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Abstract

Purpose: Existing anomaly detection methods focus on detecting interclass variations while
medical image novelty identification is more challenging in the presence of intraclass variations.
For example, a model trained with normal chest x-ray and common lung abnormalities is
expected to discover and flag idiopathic pulmonary fibrosis, which is a rare lung disease and
unseen during training. The nuances of intraclass variations and lack of relevant training data in
medical image analysis pose great challenges for existing anomaly detection methods.

Approach: We address the above challenges by proposing a hybrid model—transformation-
based embedding learning for novelty detection (TEND), which combines the merits of clas-
sifier-based approach and AutoEncoder (AE)-based approach. Training TEND consists of two
stages. In the first stage, we learn in-distribution embeddings with an AE via the unsupervised
reconstruction. In the second stage, we learn a discriminative classifier to distinguish in-
distribution data and the transformed counterparts. Additionally, we propose a margin-aware
objective to pull in-distribution data in a hypersphere while pushing away the transformed data.
Eventually, the weighted sum of class probability and the distance to margin constitutes the
anomaly score.

Results: Extensive experiments are performed on three public medical image datasets with the
one-vs-rest setup (namely one class as in-distribution data and the left as intraclass out-of-
distribution data) and the rest-vs-one setup. Additional experiments on generated intraclass
out-of-distribution data with unused transformations are implemented on the datasets. The quan-
titative results show competitive performance as compared to the state-of-the-art approaches.
Provided qualitative examples further demonstrate the effectiveness of TEND.

Conclusion: Our anomaly detection model TEND can effectively identify the challenging
intraclass out-of-distribution medical images in an unsupervised fashion. It can be applied to
discover unseen medical image classes and serve as the abnormal data screening for downstream
medical tasks. The corresponding code is available at https://github.com/XiaoyuanGuo/TEND_
MedicalNoveltyDetection.
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1 Introduction

With recent prominent developments of machine learning techniques in computer vision, inte-
grating machine learning tools to solve medical image problems is becoming more and more
popular due to the powerful computation and efficiency.1 However, when deploying machine
learning models in real-world applications, models trained on in-distribution (ID) data may fail
to deal with out-of-distribution (OOD) inputs and assign incorrect probabilities.2 This can
severely contaminate the reliability of artificial intelligence models, especially in medical areas
as the safety in clinical decisions is much more critical than other fields. For example, a classifier
trained on existing bacterial classes wrongly classified a new type of bacteria as one of the
classes from the training data with high confidence,3 which could be concerning for clinical
usage but may be avoided by combining an OOD detection model. Thus a successful open-world
deployment with OOD detection should be sensitive to unseen classes and distribution-shifted
samples and also be resilient to potential adversarial attacks.4

However, medical OOD detection poses great challenges due to the heterogeneity and
unknown data characteristics of medical data. (1) Mutations can happen. Different from natural
objects with fixed attributes, known diseases may progress to other mutated versions and
generate anomalous data. (2) Heterogeneous data are a big concern. Medical images collected
from different race groups can introduce heterogeneity. (3) Distribution shifting always exists.
Data scanned with different machines or institutes may have distribution shifting. (4) Data
with defects are common. Medical images can be overexposed or scanned with incorrect
positions/angles.

OOD data, also called anomaly, outlier, usually refer to data that shows dissimilarity from the
training distribution. Given an image x, the goal of OOD detection is to identify whether x is
from ID dataset Din or OOD dataset Dout. There are two types of OOD data commonly targeted
to identify—(i) intraclass data: OOD data belonging this type, which is also called novelty data,
often shares severe similarity with the ID classes and is extremely challenging to distinguish,
e.g., the pneumonia chest x-ray presents close appearance with the normal images. (ii) Interclass
data: these data are significantly different from ID samples, e.g., a head CT image is very differ-
ent in shape and color from the skin cancer image. Even though many anomaly detection meth-
ods have been proposed,5,6 most of them focus on natural images and follow the one-vs-rest
setup7 for benchmark natural image datasets (e.g., MNIST,8 CIFAR-10,9 and ImageNet.10).
Thus the performance reported on the benchmark datasets is actually for interclass prediction
due to the clear class variation and is often trivial to detect. In contrast, the anomaly detection in
medical images is more of an intraclass identification problem, which can be also called novelty
detection.

To train a novelty detector with only ID data available, learning high-quality “normality”
features is the fundamental step to identify the OOD samples during inference. AutoEncoder
(AE)11 architecture, as an unsupervised model to learn efficient data features through reconstruc-
tion, is the most straightforward way to extract features for ID data.12 For anomaly detection, the
reconstruction error is treated as the score of outliers based on the assumption that the AE11 is
unable to reconstruct the anomalies well and causes large reconstruction errors. However, in the
intraclass detection where the variations among the in-class and out-of-class medical images of
the same category are very subtle, the AE11 often fails owing to the lack of discriminative ability
for intraclass detection (see Sec. 2).

To enhance the discriminative ability of the AE,11 we propose transformation-based embed-
ding learning of novelty detection (TEND) to distinguish intraclass OOD inputs in an unsuper-
vised fashion. Based on the vanilla AE11 model to learn the “normality” of ID data in the
first stage and function as a feature extractor in the second stage, TEND utilizes distorted
images generated by adding transformations on the ID data and treats the data as non-ID data
(marginal OOD, see Sec. 3.2). A binary classifier of TEND is trained with the ID data as normal
class and the non-ID data as OOD class. Hence, the classifier is aware of the existence of outliers
and gains certain identification ability of true outliers during inference without being trained on
any true OOD data. To further separate OOD data from the ID ones, we learn a distance metric
objective to encourage clustering of ID data during training and enforce a margin between OOD
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versus ID data in the embedding space. In summary, the main contributions of our paper are as
follows.

(1) We propose a novelty detection model TEND that utilizes the AE’s feature extraction and
adds discrimination ability for outliers with transformations of in-distribution data and
embedding distance as auxiliary. No out-of-distribution data are required for training
the model.

(2) Although there have been a lot of anomaly detection research work done, the accurate
detection performance results are lacking. We compare and report the novelty detection
performance details of the unsupervised TEND model with state-of-the-art anomaly
detection models and one supervised model on three public medical image datasets
following two experimental settings—one-vs-rest and rest-vs-one.

(3) We validate our method on diverse image datasets and demonstrate our model’s effec-
tiveness. Extensive evaluations include the detection of intraclass out-of-distribution data
from the original datasets and the corresponding generated with unused transformations
on in-distribution data. Given the experimental observations, our model will be beneficial
in discovering new anomaly cases in medical applications without any preconceived
OOD training data.

