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Let E ⊂ R be a closed set of Hausdorff dimension α ∈ (0, 1). Let P : R → R be a

polynomial without a constant term whose degree is bigger than one. We prove that

if E supports a probability measure satisfying certain dimension condition and Fourier

decay condition, then E contains three points x, x + t, x + P(t) for some t > 0. Our result

extends the one of Łaba and Pramanik [11] to the polynomial setting, under the same

assumption. It also gives an affirmative answer to a question in Henriot et al. [7].

1 Statement of Results

This paper is dedicated to the following question: when does a set E ⊆ [0, 1] contain

a “polynomial configuration”? More precisely, given a univariate real polynomial P,

under what condition on E can we ensure the existence of a triple of distinct points

(x1, x2, x3) ∈ E3 satisfying x3 − x1 = P(x2 − x1)? We address this question through

measure-theoretic assumptions on E. Specifically, we assume that E supports a proba-

bility measure μ that obeys two conditions; the 1st is a ball condition of order α and the

2nd is a Fourier decay condition of order β. These are specified below:

(A)α sup
ε∈(0,1]

ε−αμ([x, x + ε]) ≤ C1,

(B)β sup
k∈Z

(1 + |k|) β
2 |μ̂(k)| ≤ C2(1 − α)−B.

(1.1)
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Here, μ̂ denotes the Fourier transform of the measure μ:

μ̂(ξ) :=
∫

e−ixξ dμ(x), ξ ∈ R.

Our main result is that the confluence of the two conditions in (1.1) for appropriate

choices of α, β is sufficient to ensure polynomial configurations.

Theorem 1.1. For every polynomial P : R → R of degree at least 2 with P(0) = 0, one

can find a constant s0 > 0 depending only on P such that the following statement holds.

For every choice of positive constants C1, C2, B, there exists α0 ∈ (0, 1) depending only on

s0 and these constants such that any compact set E ⊂ [0, 1] that supports a probability

measure μ satisfying the relations (A)α and (B)β in (1.1) also contains three points

x, x + t, x + P(t) for some t > 0, (1.2)

provided α ∈ (α0, 1) and β ∈ (1 − s0, 1).

Our proof shows that the value of t in the above theorem is extremely small.

When P(t) does not contain any constant term, the value of P(t) will also be small. In this

sense, our problem is local. The problem of dealing with a polynomial P(t) containing

a constant term is more global and is not covered here. A version of Theorem 1.1 with

P(t) = 2t is due to Łaba and Pramanik [11], with s0 = 1/3. The assumptions (A)α and

(B)β first appeared here. These assumptions turn out to be very natural in the context

of the sets of large Fourier dimension and also Salem sets. Indeed, many probabilistic

constructions that yield measures obeying (A)α and (B)β also produce Salem sets.

However, it is important to note that not every Salem set obeys (A)α and (B)β ; see for

instance [15].

Let us briefly recall the discussion in [11]. For a Borel set E ⊂ [0, 1], we let

dimH(E) denote the Hausdorff dimension of the set E. It is well known [14] that dimH(E)

is the supremum of numbers α ∈ [0, 1] for which there exists a probability measure μ

supported on E satisfying

sup
{
r−αμ (B(x; r)) : x ∈ R, r > 0

}
< ∞.

In contrast, the Fourier dimension of E, denoted dimF (E), is defined to be the supremum

overall β ∈ [0, 1] such that there exists a probability measure μ supported on E satisfying

|μ̂(ξ)| ≤ C(1 + |ξ |)−β/2 for every ξ ∈ R and some C > 0. (1.3)
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Thus, the condition (A)α implies that E has Hausdorff dimension at least α, while the

condition (B)β implies that E has Fourier dimension at least β. It is known [14] that

dimF (E) ≤ dimH(E) for every E. (1.4)

The sets for which the equality in (1.4) is achieved are called Salem sets. So far, there

are a number of constructions of Salem sets, due to Salem [17], Kaufman [10] (see Bluhm

[2] for an exposition), Kahane [9], Bluhm [1], Łaba and Pramanik [11], and so on. Many

of these constructions are probabilistic constructions. For instance, Kahane [9] showed

that images of compact sets under Brownian motion are almost surely Salem sets.

It is worth mentioning that, in Salem’s probabilistic construction of Salem [17]

sets, with large probability, the examples there (under certain modifications as in

[11]) obey assumptions (A) and (B). Moreover, Łaba and Pramanik [11] also provided

a probabilistic construction of Salem sets, a large portion of which (under a natural

measure) satisfy assumptions (A) and (B).

We will discuss a few generalizations of the result of Łaba and Pramanik [11]. In

[4], Chan, Łaba, and Pramanik generalized [11] to higher dimensions. Their result covers

a large class of linear patterns. In particular, they proved the following: let a, b, c be

three points in the plane that are not co-linear. Let E ⊂ R2. Assume that E supports a

probability measure μ satisfying the analogues of assumptions (A) and (B) in R2. Then,

E must contain three distinct points x, y, z such that the triangle �xyz is similar to �abc.

The result of [4] was later generalized to certain nonlinear patterns by Henriot

et al. [7]. However, their result does not cover the case of dimension one. For instance, it

was pointed out by the authors of [7] that the configuration (x, x + t, x + t2) with x, t ∈ R

cannot be detected by their method. In the current paper, we provide an affirmative

answer to this question.

