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Abstract— With each passing year, the state-of-the-art deep
learning neural networks grow larger in size, requiring larger
computing and power resources. The high compute resources
required by these large networks are alienating the majority
of the world population that lives in low-resource settings and
lacks the infrastructure to benefit from these advancements
in medical AL. Current state-of-the-art medical Al, even with
cloud resources, is a bit difficult to deploy in remote areas where
we don’t have good internet connectivity. We demonstrate a
cost-effective approach to deploying medical Al that could be
used in limited resource settings using Edge Tensor Processing
Unit (TPU). We trained and optimized a classification model
on the Chest X-ray 14 dataset and a segmentation model on
the Nerve ultrasound dataset using INT8 Quantization Aware
Training. Thereafter, we compiled the optimized models for
Edge TPU execution. We find that the inference performance on
edge TPUs is 10x faster compared to other embedded devices.
The optimized model is 3x and 12x smaller for the classification
and segmentation respectively, compared to the full precision
model. In summary, we show the potential of Edge TPUs for
two medical Al tasks with faster inference times, which could
potentially be used in low-resource settings for medical Al-
based diagnostics. We finally discuss some potential challenges
and limitations of our approach for real-world deployments.

Index Terms— Model Optimization, INT8 Quantization, Edge
TPU, X-Ray, Ultrasound

I. INTRODUCTION

Machine learning infrastructure consists of an ecosystem
of high powered server architectures (cloud, local or hybrid)
and edge devices such as mobile phones, embedded devices
and wearables. Each infrastructure has its own advantages
and disadvantages. Edge devices are usually constrained in
terms of memory and computing power, but provide the
benefit of being cheap, and not limited by network latency.
This makes edge devices accessible in limited resource
settings or where there is limited ability to transfer medical
information due to strict regulations around medical data
use. With improved performance of state of the art (SOTA)
medical algorithms over time, there is a concurrent increase
in the computation demand of these models [1]. This places a
significant resource-burden to implement these models, with
large corporations developing chips for their own internal
use. Edge devices can help overcome this financial limitation,
for example high end GPU servers cost more than 1000 USD,
whereas the Google Coral board [2] (the edge TPU we used)
costs around 130 USD.
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Model optimization is the compression of deep learning
models so that they can fit into resource-constrained devices
and consume less energy. There exists three approaches to
optimization for edge devices: (a.) connection pruning [3],
(b.) INT8 quantization [4], and (c.) knowledge distillation
[5]. For our experiment, we used INT-8 quantization which is
an optimization technique that converts 32-bit floating point
numbers (weights and activations) to 8-bit integers. This
produces a model with smaller memory footprint and reduced
latency on low-power devices such as microcontrollers and
integer only accelerators such as Coral edge TPU. As shown
in this paper and related works, this reduction in precision
often has little impact on model accuracy, but reduces
memory usage up to 4x (such as when reducing 32-bit floats
to 8-bit integers). INT-8 quantization can be performed in
two ways, post training quantization or quantization aware
training. Quantization is a lossy process that can impact the
performance of a model. This loss can be minimized using
Quantization Aware Training (QAT) [6].

In this paper, we compiled our models for edge TPU and
evaluated their performance. We present our methodology
and results in the next sections, followed by a discussion of
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our work in relation to current literature and future scope.

II. METHODOLOGY

To evaluate the performance of edge TPU, we performed
classification and segmentation task on multiple modalities
of medical images i.e., x-rays and ultrasound images. Our se-
lection of these common tasks, on widely available modality,
datasets and common neural network architectures was done
to identify the generalizability of our approach.

A. Classification

For the classification task, we used the NIH-14 Chest-Xray
14 dataset [7] which consists of 112,120 x-ray images of
30,805 unique patients. Each image has 14 pathology labels.
We split the dataset into train (54,091 images), validation
(23,183 images) and test (33,118 images) and downscaled
images to 224x224. The baseline model is 32-bit floating
point chest x-ray classification model, which is based on
Densenet-121 architecture. This model is trained by Arevalo
and Beltran [8]. Densenet is a fairly common architecture for
classification task in medical imaging, which is something
we wanted to use to verify our quantization. There maybe
other complex architectures that may not be suitable for QAT,
particularly INT8 quantization.

B. Segmentation

For segmentation task, we used the Ultrasound nerve
segmentation dataset from 2016 Kaggle challenge [9]. This
dataset contains 11,143 images, which is further split into
5635 training images and 5508 testing images. The images
were preprocessed and downscaled to 80x112 for training
and evaluation. The baseline model for this task is 32-bit
floating point is based on the UNet architecture [10]. We
used the model trained by George Batchkala, where he used a
customized approach for UNet model [11]. UNet is a popular
segmentation architecture in medical imaging and we wanted
to validate INT8 inference performance of this widely used
architecture.