2 Background

There have been a lot of research works that summarize state-of-the-art anomaly detection
methods,13–18 generally the methods aiming for anomalous image data detection can be divided
into the following three categories:

2.1 AutoEncoder-Based Methods

AE11 models can help extract significant embedding features by reconstructing the original
images unsupervised. Trained with ID data, the architectures learn the “normality” and should
lead to large reconstruction error when working on OOD dataset. Thus the reconstruction error
acts as the anomaly score to separate ID and OOD data.19–21 However, AE risks learning the
identity function by simply outputting the original inputs, which largely limits its discriminative
ability of anomalies. Other improved versions of AE are also used for anomaly detection,22–25

e.g., variational autoencoders (VAE)25 provide probabilistic way of describing the latent space to
reconstruct input data. Nevertheless, the reconstruction is often blurry and not good enough for
clear discrimination of outliers. Since TEND is designed based on AE, we take the vanilla AE11

as a baseline. In addition, we also compare the performance with an extension of AE that adds a
Gaussian mixture model (GMM) head on the AE backbone, (AE_GMM for simplicity’s sake)
and the standard VAE25 model. Similar with VAE, UAV-AdNet26 uses the Kullback–Leibler
divergence to regularize losses for anomaly detection but focuses on autonomous surveillance
systems with GPS label used, which does not apply to this work.

2.2 Generative Adversarial Network-Based Methods

Similar to the AE models, GAN27 framework can also learn latent feature representations by
training a fake image generator and a real-vs-fake image discriminator.28,29 With the adversarial
feature learning, GAN-based anomaly detectors can acquire discriminative latent features that
can be used for separating the ID data from the OOD data. To further improve the discriminative
ability of latent representations, BiGAN30 adopts a bidirectional mapping learning. GANomaly31

minimizes the distance of the ID data and the generated ones in latent feature space to detect the
OOD data with large distance. Even so, the performance of GAN-based anomaly detectors
largely depends on the training of GAN models, which always require large amounts of training
data for OOD and often fail to handle inputs with large image size. Instead of selecting
AnoGAN,32 which detects pixel-wise anomalies rather than in image level, we compare
TEND with GANomaly31 and f-AnoGAN,33 AnoGAN’s extension, for experiments given the
better performance.
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2.3 Classifier-Based Methods

As the novelty detection in medical images can be reduced to a one-class classification34 problem
with the one-vs-rest setup, one-class classifiers are often used for identifying unseen classes, e.g.,
OC-SVM,35 FCDD,6 DOC,36 and DeepSVDD.12 With only ID data as training inputs, one-class
classifiers often optimize a kernel-based objective function and minimize a hypersphere to
threshold out the anomaly data based on distance. The one-class classifiers exploit in-distribution
data with specific object functions to threshold out anomalies. Nonetheless, their detection
abilities on intraclass OOD data are not effective as the intraclass OOD data share a lot of
similarity with the ID data. Except for the one-class classifiers, ODIN37 works on multiclasses
datasets by adding perturbations of the input and temperature scaling to the score function to
distinguish in-distribution and OOD data. Despite the efficiency and sophisticated methodology,
the prerequisites of multiple OOD classes of the dataset are not typical in the medical image area
and thus classifier-based methods have limited applicability in healthcare. To showcase the per-
formance difference, we choose DeepSVDD,12 which is a representative model, to compare
with TEND.

3 Method

TEND focuses on novelty identification for medical images. By following the one-vs-rest setup6

and its reversed version—the rest-vs-one setup, one or more certain classes of the datasets in use
are treated as normal classes. Unsupervised learning of feature embeddings for the normal
classes is the fundamental step for outlier detection. GANs and AEs are all good options for
this work. Nonetheless, GANs often require large amounts of data for training and are unstable
for large images, we choose the vanilla AE27 to encode the ID data. Moreover, as introduced in
Sec. 2, AEs are designed for compressing inputs and have no strong discriminative ability, which
makes them inappropriate for medical novelty detection because of the minute intraclass var-
iations of medical image datasets. Thus to enhance the discriminative ability of TEND, we train a
binary classifier and a margin-aware objective function (also called margin learner) jointly to
separate the normal class data from the anomalies.

3.1 Architecture

Figure 1 shows the network architecture of TEND, which is a two-stage novelty detector with an
AE11 as the feature extractor backbone. In order to train the feature extractor with only ID data,
the AE11 model (shown in the dotted blue box of Fig. 1) is optimized with a reconstruction loss
function Lrec. The learnt bottleneck section will be frozen as indicated by the purple lock in Fig. 1
and used for encoding/extracting image features in the second stage. To train the following
binary discriminator without OOD data available, we add transformations on the original images
to construct distribution-shifted OOD samples based on the observation that some augmentations
can be useful for OOD detection by considering them as fake OOD data.7 The details of how to
construct the transformations are explained in Sec. 3.2. The generated OOD data should be first
fed to the trained encoder to obtain the corresponding deep features. Both of the encoded features
of normal and transformed data are fed to the classifier simultaneously. With a convolutional
(conv) layer and a fully connected layer (FCN), the classifier learns to identify the in-distribution
data as normal class and the transformed images as outliers. A latent decision boundary between
the two classes is optimized, the detection on true anomaly data is still not promising given the
fact that the transformed images cannot represent the true outliers’ distribution. The decision
boundary may not work for the anomalies in the feature space. To solve this problem, TEND
adopts the margin-aware learning idea of DeepSVDD12 to optimize a distance objective function
simultaneously. Different from the objectives only for ID data,12 TEND works on both the ID
data and the fake OOD data by enforcing the embeddings of ID data to cluster around a voted
center O (see Sec. 3.3 for more details) and pushing away the fake abnormal data to at least
a certain distance R (a predefined margin).
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3.2 Transformations for Generating Fake OOD Data

SimCLR38 has performed an extensive study in which family of augmentations leads to a better
self-supervised learning, i.e., transformations should be considered as positives. The authors
report that some of the examined augmentations (e.g., rotation) could lead to degraded perfor-
mance. Based on the observation, such augmentations can be useful for OOD detection by con-
sidering them as fake OOD data. Therefore, we leverage a family of transformations and utilize
more complex transformations and distortion functions that will change the visual features of the
original inputs to generate fake abnormal data for training in OOD model. The generated aux-
iliary data are fed to the forehead of the TEND backbone and then to the classifier, which helps
separate the embedding features of the ID data from those of the unknown OOD data. Different
from the most common transformations, e.g., rotation, used in classic data augmentation, we
adopt a range of different distortions, i.e., barrel, perspective, arc, polar, tile, affine defined in the
Image.distort method of Wand package. The blue box in the middle part of Fig. 2 shows the six
different transformations on the three datasets. These transformations bring significant difference
to the original inputs and generate intraclass OOD samples. We treated these extreme distortions of
ID data as outliers for training. Except for the six distortions used in this paper, there are more
transformations worthwhile being explored. To further demonstrate the benefits of training the
TEND model using extreme transformations, we use moderate distortions, such as randomly cut-
ting, randomly cropping and resizing, addition of noises, and Gaussian blurring only for validation
(shown in the right yellow box of Fig. 2). The package usage and parameters selection for the six
training distortions and the four validation transformation are present in our code repository.

