
Learning Soft-Tissue Simulation from Models and Observation

Jie Ying Wu, Adnan Munawar, Mathias Unberath, Peter Kazanzides

Abstract— Accurate soft-tissue simulation using biomechan-
ical models is computationally expensive. This is unfortunate
because accurate biomechanical models could model tool-tissue
interaction during surgical procedures, thereby providing intra-
operative guidance to surgeons. In this work, we present steps
toward interactive soft-tissue simulation for specific models
using a learning-based framework that learns from finite
element method (FEM) simulations. We train a graph neural
network that takes the position and velocity of a tracked tool
as input and estimates the deformations of a base mesh at each
time step. By using data augmentation, the network learns to
self-correct for errors in estimation to maintain the stability of
the simulation over time. This approach estimates soft tissue
deformation with less than 1 mm mean error with respect to
FEM simulation over an interaction sequence of 80 s. This error
magnitude is within the accuracy of FEM in comparing to
the in situ camera observations of the interaction. While the
FEM took 15 h to simulate 80 s of interaction, the network-
based simulator took 47 s. Despite several open challenges that
will be the subject of our future work, this learning-based
framework constitutes a step towards real-time biomechanics-
based simulation for intraoperative surgical guidance.

I. INTRODUCTION

Computer-assisted interventions are increasingly adopted
for different procedures, yet clinical plans are developed on
pre-operative images that are often hard to register with the
surgical scene once tissue starts deforming. One approach
is to use an intraoperative imaging modality, such as ul-
trasound, that can track the deformation in real-time and
then be used to “warp” the preoperative image to match
the deformed anatomy. Mohareri et al. [1] demonstrated
this approach clinically using transrectal ultrasound to track
prostate deformation during robot-assisted surgery, thereby
enabling overlay of a preoperative magnetic resonance image
(MRI). Alternatively, navigation systems can make use of
partial observations [2] or track deformations through biome-
chanical models [3] and then register to the surgical scene
to provide intraoperative guidance. The current gold standard
for accurate soft-tissue modeling is the finite element method
(FEM). Unfortunately, FEMs, especially volumetric models
that can track topological changes such as cutting, are
generally too slow to be used intraoperatively. While there
are approaches that speed up FEM using pre-processing [4],
multi-threading [5], and GPU [6], these have so far only
supported a limited set of geometric shapes and interactions.
Alternative methods for soft-tissue simulations that can run
in real-time, such as ChainMail [7], have not been widely
adopted, potentially due to their lower accuracy if the mesh

Dept. of Computer Science, Johns Hopkins University, Baltimore, MD
21218, USA (email: {jieying, amunawar, unberath,
pkaz}@jhu.edu

is not optimized. Brunet et al. identified a target of reducing
errors to within 5 mm for providing useful clinical guidance
with augmented reality and soft-tissue simulation [8].

Another series of work explores obtaining FEM-like ac-
curacy faster with deep neural networks (NN). These ap-
proaches often use NNs to estimate one deformation that
reflects change over a large number of time steps [9],
[10]. This work presents an alternative approach where
the network simulates at small, successive time steps as
a step towards providing interactive soft-tissue simulations.
We outline how this step-wise framework could integrate
with works to incorporate real-time observations [11]. As
a NN can simulate new, complex tool-tissue interactions in
seconds, it can run at video-frame rates. We use a dataset
captured on a da Vinci Research Kit [12] (dVRK), which
provides kinematic data of the instrument interacting with a
gel phantom, augmented with a depth camera to observe the
actual deformation.

A. Background

While FEM is widely adopted, mesh-less algorithms can
be used for difficult-to-mesh cases [13]. Another alternative
to FEM is to use neighborhood-aware cell neural networks
[14]. Since we focus on modeling one base phantom well,
we assume that a mesh is available. This is generally the
case in clinical scenarios, as we can build patient-specific
meshes from preoperative images. On the other hand, mass-
spring models [15] and ChainMail algorithms [7] can achieve
real-time soft-tissue simulation; however, to obtain high
enough accuracy for clinical use, they require optimizing the
geometry of the mesh which limits their generalizability. We
limit our review here to FEM and deep learning methods, and
refer readers to [16] for a more general review of soft-tissue
simulation methods.

