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Let E C R be a closed set of Hausdorff dimension ¢« € (0,1). Let P : R — R be a
polynomial without a constant term whose degree is bigger than one. We prove that
if E supports a probability measure satisfying certain dimension condition and Fourier
decay condition, then E contains three points x, x + t, x + P(t) for some ¢t > 0. Our result
extends the one of Eaba and Pramanik [11] to the polynomial setting, under the same

assumption. It also gives an affirmative answer to a question in Henriot et al. [7].

1 Statement of Results

This paper is dedicated to the following question: when does a set E C [0, 1] contain
a “polynomial configuration”? More precisely, given a univariate real polynomial P,
under what condition on E can we ensure the existence of a triple of distinct points
(x;,%,,%3) € E® satisfying x5 — x; = P(x, — x1)? We address this question through
measure-theoretic assumptions on E. Specifically, we assume that E supports a proba-
bility measure u that obeys two conditions; the 1st is a ball condition of order « and the

2nd is a Fourier decay condition of order 8. These are specified below:

A), sup € “u(lx,x+€l) < Cy,
€e(0,1] 5 (1.1)
B)g iup (1+ kD2|Ek)| < Co(1 —a)~®.
eZ
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Here, i1 denotes the Fourier transform of the measure pu:
) :=/e’i’(é du(x), & eR.

Our main result is that the confluence of the two conditions in (1.1) for appropriate

choices of «, 8 is sufficient to ensure polynomial configurations.

Theorem 1.1. For every polynomial P : R — R of degree at least 2 with P(0) = 0, one
can find a constant s; > 0 depending only on P such that the following statement holds.
For every choice of positive constants C;, C,, B, there exists « € (0,1) depending only on
So and these constants such that any compact set E C [0, 1] that supports a probability

measure pu satisfying the relations (4), and (B) P in (1.1) also contains three points

X,X+t,x+ P(t) for some t > O, (1.2)
provided « € (o, 1) and B € (1 —5p, 1).

Our proof shows that the value of ¢ in the above theorem is extremely small.
When P(t) does not contain any constant term, the value of P(t) will also be small. In this
sense, our problem is local. The problem of dealing with a polynomial P(t) containing
a constant term is more global and is not covered here. A version of Theorem 1.1 with
P(t) = 2t is due to taba and Pramanik [11], with s, = 1/3. The assumptions (4), and
(B)y first appeared here. These assumptions turn out to be very natural in the context
of the sets of large Fourier dimension and also Salem sets. Indeed, many probabilistic
constructions that yield measures obeying (4), and B)g also produce Salem sets.
However, it is important to note that not every Salem set obeys (4), and (B) g see for
instance [15].

Let us briefly recall the discussion in [11]. For a Borel set E C [0, 1], we let
dimgy, (E) denote the Hausdorff dimension of the set E. It is well known [14] that dim, (E)
is the supremum of numbers « € [0, 1] for which there exists a probability measure u

supported on E satisfying

sup {r*uBx;r) xR, r> 0} < oo.

In contrast, the Fourier dimension of E, denoted dim »(E), is defined to be the supremum

overall 8 € [0, 1] such that there exists a probability measure u supported on E satisfying

L&) < C(1 + |€])~P/? for every & € R and some C > 0. (1.3)
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Thus, the condition (A), implies that E has Hausdorff dimension at least «, while the

condition (B)g implies that E has Fourier dimension at least . It is known [14] that
dim £(E) < dimy, (E) for every E. (1.4)

The sets for which the equality in (1.4) is achieved are called Salem sets. So far, there
are a number of constructions of Salem sets, due to Salem [17], Kaufman [10] (see Bluhm
[2] for an exposition), Kahane [9], Bluhm [1], £aba and Pramanik [11], and so on. Many
of these constructions are probabilistic constructions. For instance, Kahane [9] showed
that images of compact sets under Brownian motion are almost surely Salem sets.

It is worth mentioning that, in Salem’s probabilistic construction of Salem [17]
sets, with large probability, the examples there (under certain modifications as in
[11]) obey assumptions (4) and (B). Moreover, Laba and Pramanik [11] also provided
a probabilistic construction of Salem sets, a large portion of which (under a natural
measure) satisfy assumptions (4) and (B).

We will discuss a few generalizations of the result of £.aba and Pramanik [11]. In
[4], Chan, taba, and Pramanik generalized [11] to higher dimensions. Their result covers
a large class of linear patterns. In particular, they proved the following: let a, b, c be
three points in the plane that are not co-linear. Let E C R?. Assume that E supports a
probability measure u satisfying the analogues of assumptions (4) and (B) in R?. Then,
E must contain three distinct points x, y, z such that the triangle Axyz is similar to Aabc.

The result of [4] was later generalized to certain nonlinear patterns by Henriot
et al. [7]. However, their result does not cover the case of dimension one. For instance, it
was pointed out by the authors of [7] that the configuration (x,x +t,x + t?) with x,t € R
cannot be detected by their method. In the current paper, we provide an affirmative
answer to this question.

Before we describe the proof of the main theorem, let us also mention that
results on the reals that are analogous to Theorem 1.1 have been obtained by Bourgain
[3] and Durcik et al. [5]. Indeed, some of the techniques we use also originate from these
works. This will be discussed after stating Proposition 1.2, one main ingredient of the
proof of Theorem 1.1.

We turn to the proof of Theorem 1.1. Let t; be a nonnegative smooth bump
function supported on the interval [1, 2] and 7;(t) := 1 (2%). It is not difficult to imagine

that the trilinear form

//M(x)u(er Hu(x + P(t)7(t) dt dx (1.5)
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will play a crucial role in the study of patterns as in our main theorem. However, as pu
is just a measure, the above trilinear form may not be well defined at the 1st place. Our
1st task is to make sense of this trilinear form for every integer [ that is large enough.

Let s be a real number. Define a Sobolev norm

. 1/2
I fllgs = (/R lf($)|2(1 +11%)* dé‘) . (1.6)
Forl € N, and two Schwartz functions f and g, define
Ty(f,9)(x) = / Fx + Dg(x + P@)5(0) dt. 1.7)
R

We will prove the following proposition.