Before we describe the proof of the main theorem, let us also mention that

results on the reals that are analogous to Theorem 1.1 have been obtained by Bourgain

[3] and Durcik et al. [5]. Indeed, some of the techniques we use also originate from these

works. This will be discussed after stating Proposition 1.2, one main ingredient of the

proof of Theorem 1.1.

We turn to the proof of Theorem 1.1. Let τ0 be a nonnegative smooth bump

function supported on the interval [1, 2] and τl(t) := τ0(2lt). It is not difficult to imagine

that the trilinear form ∫∫
μ(x)μ(x + t)μ(x + P(t))τl(t) dt dx (1.5)
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will play a crucial role in the study of patterns as in our main theorem. However, as μ

is just a measure, the above trilinear form may not be well defined at the 1st place. Our

1st task is to make sense of this trilinear form for every integer l that is large enough.

Let s be a real number. Define a Sobolev norm

‖ f ‖Hs :=
(∫

R

|f̂ (ξ)|2(1 + |ξ |2)s dξ

)1/2

. (1.6)

For l ∈ N, and two Schwartz functions f and g, define

Tl(f , g)(x) :=
∫
R

f (x + t)g(x + P(t))τl(t) dt. (1.7)

We will prove the following proposition.

Proposition 1.2. There exists a small constant s0 > 0 and large constant l0 > 0 and

γ0 > 0, depending only on P(t), such that

‖Tl( f , g)‖Hs0 ≤ 2γ0l‖ f ‖H−s0 ‖g‖H−s0 , (1.8)

for every l ≥ l0, and for Schwartz functions f and g.

This is called a Sobolev improving estimate. To our knowledge, an estimate of

this form first appeared in the work of Bourgain [3]; see Lemma 5 there. Li [12] and

Lie [13] further developed it in the context of Hilbert transforms along the curves. All

these works require that the polynomial P(t) does not have a linear term, in order to

use a certain “curvature” property of the polynomial. In Proposition 1.2, we managed to

prove a Sobolev improving estimate for every polynomial. The proof is a variant of Li

[12]. Moreover, it does not require the notion of σ -uniformity there. One reason that [12]

requires P(t) to have no linear terms is that certain curvature condition (nonvanishing

of the left-hand side of (2.48)) would fail for polynomials with linear terms. The key (and

simple) observation in the current paper is that the curvature condition fails only on a

“small” set (see Claim 2.5).

After proving Proposition 1.2, we are able to use it to make sense of the double

integral in (1.5). Let μ be a probability measure supported on the interval [0, 1]. If we

also assume that

|μ̂(ξ)| ≤ C|ξ |− β
2 , forβ ∈ (1 − s0, 1), (1.9)
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and for some constant C > 0, then μ ∈ H−s0(R), which is a Sobolev space of some

negative order. Recall that Schwartz functions are dense in Hs for every s ∈ R. By a

density argument, we know that the double integral in (1.5) is well defined. To be precise,

we will pick a sequence of Schwartz functions {fn}∞n=1 that convergence to μ in H−s0 and

interpret (1.5) as

lim
n→∞

∫∫
fn(x)fn(x + t)fn(x + P(t))τl(t) dt dx. (1.10)

That the above limit exists is guaranteed by Proposition 1.2.

After making sense of the double integral in (1.5), we will prove that it is always

positive. That is, we will prove the following theorem.

Theorem 1.3. Under the same assumptions as in Theorem 1.1, we are able to find a

large integer l0 ∈ N and a small positive real number c0 > 0 such that

∫∫
μ(x)μ(x + t)μ(x + P(t))τl0(t) dt dx ≥ c0. (1.11)

Intuitively speaking, if E does not contain any three-term configuration (x, x +
t, x + P(t)), then the left-hand side of (1.11) would certainly vanish. However, as we deal

with the measures supported on the sets of fractional dimensions, we need some extra

work to make the above argument rigorous. Roughly speaking, we will construct a Borel

measure ν defined on [0, 1]2 and supported on the set of configurations (x, x + t, x + P(t))

with t > 0, such that ν([0, 1]2) > 0. This will guarantee the existence of the desired

polynomial pattern. This will be carried out in the last section.

Organization of the paper. The Sobolev improving estimate in Proposition 1.2

will be proven in Section 2. The main tools we will be using include the stationary

phase principle and techniques from bilinear oscillatory integrals recently developed

by Li [12]. In Section 3, we provide a proof of the stationary phase principle that is

used in the current paper. Theorem 1.3 will be proven in Sections 4 and 5. The argument

that is used in this step relies on the idea of measure decomposition of Łaba and

Pramanik [11], on the Sobolev improving estimate in Proposition 1.2 and on Bourgain’s

energy pigeonholing argument from [3]. Finally, in Section 6, we will finish the proof of

Theorem 1.1.

Notation. Throughout the paper, we will write x � y to mean that there exists a

universal constant C such that x ≤ Cy and x � y to mean that x � y and y � x. Moreover,
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x �M,N y means there exists a constant CM,N depending on the parameters M and N such

that x ≤ CM,Ny.

