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Al recognition of patient race in medical imaging:
a modelling study

Judy Wawira Gichoya, Imon Banerjee, Ananth Reddy Bhimireddy, John L Burns, Leo Anthony Celi, Li-Ching Chen, Ramon Correa, Natalie Dullerud,
Marzyeh Ghassemi, Shih-Cheng Huang, Po-Chih Kuo, Matthew P Lungren, Lyle ] Palmer, Brandon ] Price, Saptarshi Purkayastha, Ayis T Pyrros,
Lauren Oakden-Rayner, Chima Okechukwu, Laleh Seyyed-Kalantari, Hari Trivedi, Ryan Wang, Zachary Zaiman, Haoran Zhang

Summary

Background Previous studies in medical imaging have shown disparate abilities of artificial intelligence (AI) to detect
a person’s race, yet there is no known correlation for race on medical imaging that would be obvious to human
experts when interpreting the images. We aimed to conduct a comprehensive evaluation of the ability of AI to
recognise a patient’s racial identity from medical images.

Methods Using private (Emory CXR, Emory Chest CT, Emory Cervical Spine, and Emory Mammogram) and public
(MIMIC-CXR, CheXpert, National Lung Cancer Screening Trial, RSNA Pulmonary Embolism CT, and Digital Hand
Atlas) datasets, we evaluated, first, performance quantification of deep learning models in detecting race from medical
images, including the ability of these models to generalise to external environments and across multiple imaging
modalities. Second, we assessed possible confounding of anatomic and phenotypic population features by assessing the
ability of these hypothesised confounders to detect race in isolation using regression models, and by re-evaluating the
deep learning models by testing them on datasets stratified by these hypothesised confounding variables. Last, by
exploring the effect of image corruptions on model performance, we investigated the underlying mechanism by which
Al models can recognise race.

Findings In our study, we show that standard Al deep learning models can be trained to predict race from medical
images with high performance across multiple imaging modalities, which was sustained under external validation
conditions (x-ray imaging [area under the receiver operating characteristics curve (AUC) range 0-91-0-99], CT chest
imaging [0-87-0-96], and mammography [0-81]). We also showed that this detection is not due to proxies or imaging-
related surrogate covariates for race (eg, performance of possible confounders: body-mass index [AUC 0-55], disease
distribution [0-61], and breast density [0-61]). Finally, we provide evidence to show that the ability of Al deep learning
models persisted over all anatomical regions and frequency spectrums of the images, suggesting the efforts to control
this behaviour when it is undesirable will be challenging and demand further study.

Interpretation The results from our study emphasise that the ability of AI deep learning models to predict self-reported
race is itself not the issue of importance. However, our finding that Al can accurately predict self-reported race, even
from corrupted, cropped, and noised medical images, often when clinical experts cannot, creates an enormous risk for
all model deployments in medical imaging.
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Introduction

Bias and discrimination in artificial intelligence (AI)
systems has been studied in multiple domains,*
including in many health-care applications, such as
detection of melanoma,”® mortality prediction, and
algorithms that aid the prediction of health-care use,® in
which the performance of Al is stratified by self-reported
race on a variety of clinical tasks.” Several studies have
shown disparities in the performance of medical Al
systems across race. For example, Seyyed-Kalantari and
colleagues showed that Al models produce significant
differences in the accuracy of automated chest x-ray
diagnosis across racial and other demographic groups,
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even when the models only had access to the chest x-ray
itself.? Importantly, if used, such models would lead to
more patients who are Black and female being incorrectly
identified as healthy compared with patients who are
White and male. Moreover, racial disparities are not
simply due to underrepresentation of these patient
groups in the training data, and there exists no statistically
significant correlation between group membership and
racial disparities.”

In related work, several groups reported that Al
algorithms can identify various demographic patient
factors. One study" found that an AI model could predict
sex and distinguish between adult and paediatric patients
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Research in context

Evidence before this study

We used three different search engines to do our review.