Proposition 1.2. There exists a small constant s, > 0 and large constant [, > 0 and

Yo > 0, depending only on P(t), such that

IT,(f Dllso < 27 F lgg—so 9l g0, (1.8)

for every I > [, and for Schwartz functions f and g.

This is called a Sobolev improving estimate. To our knowledge, an estimate of
this form first appeared in the work of Bourgain [3]; see Lemma 5 there. Li [12] and
Lie [13] further developed it in the context of Hilbert transforms along the curves. All
these works require that the polynomial P(t) does not have a linear term, in order to
use a certain “curvature” property of the polynomial. In Proposition 1.2, we managed to
prove a Sobolev improving estimate for every polynomial. The proof is a variant of Li
[12]. Moreover, it does not require the notion of o-uniformity there. One reason that [12]
requires P(t) to have no linear terms is that certain curvature condition (nonvanishing
of the left-hand side of (2.48)) would fail for polynomials with linear terms. The key (and
simple) observation in the current paper is that the curvature condition fails only on a
“small” set (see Claim 2.5).

After proving Proposition 1.2, we are able to use it to make sense of the double
integral in (1.5). Let u be a probability measure supported on the interval [0, 1]. If we

also assume that

L(6)] < ClE|~%, forf € (1 — 54, 1), (1.9)
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and for some constant C > 0, then u € HS9(R), which is a Sobolev space of some
negative order. Recall that Schwartz functions are dense in H® for every s € R. By a
density argument, we know that the double integral in (1.5) is well defined. To be precise,
we will pick a sequence of Schwartz functions {f,,}; ; that convergence to x in H~° and

interpret (1.5) as

Jingo//fn(x)fn(x+ Of,(x + P()7(t) dt dx. (1.10)

That the above limit exists is guaranteed by Proposition 1.2.
After making sense of the double integral in (1.5), we will prove that it is always

positive. That is, we will prove the following theorem.

Theorem 1.3. Under the same assumptions as in Theorem 1.1, we are able to find a

large integer [, € N and a small positive real number ¢, > 0 such that

//,u(x)u(x+ Hu(x + P(1)7, (1) dt dx > c. (1.11)

Intuitively speaking, if E does not contain any three-term configuration (x,x +
t,x + P(t)), then the left-hand side of (1.11) would certainly vanish. However, as we deal
with the measures supported on the sets of fractional dimensions, we need some extra
work to make the above argument rigorous. Roughly speaking, we will construct a Borel
measure v defined on [0, 1]% and supported on the set of configurations (x,x+t,x+ P(t))
with ¢ > 0, such that v([0,1]%) > 0. This will guarantee the existence of the desired
polynomial pattern. This will be carried out in the last section.

Organization of the paper. The Sobolev improving estimate in Proposition 1.2
will be proven in Section 2. The main tools we will be using include the stationary
phase principle and techniques from bilinear oscillatory integrals recently developed
by Li [12]. In Section 3, we provide a proof of the stationary phase principle that is
used in the current paper. Theorem 1.3 will be proven in Sections 4 and 5. The argument
that is used in this step relies on the idea of measure decomposition of faba and
Pramanik [11], on the Sobolev improving estimate in Proposition 1.2 and on Bourgain’s
energy pigeonholing argument from [3]. Finally, in Section 6, we will finish the proof of
Theorem 1.1.

Notation. Throughout the paper, we will write x < y to mean that there exists a

universal constant C such that x < Cy and x ~ y to mean that x < y and y < x. Moreover,
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x Sy ¥ means there exists a constant Cy, y depending on the parameters M and N such

that x < Cyy yy.

2 Sobolev Improving Estimate: Proof of Proposition 1.2

In this section, we prove Proposition 1.2. Let P : R — R be a polynomial of degree bigger

than one without constant term. We write it as

P(t) = a, t* + -+ a,t* + a;t, (2.1)
with 1 < o; <y < -+ < «,,. Here, we assume that q; # 0 for every i € {1,2,...,n}.
Moreover, we assume that «; = 1, that is, our polynomial P contains a linear term. The
corresponding result for a polynomial without linear term is much easier to prove. This

point will be elaborated in a few lines.

For each 1 <1i <n, let b; be the unique integer such that
2bi < |a;| < 2bit1, (2.2)

Let T'y be a large number that depends on the polynomial P. Let [, € N be the smallest
integer such that for every I > [, the following hold:

la;|27t < Tyt |a 27| for every n > i > 2 (2.3)
and

la;|27t% < Tgt|a 27t for every n > i > 3. (2.4)

v

In other words, at the scale t ~ 2, the monomial a,t “dominates” the polynomial P(t)
and a,t*? is the 2nd dominating term. It is not difficult to see that the choice of [,
depends only on P(t).

Let us pause and make a remark on the assumption that o; = 1. As mentioned
above, the case «; > 1 is relatively easier to handle. This is because a certain curvature
(in the sense of oscillatory integrals) appears naturally in this case. To be more precise,
under the assumption that «; > 2, we first choose [ large enough such that (2.3) holds
and then the monomial a,t* dominates the polynomial P(t) at the scale t ~ 2. Notice
that acertain curvature is already present when a,t*! dominates. Hence, the requirement

(2.4) becomes redundant.
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However, under the assumption that o; = 1, if we only require (2.3), then there
is no curvature in the dominating term a;t. This is why we need to further require (2.4)
and find a 2nd dominating term. It is hoped that the curvature in the 2nd dominating
term will play an equivalent role. Due to the presence of the linear term a,t, a number
of extra complications will appear.