2 Sobolev Improving Estimate: Proof of Proposition 1.2

In this section, we prove Proposition 1.2. Let P : R → R be a polynomial of degree bigger

than one without constant term. We write it as

P(t) = antαn + · · · + a2tα2 + a1tα1 , (2.1)

with 1 ≤ α1 < α2 < · · · < αn. Here, we assume that ai �= 0 for every i ∈ {1, 2, . . . , n}.
Moreover, we assume that α1 = 1, that is, our polynomial P contains a linear term. The

corresponding result for a polynomial without linear term is much easier to prove. This

point will be elaborated in a few lines.

For each 1 ≤ i ≤ n, let bi be the unique integer such that

2bi ≤ |ai| < 2bi+1. (2.2)

Let �0 be a large number that depends on the polynomial P. Let l0 ∈ N be the smallest

integer such that for every l ≥ l0, the following hold:

|ai|2−l·αi ≤ �−1
0 |a12−α1l| for every n ≥ i ≥ 2 (2.3)

and

|ai|2−l·αi ≤ �−1
0 |a22−l·α2 | for every n ≥ i ≥ 3. (2.4)

In other words, at the scale t � 2−l, the monomial a1t “dominates” the polynomial P(t)

and a2tα2 is the 2nd dominating term. It is not difficult to see that the choice of l0
depends only on P(t).

Let us pause and make a remark on the assumption that α1 = 1. As mentioned

above, the case α1 > 1 is relatively easier to handle. This is because a certain curvature

(in the sense of oscillatory integrals) appears naturally in this case. To be more precise,

under the assumption that α1 ≥ 2, we first choose l large enough such that (2.3) holds

and then the monomial a1tα1 dominates the polynomial P(t) at the scale t � 2−l. Notice

that acertain curvature is already present when a1tα1 dominates. Hence, the requirement

(2.4) becomes redundant.
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However, under the assumption that α1 = 1, if we only require (2.3), then there

is no curvature in the dominating term a1t. This is why we need to further require (2.4)

and find a 2nd dominating term. It is hoped that the curvature in the 2nd dominating

term will play an equivalent role. Due to the presence of the linear term a1t, a number

of extra complications will appear.

The rest of this section is devoted to the proof of Proposition 1.2. Let h be a

function in H−s0 . We pair it with the left-hand side of (1.8) and study

∫
R

[∫
R

f (x + t)g(x + P(t))τl(t) dt
]

h(x) dx. (2.5)

Let ψ0 : R → R be a nonnegative smooth bump function supported on [−3, −1] ∪ [1, 3].

Define ψk(·) = ψ0(·/2k). Moreover, we choose ψ0 such that

1 =
∑
k∈Z

ψk(t), for every t �= 0. (2.6)

For all the three functions f , g, and h, we apply the nonhomogeneous Littlewood–Paley

decomposition 1 = ∑
k∈N Pk, where 1 denotes the identity operator, and study

∞∑
k1,k2,k3=0

∫∫
R2

Pk1
f (x + t)Pk2

g(x + P(t))τl(t)Pk3
h(x) dt dx. (2.7)

Here,

Pkf (x) :=
∫
R

eixξψk(ξ)f̂ (ξ) dξ , if k > 0 (2.8)

and

P0f (x) :=
∫
R

eixξ

⎛
⎝∑

k≤0

ψk(ξ)

⎞
⎠ f̂ (ξ) dξ . (2.9)

In the following, we work on two cases,

|(k1 − l) − (k2 − l + b1)| ≥ 100 and |(k1 − l) − (k2 − l + b1)| < 100. (2.10)

Let us begin with the 1st case. Our goal is to prove the following lemma.
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Lemma 2.1. There exists a constant γ0 ∈ N depending on P, such that under the

assumption that |k1 − k2 − b1| ≥ 100, we have

∣∣∣∣
∫∫

R2
Pk1

f (x + t)Pk2
g(x + P(t))τl(t)Pk3

h(x) dt dx

∣∣∣∣
�N2γ0l2−N(k1+k2+k3)‖Pk1

f ‖2‖Pk2
g‖2‖Pk3

h‖2,

(2.11)

for arbitrarily large N ∈ N.

Assuming the above lemma, we have

∑
k1,k2,k3|k1−k2−b1|≥100

∣∣∣∣
∫∫

R2
Pk1

f (x + t)Pk2
g(x + P(t))τl(t)Pk3

h(x) dt dx

∣∣∣∣

�l

∞∑
k1,k2,k3=0

2−10(k1+k2+k3)‖Pk1
f ‖2‖Pk2

g‖2‖Pk3
h‖2 �l ‖f ‖H−s0 ‖g‖H−s0 ‖h‖H−s0 ,

(2.12)

for some s0 > 0. For instance, we may take s0 = 1 at this step.

Proof of Lemma 2.1. The proof is via an integration by parts. Turning to the Fourier

side, we can write the left-hand side of (2.11) as

2−l
∣∣∣∣
∫∫

P̂k1
f (ξ)P̂k2

g(η)P̂k3
h(ξ + η)

[∫
R

ei2−ltξ+iP(2−lt)ητ0(t) dt
]

dξ dη

∣∣∣∣ . (2.13)

First of all, we observe that

(2.13) = 0 when k3 ≥ k1 + k2 + 10. (2.14)

Hence, in the rest of the proof, we assume that k3 ≤ k1 + k2 + 10, and it suffices to prove

(2.13) �l 2−N(k1+k2)‖Pk1
f ‖2‖Pk2

g‖2‖Pk3
h‖2. (2.15)