B. Related Work

Several works have looked at speeding up FEMs.
Haferssas et al. uses domain decomposition [17] to speed up
computation. Other works have used deep learning to predict
deformation over larger time steps than for which the FEM
is generally stable. Meister et al. uses learning to predict the
solutions to Total Lagrangian Explicit Dynamics to speed up
FEM simulations [10], while Mendizabal et al. predicts the
deformations directly [9]. Both are trained from simulated
examples where a virtual force is applied to a simulated mesh
and predicts a single step. They do not explore whether the
predictions can be made successively to perform step-wise
simulations. This work aims to complement these existing
works and estimate deformations in sequential updates.

While these works have generally used voxel-based con-
volutions, graph-based neural networks [18] could be more
topography-aware than voxel-based ones. Since meshes are
modeled as tetra- and hexahedrals, they naturally have a
graph structure. Graph-based neural networks have been used
to learn propagation in particle-based simulators [19], [20].
Sanchez-Gonzalez et al. encode particles as graphs and use
message passing to learn the acceleration of each simulation
step [20]. While these show the potential of graph networks
to simulate deformations over many time steps, they consider
plastic deformations only. Elastic materials such as those
considered in this work present different challenges. On the
one hand, the forces acting on a node not only depend on
external factors like gravity and on the node’s collision with
its neighbors, but also on each node’s initial position. On the
other hand, the edges are predefined and do not generally
change. This avoids the need for dynamic graph building as
described by Li et al. [19].

II. METHOD

The goal of our method is to predict successive update
steps in the manner of a traditional simulator, such as an
FEM. We start with the 3D mesh of the object. We construct
a network that takes the mesh and the robot’s kinematics as
input and estimates an update step as output. The update step
is added to the mesh and the updated mesh is passed with the
next set of robot kinematics to the network for it to predict
the next update step, as shown in Fig. 1. The sum should
match the next step of the FEM. For stability, the update in
each step is limited to be at most one voxel length, based on
the mesh element’s size, in each direction.

NetworkSimulated
Mesh at t

Robot
Kinematics at t

Simulated
Mesh at
t+1

+ Network

Robot
Kinematics at t+1

+
Simulated
Mesh at
t+2

Fig. 1. Overview of the proposed system. The network takes the current
mesh and robot kinematics and predicts an update step. The update step is
added to the current mesh and the sum is passed to the network again, with
the next robot kinematics, to do step-wise simulation.

A. Network Input

The input to the network is a graph where each node of the
graph corresponds to a vertex on the mesh. The features of
the node consist of mesh and robot kinematics information.

a) Mesh: The graph representation of the mesh con-
sists of the relative node positions and edges. The edges
are defined by the mesh. The relative node positions are
represented by the differences between each node’s current
position and its position in the base mesh. Intuitively, this
encourages the network to learn the physical property of
elasticity without needing to implicitly learn where each
node’s resting position should be. Without an external force,
the mesh should return to its original shape. Using the offset
rather than absolute position of mesh nodes may also help
with learning a generalizable convolutional kernel.

b) Robot kinematics: For each node in the network,
we extend its feature representation with robot kinematics
features. These kinematics features are initialized as zero
for all points of the mesh. Then, if the robot is within a
threshold of the mesh, we set the kinematics features of the
closest node to the position and velocity of the end-effector.
For our setup, we empirically determined the threshold size
to be 5.5 mm based on the instrument tip. The velocity of
the end-effector is computed separately from the position
based on the method proposed in [21]. The more the robot
moves, the more the mesh should deform. Since we limit our
consideration to soft-tissue deformations, the deformation
is largest where the robot touches the mesh and radiates
outwards from there.

c) Data Augmentation: We use a data augmentation
strategy that aims to capture the network error. Once the
errors of the network converge in predicting the next FEM
update, we introduce the following augmentation to the input.
For 50% of the input, rather than loading the mesh at time t,
the network instead loads a simulated mesh. The simulated
mesh is constructed by applying the kinematics and FEM
mesh from t−1 as inputs to the network from the last epoch.
This is then used as the input to the current network to predict
the next update step. Fig. 2 shows how the simulated mesh
is generated and used as input for training the network.

The network predicts the next simulation update and its
output is added to the simulated mesh. The sum is compared
to the FEM output at the t+1 step. This step is important to
prevent simulation errors from accumulating over time steps.
Since the FEM should simulate step-wise deformation of the
tissue, its inputs at test time would diverge from the training
samples if its training data is drawn only from the FEM. By
incorporating the network simulation in data augmentation,
the network learns to correct for errors it introduces.