C. Model Optimization

Since our goal is to run the model on edge TPU, a
resource-constrained device, we optimized FP-32 models to
INTS using QAT. INT8 quantization is an optimization tech-
nique used to convert 32-bit floating-point numbers (weights
and activation) to 8-bit integers. This reduces the model’s
size and reduces its latency on low-powered devices such
as microcontrollers and integer-only accelerators like Edge
TPU.

Since the direct reduction of precision from 32-bit float-
ing to 8-bit integers is a lossy process, this can impact
the model’s performance. To minimize this loss, we used
Quantization Aware Training (QAT). This simulates low pre-
cision behavior in forward pass, whereas the backward pass
remains the 32-bit precision floating point. This causes some
quantization error accumulated in total loss. The optimizer
tries to reduce this error by adjusting its parameters and thus
making it more robust to quantization, and almost lossless
[12].
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For the optimization, we used Tensorflow model optimiza-
tion toolkit [13]. We performed the QAT for classification as
well as segmentation tasks. The Densenet-121 [14] model is
finetuned from weights for Imagenet [15]. We used Adam
optimizer [16] with an initial learning rate of 0.001 and
batch size of 32 with image generators. The UNet model
[10] is trained from scratch with an initial learning rate of
0.00001 and Adam optimizer. For the UNet model training,
we selected a batch size of 128 with early stopping.

The quantization aware training is performed on a GPU
server. This model is further quantized to 8-bit integer. The
edge TPU compiler [17] is then used to compile both the
INT8 models to an edge TPU compatible model. When
compiling, we didn’t use the num_segments parameter, as
we are only using one TPU and not pipelining our model
for multiple TPUs.

D. Evaluation

After compiling the model for edge TPU, we evaluated
its performance on Coral Dev board, and Nvidia Jetson
Nano [18]. Since TensorFlow is not natively supported on
the Coral board, we copied the test set to the Coral board
and evaluated the model. We computed the time taken on
the Coral board and serialized the prediction results using
JSON file where image path is the key and inference result
is the value corresponding to that for Chest X-rays and CSV
file for Nerve segmentation. We copied the inference result
back to the server and computed the AUC score and AUC-
ROC curve for chest x-rays and the Dice score for nerve
segmentation.

We used the test set of each dataset, i.e., 33,118 images of
chest x-rays and 5508 images for nerve segmentation, and
computed the overall time and average time for inference.
We only included time for model prediction and did not
include other timings such as image processing and inter-
preter invocation. Figure 1 explains the process we followed
for evaluating the timing and AUC score for the edge TPU
compiled model.

III. RESULTS

The inference result on Coral dev board for classification
and segmentation seems promising. The tables below present
the various perspective of edge TPU usage in terms of model
performance, inference latency and model size.

A. Performance

For segmentation, the Dice coefficient for FP32 baseline
model is 0.617, whereas for the edge TPU model its 0.646.
Table I summarises this performance.

Metric Baseline FP 32 | Edge TPU Model
Dice Coefficient 0.617 0.646
TABLE I

PERFORMANCE OF FP-32 AND
EDGE TPU MODEL ON SEGMENTATION TASK
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Class Baseline FP 32 | Edge TPU Model
Atelectasis 0.78 0.75
Cardiomegaly 0.90 0.85
Consolidation 0.79 0.77
Edema 0.88 0.85
Effusion 0.87 0.86
Emphysema 0.88 0.83
Fibrosis 0.79 0.77
Hernia 0.83 0.77
Infiltration 0.71 0.69
Mass 0.82 0.78
Nodule 0.73 0.66
Pleural Thickening 0.77 0.73
Pneumonia 0.74 0.70
Pneumothorax 0.85 0.82
Mean AUC-ROC 0.81 0.77

TABLE 11

AUC SCORES COMPARISON ON CLASSIFICATION TASK

Architecture Baseline FP 32 | Edge TPU Model
Model Size (MB) 27.9 8.4
Size Reduction - 3x
TABLE III

CLASSIFICATION MODEL SIZE REDUCTION

The model compiled for edge TPU shows minor decrease
in AUC-ROC score with comparison to the full precision
model. The AUC score of edge TPU model is 0.77, whereas
the FP32 model has the AUC score of 0.81. The Table II
shows the comparison of FP32 and edge TPU compiled
model for all the 14 classes present in the dataset.