3.3 Joint Training

With an AE11 as the backbone, TEND incorporates a classifier and a margin-aware embedding
mapping to gain discriminative ability for anomalies. In the first stage, the backbone is trained

Fig. 1 Network architecture of TEND. Stage 1: training AE with in-distribution data and stage 2:
joint training of the classifier and the margin learner.
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only on ID data. Suppose that the input image I and reconstructed image I 0 is with size of
M × N, a reconstruction objective frec defined in Eq. (1) is used to optimize the learning embed-
ding representations of the normal class. This first-stage training ensures the feature extractor to
focus on learning the “normality” of in-class data:

EQ-TARGET;temp:intralink-;e001;116;483frec ¼ min
1

M
1

N

XM;N

i¼1;j¼1

kIij − I 0ijk2; (1)

EQ-TARGET;temp:intralink-;e002;116;420Lcls ¼
1

S

XS

i¼1

yi · logðpðyiÞÞ þ ð1 − yiÞ · logð1 − pðyiÞÞ: (2)

With the distorted ID data as anomalies in the second stage, the binary discriminator is able to
train with a final output indicating the data class. Notably, the inputs of this classifier are the
encoded features extracted by the backbone. Here the AE model is fully frozen and only used for
extracting image features. The encoded features e; eT are processed by a following convolutional
layer (conv) and an FCN of the classifier. Thus the embeddings learnt by the encoder are mapped
to a new compressed space as c; cT with size of K (512 in our case). The classifier enables the
separation of the compressed features of the ID data and the distorted data. A binary cross
entropy (BCE) loss function Lcls shown in Eq. (2) is utilized for optimizing, with the S to be
the total number of the training data, yi representing the i’th data’s binary label and pðyiÞ being
the corresponding probability of the prediction. Nonetheless, the transformations T can only
introduce limited class variations, hence the identification for real OOD data is still not ideal.
Thus a margin-aware objective is jointly trained to force the clustering of the compressed
features of the ID data and the surrounding of the transformed ID data outside the margin
as illustrated by Fig. 2.

In experiments, we test three margin R values (150, 250, and 500). Similar to DeepSVDD,12

the compressed feature center O is calculated by the mean of all the ID data’s compressed
features. Before calculation, TEND’s classifier block is trained with several warm-up epochs,
(e.g., 10 epochs), then the center O is defined with the same size of K as the compressed
feature c. Since then, the margin learner of TEND is trained together with the discriminator.
Importantly, the margin learner has different learning objectives for the normal class (gin) shown
in Eq. (3) and the generated abnormal class (gout) shown in Eq. (4):

EQ-TARGET;temp:intralink-;e003;116;137gin ¼ min
1

K

XK

i¼1

kci −Ok2; (3)

Fig. 2 Examples of transformations used for generating fake OOD data. Three image examples
from (a) IVC-filter, (b) RSNA, and (c) ISIC2019 datasets are presented. The original data in the
green box are inputs from in-distribution class, the transformed in-distribution images in the blue
box are auxiliary data as anomalies feed to TEND’s classifier during training, other possible trans-
formations shown in the yellow box are for validation.
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EQ-TARGET;temp:intralink-;e004;116;735gout ¼ min
1

K

XK

i¼1

maxðR − kcTi −Ok2; 0Þ: (4)

In summary, TEND has two stage-wise losses. The first-stage loss is for the reconstruction of
the AE training, i.e., L1st ¼ Lrec. The second-stage loss includes the binary classifier and the
margin learner, i.e., L2nd ¼ Lcls þ Lmrg. In experiments, we use mean-square-error loss for
Lrec and BCE loss for Lcls. Marginal loss Lmrg equals the summation of the mean of distance
errors for ID data and the mean of the errors for distorted data.

3.4 Implementation Details

An AE architecture is trained as our baseline, the trained model later on is treated as the back-
bone of TEND. We report the encoder, decoder, Conv, and FCN parts of TEND in Table 1. FC is
FCN, Conv stands for the convolutional layer, TConv means the transposed convolutional layer,
and channel indicates the image channel. All the Conv and TConv layers use kernel filter size 4,
stride 2, and padding 1. The encoder encodes input images as e, whereas the Conv layer com-
presses e to c with smaller sizes. Each Conv and TConv is followed by a standard batch-
normalization layer and a ReLU function.

In our experiments, we use Adam optimizer with a learning rate of 0.001 for model training.
Each network is trained with 50 to 150 epochs depending on the dataset size and the data com-
plexity as datasets with more complex data or large amounts of samples often take more time to
get the loss decreased to a satisfactory level. When training with the margin-aware metric, we run
10 warm-up epochs first and then calculate the embedding centerO. The pipelines are developed
using Pytorch 1.5.0, Python 3.0., and Cuda compilation tools V10.0.130 on a machine with
3 NVIDIA Quadro RTX 6000 with 24 GB memory.

3.5 Anomaly Score

As a standard evaluation procedure for anomaly detectors, the ID and outliers are mixed for
computing the accuracy while different detectors have different anomaly score definitions.
For the baseline AE model, we set the reconstruction error as the OOD data score. TEND does
not focus on the reconstruction, therefore, the final anomaly score of TEND is the classification
probability adding the marginal distance. Given the fact that the classification probability p is in
range ½0 − 1� and the distance value d is in ½0;þ∞Þ, we scale down the distance value d by
dividing the predefined margin R, i.e., d 0 ¼ d

R. Therefore, the final anomaly score for TEND
is Si ¼ λpi þ ð1 − λÞd 0

i . The value of λ is set as 0.5 in our experiments as default. To further
demonstrate the effectiveness of each component of TEND, we have done the ablation study of
TEND and reported the results in Sec. 4.4. TEND without the binary classifier is called margin
learner (the anomaly score is d 0).

3.6 Evaluation Metrics

Having the anomaly prediction score, the detection accuracy largely depends on the threshold
setting. To be fair, the detection evaluation should be threshold invariant. Following the standard

Table 1 TEND architecture details.