Neural
NetworkMesh(t)

Robot(t) Loss

FEM(t+1)

FEM(t-1)

Robot(t-1)

+

+
Data Augmentation

NN last
epoch

Fig. 2. Data augmentation strategy; once network is sufficiently trained,
50% of input uses simulated mesh predicted from previous FEM mesh.

B. Network Architecture
We use a U-Net architecture as it has been shown in

the literature [2], [9] to work well in estimating mesh
deformations. Unlike previous works, we use graph-based
convolutions as we observed that the voxel-based network
accumulated errors at the edges of the mesh due to padding.
The network architecture, shown in Fig. 3, is based on
the method described in [18]. We use ReLU for internal
activation functions and sigmoid for last layer activation. The
output should have the same number of nodes as the input
and have feature size three representing the vertex position
update step. The output of the sigmoid is shifted to be zero-
centered and scaled based on the voxel size.

R
ob

ot

ki
ne

m
at

ic
s

N
od

e
lo

ca
tio

ns

Edge
adjacencies

Input

N
od

e
up

da
te

s

Output

Graph pooling
and convolution
Graph unpooling
and convolution

Graph
convolution

Graph
concatenation

Fig. 3. Network architecture. The input consists of three parts. The node locations and edge adjacency are given by the mesh structure. While the node
location is updated at each step, the edge adjacencies stay constant. The robot kinematics features are zero everywhere except where the robot end-effector
is closest to the mesh, where it is the end-effector’s position and velocity (indicated by the orange stripe). The network involves convolutions over the
graph structure and pooling and unpooling between layers. Each of the network’s hidden layers has 256 features. The output consists of three features for
each mesh node to update its position for the simulation step.

C. Visualization

We implemented a visualization client in Blender [22] to
show the similarities and differences between the simula-
tions. Blender is a free, open-source and versatile tool that
can be extended via its plugin-based API for different appli-
cations. We used this API to develop a visualizer (blender
visualizer) for our simulation frame files. The graphical
interface of the blender visualizer is shown in Fig. 4.

Select two meshes for simulating
deformation of vertices / nodes

Specify “mapping” file

Specify max number of “simulation
frame” files to load

Specify “vertices per frame” to
simulate.

Specify the path to the “simulation
frame” files folder

Automatic Play / Pause / Stop

Manual jogging of data for
displaying a specific “simulation

frame”

Fig. 4. The blender visualizer plugin. Users can pick two meshes to
simulate at once. The plugin supports both automatic playing of data as
well as manual jogging by providing the specific frame number to simulate.

Our custom visualizer was motivated by the fact that using
existing simulators resulted in conflicts between the network
updates and the simulator clock. We realized the importance
of a portable package that could be used across different
research projects. For this purpose, we first defined a simple
data format for outputting the soft-tissue deformation data.

This data format requires a predefined volumetric mesh,
which could be created from pre-operative scans. Then for
each time step, the data format contains a sequential array of
vertex / node positions at each simulation time-frame. Thus,
for example, a simulation episode consisting of 30 seconds
with 10 frames per second (FPS) would result in 300 text
files, where each file is called a simulation frame file.

To map the indices of the vertices / nodes in the simulation
frame files and the mesh represented in Blender, we created
another text file, called the mapping file. The format in this
text file is a two column array, where the first column is
the index of the vertex / node in the simulation frame files
and the second column is the corresponding vertex index of
the Blender mesh. Fig. 5 shows an example of the how the
mapping file is used to match the vertices from the network
output to the Blender scene.

Fig. 5. Example of using the mapping file to match vertices from network
to Blender visualization.

To generate these mappings, we created another Blender
plugin (blender client) that provides an interface for querying
vertex positions and indices of the mesh. We complemented
this with a Python package (user server) that abstracts the
socket interface and provides the user with an API for
querying or commanding vertices of the Blender mesh. The
user server can process multiple vertices / nodes at the same
time. Fig. 4 and Fig. 6 show the graphical interface of the
blender visualizer and blender client, respectively. Fig. 7
shows the API exposed by the user server.

