, but are not the same. When segmenting one slice,
the topology of other slices should help recalibrate the prediction, but in a
soft manner. To effectively propagate topological information across slices, we
propose a Spatial Topological-Attention module, which redirects the convolutional
network’s attention toward topologically critical locations of each slice, based on
the topology of itself and its adjacent slices. These critical locations are locations
at which the model is prone to topological mistakes. Redirecting the attention to
these locations will enforce the model to make topologically correct predictions.
See Fig. [I] for an illustration of our method.

Another challenge is that the topologically critical map can be inconsistent
across different slices and unstable through training epochs. During the training
process, the predicted probability maps will change slightly, while the correspond-
ing Topological-Attention maps can be quite different, leading to instability of
the training process. To this end, we propose an Iterative Topological-Attention
module that iteratively refines the topologically critical map through epoches.

Our method, called Topological-Attention ConvLSTM Network (TACLNet),
fully utilizes topological information from adjacent slices for 3D images without
much additional computational cost. Empirically, our method outperforms base-
lines in terms of topology-aware metrics. In summary, our main contribution is
threefold:

1. A novel Spatial Topological-Attention (STA) module to propagate spatial
contextual topological information across adjacent slices.

2. An Iterative Topological-Attention (ITA) module to improve the stability
of the topologically critical maps, and consequently the quality of the final
results.

3. Combining Topological-Attention with ConvLSTM to achieve high perfor-
mance on 3D image segmentation benchmarks.
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Fig. 2. Overview of the proposed framework

2 Related Works

Standard 3D medical image segmentation methods directly apply the networks
to 3D images [BII7ITO/II]. These methods could be computationally expensive.
Alternatively, one may first segment each 2D slice, and then link the 2D seg-
mentation results to generate 3D results [19)27]. Note that this segment-and-link
approach ignores the contextual information shared among adjacent slices at the
segmentation step. To address this, one may introduce pooling techniques across
adjacent slices [9]. But these methods are not explicitly modeling the topology
as our method does.

Persistent homology. Our topological approach is based on the theory of
persistent homology [7I8], which has attracted a great amount of attention
both from theory [BII0] and from applications [2524]. In image segmentation,
persistent-homology-based topological loss functions [I2J6] have been proposed
to train a neural network to preserve the topology of the segmentation. The key
insight of these methods is to identify critical locations for topological correctness,
and improve the neural network’s prediction at these locations. These critical
locations are computed using the theory of persistent homology, and correspond
to critical points (local maxima/minima and saddles) of the likelihood function.

Attention mechanism. Attention modules model relationships between pix-
els/channels/feature maps and have been widely applied in both vision and
natural language processing tasks [I4UI512T]. Specifically, self-attention mecha-
nism [22] is proposed to draw global dependencies of inputs and has been used
in machine translation tasks. [29] tries to learn a better image generator via
self-attention mechanism. [23] mainly explores effectiveness of non-local operation,
which is similar to self-attention mechanism. [30] learns an attention map to
aggregate contextual information for each individual point for scene parsing.

3 Method

The overview of the proposed architecture is illustrated in Fig. [2] To capture
the inter-slice information, [ consecutive slices along Z-dimension are fed into a
ConvLSTM. For ease of exposition, we set [ = 3 when describing our method. But
our method can be easily generalized to arbitrary [. ConvLSTM is an extension



4 Jiagi Yang'*, Xiaoling Hu?*, Chao Chen?, and Chialing Tsai®

Gaussian filter

G Y i (Hx
J ot
I —
A 2 persistent
7 homology

(HXW) x(HxW)

Fig. 3. Illustration of the Spatial Topological-Attention (STA) module

of FC-LSTM [26], which has the convolutional operators in LSTM gates and
is particularly efficient in exploiting image sequences. Note that the inputs to
ConvLSTM are three adjacent slices, {S*~1, 8% S} € REXW "and the output
also has three channels, { P*~1, P! Pit1} € REXW "each being the probabilistic
map P? of the corresponding input slice S*. We use i — 1,4,7 + 1 to represent
input slice indices in this paper.

The three probabilistic maps { P*~1, P*, P*1} are then fed into the Topological-
Attention module. In this module, each pixel in the feature maps gathers rich
structural information from both the current and adjacent slices, without intro-
ducing extra parameters. We propose a Spatial Topological-Attention module to
model the correlation between the topologically critical information of adjacent
slices. A Topological-Attention map is generated to highlight the locations which
are structurally critical. See Sec. for details. In Sec. we introduce the
Iterative Topological-Attention module to stabilize the critical map.