For PubMed, we used the following search terms: “(((disparity
OR bias OR fairness) AND (classification)) AND (x-ray OR
mammography)) AND (machine learning [MeSH Terms]).”
For IEEE Xplore, we used the following search terms:
“((disparity OR bias OR fairness) AND (mammography OR
x-ray) AND (machine learning))”. For ACM, we used the
following search terms: “[ Abstract: mammography x-ray]
AND [Abstract: classification prediction] AND [All: disparity
fairness]”. All queries were limited to dates between

Jan 1, 2010, and Dec 31, 2020. We included any studies that
were published in English, focused on medical images, and
that were original research. We also reviewed commentaries
and opinion articles. We excluded articles that were not
written in English or that were outside of the medical imaging
domain. To our knowledge, there is no published meta-
analysis or systematic review on this topic. Most published
papers focused on measuring disparities in tabular health data
without much emphasis on imaging-based approaches.

Although previous work has shown the existence of racial
disparities, the mechanism for these differences in medical
imaging is, to the best of our knowledge, unexplored. Pierson
and colleagues noted that an artificial intelligence (Al) model
that was designed to predict severity of osteoarthritis using
knee x-rays could not identify the race of the patients. Yi and
colleagues conducted a forensics evaluation on chest x-rays
and found that Al algorithms could predict sex, distinguish
between adult and paediatric patients, and differentiate
between US and Chinese patients. In ophthalmology, retinal
scan images have been used to predict sex, age, and cardiac
markers (eg, hypertension and smoking status). We found few
published studies that explicitly targeted the recognition of
racial identity from medical images, possibly because
radiologists do not routinely have access to, nor rely on,
demographic information (eg, race) for diagnostic tasks in
clinical practice.

from chest x-rays, while other studies” reported
reasonable accuracy at predicting the chronological age of
patients from various imaging studies. In ophthalmology,
retinal images have been used to predict sex, age, and
cardiac markers (eg, hypertension and smoking status).”*
These findings, which show that demographic factors
that are strongly associated with disease outcomes
(eg, age, sex, and racial identity), are also strongly
associated with features of medical images and might
induce bias in model results, mirroring what is known
from over a century of clinical and epidemiological
research on the importance of covariates and potential
confounding.”” Many published AI models have
conceptually amounted to simple bivariate analyses (ie,
image features and their ability to predict clinical
outcomes). Although more recent AI models have begun

Added value of this study

In this study, we investigated a large number of publicly and
privately available large-scale medical imaging datasets and
found that self-reported race is accurately predictable by Al
models trained with medical image pixel data alone as model
inputs. First, we showed that Al models are able to predict race
across multiple imaging modalities, various datasets, and
diverse clinical tasks. This high level of performance persisted
during external validation of these models across a range of
academic centres and patient populations in the USA, as well as
when the models were optimised to do clinically motivated
tasks. Second, we conducted ablations that showed that this
detection was not due to trivial proxies, such as body habitus,
age, tissue density, or other potential imaging confounders for
race (eg, underlying disease distribution in the population).
Finally, we showed that the features learned appear to involve
all regions of the image and frequency spectrum, suggesting
the efforts to control this behaviour when it is undesirable will
be challenging and demand further study.

Implications of all the available evidence

In our study, we emphasise that the ability of Al to predict racial
identity is itself not the issue of importance, but rather that this
capability is readily learned and therefore is likely to be present in
many medical image analysis models, providing a direct vector
for the reproduction or exacerbation of the racial disparities that
already exist in medical practice. This risk is compounded by the
fact that human experts cannot similarly identify racial identity
from medical images, meaning that human oversight of Al
models is of limited use to recognise and mitigate this problem.
This issue creates an enormous risk for all model deployments in
medical imaging: if an Al model relies on its ability to detect racial
identity to make medical decisions, but in doing so produced
race-specific errors, clinical radiologists (who do not typically have
access to racial demographic information) would not be able to
tell, thereby possibly leading to errors in health-care decision
processes.

to consider other risk factors that conceptually approach
multivariate modelling, which is the mainstay of clinical
and epidemiological research, key demographic covariates
(eg, age, sex, and racial identity) have been largely ignored
by most deep learning research in medicine.

Findings regarding the possibility of confounding of
racial identity in deep learning models suggest a possible
mechanism for racial disparities resulting from Al
models: that AT models can directly recognise the race of a
patient from medical images. However, this hypothesis is
largely unexplored™ and, in contrast to other demographic
factors (eg, age and sex), there is a widely held, but tacit,
belief among radiologists that the identification of a
patient’s race from medical images is almost impossible,
and that most medical imaging tasks are essentially race
agnostic (ie, the task is not affected by the patient’s race).
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Given the possibility for discriminatory harm in a key
component of the medical system that is assumed to be
race agnostic, understanding how race has a role in
medical imaging models is of high importance® as many
Al systems that use medical images as the primary inputs
are being cleared by the US Food and Drug Administration
and other regulatory agencies.””