The rest of this section is devoted to the proof of Proposition 1.2. Let h be a
function in H~5. We pair it with the left-hand side of (1.8) and study

/ [ / fx + Hg(x + P(£)7(t) dt:| h(x) dx. (2.5)
R R

Let ¥, : R — R be a nonnegative smooth bump function supported on [-3,-1] U [1, 3].
Define ¢ () = 1//0('/2k). Moreover, we choose ¥, such that

1= Z Vi (t), for every t # 0. (2.6)
keZ

For all the three functions f, g, and h, we apply the nonhomogeneous Littlewood—Paley

decomposition 1 = » ; . Px, Wwhere 1 denotes the identity operator, and study

> / / Py f(x + 1)Py,g(x + P(1))7)(t)Py h(x) dt dx. (2.7)
RZ
k1,k2,k3=0
Here,
Pf (x) :=/ Xy (6)F (&) dg,if k> 0 (2.8)
R
and
Pof (x) == /]R e [ >y ®) | F&) de. (2.9)
k<0

In the following, we work on two cases,

|(k; — 1) — (ky — L+ by)| > 100 and |(k; — 1) — (k, — L+ b;)| < 100. (2.10)

Let us begin with the 1st case. Our goal is to prove the following lemma.
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Lemma 2.1. There exists a constant y;, € N depending on P, such that under the

assumption that |k; — k, — b;| > 100, we have

‘//Rz Pklf(X + t)szg(X+P(t))fl(t)Pk3h(X) dt dx

(2.11)
Syl Nkitketka) b £ 1P, gl 1Py, Rl
for arbitrarily large N € N.
Assuming the above lemma, we have
> ‘ / / L P f (X + P, g(x + P(1)) (1) Py h(x) dt dx
ki .k2,k3 R
|1~k —b1[>100 (2.12)
o0
<> 2kt tR) P Flo 1P, gllo 1P hlly S I llg-so I gso IRl g=so
k1,k2,k3=0

for some s, > 0. For instance, we may take s, = 1 at this step.

Proof of Lemma 2.1. The proof is via an integration by parts. Turning to the Fourier

side, we can write the left-hand side of (2.11) as

27l

/ / P F©)Pg(nPy R + ) [ /R ei2 P O, ) dt] de dn' . (213
First of all, we observe that

(2.13) = 0 when k; > k; + k, + 10. (2.14)
Hence, in the rest of the proof, we assume that k; < k; + k, + 10, and it suffices to prove
(2.13) Sy 27 VEFR) P £ 1Py, Gl 2 1P, Bl (2.15)

Here, N € N is a large integer that might vary from line to line. By an integration by

parts, we obtain

/eiz—ltg+ip(2—lt)n,0(t) dt| <, 2-Vmaxtkuka), (2.16)
R
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for £ and 7 in the frequency support of P f and P, g, respectively. Substitute the above
pointwise bound into (2.13), and apply Holder's inequality in the & and 5 variables. This
will finish the proof of the desired estimate. It is easy to track the dependence on [ and

see that it is polynomial in 2. [ |

From now on, we may assume that |k; —k, —b;| < 100. Without loss of generality,

we take k; = k, + b, and consider

> / /R L Pef &+ Py, g(x + P())7(8)Py h(x) dt dx. (2.17)
k1,k3=0

In the double sum over k; and k;, we may impose the extra condition that k3 < 2(k; +

|b; 1), as otherwise the corresponding term from (2.17) will simply vanish.

Lemma 2.2. There exists a constant y, € N and y > 0, both of which are allowed to

depend on P, such that
‘//]Rz fx + )g(x + P(t)7(Hh(x) dt dx| < 200277K| £l I gll, IR, (2.18)

for every l > I, and every k € N, under the assumption that supp(f) C +[2k, 2k+1] and
supp(g) C +[2k~b1, 2k=b1+1] and no further assumption on the function h.

Assuming this lemma, we will be able to finish the proof of the desired bilinear

estimate. Recall that we need to control (2.17). By Lemma 2.2, this can be bounded by

21! > 277 Py fll2 1Py 0,912 1P Bl (2.19)
ki1,k3 with k3<2k;+2|b;|

for some y > 0, which can be further bounded by

| Fllgr-v/s 1l s6 | Bl gr-v /6. (2.20)

This finishes the proof of the desired estimate.
Hence, it remains to prove Lemma 2.2. As the constant is allowed to depend on
l, we can always assume that k is at least some large constant times ¢. Turning to the

Fourier side, we obtain

27! / / Pf (€)P_p, 9h(E + ) [ /]R gl EHP@ 00 1) dt} d dn. (2.21)
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Write

P(t) = a,t+ Q(t) = a,t + a,t*? + R(1). (2.22)

The derivative of the phase function in (2.21) is given by

27% 4+ a,27 + ayay,2792 2y 4 27 IR (27 M. (2.23)

From the 1st-order derivative of the phase function, we are still not able to locate the
critical point. To do so, we apply a more refined frequency decomposition to f and g.
For a fixed integer A, let ¥4 ; » : R — R be a nonnegative smooth function supported on
(2K 4+ A . 2k=vol 2k 4 (A + 2)2K-10l] such that

ViE) = D Vi@V, ,a6), for every & e R. (2.24)

A€EZ

That is, {{;; A} acz forms a partition of unity on the support of . Moreover, the sum
in (2.24) is indeed a finite sum and the number of nonzero terms is about 27°!. Here, Yo
is some large number that is to be chosen. For convenience, we will allow y, to change
from line to line, unless otherwise stated.

We write (2.21) as

Al,AzeZ
(2.25)

Notice that in the above sum, we have about 227! terms that may be nonzero. We will see

that the main contribution to the sum will come from those A;, A, such that the phase
27t + P2 )

admits a critical point ¢ € [1,2] and some & € SUpp Y, 1 € SUPP Yi 1 p,-

Observe that the critical points of the phase are those values of ¢ such that
27% + a,27ly + aya,272 2y 4 27 IR 27y = 0.

We have, by (2.4), that for ¢ € [1,2], we have |[R'(27t)| < 2“"canal|a2|2_(°‘2‘1)l.

Thus, if t is a critical point of the phase function, we must have

127l + @ 270 4 aya, 270227 ) < 29, T a, 2792, (2.26)

D / / ZON (é)][PZngwk_bhl,Az(n)]fw:+n>[ /R gi2 P Oy (¢ dt} dz d.
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Thus, we get by dividing that

*l *l n -1
2EH a2 0 peper|  2enTo 18] (2.27)
Observe that, as long as [ is sufficiently large that (2.4) is satisfied, the right side of
this inequality does not depend on [l. So, if I'; is sufficiently large depending on the
polynomial P, then the right-hand side of (2.27) is bounded above by ﬁ. Thus, if & and

n are such the phase function has a critical point in [1, 2], we must have the inequality

-1 -1
2 < _M < ga2—1 + L (2.28)

Now, if (2.28) holds for some & € supp ¥ ; o, and n € supp ¥x_p, ; A, then by the mean-
value theorem, we have that if [ is sufficiently large depending on the polynomial P and

the parameter y,, then

1 27l +q 27! 1
- < ";:J’_ 1 n < 20(271 4+ = (2.29)
2 a,0,2702ly 2

for all such & and 7.