Here, N ∈ N is a large integer that might vary from line to line. By an integration by

parts, we obtain

∣∣∣∣
∫
R

ei2−ltξ+iP(2−lt)ητ0(t) dt

∣∣∣∣ �l 2−N max{k1,k2}, (2.16)
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for ξ and η in the frequency support of Pk1
f and Pk2

g, respectively. Substitute the above

pointwise bound into (2.13), and apply Hölder’s inequality in the ξ and η variables. This

will finish the proof of the desired estimate. It is easy to track the dependence on l and

see that it is polynomial in 2l. �

From now on, we may assume that |k1−k2−b1| < 100. Without loss of generality,

we take k1 = k2 + b1 and consider

∞∑
k1,k3=0

∫∫
R2

Pk1
f (x + t)Pk1−b1

g(x + P(t))τl(t)Pk3
h(x) dt dx. (2.17)

In the double sum over k1 and k3, we may impose the extra condition that k3 ≤ 2(k1 +
|b1|), as otherwise the corresponding term from (2.17) will simply vanish.

Lemma 2.2. There exists a constant γ0 ∈ N and γ > 0, both of which are allowed to

depend on P, such that

∣∣∣∣
∫∫

R2
f (x + t)g(x + P(t))τl(t)h(x) dt dx

∣∣∣∣ ≤ 2γ0l2−γ k‖ f ‖2‖g‖2‖h‖2, (2.18)

for every l ≥ l0 and every k ∈ N, under the assumption that supp(f̂ ) ⊂ ±[2k, 2k+1] and

supp(ĝ) ⊂ ±[2k−b1 , 2k−b1+1] and no further assumption on the function h.

Assuming this lemma, we will be able to finish the proof of the desired bilinear

estimate. Recall that we need to control (2.17). By Lemma 2.2, this can be bounded by

2γ0l
∑

k1,k3 with k3≤2k1+2|b1|
2−γ k1‖Pk1

f ‖2‖Pk1−b1
g‖2‖Pk3

h‖2, (2.19)

for some γ > 0, which can be further bounded by

‖ f ‖H−γ /6‖g‖H−γ /6‖h‖H−γ /6 . (2.20)

This finishes the proof of the desired estimate.

Hence, it remains to prove Lemma 2.2. As the constant is allowed to depend on

l, we can always assume that k is at least some large constant times �. Turning to the

Fourier side, we obtain

2−l
∫∫

P̂kf (ξ)P̂k−b1
g(η)ĥ(ξ + η)

[∫
R

ei2−ltξ+iP(2−lt)ητ0(t) dt
]

dξ dη. (2.21)
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Write

P(t) = a1t + Q(t) = a1t + a2tα2 + R(t). (2.22)

The derivative of the phase function in (2.21) is given by

2−lξ + a12−lη + a2α22−α2ltα2−1η + 2−lR′(2−lt)η. (2.23)

From the 1st-order derivative of the phase function, we are still not able to locate the

critical point. To do so, we apply a more refined frequency decomposition to f and g.

For a fixed integer �, let ψk,l,� : R → R be a nonnegative smooth function supported on

[2k + � · 2k−γ0l, 2k + (� + 2)2k−γ0l] such that

ψk(ξ) =
∑
�∈Z

ψk(ξ)ψk,l,�(ξ), for every ξ ∈ R. (2.24)

That is, {ψk,l,�}�∈Z forms a partition of unity on the support of ψk. Moreover, the sum

in (2.24) is indeed a finite sum and the number of nonzero terms is about 2γ0l. Here, γ0

is some large number that is to be chosen. For convenience, we will allow γ0 to change

from line to line, unless otherwise stated.

We write (2.21) as∑
�1,�2∈Z

∫∫ [
P̂kf (ξ)ψk,l,�1

(ξ)
][

P̂k−b1
g(η)ψk−b1,l,�2

(η)
]
ĥ(ξ+η)

[∫
R

ei2−ltξ+iP(2−lt)ητ0(t) dt
]

dξ dη.

(2.25)

Notice that in the above sum, we have about 22γ0l terms that may be nonzero. We will see

that the main contribution to the sum will come from those �1, �2 such that the phase

2−ltξ + P(2−lt)η

admits a critical point t ∈ [1, 2] and some ξ ∈ supp ψk,l,�1
, η ∈ supp ψk,l,�2

.

Observe that the critical points of the phase are those values of t such that

2−lξ + a12−lη + a2α22−α2ltα2−1η + 2−lR′(2−lt)η = 0.

We have, by (2.4), that for t ∈ [1, 2], we have |R′(2−lt)| ≤ 2αnαn�−1
0 |a2|2−(α2−1)l.

Thus, if t is a critical point of the phase function, we must have

|2−lξ + a12−lη + a2α22−α2ltα2−1η| ≤ 2αnαn�−1
0 |a2|2−α2lη. (2.26)
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Thus, we get by dividing that

∣∣∣∣∣2−lξ + a12−lη

a2α22−α2lη
+ tα2−1

∣∣∣∣∣ ≤ 2αnαn�−1
0 |a2|

a2α2
. (2.27)

Observe that, as long as l is sufficiently large that (2.4) is satisfied, the right side of

this inequality does not depend on l. So, if �0 is sufficiently large depending on the

polynomial P, then the right-hand side of (2.27) is bounded above by 1
100 . Thus, if ξ and

η are such the phase function has a critical point in [1, 2], we must have the inequality

99

100
≤ −2−lξ + a12−lη

a2α22−α2lη
≤ 2α2−1 + 1

100
. (2.28)

Now, if (2.28) holds for some ξ ∈ supp ψk,l,�1
and η ∈ supp ψk−b1,l,�2

, then by the mean-

value theorem, we have that if l is sufficiently large depending on the polynomial P and

the parameter γ0, then

1

2
≤ −2−lξ + a12−lη

a2α22−α2lη
≤ 2α2−1 + 1

2
(2.29)

for all such ξ and η.