Dataset Encoder Decoder Conv FCN

IVC-filter/RSNA/ISIC Conv (channel, 16)
Conv (16, 32)
Conv (32, 64)
Conv (64, 128)
Conv (128, 256)

TConv (256, 128)
TConv (128, 64)
TConv (64, 32)
TConv (32, 16)

TConv (16, channel)

Conv
(256, 512)

FC (2048, 512)
FC (512, 1)
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evaluation metrics used in other works,37,39 we adopt AUROC (AUC in short) to showcase the
performance difference among the models. AUROC is the area under the receiver operating
characteristic (ROC) curve, which is a threshold-independent metric. The AUROC can be inter-
preted as the probability that a positive example is assigned a higher detection score than a
negative example. To find an optimal threshold for ROC curve by tuning the decision thresholds,
we use the geometric mean (G-Mean) as the metric to determine the best threshold values and
report the resulted true positive rate (TPR ¼ TP

TPþFN
) and false positive rate (FPR ¼ FP

FPþTN
). The

difference between the TPR and FPR given the optimal selection, DIFF ¼ TPR − FPR, is also
reported for model comparison. Large differences stand for better true and false positive
predictions. Moreover, we measure the uncertainty of models’ performance with 10 rounds
of bootstrapping estimations, by randomly sampling the predictions to the same amount
of test samples with replacement. The resulting standard deviation values are present in
Tables 3–6.

4 Experiments

In this section, we perform empirical evaluations of TEND on publicly available medical image
datasets with varying complexity. For evaluating the accuracy in identifying novel class data,
we compare our results with state-of-the-art unsupervised OOD models, starting from simple
vanilla AE11 model and a VAE,25 to DeepSVDD,12 GANomaly,31 and f-AnoGAN33 models.
We also compare our unsupervised TEND model against a supervised binary classifier, which
was trained on both ID and OOD data for the detection task.

4.1 Datasets

In our experiments, we have three medical datasets in use, including inferior vena cava filters
on radiographs40 and RSNA chest x-ray dataset,41 ISIC2019.42 IVC-filter dataset has 14
classes in total. The details are ALN (73 images), BardSimonNitinol (59 images), Optease
(129 images), BardDenali (50 images), Celect (75 images), Option (196 images),
BardEclipseG2X (84 images), CelectPlatinum (48 images), Trapease (100 images), BardG2
(45 images), Greenfield12Fr (122 images), Tulip (99 images), BardMeridian (55 images), and
GreenfieldTitanium (101 images). RSNA has three classes—normal, with opacity, and not nor-
mal in total. ISIC201942 consists of 8 classes, i.e., melanoma (MEL, 4148 images), melanocytic
nevus (NV, 11,559 images), basal cell carcinoma (BCC, 3323 images), actinic keratosis (867
images), benign keratosis (2240 images), dermatofibroma (239 images), vascular lesion (253
images), and squamous cell carcinoma (628 images). The IVC-filter and ISIC2019 image are
with varying sizes, with the width size ranging from 150 to 1500, height size ranging from 150 to
1500 roundly, e.g., 469 × 365 × 3. The RSNA dataset is in dicom format, each dicom file has the
pixel array of size 1024 × 1024. To unify the training pipeline, we resize all the IVC-filter,
RSNA, and ISIC data in 256 × 256 × channel.

For the one-vs-rest setting, the in-class and rest classes data details are summarized
in Table 2. Due to the data imbalance, we usually pick the class with the most data as our

Table 2 Three publicly available dataset used in the study—total number of images in the
dataset. In-distribution data (D in) and out-of-distribution data (Dout) with one-vs-rest setting.

Dataset Total classes

D in Dout

Class #Images Class #Images

IVC-filter40 14 Option 196 BardSimonNitinol, ALN. . . 1040

RSNA41 3 Normal 8851 With opacity, not normal 21,376

ISIC42 8 NV 11,559 MEL, BCC. . . 11,698
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in-distribution data and all the left classes as intraclass OOD data. For IVC-filter, we select the
option type as the normal class; for RSNA dataset, we treat the normal class as ID data; for
ISIC2019 dataset, we choose the NV class with the most samples as ID inputs. The total numbers
of ID and OOD data for each dataset are reported in the column of #images in Table 2. Notably,
the rest-vs-one setting experiments treat the classes conversely.

4.2 Training and Evaluation Settings

To train and evaluate OOD detectors’ performance, we split the in-distribution data with 80% as
training set Dtr

in and 20% as test set Dte
in and use all the left classes as Dout. For OOD detection

evaluation, we mixedDte
in andDout by assigning the ID data with label 0 and OOD data with label

1. Since this paper focuses on intraclass OOD detection, we will report the OOD detection results
within the same dataset instead of crossing different datasets.

4.3 Quantitative Results

4.3.1 One-vs-rest results

Following the one-vs-rest setting, Table 3 presents the AUC scores and the corresponding FPR,
TPR values determined by the optimal thresholds for AE,11 VAE,25 DeepSVDD,12 GANomaly31,
f-AnoGAN,33 and TEND models with margin 150 (i.e., TEND_150), 250 (i.e., TEND_250), and
500 (i.e., TEND_500). The difference between the TPR and FPR is also reported in the DIFF
column in Table 3. ↓ means that the lower the value of the better the model is, whereas ↑ stands
for the higher the value of the better the model performs. Thus we expect the model to have high
AUC score and prefer low FPR and high TPR values when deploying the models with the opti-
mal threshold as decision boundary, which means the larger the difference between TPR and
FPR the better. The best and second best DIFF and AUC results are highlighted by bold and
italics, respectively. Among the unsupervised anomaly detectors, our model TEND_150 attains
the optimal DIFF result 0.531 and AUC score 0.772 for IVC-filter dataset and second best
AUC score 0.615 for RSNA dataset; TEND_250 achieves the second highest DIFF 0.524 for
IVC-filter dataset and the second highest AUC score 0.615 for RSNA dataset. Meanwhile,
TEND_250 reaches the best DIFF 0.343 and AUC score 0.717 for ISIC2019 dataset compared
to other methods. TEND_500 reaches the suboptimal AUC score 0.760 for IVC-filter dataset,
has the largest DIFF value 0.178 and AUC score 0.627 for RSNA dataset, and obtains the second
best AUC score 0.678 for ISIC2019. GANomaly performs better than DeepSVDD on IVC-filter
and RSNA datasets with higher DIFF and AUC values, whereas DeepSVDD exceeds
GANomaly on ISIC2019 dataset. Across the three datasets, f-AnoGAN generally outperforms
GANomaly and its performance gradually improves as the training dataset becomes larger.
Nevertheless, our model TENDs show certain advantages in acquiring better accuracy and exhib-
its competitive performances compared with other unsupervised models. Notably, we implement
TEND with three different margins to show the difference with changing settings. By observing
our results in Table 3, no unique margin in TEND provides the optimal result on all the datasets
and thus it needs to be tuned for specific experiments. The effects of applying different radii
are present in Sec. 4.5. The margin learner and the supervised model binary classifier are also
discussed in ablation study (see Sec. 4.4).