We then partition into two sums S.;; + S, Where S, ;; is the sum over those
Ay, A, such that (2.29) holds for all & € supp ¥ ;, and n € supp ¥g_p, 14, and Sepy
is the sum over those A, A, such that (2.29) fails for some & € suppyy;,, and n €

SUPP Vi_b, 15"

We will first estimate S,..

Lemma 2.3 (Nonstationary phase estimate). For S.. as defined above, we have

err
1Serel <1 275211Pef 1o 1Py, 911211 Rl (2.30)

and the dependence is polynomial in 2.

-1 -l

2 leraizly

a20227%2

202=1 4 I for some £ € supp Vkia, and n € suppyy_p ;a,; the terms for which

_2lta2ly 1
a2a22*“21n 2

Proof. We will only estimate the contribution from the terms for which —

are handled similarly.
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If [ is sufficiently large, an argument similar to the one establishing (2.29) from
(2.28) shows that

27l +a 27! 1
- y > 20271 4 (2.31)
a,a,2-%ly 4

for all & € supp Vil A, and 5 € supp Vk—by LAy
We will now reverse the argument used to infer (2.28) from (2.26) in order to
show that the derivative of the phase is large for ¢ € [1,2]. To start, we subtract ozl

from both sides of (2.31) and take absolute values. Since t*2~ 1 < 2%2—1 we get

l l
28T a2 0 1] L (2.32)
a,a,2 02y 4 '
/-l
Because [l is such that % < ﬁ, we have
24
27 + a; 27y + aya,272le2 1y 4 2_ZR’(2‘lt)n‘ > maz%z_“zln. (2.33)

The left side of (2.33) is the derivative of the phase function and the right side of
(2.33) is > 2k=*2! where the implicit constant depends only on the polynomial P. Thus,
integrating by parts once gives that for § € supp ¥, 7 € Supp Y, We have the

estimate

'/ eiziltf-}-ip(zilt))]l,o(t) dt 5 2—k+0!2l' (234)

Because there are only at most 227! terms that contribute to the sum, we have from
applying the Cauchy-Schwarz inequality and observing that ﬁ,:f is supported on a set

of measure < 2k

|Serl S 27K2H@0FDl B £ 1By gl (2.35)
as desired. |

We now estimate S As the implicit constant is allowed to depend on [/, and

crit-
there are only at most 27! values of A; and A, that contribute to (2.4), it suffices to

bound each term of S_;, separately. After this reduction, what we need to prove becomes

cri

‘ / FEIRE + 1) [ /R g2 EHPC 0N (1) dt} de dn| < 29277K| fll,llgll, NIkl (2.36)
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under the assumption that

F=Pof Viin, 9=Peob,9 Vi—byi,n,

7821

(2.37)

and that (2.29) holds for every & € supp(f) and n € supp(g). Observe that if (2.29) holds

for a given £ and 7, the critical point ¢, of the phase function must lie in (}L, 4) provided

that I'y is sufficiently large by (2.27).

The critical point ¢, is given by
£+ P @2t )n=0.
We will prove the following approximation formula.

Lemma 2.4 (Method of stationary phase). Under the above notation, we have

. ol . 1
/ &2 lte+ipP(2 lt)"‘lﬁo(t) dt = a(g, n)nfl/zel‘l’(fyﬂ) + 0, (m) ,
R

with
a(&,n) = 2P ') " (1)
and
W(E, ) =2""E + P Mo,
W (&, n) satisfies the equation
W(E, =271,
Moreover,

Ol (L) < 2V0li_
7] ]

Observe that a(§,7) = O unless ¢, € [1, 2].

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

Lemma 2.4 will be proved in Section 3. Substituting (2.39) into (2.36) gives rise

to two terms. Let us first estimate the contribution from the term containing Ol(ﬁ).
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We bound it by

/ / ‘f(é)g(n)h(§+n)|—| dé dy <, 27" / / F©ahE +m)| dsdn. (244

By Holder's inequality, the last term can be bounded by

2752 fli,1gll, IRl (2.45)

So far, we have managed to control the contribution from the 2nd term on the right-hand
side of (2.39).
Now, we turn to the 1st term on the right-hand side of (2.39). The corresponding

term we need to handle is

/ / FEFmhE +n)—=eYEM dg dy. (2.46)

a@,n)
v
We apply a change of variables & — 2%&,n — 2F. We also rename f, g, h for simplicity.

It suffices to prove

‘ / FEGMRE +maE, neZVEN dg dn| < 277K £, llgll, 1Al (2.47)

for every function a : R? — R with [lal|c+ < 1, and for functions f supported on £[1 +

A,27700 14 (A, 42)2770! and g supported on +[2721 + A,27P1-10l 2-b1 4 (A, 4-2)2- D10l
Here, A; and A, are two positive integers that are smaller than 270!, Moreover, they are

chosen such that (2.29) holds for every & € supp(f) and n € supp(g).

Claim 2.5. There exist integers Cp, C, depending only on P and intervals J, ... Jep, CR
of length 2 vk/Cp such that whenever &/n ¢ J, for any ¢, we have

0.0, (3, — 8,)¥| 2 277%. (2.48)
The implicit constant is allowed to depend on P and can be taken to be polynomial in 2.