Select two meshes for simulating
deformation of vertices / nodes

Specify Hostname, Port number
and Connect / Disconnect to

“user server”

Specify “vertices per frames”

Fig. 6. The blender client plugin.

The blender visualizer, user server and blender client
together allow for the visualization of any soft-body defor-
mation data once it is ported to the simulation frame format.
Blender’s plugin API executes the callbacks in sequence
with the graphics loop and as a result, any form of heavy
processing within the callback method slows down Blender.
A few examples are querying and updating multiple vertices
at once and processing the socket interface. To support
real-time visualizations, we implemented a combination of
maintaining a shared data queue and populating it using
separate threads. The plugin’s callback method then reads a
maximum number of vertex commands, specified by a user
defined vertex per frames parameter, from the shared data
queue. This allows for the real-time visualization of soft-
tissue deformation. The source code of all these packages
is provided 1. This communication protocol allows us to use
the neural network output to replace the physics backend and
visualize estimated deformations in real time.

User Server (Python)

create_server(hostname, port):

set_vtx_pos(vtx_idx, pos):

get_vtx_pos(vtx_idx): vector

get_vtx_count(): integer

get_obj_pose(): transform

set_vtx_pose(pose):

User
Application

(Python)

Blender Client

Fig. 7. The API of the user server.

III. EXPERIMENTS

A. Data collection

We used the dataset described in [11] and we point the
reader there for a more detailed description of the experiment
setup and data processing. Briefly, an Intel Realsense SR300
RGBD camera (Intel, Santa Clara, CA) was mounted above
the workspace of a da Vinci patient-side manipulator (PSM).
The phantom was made from a homogeneous plastic material
and its dimensions are 68.7 × 35.8 × 39.3mm. The setup
is shown in Fig. 8. The depth resolution of the camera is
2 mm. Each frame of the depth camera is read out as a point

1https://github.com/adnanmunawar/blender_socket_
comm

cloud. We use the Point Cloud Library (PCL) [23] to remove
points from the instrument and the table, as well as outliers,
so that the only points that remain are the ones from the
phantom. The scene is primarily composed of three objects:
the table, the phantom, and the robot instrument. We cluster
the points by a manually identified distance threshold. This
is sufficient to separate the points into three groups, with
each group belonging to one of the objects in the scene. As
the phantom is the second largest object in the scene, our
segmentation algorithm selects the second largest group of
points as belonging to the phantom and removes all other
points. Then we subsample the points to about 45k points,
or about 16.5 points per mm2.

The depth camera point cloud was recorded at 30 Hz,
while the robot kinematics was recorded at 1 kHz as the
PSM was manually moved to interact with a gel phantom.
Each sequence was between one to two minutes long and
contained several distinct interactions with the phantom. The
tool was lifted to not touch the phantom between interactions.
Each sequence is a set of palpation actions performed at
different speeds. The robot kinematics were subsampled to
match observations of the point cloud. We use ten sequences
from the dataset that were captured at the same frequency.
Eight sequences were used for training, and one each for
validation and test. This results in around 12 minutes, or
21k frames, of video. Of those interactions, one sequence of
3794 frames is used as the validation set. One sequence of
2410 frames is used as the test set.

Fig. 8. Image of the setup. An Intel Realsense SR300 RGBD camera is
mounted above the phantom and the robot. Reprinted with permission from
Springer Nature from [11].

Following our previous approach [11], we created FEM
simulations using the SOFA Framework [24]. We used the
optimal parameters found in the previous study and set the
Young’s Modulus to 5× 103 and the Poisson’s ratio to 0.44.
While a coarser mesh of 13 × 5 × 5 was determined to be
sufficient in our previous work, we increased the size of the
mesh to 25×9×9 here as it resulted in the network learning
more stable simulations. We empirically set the FEM simu-
lation time step to 0.1 ms as a balance between computation
time and accuracy of the FEM. The robot and camera frames
are calibrated to match the simulation frame. We use iterative
closest point (ICP) [25] with manual initialization to register

between the point cloud and the simulation scene. We move
the end-effector to each of the four corners of the block and
calculate the rigid transformation between the robot and the
simulation scene.