We then partition into two sums Scrit + Serr, where Scrit is the sum over those

�1, �2 such that (2.29) holds for all ξ ∈ supp ψk,l,�1
and η ∈ supp ψk−b1,l,�2

, and Serr

is the sum over those �1, �2 such that (2.29) fails for some ξ ∈ supp ψk,l,�1
and η ∈

supp ψk−b1,l,�2
.

We will first estimate Serr.

Lemma 2.3 (Nonstationary phase estimate). For Serr as defined above, we have

|Serr| �l 2−k/2||P̂kf ||2||P̂k−b1
g||2||ĥ||2 (2.30)

and the dependence is polynomial in 2l.

Proof. We will only estimate the contribution from the terms for which −2−lξ+a12−lη

a2α22−α2 lη
>

2α2−1 + 1
2 for some ξ ∈ supp ψk,l,�1

and η ∈ supp ψk−b1,l,�2
; the terms for which

−2−lξ+a12−lη

a2α22−α2lη
< 1

2 are handled similarly.
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If l is sufficiently large, an argument similar to the one establishing (2.29) from

(2.28) shows that

− 2−lξ + a12−lη

a2α22−α2lη
> 2α2−1 + 1

4
(2.31)

for all ξ ∈ supp ψk,l,�1
and η ∈ supp ψk−b1,l,�2

.

We will now reverse the argument used to infer (2.28) from (2.26) in order to

show that the derivative of the phase is large for t ∈ [1, 2]. To start, we subtract tα2−1

from both sides of (2.31) and take absolute values. Since tα2−1 ≤ 2α2−1, we get∣∣∣∣∣2−lξ + a12−lη

a2α22−α2lη
+ tα2−1

∣∣∣∣∣ >
1

4
. (2.32)

Because l is such that 2−lR′(2−lt)η
a2α22−α2 lη

< 1
100 , we have

∣∣∣2−lξ + a12−lη + a2α22−α2ltα2−1η + 2−lR′(2−lt)η
∣∣∣ >

24

100
a2α22−α2lη. (2.33)

The left side of (2.33) is the derivative of the phase function and the right side of

(2.33) is � 2k−α2l, where the implicit constant depends only on the polynomial P. Thus,

integrating by parts once gives that for ξ ∈ supp ψk,l,�1
, η ∈ supp ψk,l,�2

, we have the

estimate ∣∣∣∣
∫

ei2−ltξ+iP(2−lt)ητ0(t) dt

∣∣∣∣ � 2−k+α2l. (2.34)

Because there are only at most 22γ0l terms that contribute to the sum, we have from

applying the Cauchy–Schwarz inequality and observing that P̂kf is supported on a set

of measure � 2k,

|Serr| � 2−k/2+(2γ0+α2)l||P̂kf ||2||P̂k−b1
g||2||ĥ||2, (2.35)

as desired. �

We now estimate Scrit. As the implicit constant is allowed to depend on l, and

there are only at most 2γ0l values of �1 and �2 that contribute to (2.4), it suffices to

bound each term of Scrit separately. After this reduction, what we need to prove becomes∣∣∣∣
∫∫

f̂ (ξ)ĝ(η)ĥ(ξ + η)

[∫
R

ei2−ltξ+iP(2−lt)ητ0(t) dt
]

dξ dη

∣∣∣∣ ≤ 2γ0l2−γ k‖ f ‖2‖g‖2‖h‖2, (2.36)
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under the assumption that

f̂ = P̂kf · ψk,l,�1
, ĝ = P̂k−b1

g · ψk−b1,l,�2
(2.37)

and that (2.29) holds for every ξ ∈ supp(f̂ ) and η ∈ supp(ĝ). Observe that if (2.29) holds

for a given ξ and η, the critical point tc of the phase function must lie in
(1

4 , 4
)

provided

that �0 is sufficiently large by (2.27).

The critical point tc is given by

ξ + P′(2−ltc)η = 0. (2.38)

We will prove the following approximation formula.

Lemma 2.4 (Method of stationary phase). Under the above notation, we have

∫
R

ei2−ltξ+iP(2−lt)ητ0(t) dt = a(ξ , η)η−1/2ei�(ξ ,η) + Ol

(
1

|η|
)

, (2.39)

with

a(ξ , η) := (2−2lP′′(2−ltc))
−1/2τ0(tc) (2.40)

and

�(ξ , η) := 2−ltcξ + P(2−ltc)η. (2.41)

�(ξ , η) satisfies the equation

∂ξ�(ξ , η) = 2−ltc. (2.42)

Moreover,

Ol

(
1

|η|
)

≤ 2γ0l 1

|η| . (2.43)

Observe that a(ξ , η) = 0 unless tc ∈ [1, 2].