The proof of the claim is postponed to the end of this section. Let @ : R — R be a smooth
bump function taking value one on each 2J, such that [|a||c < 247K, To prove (2.47), we
will decompose a(§,n) = a(&, n)aE/n) + a(€,n)(1 —a(&/n)) and control the two resulting
i2kw

terms separately. For the former term, the oscillation from e no longer plays any

role, and we simply put the absolute value sign inside the integral and obtain

// | fE)g(mh(é +ma&, maE/n! dé dn. (2.49)

2202 Jaquie}dag €| Uo Jasn uosIpe-uISUodsIp Jo Alsiaaiun Aq 6661909/608.2/01/2202/3191e/ulwi/wod dno olwapeose//:sdjjy Wol) papeojumod



Polynomial Roth Theorems 7823

By Cauchy-Schwarz, this can be easily bounded by Z*Vk/cﬁ’||f||2||g||2||h||2. To control the

latter term, it suffices to prove the following lemma.

Lemma 2.6. For every small positive y > 0, every function a : R> — R supported on
[—1, 1] with lallcs < 2vk, every ¥ : R? — R with

199, (8; — 9,)%| 2 27* and W]l <1, (2.50)
we have

‘ / FEGMIE + maE, me? YED de dn| < 2775 £l 191l 1Rl,- (2.51)

Here, taking y = 10~° is more than enough.

Proof of Lemma 2.6. This lemma is essentially due to Li [12]. Here, we need to keep
track of the dependence on norms of g, on its support, and so on. Oscillatory integrals
of the form (2.51) have also been extensively studied in Xiao [16] and Gressman and
Xiao [6].

We start the proof. By applying the triangle inequality, it suffices to prove (2.51)
with a better gain 2737¥ in place of 277, for every function g supported on an interval
of length 2-27%, By a change of variable and by applying Cauchy-Schwarz, it is enough

to prove

2

LS 2757k £112)1913. (2.52)
L

&

H/f(é — mgama( —n,me YED dy

We expand the square on the left-hand side. After a change of variable, we obtain
[ ] eenveig @6 oa e,m e andr, (253
[r|<2-7k JJR2

for some new compactly supported amplitude a’,. Moreover, F,_(-) := FfOf¢ = 1) and

G,(-) := g(-)g(- + 7). By the mean value theorem, it is easy to see that
30, (W(E, ) —VE —T,n+0)| 227K, (2.54)

To proceed, we need the following lemma.

2202 Jaquie}dag €| Uo Jasn uosIpe-uISUodsIp Jo Alsiaaiun Aq 6661909/608.2/01/2202/3191e/ulwi/wod dno olwapeose//:sdjjy Wol) papeojumod



7824 R. Fraser et al.

Lemma 2.7. For every small positive y > 0, every function a’ : R?> — R supported on
[—1,1]? with ||@/||c« < 27%, every E : R — R with

)asana >2777% and ||E | o

<1, (2.55)

~

we have

' / / FE)Gma &, n)eZ =€ dg dp| < 2757%|F|1,)G]l,. (2.56)

Again, taking y = 107 is more than enough.

To control (2.53), we split the integral in 7 into two parts:

/ + / . 2.57)
|t|<2-6vk  Jir|=2-6rk

Regarding the former term, we apply the triangle inequality and Cauchy-Schwarz to
bound it by 2_6Vk||f||§||g||§. Regarding the latter term, we apply Lemma 2.7 and bound
it by

2—6Vk/||>2_syk IF, |I,]IG, I, dr. (2.58)
T|=

By applying Cauchy-Schwarz, this is bounded by 2_6”k||f||§ ||g||%. This finishes the proof

of Lemma 2.6.

Proof of Lemma 2.7. This lemma is essentially due to Hormander [8]. By Cauchy-

Schwargz, it suffices to prove

2
” / F&)a (&, ne? ¢ dg| < 27127k g2, (2.59)
2

2730)/76

By the triangle inequality, it suffices to prove (2.59) with a better gain in place

of 2712vk for every function F supported on an interval of length 2787, We expand the

square on the left-hand side and obtain
// (51, E)F(§)F (&) d&; d&y, (2.60)

where

0 (61, Ey) = /eiz’%s(sl,n>f:(sz,n)>a/(§1,n)&/@z,n) dn. (2.61)
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By the mean value theorem, we observe that
3,(8(&,n) — BEy,m)| 22777 K|g; — £ (2.62)
By applying integration by parts twice, we obtain
low (61, 52)| S min(2?7¥, 2726450k g, —g)|72), (2.63)

By Schur's test, this gives us the desired bound if we choose y small enough. This

finishes the proof of Lemma 2.7. ]

Proof of Claim 2.5. Before properly embarking on the proof of this claim, we will

summarize the proof. Hypothetically, if 9:9, (9; — 9,)W(§,n) were a nonzero polynomial

function of %, Claim 2.5 would be trivial to prove by selecting the intervals J, to be

neighborhoods of the zeros of 050, (0 — 9,)W(&, n). Unfortunately, 0:0, (0 — 9,)W(§,n)

will not typically be a polynomial function of % Nonetheless, we are able to compare

3¢9, (e — 9,)W (&, n) to such a polynomial after making a suitable change of variables.
Recall that t.(¢, ) is defined via

£E4an+nQ @27, =o0. (2.64)

Moreover,

g, =274 +amt, +na2t,)

= ¢ +am@)’! (—“%) +10 (<a/)—1 (_s +nam)) .

Here, (Q')! means the inverse of the derivative of Q. By a direct calculation presented

(2.65)

in the appendix, we obtain

00,0 — 9,) W&, m)|
(2.66)

’

~ '<2p (@ (@ o -ap)) + @ +ma” (@) (o -ap)

where p := /5. This statement means that these two expressions are the same up to a
multiplicative factor that is bounded between 2~% and 2% for some real number §. By

changing p to —p — a;, it is equivalent to consider

'—(2p +2a, -1 (Q" ((a’rl(p)))2 +(p+a)(p+a; —1)Q” ((a’rl(p))‘ . (2.67)
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Recall that Q(t) = a,t*2 + R(t), where a, # 0 and R(¢) can be viewed as a remainder term

compared with a,t*2 when t ~ 2-L Denote s := (Q')"1(p). Then, (2.67) becomes
—(2Q'(s)+2a; - 1) (O”(s))2 +(Q'(s) +a;)(Q'(s) +a;, — 1)0”’(3)} . (2.68)
The highest-order term in the last display is given by
a3 s3n=5 (—Z(an —1)% + (e, — D@, — 2)) . (2.69)