4.3.2 Rest-vs-one results

To further compare the models’ performances, the complementary experimental setting—
rest-vs-one is implemented with the results reported in Table 4. Identical to the one-vs-rest
experiments, we keep the tested models consistent and change the in-distribution class as
OOD classes and the previous OOD data as our in-distribution data. The training and testing
processes are the same as reported in Sec. 4.2. Our model TEND_150 gets the best DIFF 0.291
and AUC score 0.650 for IVC-filter dataset and obtains the suboptimal DIFF 0.126 and AUC
score 0.584 for RSNA dataset. GANomaly performs the best for RSNA dataset. TEND_250
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reaches the suboptimal results for ISIC2019 dataset, whereas f-AnoGAN can achieve the best.
Generally, the detection of anomalies under rest-vs-one setting is more challenging than the
one-vs-rest setting and nearly no model can work well for all the situations. Still, TEND has
satisfactory performances across the three datasets with the rest-vs-one setting.

4.4 Ablation Studies

To further explore the effectiveness of each module in TEND, we perform the ablation studies
with the settings of removing the binary classifier from TEND (margin learner) and training
a supervised binary classifier (binary classifier), respectively. For the one-vs-rest setting, the
results are shown as margin learner with radius setting 150 in Table 3, with slight DIFF and AUC
improvements compared to the baseline AE on IVC-filter and ISIC2019 datasets. Comparatively,
TEND_150 enlarges the DIFF with 0.379, 0.022, and 0.868 improvements and increases the
AUC scores by 0.336, 0.049, and 0.554, respectively, on IVC-filter, RSNA, and ISIC2019 data-
sets. For the rest-vs-one setting, compared with the margin learner, TEND_150 achieves the
DIFF with 0.288, 0.109, and 0.147 improvements for IVC-filter, RSNA, and ISIC2019 dataset,
respectively, and enhances the AUC score with 0.166, 0.070, and 0.094 for the three datasets.
These observations indicate the effectiveness of TEND’s architecture.

We also report the performance of an AE extension, AE_GMM, which clusters the embed-
dings from the AE backbone and predicts the data classes—ID or OOD. From both Tables 3
and 4, a GMM head can improve the discriminative ability of AE to a certain extent; however,
when testing on transformed OOD data in Tables 5 and 6, the advantages fail to remain. In
comparison, TEND’s heads on AE have more generalization ability and demonstrate consistent
detection performance.

Instead of training the binary classifier of TEND model in an unsupervised fashion, we
include partial true OOD data in training data. Since IVC-filter and ISIC2019 datasets have
multiple classes, we randomly select 2-3 OOD classes for training and the left classes for
validation.

One-vs-rest setting. For RSNA datasets, we use the class not normal (see Table 2 for details)
for known OOD data and test the model on the left with opacity data. The supervised binary
classifier is also evaluated with quantitative results appended in the end of Table 3. With prior
knowledge about OOD data, the binary classifier can achieve very high AUC scores for IVC-
filter (+0.081 compared to the best of unsupervised results). Nonetheless, this advantage fails to
remain on other datasets, which indicates the benefits from prior knowledge are limited.

Rest-vs-one setting. For RSNA datasets, we use the class normal as known OOD data and not
normal as ID data, the left class is used for evaluation. Different from the observation above, the
corresponding results in Table 4 for binary classifier fail to exceed the unsupervised models, and
more results can be observed in Table 6. In conclusion, the supervised binary classifier may lack
generalization ability when dealing with unexpected data (refer Sec. 4.6 for more experimental
results and discussions).

4.5 Qualitative Results

As our model TEND has a margin learner module (see the Lmrg part of Fig. 1) to enforce ID data
inside of a predefined margin R (illustrated as the green dotted circle in Fig. 1) as to the voted
center O (represented as the red star in Fig. 1) and OOD data outside of the region, we hereby
visualize the data samples based on the obtained distance output by the margin learner. Take one-
vs-rest setup results for illustration, the voted center O, whose calculation details were intro-
duced in Sec. 3.3, is located at the origin of the 2D coordinate system. To visualize each data
sample, we utilize their distance to the voted center O as their corresponding radius values to the
origin. Each sample is represented by randomly picking one point along the circle that is defined
with its corresponding radius. The x axis and y axis values help indicate how far the point is from
the origin. Given an example with a distance value di, its corresponding coordinate (xi; yi) sat-
isfies that d2i ¼ x2i þ y2i . The data samples with in-distribution labels are marked in green and the
left data with OOD labels are in red. We draw the defined margin of the model with a blue circle
for reference (refer to the Appendix code snippet for the visualization implementation details).
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Take RSNA dataset for example, in Fig. 3, the voted center O is represented by the point with
coordinates (0, 0) and the area defined by radius R is present with the plotted blue circles in each
subfigure. For better visualization and comparison, each subfigure has both the x axis and y axis
ranging from −1000 to 1000, those data points that have larger distance out of range will be
ignored. Figures 3(a)–(c) show the distance distribution of data with ground-truth labels [i.e., ID
(in green) and OOD (in red)] learnt by TEND with radius of (a), (d) 150, (b), (e) 250, and (c), (f)
500, whereas (d)–(f) indicate the predictions after thresholding, with the green points for samples
predicted as ID and red points for samples predicted as OOD. To help inspect the data points
around the boundary, two cases based on the ground-truth information are illustrated for
TEND_250_GT, with the upper one as an ID data and the lower case for OOD class. From
Figs. 3(a)–(c), the learnt distance distributions for ID and OOD data are similar for TEND with
different radii values. But the ID data can be outside the circle with radius 150 [Fig. 3(a)] and will
be inside the circle regions with radius 250 [Fig. 3(b)] and 500 [Fig. 3(c)], which suggests that
when using larger margin to divide ID and OOD data, ID samples will be easier to be included
while more OOD data will be inside the region, leading to more false positive predictions.
Therefore, it is not the larger the margin, the better the performance is. After having the
distance values predicted by the margin learner module, we apply the Gmeans method to find
the optimal threshold considering both the distance predictions and the binary possibility.
Figures 3(d)–(f) illustrate the ID and OOD predictions of TEND after thresholding. We can see
that the boundary of predicted ID data samples is very close to the margin circle of radius 150
[Fig. 3(d)], but much smaller compared to radius 250 [Fig. 3(e)] and 500 [Fig. 3(f)]. As they are
in the same scale, we can observe that the thresholding areas for ID are smaller when the margin
values increase.