3.1 Spatial Topological-Attention (STA) Module

Continuation in contextual information across slices is essential for 3D image
understanding, which can be obtained by taking adjacent slices into consideration.
In order to collect contextual information in the Z-dimension to enhance the
prediction quality, we introduce a STA module which encodes the inter-slices
contextual information into the focused slice.

As illustrated in Fig. [2] we can obtain three predicted probabilistic maps,
{pPi=1 Pt P+ ¢ REXW which corresponds to the input slices after ConvLSTM.
Fig. [3] shows the complete process that passes the probabilistic maps to the STA
module, and yields the final probabilistic map Pi in the end. Next, we elaborate
the process of aggregating the topological context of adjacent slices.

Persistent homology and critical points. Given a 2D image likelihood map,
we obtain the binary segmentation by thresholding at o = 0.5. The 2D likelihood
map can be represented as a 2D continuous-valued function f. We consider
thresholding the continuous function f with all possible thresholds. Denote by {2
the image domain. For a specific threshold a, we define the thresholded results
fe:={z € 2|f(z) > a}. By decreasing «, we obtain a monotonically growing
sequence @ C f C f*2 C ... C f* = (2, where a1 > as > ... > a,. As «
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changes, the topology of f* changes. New topological structures are born while
existing ones are killed. The theory of persistent homology captures all the birth
time and death time of these topological structures and summarize them as a
persistence diagram. One can define a topological loss as the matching distance
between the persistence diagrams of the likelihood function and the ground truth.
When the loss is minimized, the two diagrams are the same and the likelihood
map will generate a segmentation with the correct topology.

As shown in [I2], the topological loss can be written as a polynomial function of
the likelihood function at different critical pixels. These critical pixels correspond
to critical points of the likelihood function (e.g., saddles, local minima and local
maxima), and these critical points are crucial locations at which the current
model is prone to make topological mistakes. The loss essentially forces the
network to improve its prediction at these topologically critical locations.

Aggregating topologically critical maps via topological attention. The
likelihood maps at different slices generate different critical point maps. Here we
propose an attention mechanism to aggregate these critical point maps across
different slices to generate topological attention map for the current slice (third
column in Fig. [I). For {P*~1, P!, P"*1}, using persistent homology algorithm,
we identify the critical points. Here we use a Gaussian operation to expand the
isolated critical points to blobs because the surrounding regions will likely also
be vital for structures. This way we obtain a soft version of critical point map:
CP' = Gaussian(PH(P?)). Here, PH(-) is the operation to generate isolated
critical points and Gaussian(-) is a Gaussian operation. CP® has the same
dimension as P* € REXW

As shown in Fig. [3] these critical maps are used as the query and the key for
the attention mechanism. To improve the computational efficiency, we combine
the critical maps C P~ CP! CP"*! into one single k € RE*H*W (O = 3)
and expand the C'P? into same size as ¢ € RE*H*W  To obtain the correlation
between target map (q) and consecutive slices (k), we reshape them to RE*¥,
where N = H x W, and perform a matrix multiplication between the transpose
of ¢ and k. The similarity map SM € RN*¥ is generated after a softmax. SM,,,
measures the correlation between two pixels, m and n.

Next, we reshape probabilistic map P? and perform a matrix multiplication
between P? and SM. For pixel n, we obtain normalized of, = SN _ (P, S M)
and perform an element-wise sum operation with the probabilistic map P* to get
the final output:

P! = a0l + P,’ (1)
where « is initialized as 0 to capture stable probabilistic maps first. As training

continues, we assign more weight on attention map so that the Pi at each position
is a weighted sum across all positions and original probabilistic map P°.

3.2 Iterative Topological-Attention (ITA) Module

As mentioned above, the critical points generated by persistent homology are
sensitive, and consequently the attention map is also relatively unstable.
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By exploiting the correlation of probabilistic maps between different epochs,
we can further improve the robustness of the obtained attention maps, which can
lead to a better representation of the predicted probabilistic maps. Therefore,
we introduce an ITA module to explore the relationships between the attention
maps of different epochs. The iterative method not only helps with stability,
but also enforces faster convergence. Formally, the ITA is calculated as oy =
Boi—1 + (1 — B)o;. Here, B is a parameter to deal with the sensitiveness of the
critical points, and t denotes different training epochs. o is the output of attention
map which was described in Eq. . More details of ITA module is illustrated
in Supplementary Fig. 1. During the training process, the final output Piis
generated by the sum of iterative attention map or and the original probabilistic
map P?. Therefore, it has a global contextual view and selectively aggregates
contexts according to the spatial attention map.