Notice that the coefficient does not vanish. Therefore, we observe that (2.68) is the
absolute value of a nonzero polynomial of s. By the observation from the summary of
the proof, we have that there exist intervals :T[ such that 9,9, (3; — 9,)W(E,n) satisfies
the desired inequality if s ¢ J, for any :. But the transformation sending p to s is an
invertible transformation with derivative bounded above and below polynomials in 2~
as seen in the appendix, so the set of points p such that s € :I[ satisfy the conditions in

Claim 2.5, provided that y is small enough. |

3 Stationary Phase Principle: Proof of Lemma 2.4

Our goal in this section is to prove an asymptotic formula for

/ el EHP@ N (1) g = 2 / et PO g (2lt) dt. (3.1)
R R
We follow the proof of Proposition 3 on Stein [18, p. 334]. Define
@, (t) := t& + P(t)n. (3.2)
Recall some notation
P(t) = a;t + Q(t) = a;t + a,t** + R(1). (3.3)
Let ic. be the critical point of the phase function, that is,
& +P/(i‘c)n =&+ (a + O/(fc))n =0. (3.4)

By a rescaling of the observation preceding Lemma 2.4, we have that t, lies in
(271-2,27142) We expand the phase function about :

- 1 - _ _
D, , (1) = D, (E) + Eo”(tc)n(t — )2+ 0,1t =13 - 1. (3.5)
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Here,
Oy(lt — £,I°) < 2 Q" @)1t — £, 1%, (3.6)

where Cp is a large constant depending only on P. Let ¢ be a nonnegative even smooth
function supported on [—2, 2], constant on [—1, 1] and monotone on [1, 2]. We normalize
it such that 9 (0) = 1 and denote ¥,(x) := 2¢¥(2'x). We write

/ eits+ip(t)nfo(2lt) dt — / eitS-FiP(t)ntO(zlt)l?(2[+10C’P(t _ ic)) dt
R R (37)
n /R QU HPON L (ol (1 — 9 (2k10Ch (¢ _ zc))) dt = I +1I.

The phase function in term IT does not admit any critical point. Hence, by integration by

parts, we obtain

1
| < 270l —. (3.8)
0]
For term I, we write it as
e Pentte) / e Pen O 5 (1) dt, (3.9)
R
where
9y(t) := 1 (219 (210 (1 — 7). (3.10)

The support of the function 9, is chosen to be so small such that the change of variable

(t—t)% + Lo)(Jt — 1% — y? (3.11)

a//(zc)

becomes valid. Under this change of variable, (3.9) turns to

£i0e (Ee) /R el2Q'@r 9/ () dy, (3.12)
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for some new smooth truncation function ;. We split the last expression into three

terms:
oiPen (o) / ei%O”(ic)nyze*YZ(eyzﬁl’(y)_192(0))191”()/) dy
R
1 ei®en(to) / el2Q"@ny’ =" 9/ (0) (9] (y) — 1) dy (3.13)
R

. 7 1 A1t 2 2
+ ei®eno) / ¢i10" @y =¥ 91(0) dy,
R

where ¥’ is a compactly supported smooth function and is 1 on the support of ©;. These
three terms will be called I}, I,, and I; and will be handled separately.

By the triangle inequality and an integration by parts argument, it is not
difficult to see that

|+ 11| < 2%y~ (3.14)
In the end, one just needs to observe that

/ M o=t qt — egh 2 + 0 %%) (3.15)
R

for some universal constant e;. See Stein [18, Equation (9) on p. 335]. This finishes the

proof of Lemma 2.4.

4 Positivity of the Double Integral: Proof of Theorem 1.3

In this section, we prove Theorem 1.3. We follow the idea of :.aba and Pramanik [11] and

decompose
W=y + iy, (4.1)
with
n(x) < A-2%8¢, (4.2)
where A is a large absolute constant. Here, p, is obtained by convolving © with a Fejér
kernel. See £.aba and Pramanik [11, p. 442]. Here, we make a remark that this is the only

place where one applies the assumption (4) in (1.1). Also, in their decomposition, it is

possible to choose ;; so that

1
u; > 0and / py(x) dx = 1. (4.3)
0
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Moreover, we have 1t,(0) = 0, and

_ . | A
n)=min{(1, n), 4.4
po(n) ( 2N+1)M() (4.4)
where
N =C;lers. (4.5)

Lemma 4.1. There exists [; € N and ¢, > 0 depending only on C;,C,,B, § and the
polynomial P such that

//Ml(x)ul(x + O, (x + P(£)7, (¢) dt dx > c,. (4.6)

The proof of Lemma 4.1 is based on Bourgain's energy pigeonholing argument
[3] and the Sobolev improving estimate in Proposition 1.2. We postpone its proof to the
next section.

After finding [, and c,;, we will pick « to be sufficiently close to one and

prove that

'// Py )y, (X + Oy, (x + P(2) 7, (2) dt dx| < ¢y/8, (4.7)

when (iy,1,,13) # (1,1, 1). For the sake of simplicity, let us assume that we are working
with (i;,i,,13) = (1,1,2). The proofs of the other cases are similar. In the previous

sections, we proved that

‘ / / g (g (X + Dy (x + P(0)7, (8) dt dx

< Gy llitq 12— Il 22l —s0 » (4.8)

for some s; > 0 depending only on the polynomial P. By the definition of x; and the

assumption on u, we have

iy 12y < lellZsy < C5Q—a)™2B " k| k|25, (4.9)
k>1

Next, we turn to the term ||, || g—so-

_ k? _p— g
||M2||§I—s0 =< C%(l —a) %8 Z mk F=2s0 4 Z k—P—2s0
1<k<2N k>2N (4.10)

N3—/3—280

S C%(l _ (x)—ZB ( N2 +N1_’B_2SO) S C%(l _ a)—ZBNl—IB—ZS()‘
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Combined with (4.8), we obtain
'// iy (X)X + Oy (x + P(0) 7, (1) de dx| < €, C3°(1 — ) 10BN -F=250)/2, (4.11)

Recall (4.5). If we choose « close enough to one, depending on all the other parameters,

we will be able to conclude (4.7).