In this study, we aimed to investigate how Al systems
are able to detect a patient’s race to differing degrees of
accuracy across self-reported racial groups in medical
imaging. To do so, we aimed to investigate large publicly
and privately available medical imaging datasets to
examine whether Al models are able to predict an
individual's race across multiple imaging modalities,
various datasets, and diverse clinical tasks.

Methods

Definitions of race and racial identity

Race and racial identity can be difficult attributes to
quantify and study in health-care research” and are often
incorrectly conflated with biological concepts (eg, genetic
ancestry).” In this modelling study, we defined race as a
social, political, and legal construct that relates to the
interaction between external perceptions (ie, “how do
others see me?”) and self-identification, and specifically
make use of self-reported race of patients in all of our
experiments. We variously use the terms race and racial
identity to refer to this construct throughout this study.

Datasets

We obtained public and private datasets (table 1, appendix
p 2) that covered several imaging modalities and clinical
scenarios. No one single race was consistently dominant
across the datasets (eg, the proportion of Black patients

was between 6% and 72% across the datasets). For all
datasets, ethical approval was obtained from the relevant
institutional ethical boards.

Investigation of possible mechanisms of race detection
We conduced three main groups of experiments to
investigate the cause of previously established Al per-
formance disparities by patient race. These experiments
were: (1) to assess the ability of deep learning AT models
to recognise race from medical images, including the
ability of these models to generalise to new environments
and across multiple imaging modalities; (2) to examine
possible confounding anatomic and phenotype popu-
lation features as explanations for these performance
scores, and (3) to investigate the underlying mechanisms
by which AI models can recognise race. The full list of
experiments are summarised in table 2 and the
appendix (pp 22-23).

We did not present measures of performance variance
or null hypothesis tests because these data are
uninformative given the large dataset sizes and the large
effect sizes reported (ie, even in experiments in which a
hypothesis could be defined, all p values were <0-001).

Race detection in radiology imaging

To investigate the ability of deep learning systems to
detect race from radiology images, first, we developed
models for the detection of racial identity on three large
chest x-ray datasets—MIMIC-CXR (MXR),” CheXpert
(CXP),” and Emory-chest x-ray (EMX) with both internal
validation (ie, testing the model on an unseen subset of
the dataset used to train the model) and external
validation (ie, testing the model on a completely different
dataset than the one used to train the model) to establish

See Online for appendix

MXR (0.4 EMX NLST RSPECT EM-CT DHA EM-Mammo EM-CS
(Stanford subset)
Data type Chest x-ray Chest x-ray Chest x-ray Chest CT Chest CT Chest CT Digital Breast Lateral c-spine
(PE protocol) radiography x-ray mammograms  x-ray
Number of patients 53073 (228915) 65400 (223414) 90518 (227872) 512(198475) 254 (72329) 560 (187513) 691 (691) 27160 (86669) 997 (10358)
(number of images)
Sex
Female 27532 (51:9%) 29090 (44-5%) 48477 (53-6%)  184(36:0%)  135(531%) 286 (511%) 400 (49-2%) 27160 (100%) 535 (537%)
Male 25541 (48-1%) 36310 (55-5%) 42041 (46-4%)  328(64.0%) 119 (46:9%) 274 (48-9%) 391 (56-6%) 0 462 (46:3%)
Race
Black 8957 (16:9%) 3147 (4-8%) 42373 (46-8%) 241 (47-1%) 23(9:1%) 403 (72:0%)  333(48-2%) 13696 (50-4%) 247 (24-8%)
Asian 1935 (3-6%) 7096 (10-8%) 3293 (3-6%) 0 0 0 0 0 0
White 34035 (64-1%) 36765 (56-2%) 38071(42:1%)  271(53-0%)  231(90-9%) 157 (28:0%) 358 (51-8%) 13464 (49-6%) 750 (75-2%)
Unknown 8146 (153%) 18420 (28-2%) 6781 (7-5%) 0 0 0 0 0 0
Dataset split
Training, % 60-0% 60-0% 75:0% 78:0% 0 0 70-0% 60-0% 80:0%
Validation, % 10-0% 10-0% 12-5% 10:0% 0 0 10-0% 20-0% 10-0%
Test, % 30-0% 30-0% 12-5% 12-0% 100:0% 100-0% 20-0% 20-0% 10-0%