B. Model Size

The size of our baseline FP-32 model is 27.9 MB and the
size of edge TPU compiled model is 8.4 MB leading to a
decrease of 3x for classification task (Table III), whereas for
segmentation task, the model size reduced from 98.8 MB to
8.38 MB which is approx 12x reduction in size of model.
(Table IV

C. Inference Latency

The Coral dev board showed remarkable improvement in
the inference timing. With only one edge TPU, it took only
24 ms per image for inference for classification task and 5.44
ms for segmentation task. This is significantly less than the
other embedded board, i.e., Nvidia Jetson Nano. Table V and
Table VI summarizes this.

IV. CONCLUSION AND FUTURE SCOPE

Edge computing is changing the way data is handled and
transported. It’s a low-latency and cost efficient solution to

Architecture Baseline FP 32 | Edge TPU Model
Model Size(MB) 98.8 8.38
Size Reduction - 12x
TABLE IV

SEGMENTATION MODEL SIZE REDUCTION
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Devices INT8 | Edge TPU Model
Nvidia Jetson Nano 410 NA
Coral Dev Board NA 24
TABLE V

INFERENCE TIME FOR CLASSIFICATION IN MILLISECONDS (MS/IMAGE)

Devices INTS | Edge TPU Model
Nvidia Jetson Nano 309 NA
Coral Dev Board NA 5.44
TABLE VI

INFERENCE TIME FOR SEGMENTATION IN MILLISECONDS (MS/IMAGE)

Medical Al inference. Machine learning at edge is gaining
traction in recent days [19] as it can solve various issues such
as data privacy, low latency solution, etc. Various companies
such as Google (edge TPU), Nvidia (Xavier and Jetson),
Intel (Neural Compute Stick) are investing into more efficient
hardware, better optimizers and compilers.

Wisultschew et. al [20] performed an study and compared
the efficiency and performance of Google’s Edge TPU and
the Intel Neural Compute Stick for 3D object detection.
Reuther et. al.[21] compared the performance of the Edge
TPU to an standard Intel Core i9 CPU and Intel’s second
version of Neural Compute Stick and it is found that edge
TPU performed comparable to standard CPU while consum-
ing less power. Kljucaric et al. [22] found that GoogleNet
on Edge TPU outperforms NVIDIA Xavier and NCS2 in
optical character recognition task. This [23] explored the
trade-off between computational and energy efficiency feed-
forward and convolutional neural networks for edge TPU
and cortex AS53 platforms. Google research team evaluated
the performance of edge TPU on NASBench dataset with
423k different neural architectures and studied the latency
and accuracy of different models. This [24] explored the
performance of edge TPU in terms of sensitivity to the
variations of model’s architecture and specifications.

Here, we have extended our previous work of medical
imaging model optimization [25] and presented the use case
of edge TPU using Coral dev board. We found that there
is negligible loss in accuracy of model i,e., 0.04 in mean
AUC-ROC score for chest x-rays and it performed better for
segmentation task (dice coefficient of 0.646 for edge TPU
and 0.618 for baseline model). The inference timing of edge
TPU model is 24 ms. Also, the size of edge TPU model is
3x less than the full precision model making it suitable to fit
in the memory of resource constrained device. We believe
that with the edge TPU we can deliver medical Al in low-
resource contexts at a low cost. Medical Al has potential
to support low-skilled health workers [26], or reduce the
burden of fewer specialists in low-resource context, including
opportunities for lowering costs in high-resource contexts
through reverse innovation [27].

With the advent of edge TPU accelerators, many devices
can use a pluggable device for accelerating the inference of
machine learning models. Devices with on-board edge TPUs
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like Asus Tinker Edge R [28], Imagio Vision Cam Al [29],
Pixel phones [30] and others can collect health data from
wearables, smartphone cameras and perform on-device Al
inference to alert the user in case of any abnormality, as well
as processing of critical PHI data on-device without leaving
the hospital network. Further, in make-shift hospitals, which
are common in disaster situations, we can build edge TPU
server farms that can be suited to run off battery supplies
and still provide access to medical Al. This can be also used
for ultrasound imaging where we have handheld ultrasound
device from GE healthcare [31] or Butterfly network [32].
Though edge TPU model had good performance on the
Coral board, there are some critical limitations. Images
needed to be pre-processed due to lack of library support
on the Coral board before inference. We calculated the
time for inference but additional I/O activities should also
be considered in the overall time. In the future, we will
measure the thermal efficiency of Coral board and evaluate
other important imaging tasks such as localization, image
generation, and use of other neural network architectures.

V. SOURCE CODE

The source code of the experiments can be found at:
https://github.com/pri2sil 7-1997/Edge-TPU-Evaluation
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