5 Proof of Lemma 4.1

Before we start the proof of Lemma 4.1, we state a preliminary lemma. Recall the

definition of ¢ in Section 3.

Lemma 5.1 (Bourgain [3]). For a nonnegative function f supported on [0, 1] and k,l € N,

/Olf(f*t‘/‘k)(f*t‘/‘g) > ¢, (/Olf)

for some constant ¢y > 0 depending only on the choice of ¥.

we have
3

The proof of this lemma was omitted in [3]. For a proof, we refer to [5].

In this section, we will use f to stand for ;. Hence, f is a function satisfying
/f=1and05f5A.26301=:M. (5.1)
For simplicity, we assume [|7y||; = 1 and change the notation a bit by taking
7 (t) = 2l7,(2't) instead of (1) = 7,(2'). (5.2)

We also need to show that [, can be bounded from above by a number that depends only
on C;, C,, B, B, and P. Denote

A= / FOfx+t)f (x + P(t)7(t) dt dx. (5.3)

For¢,¢,0" e Nwith1 < ¢ < ¢ < ¢”, we have

1 1
A= /0 /0 FEOF(x + Df (x + P(1)7,(t) dx dt

=Il +12 +I3r
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where
1 1
I, = /0 /0 FEfx+ ) *9,)(x + P(t)7,(t) dx dt,
1 1
1,1
I, = /0 /0 FEOf x4+ O —f *9,)(x + P()7,(t) dx dt.

We analyze each of the terms separately. Splitting f — f * ¥,, into Littlewood-

Paley pieces and applying Lemmas 2.2 and 2.1, it follows that for some o > 0, we have

t—at"” 2 —100
|I3| SM 2)/0 ’ ”f”LZ(R) = 2 CO:

where the last inequality holds provided that ¢/ > 2¢ 4 C(M), which will hold for
sufficiently large ¢ provided that ¢’ > 2?& Here, ¢, is the constant from Lemma 5.1
and C(M) is a quantity depending on M, o, and ¢, but not on ¢ or ¢’. We have also
applied the pointwise bound 5.1, resulting a square of |f||, instead of a cubic power.

To estimate I,, we apply the Cauchy-Schwarz inequality in x, which yields
1
1| < /0 IFEf &+ Dllpz | (f * P — f % Dp)(x + PE) |27, (2) dt
SM ||f k l?z// _f k 19(/”2.

Passing to the last line, we bounded the L norm of f by M and the L' norm of 7, by one.

To estimate I;, we compare it with

I, = /0 1 /0 FOF Gt O # 9 (07, (8) dx dt
= /Olf(X)(f * ) (%) (f * 7,) (%) dx.
Consider the difference
-1 = /01 /Olf(x)f(x 1) ((F % 9,) () — (F % 0,) (x + P(1)) 7,(t) dx dt.
By the mean value theorem, we obtain

I(f % 0)(x) — (f * 9,)(x +P()]| < 2°|| f % (9) [l |P(®)] < M2° 41,
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whenever t is in the support of 7,. If ¢’ is sufficiently large depending on M and c;, then

choosing ¢ > 2¢' gives
I, — I, < 27100,
We return to analyzing the term I,, which we write as
Iy = (/Olf(X)(f # 00)(X) ((f * 1) (X) = (f % 9p) (%)) dX) (5.4)
+ ( /O PO ) F 5900 dx) . (5.5)

By Lemma 5.1, the term (5.5) is bounded from below by c;. For (5.4), we use the triangle

inequality and Young's convolution inequality to estimate

If * Ty —f* Dylly

SM I (f * Ty k Opr) — (f * By * Ty llo (5.6)
+ Ity — (zp % Oyn)lly (5.7)
+ 1Py — @ x TPy (5.8)

By another application of Young's convolution inequality in (5.6), we bound the last

display by
SM Il(f = W) — (f = )l + Ty — (Tp * Bp)lly + 10y — (B * Tp)ll;-

By the mean value theorem, the 2nd and 3rd terms are bounded from above by 2‘10000
provided ¢’ is chosen large enough and that ¢ > 2¢' and ¢” > 2¢. This in turn bounds (5.4)

from above by

If %00 — F % Dy ll, + 27,
From the estimates for the terms I;,1,,I3,1,, and I, — I;, we obtain
Co < Ap+ Cyllf % 0y — F 5 0l + 27,

Here, C,; is a large constant that depends only on M. For instance, it suffices to take

Cy; = M'0. Therefore, we have either A; > 2710¢, or

If %0y —f*0ply > 2710C, .
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By the preceding discussion, we can construct a sequence {{y < £; <--- </{ <---} CN,
which is independent of f and satisfies ¢;,; < C{; for some sufficiently large constant
C such that for each k either

-10
Azk > 2 CO
or
ILf 5 0, —F 0, ll > 271%,¢;t (5.9)

Observe that for any K > 0, one has

K

> (IF 590, —F 594, 13) = Coll I3 = CoM? (5.10)

k=0

with C, independent of K and f. Let us fix K > €,2!%¢c;2C%,M*. If (5.9) holds for all

0 < k < K, then (5.10) yields K < COZIOOCEZCIZMM‘}, which is a contradiction. Thus, for

2—10

some 0 < k < K, we necessarily have Ay, > Co- Together with £, ; < Ct, this gives

a lower estimate on Ay, as claimed in Lemma 4.1.

6 Existence of Polynomial Patterns: Proof of Theorem 1.1

Let 1 be as in Theorem 1.1. Let [, be as in Theorem 1.3. Theorem 1.1 follows if we are

able to construct a Borel measure v on [0, 1] x [0, 1] such that
v([0,11 x [0,1]) > O (6.1)
and
v is supported onX = {(x,y) € [0, 1% : x, y,x+P(y —x) €E, 2o <y—-x< 2_l°+1}. (6.2)
For € > 0, define
He i= W * 0, (6.3)
where ¥, (x) = e 19 (x/€). A standard argument shows that

u, — pin H % ase — 0. (6.4)
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We define a linear functional v acting on functions f : [0, 1]> — R by

) i=1im [ [ f00pe+ Py = 20y, (7 = 0 diee 0 a0,
The following lemma holds.