CXP=CheXpert dataset. DHA=Digital Hand Atlas. EM-CS=Emory Cervical Spine radiograph dataset. EM-CT=Emory Chest CT dataset. EM-Mammo=Emory Mammogram dataset. EMX=Emory chest x-ray dataset.
MXR=MIMIC-CXR dataset. NLST=National Lung Cancer Screening Trial dataset. RSPECT=RSNA Pulmonary Embolism CT dataset.

Table 1: Summary of datasets used for race prediction experiments
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Area under the receiver
operating characteristics curve

Area under the receiver
operating characteristics curve

Race detection in radiology imaging

Chest x-ray (internal validation)*
MXR (Resnet34, Densenet121)
CXP (Resnet 34)

EMX (Resnet34, Densenet121,
EfficientNet-B0)

Chest x-ray (external validation)*

MXR to CXP, MXR to EMX
CXP to EMX, CXP to MXR
EMXto MXR, EMX to CXP

Chest x-ray (comparison of models)t

MXR, CXP, EMX

CT chest (internal validation)*
NLST (slice, study)

CT chest (external validation)*
NLST to EM-CT (slice, study)
NLST to RSPECT (slice, study)

Limb x-ray (internal validation)*
DHA

Mammography*

EM-Mammo (image, study)

Cervical spine x-ray*

EM-CS

0-97,0-94
0-98
0-98,0-97,0-99

0-97,0-97
0-97,0-96
0-98,0-98
Multiple results (appendix p 26)

0-92,0-96

0-80,0-87
0-83,0-90

091

078,0-81

092

Experiments on anatomic and phenotypic confounders

BMI*
CXP

0-55, 0-52

Image-based race detection stratified by BMIt

EMX, MXR

Breast density*
EM-Mammo

Breast density and age*
EM-Mammo

Disease distribution*
MXR, CXP

Multiple results (appendix p 24)

054

0-61

0-61,0-57

Image-based race detection for the no finding class*

MXR

0-94

Model prediction after training on dataset with equal disease

distributiont
MXR

Removal of bone density features*

MXR, CXP

Impact of average pixel thresholdst

MXR

Impact of aget
MXR

Impact of patient sext
MXR

075

0-96,0-94

0-50

Multiple results (appendix p 27)

Multiple results (appendix p 28)

Combination of age, sex, disease, and body habitus*

EMX (logistic regression model,
random forest classifier, XGBoost

model)

0-65, 0-64, 0.64

(Table 2 continues in next column)

(Continued from previous column)
Experiments to evaluate the mechanism of race detection
Frequency domain filtering
High-pass filtering*
MXR Multiple results (appendix p 26)
Low-pass filtering*
MXR Multiple results (appendix p 26)
Notch filteringt
MXR Multiple results (appendix p 26)
Band-pass filteringt
MXR Multiple results (appendix p 25)
Image resolution and quality*
MXR Multiple results (appendix p 28)
Anatomical localisation
Lung segmentation experimentst
MXR Multiple results (appendix p 29)
Saliency mapst
MXR, CXP, EMX, NLST, DHA, EM-  Multiple results (appendix
Mammo, EM-CS pp 13-18)
Occlusion experimentst
MXR Multiple results (appendix p 30)
Patch-based training*
MXR Multiple results (appendix p 30)
Image acquisition differencest

EMX, EM-Mammo, ChexPhoto Multiple results (appendix p 31)

BMI=body-mass index. CXP=CheXpert dataset. DHA=Digital Hand Atlas.
EM-CS=Emory Cervical Spine radiograph dataset. EM-CT=Emory Chest CT dataset.
EM-Mammo=Emory Mammogram dataset. EMX=Emory CXR dataset.
MXR=MIMIC-CXR dataset. NLST=National Lung Cancer Screening Trial dataset.
RSPECT=RSNA Pulmonary Embolism CT dataset. *Results located in main text.
tResults located in the appendix.