B. Implementation

This work was implemented on a workstation with a Xeon
Processor E5-1630 v4 CPU (Intel, Santa Clara CA, USA) and
a Titan V GPU (Nvidia, Santa Clara CA, USA). We imple-
mented the network in PyTorch [26]. Since neural networks
have been shown by previous work [10] to be stable over
larger simulation steps compared with FEMs, we sampled
the output of the FEM to match the camera’s frequency of
30 Hz to create the training data for the simulator network.
We used L2 loss between the network output and the FEM
ground truth. We chose stochastic gradient descent as the
optimizer, setting momentum to 0.9 and learning rate to
10−4, with decay on plateau scheduler. We initially trained
with each update step set to be at most half a voxel-step
in each direction to speed up convergence. Once that has
converged, we increased the step size to one full voxel.

IV. RESULTS

We test the simulation network on the held out sequence,
which is 80 s long and consists of several interactions with
the phantom both on top and on the side. Fig. 9 shows
simulation results from both the FEM and the network
for samples from the test sequence, using the visualization
software described in Section II.C.

Qualitatively, the network errors come from underestimat-
ing the deformations in some cases. Interactions to the side
of the mesh may also introduce errors. We hypothesize that
this is because interactions to different sides of the mesh
have different effects and are thus harder to learn.

Although the entire sequence is performed as one sim-
ulation, we split the frames into 10 s segments for error
calculations. This captures the range of errors resulting
from different amounts of interaction with the phantom. In
particular, the beginning and end sequences may have fewer
interactions. This results in 8 sequences. As Table I shows,
the error between the FEM and the network prediction for
each sequence, as measured by Euclidean distance, is small.
It is much smaller than the distance from point cloud to
either the FEM or network simulation, which we measured
as the average distance from each point in the point cloud
to its closest neighbor on the mesh. This suggests that
the error between the network prediction and the FEM is
within the range of error from modeling using FEM. The
advantage of the network simulation is that the total runtime
to generate sequences with the network is 47 s, where each
second consisted of 50 simulation steps. This is sufficient
for real time performance as the video sequence covers a
80 s time span. Network predictions can be made faster
than the video frame rate. In comparison, the FEM took
just under 15 h to run. The runtime is large for the mesh
size as we use collision models between the mesh and the
instrument, rather than directly applying forces on the mesh.

The runtime could be reduced by applying the forces directly
but direct force sensing is not currently available in most
clinical surgical systems. Using a method for force estimation
at the instrument tip, such as proposed in [27] [28], and
applying the force directly to the mesh could reduce the
simulation time. A larger step size could also be used to
reduce run time, but at the cost of larger error when compared
to the real observations.

TABLE I
AVERAGE (STANDARD DEVIATION) ERROR IN MM FOR EACH SEQUENCE

BETWEEN THE FEM, THE NETWORK SIMULATION MESHES, AND THE

OBSERVED POINT CLOUD (PC). ERROR BETWEEN FEM AND NETWORK

PREDICTION MESHES IS MEASURED AS THE EUCLIDEAN DISTANCE

BETWEEN EACH VERTEX. POINT CLOUD TO MESH ERROR IS MEASURED

AS AVERAGE DISTANCE OF EVERY POINT ON THE POINT CLOUD TO THE

CLOSEST POINT ON THE MESH.

Seq. FEM to Net PC to FEM PC to Net
1 0.51 (0.38) 4.56 (2.61) 4.48 (2.55)
2 0.60 (0.58) 4.15 (1.52) 4.00 (1.42)
3 0.54 (0.28) 5.85 (0.69) 5.63 (0.67)
4 0.65 (0.37) 5.31 (1.47) 5.05 (1.53)
5 1.04 (1.24) 3.48 (1.40) 3.19 (1.43)
6 0.81 (0.83) 3.97 (1.61) 3.88 (1.67)
7 0.86 (0.83) 4.28 (2.12) 4.03 (2.24)
8 0.59 (0.34) 5.92 (1.78) 5.70 (1.74)

Additionally, we evaluate how incorporating real time ob-
servations to correct the meshes would affect each case. We
implement the 2D U-Net version of the correction network
described in our prior work [11] and compare the error
between the point cloud and both the corrected FEM and the
corrected network outputs in Table II. Since we use a finer
mesh, here, we skip the mesh refinement step in training. Due
to limited data size, we use the same training and validation
sequences for both the simulator and correction networks,
which may reduce the performance of the correction network
for the network predictions.