To further analyze the OOD detection ability of TEND, we take the RSNA dataset for exam-
ple and inspect part of the predictions. As shown in Fig. 4, four kinds of predictions, namely true
positive (TP), true negative (TN), false positive (FP), and false negative (FN) predictions,

Fig. 3 2D visualization of ID (green points) and OOD (red points) data distance distributions for
RSNA dataset learnt by TEND’s margin learner module with radius: (a), (d) 150; (b), (e) 250; and
(c), (f) 500 under the one-vs-rest setting. (a)–(c) Distance distribution with ground-truth labels and
(d)–(f) the predicted results with the optimal threshold values. Blue circles are plotted based on the
radius in each subfigure for reference.
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predicted by TEND_500 are present, with four representative cases for each situation. TP means
that true ID samples are correctly identified and TN is for correct identification of OOD samples.
FP refers to the OOD data that is misclassified as ID data and FN stands for wrongly classified
OOD data. From Fig. 3, data points close to the center are more confident of being in the ID
category, which means the smaller the distance is, the higher possibility of the data being an ID
sample is. Observing the TP cases in Fig. 4, most of them are with distance values <50, which is
relatively small compared to the predefined margin 500. whereas the TN cases are often with
larger distances. The first chest x-ray image of TN cases has a final score 0.0892, close to the
threshold 0.0752, which indicates this case is a challenging case. Figure 4(c) shows the hard FP
cases for TEND_500 to identify as they are all with both small distance values and probabilities.
The FN cases shown in Fig. 4(d) can be those ID data with irregular format or position shifting.
With imperfections, TEND_500 will treat them as outliers and assign larger distance values by
the margin learner module. Compared with others, the second FP case is much more challenging
as the data are inside the predefined margin but classified wrongly due to the threshold setting.
We also present the 2D distance visualization and detection results with examples for ISIC2019
datasets in Figs. 5 and 7 and IVC-filter in Figs. 6 and 8 respectively (see Appendix).

4.6 Effects of Transformations

To further compare the intraclass OOD detection ability, we generate validation data by applying
four unseen transformations to all the ID data defined in Sec. 3.2 and shown in the right yellow

Fig. 4 (a) TP, (b) TN, (c) FP, and (d) FN predictions of TEND_500 on RSNA datasets following
the one-vs-rest setting. d , distance value from the margin learner module; p, probability
outputted by the binary discriminator module; s, final score; and t , optimal threshold (ID: s < t ,
OOD: s ≥ t ).
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box in Fig. 2. As we have two experimental settings—the one-vs-rest and the rest-vs-one, we
report them in Tables 5 and 6, respectively. The best and the second best accuracy results are
bolded and italics, respectively. As all the validation data are in OOD category, we calculate the
OOD detection accuracy based on the optimal threshold t determined in Table 3 (corresponding
to Table 5) and Table 4 (corresponding to Table 6) for each model and each dataset. Those data
with score s ≥ t are labeled as OOD (which are true negative samples, TN in short) and the data
having score s < t are classified as ID class (which are false positive samples, FP in short).
Accordingly, the detection accuracy is formulated as ACCval ¼ TN∕ðTNþ FPÞ.

4.6.1 One-vs-rest results of transformations

Table 5 shows the accuracy of detecting the generated validation OOD data with different
models with the one-vs-rest experimental setting. Among all the models present in Table 5,
the AE,11 VAE,25 DeepSVDD,12 GANomaly,31 f-AnoGAN,33 and our TENDs are all unsuper-
vised methods, whereas the binary classifier marked with an asterisk is a supervised model that
is trained with both ID data and partial true OOD data. Random Cut is relatively easy to dis-
tinguish compared to other transformations as multiple methods including DeepSVDD,
GANomaly, and f-AnoGAN can detect most of them all for the three datasets. In contrast,
the random crop and resize, noise, and Gaussian Blur transformations are much more difficult
for them to handle. Nonetheless, TEND architectures with different margins nearly achieve all
the best and the second best accuracy for the test datasets. In summary, although TEND is an
unsupervised model, it can still obtain stronger intraclass OOD identification ability and even
outperform other state-of-the-art models and the supervised model binary classifier on both
IVC-filter and RSNA datasets. This advantage is due to the benefits of transformations during
training.

4.6.2 Rest-vs-one results of transformations

Table 6 presents the accuracy of detecting the generated validation OOD data with different
models following the rest-vs-one experimental setting. AE partially retains its sensitivity in ran-
dom cut and noise transformations for both IVC-filter and RSNA datasets. In general, VAE
shows little advantages in transformed OOD detection except for the noise and gaussian blur
OOD detection for ISIC2019 dataset. DeepSVDD, GANomaly, f-AnoGAN occasionally show
advanced performance for different situations. Comparatively, TENDs show more stable results
in accurate detection of the transformed OOD data, especially for both IVC-filter and RSNA
datasets. This stability for such intraclass OOD detection benefits from the learning process
of training with transformation.

5 Discussion and Limitations

We implement TEND with three different margins and show our results across various medical
datasets under different settings. Although our models show competitive performance and sur-
pass other methods under certain situations, the margin parameter has to be tuned for specific
usages. Depending on the data complexity and variance across classes of a dataset, 250 is a good
starting point. The ability of separating OOD from ID does not always improve as the margin
increases due to the data complexity. For datasets with clear class variations, the margin can be
set larger accordingly and vice versa. In addition, TEND utilizes transformation to generate fake
OOD samples for discriminative learning. Due to the large amount of possibilities, this work
only exploits a limited number of possible transformations.

6 Conclusion

In this paper, we introduced an unsupervised novelty detector—TEND, which can detect intra-
class OOD data for medical applications in an open-world environment. TEND is a two-stage
anomaly detector with a vanilla AE trained on in-distribution data in the first stage to serve as
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feature extractors in the second stage and two modules—a margin learner module and a binary
discriminator module—jointly trained in the second stage for separating in-distribution inputs
from the non-linearly transformed counterparts. With no OOD data used in training, TEND is
able to learn nuances from intraclass variations in medical image analysis problems and provide
a stepping stone for developing rare disease diagnosis models with no sample images. Extensive
results with the one-vs-rest and rest-vs-one experimental settings on multiple public medical image
datasets demonstrate the effectiveness of our model. More general evaluations on data with unseen
transformations further evince our model’s generalization ability and robustness. In summary, an
efficient novelty detection method for medical images has been developed that can be applied to
discover unknown classes with only predefined normal data. We plan to extend this work by inte-
grating TEND into real time imaging pipelines for inference of medical imaging models.

7 Appendix

Below is the code for plotting the 2D visualization figure of the data samples according to
obtained distances.

Table 7

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

mpl.style.use(’seaborn’)

def generate_point(R):

# given a radius R, generate the coordinates x, y

# of a random point in the cricle

theta = np.random.uniform(0, np.pi * 2)

x = R * np.cos(theta)

y = R * np.sin(theta)

return x, y

def plot_point(anomaly_score, dist, threshold, R, K = 1000):

# anomaly_score: list of anomaly scores, (N,)

# dist: list of distance values output by the MRG part of TEND, (N,)

# threshold: anomaly score threshold, a float number,

# samples with anomaly score smaller than the threshold are classified as ID,

# equal to or greater than the threshold are in OOD category

# K: float number, deciding the x-axis and y-axis range for showing data

Xs = [], Ys = [], Xs2 = [], Ys2 = []

for i in range(0, len(anomaly_score)):

x, y = generate_point(dist[i])

if anomaly_score[i] < threshold:

Xs.append(x)
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Here we show more 2D visualizations of ID and OOD data distance distribution for
ISIC2019 dataset in Fig. 5 and IVC-filter dataset in Fig. 6. Different predictions including
TP, TN, FP, FN are also present with the examples of RSNA dataset in Fig. 7 and IVC-filter
dataset in Fig. 8. Due to the limited FN predictions of IVC-filter dataset, only one FP case is
reported.