Lemma 6.1. The limit in (6.5) exists for every continuous function f. Moreover,

[, ) < Clif lloor

where C is independent of f.

Proof. of Lemma 6.1 For every ¢ > 0, the following inequality holds:

’/ f& Y+ Py —x))7,(y — x) du (%) dp ()

= IIfIIOO// pe(x +P(y — x)7, (¥ — %) dp (x) dpa (v)-

By the Sobolev improving estimate in Proposition 1.2, this can be bounded by

l 2 3+y0lo ), 113
2700 || e lggso el rs0 < 277700 Il sq -

(6.5)

(6.7)

(6.8)

Recall that 1 — s; < B. Under this assumption, we know ||u||z-s, is finite. This proves

(6.6) if the limit (6.5) exists.

It remains to prove the existence of the limit (6.5). By density, it suffices to prove

that the limit exists for every smooth function f whose Fourier series consists of only

finitely many terms. Hence, it suffices to prove that the limit

lim / / MY (x + P(y — )7, (y — %) dpt (%) dpe ()

e—0

exists for given N, N, € N. By Proposition 1.2,

‘ / / MY (4 — ) (X + P(y — )7, (v — %) dpe (%) dpa ()

/
< 270k ”Mq — He, | 750 ||M/||H—So ||,U«”||H—So ’

(6.9)

(6.10)
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where
di' (x) = eM*dp (x) and du” (x) = eN¥dp, (x). (6.11)
The right-hand side of (6.10) can be further bounded by

Covy 1,2 e, = tey lso 1l s, (6.12)

That the limit exists follows from the fact that |, — ., llg-s can be made arbitrarily

small when ¢; and ¢, are chosen small enough. This finishes the proof of Lemma 6.1. B

After obtaining Lemma 6.1, we apply the Riesz representation theorem and
obtain a nonnegative measure v defined by (6.5). It remains to prove that v satisfies
the desired properties (6.1) and (6.2).

To prove (6.1), we write

(v,1) = lim / / e (x + P(£) 73, (8) djr (%) dpe (x + 8)

(6.13)
= [ m@non] [ et on, @ ae |+ d an
From Theorem 1.3, it follows that (v, 1) > ¢, > 0. This proves (6.1).
Finally, we prove (6.2). Let us introduce
X:={(x,y) €l0,11*: x,y,x + P(y — x) € E}. (6.14)

By the definition of the measure v, it is enough to prove that v is supported on X. Let f
be a continuous function with supp(f) disjoint from X. We need to prove that (v,f) = 0.
Since E is closed, X is also closed. Moreover, dist(supp(f),X) > 0. Using a partition of
unity, we are able to write f as a finite sum ij, where for each j, the function f] is

continuous and satisfies at least one of the following:

dist (supp(jj-),E x [0,1]) > O,
dist (supp(f), [0, 1] x E}) > 0, (6.15)

dist ({X—i—P(y —Xx):(x,y) € supp(fj)} ,E) > 0.
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We will prove that (v,j;) = 0 for every j. Iff} satisfies either the 1st or the 2nd condition
in (6.15), then the integral in (6.5) is O for every € small enough. If f; satisfies the 3rd
condition in (6.15), then the support offj is a positive distance from the support of
. (x+P(y—x) for sufficiently small ¢, so the integral is again equal to 0 if € is sufficiently
small. This finishes the proof of (6.2).

A Appendix

We compute the derivative Oy — Oy ) V(E M and establish the approximation (2.66)
fort, el1,2).

Recall that we have the expression P(t) = a;t + Q(t), where the lowest-degree
term of Q(¢) is a,t*2. The condition (2.4) on | guarantees that a,t*? is the dominant term
of Q(t).

We will make the following claims:

(i) |Q”(27't)| is bounded above and below by polynomial functions of 27, for
tell,2);
(ii) Q' is monotone and hence invertible on [27¢,27!*1) and |((Q")~!)| is bounded

from above and below by a polynomial in 2.

The lowest-degree term of Q" (t) is a,(a, — 1)a,t*?~2. By the condition (2.4) on
I, we have that, for t € [1,2), |Q"(27!t)| is bounded between 2~ ©2~2"1y, (o, — 1)|a,|
and 2-@~2@D+(y, — 1)a,la,| for t € [1,2). Both bounds are polynomial in 27,
establishing (i). So, Q' is monotone (and hence invertible) on [27!, 271y and, by the
inverse function theorem, we have that |((Q")~!)’| is bounded from above and below by
a polynomial in 2. This establishes (ii).

Now, we are ready to prove the inequality. We will compute the derivative
99,9 — 3,)W (&, m). We will start with by taking the derivative of (2.42) with respect

to n. This derivative is

N\ — / +
de V(&) = %((m b (—w) : (A.1)
n n
The 3rd derivative g ¢,V (&, m) is given by
1
e W(E ) = -5 ((@)7) (—“%) - %«0’)—1)” (—“%) . (A.2)

The 3rd derivative 9, , ,W(&,n) is given by

2 2
B V) = 5 (@) (—“#) + 5@y (—“#) . @3
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So, the difference is

2
(Lz + 2%) ((a/)—l)/ (_%‘ + aln) + (_% _ 5_4) ((O/)—l)// (_s + a’ln) ) (A.4)
n n n n n n

We make the substitution p = %, yielding

1 nN—1y/ 2 IN—1\77
22 [1+200@) 7 (=0 = @) = (* + (@) (=p +ay)| (A.5)

But we also have

@y =—- (8.6)
Q@)
and
_ara@)h

@ @ (A.7)

(@)=
Therefore, we get

(nz(O”((O/)l(—p —ay)))?
Q)Y (—p —ay)

=(1+2p)(Q"((Q)  (=p —apN?+ (p* + p)Q"(Q") (—p — ay)).

) (O &,y = Og )W (E, 1)
(A.8)

20" n—1 2
The factor 2 “?(éﬁgi),(ﬂ;:‘jl)’” is bounded between 279 and 2% for some § by (i) and (i),

as well as the fact that n ~ 1. This proves the desired approximation (2.66).
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