4 Experiments

We use three EM datasets with rich structure information to demonstrate the
effectiveness of the proposed method. In this section, we will introduce the
implementation details, datasets, and the experiment results on both datasets.

Datasets. We demonstrate the effectiveness of our proposed method with three
different 3D Electron Microscopic Images datasets: ISBI12 [2], ISBI13 [1]
and CREMI. The size of ISBI12, ISBI13 and CREMI are 30 x 512 x 512,
100 x 1024 x 1024 and 125 x 1250 x 1250, respectively.

Train settings. We adopt ConvLLSTM as our backbone architecture. Also, we
apply simple data augmentation, Contrast-Limited Adaptive Histogram Equal-
ization (CLAHE) and random flipping (for ISBI12 only to enlarge training size).
For the training parameters, we initialize learning rate (Ir) as 0.001 and multiply
by 0.5 every 50 epochs. We train our model with batch size of 15 for CREMI and
ISBI13, and 30 for ISBI12. The number of training epochs are 35, 900 and 150
for CREMI, ISBI13 and ISBI12, respectively (without attention module). We
use cross entropy loss as the optimization metric.

Attention module details. As described in Sec Topological-Attention
module comes after ConvLSTM. We train the TACLNet for another 15 epochs,
with [r = 0.00001. Specifically, the patch size is 39 x 39 for critical points
extraction. The iterative rate g is set as 0.5 for ITA module.

Quantitative and qualitative results. In this paper we use similar topology-
aware metrics as of [12] for structural accuracy, Adapted Rand Index (ARI),
Variation of Information (VOI) and Betti number error. We also report dice scores
for pixel accuracy for all the baselines and the proposed method for completeness.
The details of the evaluation metrics can be found in the Sec.3 of [12]. For
all the experiments, we use three-fold cross-validation to report the average
performance and standard deviation over the validation set. Tab. [1| shows the
quantitative results for the three different datasets. Note that we remove small
connected components as a post-processing step to obtain final segmentation
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Table 1. Experiment results for different models on CREMI dataset

DaTAseTs| Models DICE ARI VOI Betti Error
DIVE [0.9542 + 0.0037 | 0.6532 + 0.0247 | 2.513 + 0.047|4.378 + 0.152
U-Net ]0.9523 £+ 0.0049 | 0.6723 + 0.0312|2.346 + 0.105|3.016 £ 0.253
CREMI | Mosin. |0.9489 + 0.0053|0.7853 4 0.0281 | 1.623 + 0.083|1.973 + 0.310
TopoLoss | 0.9596 + 0.0029 | 0.8083 + 0.0104 | 1.462 + 0.028|1.113 + 0.224
TACLNet|0.9665 + 0.0008|0.8126 + 0.0153|1.317 + 0.165|0.853 + 0.183
DIVE [0.9709 + 0.0029 |0.9434 + 0.0087 | 1.235 + 0.025 | 3.187 + 0.307
U-Net |0.9699 + 0.0048 | 0.9338 + 0.0072 | 1.367 & 0.031|2.785 + 0.269
ISBI12 | Mosin. [0.9716 + 0.0022|0.9312 + 0.0052|0.983 + 0.035|1.238 4+ 0.251
TopoLoss |0.9755 + 0.0041[0.9444 + 0.0076|0.782 4+ 0.019|0.429 + 0.104
TACLNet| 0.9576 &+ 0.0047 [ 0.9417 £ 0.0045|0.771 4+ 0.027|0.417 + 0.117
DIVE ]0.9658 + 0.0020 | 0.6923 + 0.0134|2.790 + 0.025|3.875 + 0.326
U-Net |0.9649 4+ 0.0057 | 0.7031 + 0.0256 | 2.583 + 0.078|3.463 + 0.435
ISBI13 | Mosin. |0.9623 + 0.0047 |0.7483 + 0.0367 | 1.534 + 0.063 | 2.952 + 0.379
TopoLoss |0.9689 + 0.0026(0.8064 + 0.0112|1.436 4+ 0.008|1.253 + 0.172
TACLNet| 0.9510 4 0.0022 | 0.7943 + 0.0127 |1.305 + 0.016|1.175 + 0.108

PSS

Fig. 4. An illustration of structural accuracy. From left to right: a sample patch, the
ground truth, results of UNet, TopoLoss, ConvLSTM and the proposed TACLNet.

results. Our method generally outperforms existing methods [9I20/18] in terms of
topology-aware metrics. Fig. [] shows qualitative results. Our method achieves
better consistency/connection compared with other baselines.