Table 7 (Continued).

Ys.append(y)

else:

Xs2.append(x)

Ys2.append(y)

fig = plt.figure(figsize=(8,8))

plt.scatter(Xs, Ys, c ="green", linewidths = 2, marker ="s", s = 2)

plt.scatter(Xs2, Ys2, c ="red", linewidths = 2, marker ="o", s = 2)

plt.xlim([-k, k])

plt.ylim([-k, k])

theta = np.linspace(0 , 2 * np.pi , 300)

plt.grid(color = ’black’, linestyle = ’–’, linewidth = 0.5)

plt.plot(R * np.cos(theta), R * np.sin(theta), color=’blue’)

return fig

Fig. 5 2D visualization of ID (green points) and OOD (red points) data distance distributions for
ISIC2019 dataset learnt by TEND’s margin learner module with radius (a), (d) 150; (b), (e) 250; and
(c), (f) 500 following the one-vs-rest setting. (a)–(c) Distance distribution with ground-truth labels
and (d)–(f) the predicted results with the optimal threshold values. Blue circles are the plotted
based on the radius in each subfigure for reference.
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Fig. 6 2D visualization of ID (green points) and OOD (red points) data distance distributions for
IVC-filter dataset learnt by TEND’s margin learner module with radius (a), (d) 150; (b), (e) 250; and
(c), (f) 500 under the one-vs-rest setting. (a)–(c) Distance distribution with ground-truth labels and
(d)–(f) the predicted results with the optimal threshold values. Blue circles are the plotted based on
the radius in each subfigure for reference.

Fig. 7 (a) TP, (b) TN, (c) FP, and (d) FN predictions of TEND_500 on ISIC2019 datasets with the
one-vs-rest setting. d , distance value from the margin learner module; p, probability outputted by
the binary discriminator module; s, final score; and t , optimal threshold (ID: s < t , OOD: s ≥ t ).

Guo et al.: Margin-aware intraclass novelty identification for medical images

Journal of Medical Imaging 014004-20 Jan∕Feb 2022 • Vol. 9(1)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 12 Sep 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Disclosures

No conflicts of interests, financial or otherwise, are declared by the authors.

Acknowledgments

The work was supported by the National Institute of Biomedical Imaging and Bioengineering
MIDRC grant of the National Institutes of Health under Contract Nos. 75N92020C00008 and
75N92020C00021 and the US National Science Foundation (No. #1928481) from the Division
of Electrical, Communication, and Cyber Systems.

References

1. G. Litjens et al., “A survey on deep learning in medical image analysis,” Med. Image Anal.
42, 60–88 (2017).

2. V. Sehwag et al., “Analyzing the robustness of open-world machine learning,” in Proc. 12th
ACM Workshop on Artif. Intell. and Security, pp. 105–116 (2019).

3. J. Ren et al., “Likelihood ratios for out-of-distribution detection,” in Adv. Neural Inf.
Process. Syst., pp. 14707–14718 (2019).

4. V. Sehwag et al., “Analyzing the robustness of open-world machine learning,” in Proc. 12th
ACM Workshop Artif. Intell. and Secur., pp. 105–116 (2019).

Fig. 8 (a) TP, (b) TN, (c) FP, and (d) FN predictions of TEND_500 on IVC-filter datasets following
the one-vs-rest setting. d , distance value from the margin learner module; p, probability outputted
by the binary discriminator module; s, final score; and t , optimal threshold (ID: s < t , OOD: s ≥ t ).

Guo et al.: Margin-aware intraclass novelty identification for medical images

Journal of Medical Imaging 014004-21 Jan∕Feb 2022 • Vol. 9(1)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 12 Sep 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1016/j.media.2017.07.005


5. P. Schlachter, Y. Liao, and B. Yang, “Deep one-class classification using intra-class split-
ting,” in IEEE Data Science Workshop (DSW), pp. 100–104 (2019).

6. P. Liznerski et al., “Explainable deep one-class classification,” in Int. Conf. Learn.
Represent. (2021).

7. J. Tack et al., “CSI: novelty detection via contrastive learning on distributionally shifted
instances,” in Adv. Neural Inf. Process. Syst. (2020).

8. L. Deng and C. Cortes, “The MNIST database of handwritten digit images for machine
learning research,” IEEE Sig. Process. Magazine 29(6), 141–142 (2012).

9. A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 (Canadian Institute for Advanced
Research),” 2020, http://www.cs.toronto.edu/kriz/cifar.html5.

10. J. Deng et al., “Imagenet: a large-scale hierarchical image database,” in IEEE Conf. Comput.
Vision and Pattern Recognit., IEEE, pp. 248–255 (2009).

11. R. J. W. David Rumelhart and G. Hinton, Parallel Distributed Processing Explorations in
the Microstructure of Cognition, Vol. 1, MIT Press, Cambridge, Massachusetts (1986).

12. L. Ruff et al., “Deep one-class classification,” in Int. Conf. Mach. Learn., pp. 4393–4402
(2018).

13. R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: a review,” ACM
Computing Surveys (CSUR), 54(2), 1–38 (2021).

14. K. Lee et al., “A simple unified framework for detecting out-of-distribution samples and
adversarial attacks,” in Adv. Neural Inf. Process. Syst., Vol. 31, pp. 7167–7177 (2018).

15. Y. Ouyang and V. Sanchez, “Video anomaly detection by estimating likelihood of repre-
sentations,” in 25th Int. Conf. Pattern Recognit. (ICPR), IEEE, pp. 8984–8991 (2021).

16. D. Hendrycks, M. Mazeika, and T. Dietterich, “Deep anomaly detection with outlier expo-
sure,” in Int. Conf. Learn. Represent. (2018).

17. A. TVyas et al., “Out-of-distribution detection using an ensemble of self supervised leave-
out classifiers,” in Proc. Eur. Conf. Comput. Vision (ECCV) (2018).

18. R. Wang et al., “Deep learning for anomaly detection,” in Proc. 13th Int. Conf. Web Search
and Data Mining, pp. 894–896 (2020).

19. M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with nonlinear dimen-
sionality reduction,” in Proc. MLSDA 2014 2nd Workshop Mach. Learn. for Sens. Data
Anal., pp. 4–11 (2014).

20. C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep autoencoders,” in
Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discov. and Data Mining, pp. 665–674
(2017).