Table 2: Summary of experiments conducted to investigate mechanisms
of race detection in Black patients

baseline performance. Second, we trained racial identity
detection models for non-chest x-ray images from
multiple body locations, including digital radiography,
mammograms, lateral cervical spine radiographs, and
chest CTs, to evaluate whether the model’s performance
was limited to chest x-rays.

After establishing that deep learning models could detect
a patient’s race in medical imaging data, we generated a
series of competing hypotheses to explain how this process
might occur. First, we assessed differences in physical
characteristics between patients of different racial groups
(eg, body habitus” or breast density®). Second, we assessed
whether there was a difference in disease distribution
among patients of different racial groups (eg, previous
studies provide evidence that Black patients have a higher
incidence of particular diseases, such as cardiac disease,
than White patients).”* Third, we assessed whether there
were location-specific or tissue-specific differences
(eg, there is evidence that Black patients have a higher
adjusted bone mineral density and a slower age-adjusted
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annual rate of decline in bone mineral density than White
patients).”* Fourth, we assessed whether there were
effects of societal bias and environmental stress on race
outcomes from medical imaging data, as shown by
differences in race detection by age and sex (reflecting
cumulative and occupational differences in exposures).
Last, we assessed whether there was an effect on the ability
of Al deep learning systems to detect race when multiple
demographic and patient factors were combined, including
age, sex, disease, and body habitus.

We also investigated potential explanations of race
detection that could target the known shortcut mechanisms
that deep models might be using as proxies for race® by
evaluating, first, frequency domain differences in the high
frequency image features (ie, textural) and low frequency
image features (ie, structural) that could be predictive of
race; second, how differences in image quality might
influence the recognition of race in medical images (given
the possibility that image acquisition practices might differ
for patients with different racial identities); and, last,
whether specific image regions contribute to the
recognition of racial identity (eg, specific patches or
regional variations in the images, such as radiographic
markers in the top right corner).

Role of the funding source

Grant support was used to pay for data collection, data
analysis, data interpretation, and writing of the
manuscript. The funders did not influence the decision
to publish or the target journal for publication.

Results

The deep learning models assessed in this study showed
a high ability to detect patient race using chest x-ray scans,
with sustained performance on other modalities and
strong external validations across datasets (table 3).

The ability of deep learning models that were trained on
the CXP dataset to predict patient race from the body-
mass index (BMI) alone was much lower than the image-
based chest x-ray models (area under the receiver
operating characteristics curve [AUC] 0-55), indicating
that race detection is not due to obvious anatomic and
phenotypic confounder variables. Similar results were
observed across stratified BMI groups (0-92-0-99;
appendix p 24).

The ability of logistic regression models to classify race
on the basis of tissue density (AUC 0-54) and on the
combination of age and tissue density (0-61) was far
lower than the ability of the image models on the breast
mammograms in the EM-Mammo dataset (0-81;
appendix p 25). These findings suggest that breast
density and age did not account for most image model
performance when detecting race.

Moreover, the ability of models to predict race from
the diagnostic labels alone was much lower than the
chest x-ray image-based models, with AUC values
between 0-54 and 0-61 for MXR, and between 0-52

www.thelancet.com/digital-health Vol 4 June 2022

and 0-57 for CXP (appendix p 30). AUC values for race
detection in the no finding class of 0-914 (95% CI
0-901-0-926) were obtained for Asian patients, 0-949
(0-945-0-953) for Black patients, and 0- 941 (0-937-0- 945)
for White patients, versus 0-944 (0-938-0-950 [Asian
patients]), 0-940 (0-937-0-942 [Black patients]), and
0-933 (0-930-0-936 [White patients]) for the entire
dataset containing all disease classes, including the no
finding class. These results suggest that high AUC values
for racial identity recognition were not caused by disease
labels.

We found that deep learning models effectively
predicted patient race even when the bone density
information was removed for both MXR (AUC value for
Black patients: 0-960 [CI 0-958-0-963]) and CXP (AUC
value for Black patients: 0-945 [CI 0-94-0-949]) datasets.
The average pixel thresholds for different tissues did not
produce any usable signal to detect race (AUC 0-5).
These findings suggest that race information was not
localised within the brightest pixels within the image
(eg, in the bone).