TABLE II
AVERAGE (STANDARD DEVIATION) ERROR IN MM FOR EACH SEQUENCE

BETWEEN THE OBSERVED POINT CLOUD (PC) AND CORRECTED

MESHES. POINT CLOUD TO MESH ERROR IS MEASURED AS AVERAGE

DISTANCE OF EVERY POINT ON THE POINT CLOUD TO THE CLOSEST

POINT ON THE MESH.

Seq. Corrected FEM Corrected Network
1 4.07 (2.52) 4.13 (2.26)
2 3.41 (1.40) 3.39 (1.27)
3 4.89 (0.56) 4.85 (0.54)
4 4.51 (1.41) 4.44 (1.41)
5 2.94 (1.34) 2.67 (1.33)
6 3.40 (1.53) 3.22 (1.59)
7 3.75 (2.02) 3.64 (2.13)
8 5.23 (1.69) 5.46 (1.60)

We observe that both sets of meshes also show similar
performance after correction. This paves the path for a
network-based soft-tissue simulator that can run at video-
frame rates and can incorporate real-time observations.

FEM

Net

Simulation Time

(a) (b) (c) (d) (e) (f)

Fig. 9. Sample frames of the simulation sequence over 80 s and multiple interactions with the phantom. The network generally matches the FEM
predictions. Comparing frames (a) and (b), we see that the network initially detected the interaction but returned to the undeformed mesh too quickly. In
frame (d), we see that there is an error in the direction of the deformation and that propagated through the remaining frames as the network is slow to
recover from unexpected errors.

V. DISCUSSION AND CONCLUSION

The proposed method is able to accurately simulate soft-
tissue deformation by learning from FEM simulations. Its
ability to run at video-frame rates at test time makes this
approach also suitable for providing real-time feedback to
users, such as for intraoperative guidance or a surgical
simulator. After correction, its errors generally fall below
the 5 mm identified as clinically useful [8]. As this is similar
to the FEM error, improving the FEM by using a finer
mesh may also improve the network predictions. Although
the overall error is lower, we observe that the network
predictions are smoother than that of the FEM. One potential
solution for the over-smooth problem could be to train
a GAN to sharpen the mesh, such as that used in [29].
Currently, we assume that the robot tracks the instrument
end-effector position accurately and four points are sufficient
to match the robot to the simulation frame. Incorporating
tracking kinematics errors [30] and more extensive calibra-
tion techniques such as [31] may reduce the error for both
the FEM and the network.

In this work, we used fairly coarse meshes as we focused
on having enough data with which to train a network, similar
to the cantilever used in [9]. An interesting extension is to
include elements from networks used in plastic deformation
such as in [20], which builds a graph in each step. This way,
one could adopt the adaptive meshing used in FEMs [32] to
better capture details in more deformed areas. The drawback
is that the graph discovery step remains an open question
for elastic materials. In plastic materials, the interactions only
depend on each node’s neighbors at each time step whereas in
elastic materials, it also depends on a node’s starting position.

Currently, all our training data sequences were collected
at the same frequency. An extension to this work could
incorporate time as a parameter of the network to account
for simulations at different time steps. A next step can also
look at generalizing to different geometries and material
parameters. More work is needed to determine whether a
network trained on one phantom could be fine-tuned to
phantoms of different geometry and material.

Using real-time volumetric observations may improve data
availability. Future work could use 3D ultrasound or other
imaging sources to train directly from observations. This
would skip the dependence on FEMs and entirely avoid
the need to estimate material parameters and tissue bound-
aries. As collecting 3D observations of deformation is time-
consuming, e.g. by using 3D ultrasound, or may require
high radiation exposure, e.g. by using CT scans, we are also
considering options to augment limited observations. One
potential augmentation is methods that estimate the entire
mesh from partial observation, such as [2], thereby replacing
training from FEM with observations. Combining this with
methods that construct point clouds from endoscope videos,
such as [33], could allow data from any robotic procedure on
a phantom with known geometry to be a potential source of
training data. Future work may also consider pre-training on
a phantom organ and using real observations to update the
network for patient-specific characteristics. This may reduce
the amount of patient training data required. For example,
pre-training followed by training for patient-specific correc-
tions has shown potential for force sensing [28].