Lemma 2.4 will be proved in Section 3. Substituting (2.39) into (2.36) gives rise

to two terms. Let us first estimate the contribution from the term containing Ol(
1
|η| ).
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We bound it by∫∫ ∣∣∣∣ f̂ (ξ)ĝ(η)ĥ(ξ + η)
1

|η|
∣∣∣∣ dξ dη �l 2−k

∫∫ ∣∣∣ f̂ (ξ)ĝ(η)ĥ(ξ + η)

∣∣∣ dξ dη. (2.44)

By Hölder’s inequality, the last term can be bounded by

2−k/2‖ f ‖2‖g‖2‖h‖2. (2.45)

So far, we have managed to control the contribution from the 2nd term on the right-hand

side of (2.39).

Now, we turn to the 1st term on the right-hand side of (2.39). The corresponding

term we need to handle is∫∫
f̂ (ξ)ĝ(η)ĥ(ξ + η)

a(ξ , η)√
η

ei�(ξ ,η) dξ dη. (2.46)

We apply a change of variables ξ → 2kξ , η → 2kη. We also rename f , g, h for simplicity.

It suffices to prove∣∣∣∣
∫∫

f (ξ)g(η)h(ξ + η)a(ξ , η)ei2k�(ξ ,η) dξ dη

∣∣∣∣ � 2−γ k‖ f ‖2‖g‖2‖h‖2, (2.47)

for every function a : R2 → R with ‖a‖C4 � 1, and for functions f supported on ±[1 +
�12−γ0l, 1+ (�1 +2)2−γ0l] and g supported on ±[2−b1 +�22−b1−γ0l, 2−b1 + (�2 +2)2−b1−γ0l].

Here, �1 and �2 are two positive integers that are smaller than 2γ0l. Moreover, they are

chosen such that (2.29) holds for every ξ ∈ supp(f ) and η ∈ supp(g).

Claim 2.5. There exist integers CP, C′
P depending only on P and intervals J1, . . . , JCP

⊂ R

of length 2−γ k/C′
P , such that whenever ξ/η �∈ Jι for any ι, we have

|∂ξ ∂η(∂ξ − ∂η)�| � 2−γ k. (2.48)

The implicit constant is allowed to depend on P and can be taken to be polynomial in 2l.

The proof of the claim is postponed to the end of this section. Let ã : R → R be a smooth

bump function taking value one on each 2Jι such that ‖ã‖C4 � 24γ k. To prove (2.47), we

will decompose a(ξ , η) = a(ξ , η)̃a(ξ/η) + a(ξ , η)(1 − ã(ξ/η)) and control the two resulting

terms separately. For the former term, the oscillation from ei2k� no longer plays any

role, and we simply put the absolute value sign inside the integral and obtain∫∫
| f (ξ)g(η)h(ξ + η)a(ξ , η)̃a(ξ/η)| dξ dη. (2.49)
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By Cauchy–Schwarz, this can be easily bounded by 2−γ k/C′
P ‖f ‖2‖g‖2‖h‖2. To control the

latter term, it suffices to prove the following lemma.

Lemma 2.6. For every small positive γ > 0, every function a : R2 → R supported on

[−1, 1]2 with ‖a‖C4 ≤ 2γ k, every � : R2 → R with

|∂ξ ∂η(∂ξ − ∂η)�| � 2−γ k and ‖�‖C4 � 1, (2.50)

we have

∣∣∣∣
∫∫

f (ξ)g(η)h(ξ + η)a(ξ , η)ei2k�(ξ ,η) dξ dη

∣∣∣∣ � 2−γ k‖ f ‖2‖g‖2‖h‖2. (2.51)

Here, taking γ = 10−5 is more than enough.

Proof of Lemma 2.6. This lemma is essentially due to Li [12]. Here, we need to keep

track of the dependence on norms of a, on its support, and so on. Oscillatory integrals

of the form (2.51) have also been extensively studied in Xiao [16] and Gressman and

Xiao [6].

We start the proof. By applying the triangle inequality, it suffices to prove (2.51)

with a better gain 2−3γ k in place of 2−γ k, for every function g supported on an interval

of length 2−2γ k. By a change of variable and by applying Cauchy–Schwarz, it is enough

to prove

∥∥∥∥
∫

f (ξ − η)g(η)a(ξ − η, η)ei2k�(ξ−η,η) dη

∥∥∥∥2

L2
ξ

� 2−6γ k‖ f ‖2
2‖g‖2

2. (2.52)

We expand the square on the left-hand side. After a change of variable, we obtain

∫
|τ |≤2−γ k

∫∫
R2

ei2k[�(ξ ,η)−�(ξ−τ ,η+τ)]Fτ (ξ)Gτ (η)a′
τ (ξ , η) dξ dη dτ , (2.53)

for some new compactly supported amplitude a′
τ . Moreover, Fτ (·) := f (·)f̄ (· − τ) and

Gτ (·) := g(·)ḡ(· + τ). By the mean value theorem, it is easy to see that

∣∣∣∂ξ ∂η (�(ξ , η) − �(ξ − τ , η + τ))

∣∣∣ � 2−γ k|τ |. (2.54)

To proceed, we need the following lemma.
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Lemma 2.7. For every small positive γ > 0, every function a′ : R2 → R supported on

[−1, 1]2 with ‖a′‖C4 ≤ 2γ k, every � : R2 → R with

∣∣∣∂ξ ∂η�

∣∣∣ � 2−7γ k and ‖�‖C4 � 1, (2.55)

we have ∣∣∣∣
∫∫

F(ξ)G(η)a′(ξ , η)ei2k�(ξ ,η) dξ dη

∣∣∣∣ � 2−6γ k‖F‖2‖G‖2. (2.56)

Again, taking γ = 10−5 is more than enough.