21. L. Beggel, M. Pfeiffer, and B. Bischl, “Robust anomaly detection in images using adver-
sarial autoencoders,” in Joint Eur. Conf. Mach. Learn. and Knowl. Discov. in Databases,
Springer, pp. 206–222 (2019).

22. T. Tagawa, Y. Tadokoro, and T. Yairi, “Structured denoising autoencoder for fault detection
and analysis,” in Asian Conf. Mach. Learn., PMLR, pp. 96–111 (2015).

23. A. A. Pol et al., “Anomaly detection with conditional variational autoencoders,” in 18th
IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), IEEE, pp. 1651–1657 (2019).

24. R. Yao et al., “Unsupervised anomaly detection using variational auto-encoder based feature
extraction,” in IEEE Int. Conf. Prognostics and Health Management (ICPHM), IEEE,
pp. 1–7 (2019).

25. A. A. Pol et al., “Anomaly detection with conditional variational autoencoders,” in 18th
IEEE iInt. Conf. Mach. Learn. Appl. (ICMLA), pp. 1651–1657 (2019).

26. I. Bozcan and E. Kayacan, “UAV-AdNet: unsupervised anomaly detection using deep neural
networks for aerial surveillance,” in IEEE/RSJ Int. Conf. Intell. Rob. and Syst. (IROS), IEEE,
pp. 1158–1164 (2020).

27. I. Goodfellow et al., “Generative adversarial networks,” Commun. ACM 63(11), 139–144
(2020).

28. H. Zenati et al., “Adversarially learned anomaly detection,” in IEEE Int. Conf. Data Mining
(ICDM), IEEE, pp. 727–736 (2018).

29. P. Perera, R. Nallapati, and B. Xiang, “OCGAN: one-class novelty detection using GANs
with constrained latent representations,” in Proc. IEEE Conf. Comput. Vision and Pattern
Recognit., pp. 2898–2906 (2019).

Guo et al.: Margin-aware intraclass novelty identification for medical images

Journal of Medical Imaging 014004-22 Jan∕Feb 2022 • Vol. 9(1)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 12 Sep 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

http://www.cs.toronto.edu/kriz/cifar.html5
http://www.cs.toronto.edu/kriz/cifar.html5
http://www.cs.toronto.edu/kriz/cifar.html5
http://www.cs.toronto.edu/kriz/cifar.html5
http://www.cs.toronto.edu/kriz/cifar.html5
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/ICMLA.2019.00270
https://doi.org/10.1109/ICMLA.2019.00270
https://doi.org/10.1109/IROS45743.2020.9341790
https://doi.org/10.1145/3422622
https://doi.org/10.1109/CVPR.2019.00301
https://doi.org/10.1109/CVPR.2019.00301


30. J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,” in Int. Conf.
Learn. Represent. (ICLR) (2017).

31. S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “Ganomaly: semi-supervised
anomaly detection via adversarial training,” in Asian Conf. Comput. Vision, Springer,
pp. 622–637 (2018).

32. T. Schlegl et al., “Unsupervised anomaly detection with generative adversarial networks to
guide marker discovery,” Lect. Notes Comput. Sci. 10265, 146–157 (2017).

33. T. Schlegl et al., “f-AnoGAN: fast unsupervised anomaly detection with generative adver-
sarial networks,” Med. Image Anal. 54, 30–44 (2019).

34. S. S. Khan and M. G. Madden, “One-class classification: taxonomy of study and review of
techniques,” Knowl. Eng. Rev. 29(3), 345–374 (2014).

35. B. Schölkopf et al., “Estimating the support of a high-dimensional distribution,” Neural
Comput. 13(7), 1443–1471 (2001).

36. P. Perera and V. M. Patel, “Learning deep features for one-class classification,” IEEE Trans.
Image Process. 28(11), 5450–5463 (2019).

37. S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-distribution image detec-
tion in neural networks,” in Int. Conf. Learn. Represent. (ICLR) (2018).

38. T. Chen et al., “A simple framework for contrastive learning of visual representations,” in
Int. Conf. Mach. Learn., PMLR, pp. 1597–1607 (2020).

39. Q. Yu and K. Aizawa, “Unsupervised out-of-distribution detection by maximum classifier
discrepancy,” in Proc. IEEE/CVF Int. Conf. Comput. Vision, pp. 9518–9526 (2019).

40. J. C. Ni et al., “Deep learning for automated classification of inferior vena cava filter types
on radiographs,” J. Vasc. Interv. Radiol. 31(1), 66–73 (2020).

41. X. Wang et al., “Chestx-ray8: hospital-scale chest x-ray database and benchmarks on
weakly-supervised classification and localization of common thorax diseases,” in Proc.
IEEE Conf. Comput. Vision and Pattern Recognit., pp. 2097–2106 (2017).

42. N. C. Codella et al., “Skin lesion analysis toward melanoma detection: a challenge at the
2017 international symposium on biomedical imaging (ISBI), hosted by the international
skin imaging collaboration (ISIC),” in IEEE 15th Int. Symp. Biomed. Imaging (ISBI 2018),
IEEE, pp. 168–172 (2018).

Xiaoyuan Guo is a computer science PhD student at Emory University. Her primary research
interests are computer vision and medical image processing, especially improving medical image
segmentation, classification, and object detection accuracy with mainstream computer vision
techniques.

Judy W. Gichoya is an assistant professor in the Department of Radiology and Imaging
Sciences at Emory University School of Medicine. She is also a member of the Cancer
Prevention and Control Research Program at Winship Cancer Institute. She holds professional
memberships with Radiological Society of North America, American College of Radiology,
Society of Interventional Radiology, Society of Imaging Informatics in Medicine, and American
Medical Informatics Association.

Saptarshi Purkayastha is an assistant professor working on data science and health infor-
matics. He is also the director of undergraduate education and research in the Department of
BioHealth Informatics at IUPUI. He currently is investigating methods for improving engage-
ment in online education, using guided inquiry learning in the study of health information
management.

Imon Banerjee is an associate faculty at Mayo Clinic and associate faculty at Arizona State
University. Her current research is focused on unstructured medical data analysis and integration
of multisource medical data from varying hospital systems for building predictive models.

Guo et al.: Margin-aware intraclass novelty identification for medical images

Journal of Medical Imaging 014004-23 Jan∕Feb 2022 • Vol. 9(1)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 12 Sep 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1007/978-3-319-59050-9_12
https://doi.org/10.1016/j.media.2019.01.010
https://doi.org/10.1017/S026988891300043X
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1109/TIP.2019.2917862
https://doi.org/10.1109/TIP.2019.2917862
https://doi.org/10.1109/ICCV.2019.00961
https://doi.org/10.1016/j.jvir.2019.05.026
https://doi.org/10.1109/ISBI.2018.8363547