This work has shown a first step of a deep-learning based
soft-tissue simulator that can provide step-wise estimations
of deformations. It has been integrated with the dVRK
environment and can be incorporated in the open-source
libraries as an interactive, accurate soft-tissue simulator.
Additionally, an open source Blender client is provided to
facilitate visualization of deforming meshes. These contri-
butions can be used to provide real-time simulations and
would enable future research that requires interacting with
phantoms in simulated settings, such as training tasks and
surgical challenges.

ACKNOWLEDGMENT

This research was supported in part by NSF OISE 1927354
and by a collaborative research agreement with the Multi-
Scale Medical Robotics Center in Hong Kong. The Titan V
used for this research was donated by Nvidia Corporation.

REFERENCES

[1] O. Mohareri, J. Ischia, P. C. Black, C. Schneider, J. Lobo, L. Golden-
berg, and S. E. Salcudean, “Intraoperative registered transrectal ultra-
sound guidance for robot-assisted laparoscopic radical prostatectomy,”
The Journal of Urology, vol. 193, no. 1, pp. 302–312, 2015.

[2] M. Pfeiffer, C. Riediger, J. Weitz, and S. Speidel, “Learning soft tissue
behavior of organs for surgical navigation with convolutional neural
networks,” International Journal of Computer Assisted Radiology and
Surgery, vol. 14, no. 7, pp. 1147–1155, 2019.

[3] S. Suwelack, S. Röhl, S. Bodenstedt, D. Reichard, R. Dillmann, T. dos
Santos, L. Maier-Hein, M. Wagner, J. Wünscher, H. Kenngott et al.,
“Physics-based shape matching for intraoperative image guidance,”
Medical Physics, vol. 41, no. 11, p. 111901, 2014.

[4] S. Cotin, H. Delingette, and N. Ayache, “Real-time elastic deforma-
tions of soft tissues for surgery simulation,” IEEE Transactions on
Visualization and Computer Graphics, vol. 5, no. 1, pp. 62–73, 1999.

[5] S. Fialko and V. Karpilowskyi, “Multithreaded parallelization of the
finite element method algorithms for solving physically nonlinear
problems,” in 2018 Federated Conference on Computer Science and
Information Systems (FedCSIS), 2018, pp. 311–318.

[6] H. Courtecuisse, J. Allard, P. Kerfriden, S. P. Bordas, S. Cotin, and
C. Duriez, “Real-time simulation of contact and cutting of heteroge-
neous soft-tissues,” Medical Image Analysis, vol. 18, no. 2, pp. 394–
410, 2014.

[7] J. Zhang, Y. Zhong, J. Smith, and C. Gu, “A new ChainMail approach
for real-time soft tissue simulation,” Bioengineered, vol. 7, no. 4, pp.
246–252, 2016.

[8] J.-N. Brunet, A. Mendizabal, A. Petit, N. Golse, E. Vibert, and
S. Cotin, “Physics-based deep neural network for augmented reality
during liver surgery,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, 2019, pp.
137–145.

[9] A. Mendizabal, P. Márquez-Neila, and S. Cotin, “Simulation of hy-
perelastic materials in real-time using deep learning,” Medical Image
Analysis, vol. 59, p. 101569, 2020.

[10] F. Meister, T. Passerini, V. Mihalef, A. Tuysuzoglu, A. Maier, and
T. Mansi, “Deep learning acceleration of Total Lagrangian Explicit
Dynamics for soft tissue mechanics,” Computer Methods in Applied
Mechanics and Engineering, vol. 358, p. 112628, 2020.

[11] J. Y. Wu, P. Kazanzides, and M. Unberath, “Leveraging vision and
kinematics data to improve realism of biomechanic soft tissue simula-
tion for robotic surgery,” International Journal of Computer Assisted
Radiology and Surgery, vol. 15, no. 5, pp. 811–818, 2020.

[12] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor,
and S. P. DiMaio, “An open-source research kit for the da Vinci®
surgical system,” in IEEE International Conference on Robotics and
Automation (ICRA), 2014, pp. 6434–6439.

[13] G. Joldes, G. Bourantas, B. Zwick, H. Chowdhury, A. Wittek,
S. Agrawal, K. Mountris, D. Hyde, S. K. Warfield, and K. Miller,
“Suite of meshless algorithms for accurate computation of soft tissue
deformation for surgical simulation,” Medical Image Analysis, vol. 56,
pp. 152–171, 2019.