�

To control (2.53), we split the integral in τ into two parts:∫
|τ |≤2−6γ k

+
∫

|τ |≥2−6γ k
. (2.57)

Regarding the former term, we apply the triangle inequality and Cauchy–Schwarz to

bound it by 2−6γ k‖f ‖2
2‖g‖2

2. Regarding the latter term, we apply Lemma 2.7 and bound

it by

2−6γ k
∫

|τ |≥2−6γ k
‖Fτ‖2‖Gτ‖2 dτ . (2.58)

By applying Cauchy–Schwarz, this is bounded by 2−6γ k‖f ‖2
2‖g‖2

2. This finishes the proof

of Lemma 2.6.

Proof of Lemma 2.7. This lemma is essentially due to Hörmander [8]. By Cauchy–

Schwarz, it suffices to prove∥∥∥∥
∫

F(ξ)a′(ξ , η)ei2k�(ξ ,η) dξ

∥∥∥∥2

2
� 2−12γ k‖F‖2

2. (2.59)

By the triangle inequality, it suffices to prove (2.59) with a better gain 2−30γ k in place

of 2−12γ k, for every function F supported on an interval of length 2−8γ k. We expand the

square on the left-hand side and obtain∫∫
σk(ξ1, ξ2)F(ξ1)F̄(ξ2) dξ1 dξ2, (2.60)

where

σk(ξ1, ξ2) :=
∫

ei2k(�(ξ1,η)−�(ξ2,η))a′(ξ1, η)ā′(ξ2, η) dη. (2.61)
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By the mean value theorem, we observe that

∣∣∣∂η(�(ξ1, η) − �(ξ2, η))

∣∣∣ � 2−7γ k|ξ1 − ξ2|. (2.62)

By applying integration by parts twice, we obtain

|σk(ξ1, ξ2)| � min{22γ k, 2−2k+50γ k|ξ1 − ξ2|−2}. (2.63)

By Schur’s test, this gives us the desired bound if we choose γ small enough. This

finishes the proof of Lemma 2.7. �

Proof of Claim 2.5. Before properly embarking on the proof of this claim, we will

summarize the proof. Hypothetically, if ∂ξ ∂η(∂ξ − ∂η)�(ξ , η) were a nonzero polynomial

function of ξ
η
, Claim 2.5 would be trivial to prove by selecting the intervals Jι to be

neighborhoods of the zeros of ∂ξ ∂η(∂ξ − ∂η)�(ξ , η). Unfortunately, ∂ξ ∂η(∂ξ − ∂η)�(ξ , η)

will not typically be a polynomial function of ξ
η
. Nonetheless, we are able to compare

∂ξ ∂η(∂ξ − ∂η)�(ξ , η) to such a polynomial after making a suitable change of variables.

Recall that tc(ξ , η) is defined via

ξ + a1η + ηQ′(2−ltc) = 0. (2.64)

Moreover,

�(ξ , η) = 2−l(ξ + a1η)tc + ηQ(2−ltc)

= (ξ + a1η)(Q′)−1
(

−ξ + a1η

η

)
+ ηQ

(
(Q′)−1

(
−ξ + a1η

η

))
.

(2.65)

Here, (Q′)−1 means the inverse of the derivative of Q. By a direct calculation presented

in the appendix, we obtain∣∣∣∂ξ ∂η(∂ξ − ∂η)�(ξ , η)

∣∣∣
≈

∣∣∣∣(2ρ + 1)
(
Q′′ ((Q′)−1(−ρ − a1)

))2 + (ρ2 + ρ)Q′′′ ((Q′)−1(−ρ − a1)
)∣∣∣∣ ,

(2.66)

where ρ := ξ/η. This statement means that these two expressions are the same up to a

multiplicative factor that is bounded between 2−δl and 2δl for some real number δ. By

changing ρ to −ρ − a1, it is equivalent to consider∣∣∣∣−(2ρ + 2a1 − 1)
(
Q′′ ((Q′)−1(ρ)

))2 + (ρ + a1)(ρ + a1 − 1)Q′′′ ((Q′)−1(ρ)
)∣∣∣∣ . (2.67)
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Recall that Q(t) = a2tα2 +R(t), where a2 �= 0 and R(t) can be viewed as a remainder term

compared with a2tα2 when t ≈ 2−l. Denote s := (Q′)−1(ρ). Then, (2.67) becomes

∣∣∣−(2Q′(s) + 2a1 − 1)
(
Q′′(s)

)2 + (Q′(s) + a1)(Q′(s) + a1 − 1)Q′′′(s)
∣∣∣ . (2.68)

The highest-order term in the last display is given by

a3
nα3

ns3αn−5
(
−2(αn − 1)2 + (αn − 1)(αn − 2)

)
. (2.69)