For patients in different age groups, there was no appre-
ciable difference in racial identity recognition perform-
ance (appendix p 15). Similarly, there was also no

Area under the receiver operating characteristics curve value for race
classification

Asian (95% Cl) Black (95% Cl) White (95% Cl)

Primary race detection in chest x-ray imaging

MXR Resnet34 0-986 (0-984-0-988) 0-982(0-981-0-983)  0-981(0-979-0-982)
CXP Resnet34 0-981(0-979-0-983) 0-980(0-977-0-983)  0-980 (0-978-0-981)
EMX Resnet34 0-969 (0-961-0-976) 0-992 (0-991-0-994)  0-988 (0-986-0-989)

External validation of race detection models in chest x-ray imaging

MXR Resnet34to CXP 0-947 (0-944-0-951) 0-962 (0-957-0-966)  0-948 (0-945-0-951)
MXR Resnet34 to EMX  0-914 (0-899-0-928) 0-983(0-981-0-985)  0-975 (0-973-0-978)
CXP Resnet34to MXR  0-974 (0-971-0-977) 0-955 (0-952-0-957) 0-956 (0:954-0-958)
CXP Resnet34 to EMX 0-915 (0-901-0-929) 0-968 (0-965-0-971) 0-954 (0-951-0-958)
EMX Resnet34to MXR  0-966 (0-962-0-969) 0-970(0-968-0-972)  0-964 (0-962-0-965)
EMX Resnet34toCXP 0-949 (0-946-0-952) 0-973 (0-970-0-977) 0-947 (0-945-0-950)

Race detection in non-chest x-ray imaging modalities: binary race detection (Black or White)
NLST 0-92 (slice; 0-910-0-918),
0-96 (study; 0-926-0-982)
0-80 (slice; 0-796-0-800),
0-87 (study; 0-829-0-904)

NLST to EM-CT

NLST to RSPECT 0-83 (slice; 0-825-0-834),
0-90 (study; 0-836-0-958)

EM-Mammo 0-78 (slice; 0-773-0-786),
0-81 (study; 0-794-0-818)

EM-CS 0-913 (0-892-0-931)

DHA 0-87 (0-752-0-894)

Values reflect the area under the receiver operating characteristics curve for each model on the test set per slice and per
study (by averaging the predictions across all slices). CXP=CheXpert dataset. DHA=Digital Hand Atlas. EM-CS=Emory
Cervical Spine radiograph dataset. EM-CT=Emory Chest CT dataset. EM-Mammo=Emory Mammogram dataset.
EMX=Emory CXR dataset. MXR=MIMIC-CXR dataset. NLST=National Lung Cancer Screening Trial dataset.
RSPECT=RSNA Pulmonary Embolism CT dataset.

Table 3: Performance of deep learning models to detect race from chest x-rays
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appreciable difference in racial identity recognition perfor-
mance between male and female patients (appendix p 17).

The performance of a logistic regression model
(AUC 0-65), a random forest classifier (0-64), and an
XGBoost model (0-64) to classify race on the basis of age,
sex, gender, disease, and body habitus performed much
worse than the race classifiers trained on imaging data
(AUC >0-95; appendix p 20). This finding suggests that
the combination of these confounders did not significantly
affect the imaging model’s ability to classify race.

We also examined whether race information persisted
in all spectral ranges and in the presence of highly
degraded images. As shown in figure 1, we tested the
effect on model performance of adding a low-pass filter
and a high-pass filter for various diameters in the MXR
dataset, and show samples of the transformed images in
figure 2. The addition of a low-pass filter resulted in
significantly degraded performance at around diameter
ten, which corresponded to high levels of visual

degradation. A high performance (up to diameter 100) in
the absence of discernible anatomical features was
maintained with the addition of a high-pass filter
(ie, model performance was maintained despite extreme
degradation of the image visually). Further experiments
that used band-pass and notch filtering are reported in
the appendix (pp 25-26), with the transformed images
visualised also given in the appendix (pp 7-8).