[14] J. Zhang, Y. Zhong, and C. Gu, “Neural network modelling of soft
tissue deformation for surgical simulation,” Artificial Intelligence in
Medicine, vol. 97, pp. 61–70, 2019.

[15] G. San-Vicente, I. Aguinaga, and J. T. Celigueta, “Cubical mass-
spring model design based on a tensile deformation test and nonlinear
material model,” IEEE Transactions on Visualization and Computer
Graphics, vol. 18, no. 2, pp. 228–241, 2011.

[16] J. Zhang, Y. Zhong, and C. Gu, “Deformable models for surgical
simulation: a survey,” IEEE Reviews in Biomedical Engineering,
vol. 11, pp. 143–164, 2017.

[17] R. Haferssas, P.-H. Tournier, F. Nataf, and S. Cotin, “Simulation of
soft tissue deformation in real-time using domain decomposition,”
Dec. 2019, working paper or preprint. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-02400982

[18] H. Gao and S. Ji, “Graph U-Nets,” in International Conference on
Machine Learning. PMLR, 2019, pp. 2083–2092.

[19] Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Torralba, “Learning
particle dynamics for manipulating rigid bodies, deformable objects,
and fluids,” in Intl. Conf. on Learning Representations, 2019.

[20] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec,
and P. Battaglia, “Learning to simulate complex physics with graph
networks,” in International Conference on Machine Learning. PMLR,
2020, pp. 8459–8468.

[21] J. Y. Wu, Z. Chen, A. Deguet, and P. Kazanzides, “FPGA-based
velocity estimation for control of robots with low-resolution encoders,”
in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2018, pp. 6384–6389.

[22] B. O. Community, Blender - a 3D modelling and rendering package,
Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.
[Online]. Available: http://www.blender.org

[23] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in IEEE Intl. Conf. on Robotics and Automation, 2011, pp. 1–4.

[24] J. Allard, S. Cotin, F. Faure, P.-J. Bensoussan, F. Poyer, C. Duriez,
H. Delingette, and L. Grisoni, “Sofa-an open source framework for
medical simulation,” in MMVR 15-Medicine Meets Virtual Reality,
vol. 125. IOP Press, 2007, pp. 13–18.

[25] P. J. Besl and N. D. McKay, “Method for registration of 3-D shapes,”
in Sensor fusion IV: control paradigms and data structures, vol. 1611.
International Society for Optics and Photonics, 1992, pp. 586–606.

[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035.

[27] N. Yilmaz, J. Y. Wu, P. Kazanzides, and U. Tumerdem, “Neural
network based inverse dynamics identification and external force
estimation on the da Vinci Research Kit,” in Intl. Conf. on Robotics
and Automation (ICRA). IEEE, 2020, pp. 1387–1393.

[28] J. Y. Wu, N. Yilmaz, U. Tumerdem, and P. Kazanzides, “Robot force
estimation with learned intraoperative correction,” in International
Symposium on Medical Robotics (ISMR). IEEE, 2021.

[29] L. Fink, S. C. Lee, J. Y. Wu, X. Liu, T. Song, Y. Velikova, M. Stam-
minger, N. Navab, and M. Unberath, “Lumipath–towards real-time
physically-based rendering on embedded devices,” in International
Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer, 2019, pp. 673–681.

[30] M. Hwang, B. Thananjeyan, S. Paradis, D. Seita, J. Ichnowski, D. Fer,
T. Low, and K. Goldberg, “Efficiently calibrating cable-driven surgical
robots with RGBD fiducial sensing and recurrent neural networks,”
IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5937–5944,
2020.

[31] A. Roberti, N. Piccinelli, D. Meli, R. Muradore, and P. Fiorini, “Im-
proving rigid 3-d calibration for robotic surgery,” IEEE Transactions
on Medical Robotics and Bionics, vol. 2, no. 4, pp. 569–573, 2020.

[32] S. Lo, “Finite element mesh generation and adaptive meshing,”
Progress in Structural Engineering and Materials, vol. 4, no. 4, pp.
381–399, 2002.

[33] X. Liu, A. Sinha, M. Ishii, G. D. Hager, A. Reiter, R. H. Taylor,
and M. Unberath, “Dense depth estimation in monocular endoscopy
with self-supervised learning methods,” IEEE Transactions on Medical
Imaging, 2019.