In Tab. the Betti Error of our TACLNet brings 23.3% improvement
compared to the best baseline, TopoLoss [12], for CREMI dataset. Meanwhile,
TACLNet achieves best performances in terms of Betti Error and VOI on both
ISBI12 and ISBI13 datasets. In Fig. [l the results from TACLNet possess better
structures with less broken boundaries comparing to other baseline methods.
Results show that our attention module strengthens the structural performance
overall. Also, the proposed method computes topological information on a stack
of 2D images rather than directly on a 3D image, and this significantly reduces
the computational expense. Specifically, for CREMI dataset, our method takes
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Table 2. Ablation study results for TACLNet on CREMI dataset

MODELS DICE ARI VOI Betti Error
ConvLSTM 0.9667 4+ 0.0007|0.7627 £ 0.0132 [1.753 4+ 0.212|1.785 £ 0.254
ConvLSTM + STA|0.9663 + 0.0004|0.7957 + 0.0144 | 1.496 + 0.156 | 0.873 + 0.212
Our TACLNet 0.9665 4+ 0.0008(0.8126 + 0.0153|1.317 + 0.165|0.853 + 0.183

Table 3. Ablation study results for number of input slices on CREMI

NUMBER ARI VOI Betti Error Time
1s 0.7813 £+ 0.0141 | 1.672 + 0.191 | 1.386 £ 0.117 |0.99h/epoch
3s 0.8126 + 0.0153(1.317 + 0.165|0.853 + 0.183 1.20h/ep0ch
58 0.8076 + 0.0107 | 1.461 + 0.125 | 0.967 £ 0.098 |2.78h/epoch

~21.2 hours per epoch to train, whereas topoloss (3D version) takes ~2.8h per
epoch.

Ablation study for TACLNet. Table. [2| shows the ablation study of the pro-
posed method, which demonstrates the individual contributions of the two pro-
posed modules, Spatial Topological-Attention and Iterative Topological-Attention.
As shown in Table. [2] compared with the backbone ConvLSTM model (Betti
Error = 1.785), the STA improves the performance remarkably to 0.873. After
applying the ITA module, the network further improves the performance by
2.3%,11.9%,2.1% in Betti Error, VOI, and ARI, respectively. In addition, the
combination of STA and ITA also improves the speed of convergence. For our abla-
tion study, STA was trained with 50 epochs, but STA + ITA (our TACLNet) was
trained with fewer than 15 epochs for a better performance, which demonstrates
that the ITA module can stabilize the training procedure.

Ablation study for number of input slices. Table. [3|is an illustration for
the number of input slices. As shown in Table. 3| compared with 1 slice (Betti
Error = 1.386) or 5 slices (Betti Error = 0.967), the adopted setting of 3 slices
achieves the best results (Betti Error = 0.853). It’s not surprised that the 3 slices
achieves better performance than 1 slice, as it makes use of inter-slice information.
On the other hand, the dataset is anisotropic, and the slices further away are
increasingly different from the center slice, which degrades the performance for 5
slices setting.

Illustration of the attention module. We select two images to show the
effectiveness of the attention module in Fig. [5| Compared with the second column
showing only the critical points detected in the current slice, the attention map in
the third column captures more information with the structural similarity from
adjacent slices. The attention areas on the final probabilistic map (last column)
are highlighted with red color. We observe that the responses of most broken
connections are high with attention module enhancement. In summary, Fig.
demonstrates that our TACLNet successfully captures the structure information
and further improves responses on those essential areas.
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Fig. 5. Illustration of the proposed Topological-Attention. From left to right: original
images S°, the smooth critical points of C'P*, final attention map o, and the final
probability map P* with o superimposed in red (Zoom in and best viewed in color).

5 Conclusion

In this paper, we proposed a novel Topological-Attention Module with ConvLL.STM,
named TACLNet, for 3D EM image segmentation. Validated with three EM
anisotropic datasets, our method outperforms baselines in terms of topology-aware
metrics. We expect the performance to further improve on isotropic datasets,
because slices are closer (due to higher sampling rate in the z-dimension) with
more consistent topologies across slices. For the future work, we will apply
TACLNet to datasets of other medical structures, such as cardiac and vascular
images, to prove its efficacy in a broader medical domain.
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