The AUC of various image resolutions, from 1 pixel
resolution to 320x320 images in the MXR dataset, are
shown in the appendix (p 12). For images at
160x160 resolution or higher, AUC values were >0-95.
There was a reduction in performance for images below
this resolution, which demonstrates that race information
persisted more than random chance even for resolutions
as small as 4x4 (appendix p 28). Similar results were
observed for the perturbed images, with AUC values
of 0-74 to 0-80 for the noisy images and 0-64 to 0-72 for
the blurred images (appendix p 29).

Concerning whether race information was localised to

Low pass filter High pass filter a specific anatomical region or body segment, using data

1.0+ - from multiple experiments from several datasets, there

¢ was no evidence of a clear contribution of any anatomical

g s %97 ] regions or body segments on race identity. Models tested
$ é 084 i on non-lung segmentations of images were better able to
2% identify race compared with models tested on lung
2 £ o7 . segmentations, but segmented predictions were lower
5 £ e White than the original image predictions (appendix p 29).
< § 067 ~e-Black | Therefore, the race information utilised by artificial
° 0s . . . *ASB:‘ . . . , intelligence was likely to be determined from a

0 50 100 150 200 0 50 100 150 200 | combination of information from all image segments,

Diameter (pixels) Diameter (pixels) including both lung and non-lung segments. Similar

findings were observed in slice-wise analysis of CT scans.
Occluding the image regions identified by saliency maps
(appendix p 9) caused a decrease in AUC values in race

Figure 1: The effect on model performance of adding a low-pass filter and a high-pass filter for various
diameters in the MXR dataset
MXR=MIMIC-CXR dataset.

HPF 100

LPF 100

Figure 2: Samples of the images after low-pass filters and high-pass filters in MXR dataset
HPF=high-pass filtering. LPF=low-pass filtering. MXR=MIMIC-CXR dataset.
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identification but still led to AUC values =0-67 (appendix
P 29).

Race prediction was robust to the removal of any
particular patch from images in the MXR dataset,
indicating that race information was not localised within
a specific part of the 3x3 grid (appendix p 30). We
observed that there are parts of the image with little race
information (appendix p 30). However, in most cases,
using only one ninth of the image was sufficient to obtain
prediction performance that was almost identical to
using the entire image (appendix p 30).

Race prediction performance was also robust across
models trained on single equipment and single hospital
location on the chest x-ray and mammogram datasets
(appendix pp 30-31). We observed a decrease in
performance (although the outputs were better than
random) on the digitised chest x-ray in the CheXphoto
dataset compared with the digital CXP dataset, implying
that some signal still persisted with different image
acquisitions (appendix p 31).

Discussion

In this modelling study, which used both private and
public datasets, we found that deep learning models can
accurately predict the self-reported race of patients from
medical images alone. This finding is striking as this task
is generally not understood to be possible for human
experts. We also showed that the ability of deep models to
predict race was generalised across different clinical
environments, medical imaging modalities, and patient
populations, suggesting that these models do not rely on
local idiosyncratic differences in how imaging studies are
conducted for patients with different racial identities.
Beyond these findings, in two of the datasets (MXR and
CXP) analysed, all patients were imaged in the same
locations and with the same processes, presumably
independently of race.

We also provide evidence that disease distribution and
body habitus of patients in the CXP, MXR, and EMX
datasets were not strongly predictive of racial group,
implying that the deep learning models were not relying
on these features alone. Although an aggregation of
these and other features could be partially responsible
for the ability of AI models to detect racial identity in
medical images, we could not identify any specific image-
based covariates that could explain the high recognition
performance presented here.

Our findings conflict with data from Jabbour and
colleagues’ study,” which measured the extent to which
models learned potentially sensitive attributes (eg, age,
race, and BMI) from an institutional dataset (the AHRF
dataset) of 1296 patient chest x-rays. Their findings led to
an AUC value of 0-66 (0-54-0-79). Possible explanations
for this discrepant performance compared with our
experiment could be due to the use of transfer learning
in Jabbour and colleagues’ study, in which the MXR and
CXP datasets were used for initial training, and the final
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layers were fine-tuned on the AHRF dataset. This
possible contamination in the dataset might have
degraded performance due to label misalignment. We do
not have access to the AHRF dataset for further external
validation and Jabbour and colleagues did not extend
their experiments to MXR and CXP datasets.

The results of the low-pass filter and high-pass filter
experiments done in our study suggest that features
relevant to the recognition of racial identity were present
throughout the image frequency spectrum. Models trained
on low-pass filtered images maintained high performance
even for highly degraded images. More strikingly, models
that were trained on high-pass filtered images maintained
performance well beyond the point that the degraded
images contained no recognisable structures; to the
human coauthors and radiologists it was not clear that the
image was an x-ray at all. Furthermore, experiments that
were involved in patch-based training, slice-based error
analysis, and saliency mapping were non-contributory: no
specific regions of the images consistently informed race
recognition decisions. Overall, we were unable to isolate
specific image features that were responsible for the
recognition of racial identity in medical images, either by
spatial location, in the frequency domain, or that were
caused by common anatomic and phenotype confounders
associated with racial identity.

Although the ability to accurately detect self-reported
race from highly degraded x-ray images is not
meaningful on its own, this ability is important in the
larger sociotechnical context that AI models operate in
for medical imaging. One commonly proposed method
to mitigate the known disparity in AI model
performance is through the selective removal of
features that encode sensitive attributes to make AI
models “colorblind”.* Although this approach has
already been criticised as being ineffective, or even
harmful in some circumstances,* our work suggests
that such an approach could be impossible in medical
imaging because racial identity information appears to
be incredibly difficult to isolate. The ability to detect
race was not mitigated by any reasonable reduction in
resolution or by the addition of noise, nor by frequency
spectrum filtering or patch-based masking. Even
ignoring the question of whether these approaches
were beneficial, it seems plausible that technical
solutions along these lines are unlikely to succeed and
that strategies designed to detect racial bias,” paired
with the intentional design of models to equalise racial
outcomes,” should be considered to be the default
approach to optimise the safety and fairness of Al in
this context. The regulatory environment in particular,
while evolving, has not yet produced strong processes
to guard against unexpected racial recognition by Al
models; either to identify these capabilities in models
or to mitigate the harms that might be caused.

There were several limitations to this work. Most
importantly, we relied on self-reported race as the ground
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truth for our predictions. There has been extensive
research into the association between self-reported race
and genetic ancestry, which has shown that there is more
genetic variation within races than between races, and
that race is more a social construct than a biological
construct. We note that in the context of racial discrimi-
nation and bias, the vector of harm is not genetic ancestry
but the social and cultural construct that of racial identity,
which we have defined as the combination of external
perceptions and self-identification of race. Indeed, biased
decisions are not informed by genetic ancestry
information, which is not directly available to medical
decision makers in almost any plausible scenario. As
such, self-reported race should be considered a strong
proxy for racial identity.

Our study was also limited by the availability of racial
identity labels and the small cohorts of patients from
many racial identity categories. As such, we focused on
Asian, Black, and White patients, and excluded patient
populations that were too small to adequately analyse
(eg, Native American patients). Additionally, Hispanic
patient populations were also excluded because of
variations in how this population was recorded across
datasets. Moreover, our experiments to exclude bone
density involved brightness clipping at 60% and
evaluating average body tissue pixels, with no methods to
evaluate if there was residual bone tissue that remained
on the images. Future work could look at isolating
different signals before image reconstruction.

We finally note that this work did not establish new
disparities in AI model performance by race. Our study
was instead informed by previously published literature
that has shown disparities in some of the tasks we
investigated.”* The combination of reported disparities
and the findings of this study suggest that the strong
capacity of models to recognise race in medical images
could lead to patient harm. In other words, Al models
can not only predict the patients’ race from their medical
images, but appear to make use of this capability to
produce different health outcomes for members of
different racial groups.

To conclude, our study showed that medical Al systems
can easily learn to recognise self-reported racial identity
from medical images, and that this capability is extremely
difficult to isolate. We found that patient racial identity was
readily learnable from medical imaging data alone, and
could be generalised to external environments and across
multiple imaging modalities. We strongly recommend
that all developers, regulators, and users who are involved
in medical image analysis consider the use of deep
learning models with extreme caution as such information
could be misused to perpetuate or even worsen the well
documented racial disparities that exist in medical practice.
Our findings indicate that future Al medical imaging work
should emphasise explicit model performance audits on
the basis of racial identity, sex, and age, and that medical
imaging datasets should include the self-reported race of

patients when possible to allow for further investigation
and research into the human-hidden but model-
decipherable information related to racial identity that
these images appear to contain.
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