Notice that the coefficient does not vanish. Therefore, we observe that (2.68) is the

absolute value of a nonzero polynomial of s. By the observation from the summary of

the proof, we have that there exist intervals J̃ι such that ∂ξ ∂η(∂ξ − ∂η)�(ξ , η) satisfies

the desired inequality if s /∈ J̃ι for any ι. But the transformation sending ρ to s is an

invertible transformation with derivative bounded above and below polynomials in 2−l

as seen in the appendix, so the set of points ρ such that s ∈ J̃ι satisfy the conditions in

Claim 2.5, provided that γ is small enough. �

3 Stationary Phase Principle: Proof of Lemma 2.4

Our goal in this section is to prove an asymptotic formula for∫
R

ei2−ltξ+iP(2−lt)ητ0(t) dt = 2l
∫
R

eitξ+iP(t)ητ0(2lt) dt. (3.1)

We follow the proof of Proposition 3 on Stein [18, p. 334]. Define

�ξ ,η(t) := tξ + P(t)η. (3.2)

Recall some notation

P(t) = a1t + Q(t) = a1t + a2tα2 + R(t). (3.3)

Let t̄c. be the critical point of the phase function, that is,

ξ + P′(t̄c)η = ξ + (a1 + Q′(t̄c))η = 0. (3.4)

By a rescaling of the observation preceding Lemma 2.4, we have that t̄c lies in

(2−l−2, 2−l+2). We expand the phase function about t̄c:

�ξ ,η(t) = �ξ ,η(t̄c) + 1

2
Q′′(t̄c)η(t − t̄c)

2 + Ol(|t − t̄c|3) · η. (3.5)
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Here,

Ol(|t − t̄c|3) ≤ CP2l|Q′′(t̄c)||t − t̄c|3, (3.6)

where CP is a large constant depending only on P. Let ϑ be a nonnegative even smooth

function supported on [−2, 2], constant on [−1, 1] and monotone on [1, 2]. We normalize

it such that ϑ̂(0) = 1 and denote ϑ�(x) := 2�ϑ(2�x). We write

∫
R

eitξ+iP(t)ητ0(2lt) dt =
∫
R

eitξ+iP(t)ητ0(2lt)ϑ(2l+10CP (t − t̄c)) dt

+
∫
R

eitξ+iP(t)ητ0(2lt)
(
1 − ϑ(2l+10CP (t − t̄c))

)
dt =: I + II.

(3.7)

The phase function in term II does not admit any critical point. Hence, by integration by

parts, we obtain

|II| ≤ 2γ0l 1

|η| . (3.8)

For term I, we write it as

ei�ξ ,η(t̄c)

∫
R

ei�ξ ,η(t)−i�ξ ,η(t̄c)ϑ̃l(t) dt, (3.9)

where

ϑ̃l(t) := τ0(2lt)ϑ(2l+10CP (t − t̄c)). (3.10)

The support of the function ϑ̃l is chosen to be so small such that the change of variable

(t − t̄c)
2 + 2

Q′′(t̄c)
· Ol(|t − t̄c|3) → y2 (3.11)

becomes valid. Under this change of variable, (3.9) turns to

ei�ξ ,η(t̄c)

∫
R

ei 1
2 Q′′(t̄c)ηy2

ϑ ′
l (y) dy, (3.12)
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for some new smooth truncation function ϑ ′
l . We split the last expression into three

terms:

ei�ξ ,η(t̄c)

∫
R

ei 1
2 Q′′(t̄c)ηy2

e−y2
(ey2

ϑ ′
l (y) − ϑ ′

l (0))ϑ ′′
l (y) dy

+ ei�ξ ,η(t̄c)

∫
R

ei 1
2 Q′′(t̄c)ηy2

e−y2
ϑ ′

l (0)(ϑ ′′
l (y) − 1) dy

+ ei�ξ ,η(t̄c)

∫
R

ei 1
2 Q′′(t̄c)ηy2

e−y2
ϑ ′

l (0) dy,

(3.13)

where ϑ ′′
l is a compactly supported smooth function and is 1 on the support of ϑ ′

l . These

three terms will be called I1, I2, and I3 and will be handled separately.

By the triangle inequality and an integration by parts argument, it is not

difficult to see that

|I1| + |I2| ≤ 2γ0l|η|−1. (3.14)

In the end, one just needs to observe that

∫
R

eiλt2
e−t2

dt = e0λ−1/2 + O(λ−3/2) (3.15)

for some universal constant e0. See Stein [18, Equation (9) on p. 335]. This finishes the

proof of Lemma 2.4.

4 Positivity of the Double Integral: Proof of Theorem 1.3

In this section, we prove Theorem 1.3. We follow the idea of Łaba and Pramanik [11] and

decompose

μ = μ1 + μ2, (4.1)

with

μ1(x) ≤ A · 26BC1, (4.2)

where A is a large absolute constant. Here, μ1 is obtained by convolving μ with a Fejér

kernel. See Łaba and Pramanik [11, p. 442]. Here, we make a remark that this is the only

place where one applies the assumption (A) in (1.1). Also, in their decomposition, it is

possible to choose μ1 so that

μ1 ≥ 0 and
∫ 1

0
μ1(x) dx = 1. (4.3)
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Moreover, we have μ̂2(0) = 0, and

μ̂2(n) = min
(

1,
|n|

2N + 1

)
μ̂(n), (4.4)

where

N = C−1
2 e

1
1−α . (4.5)

Lemma 4.1. There exists l0 ∈ N and c0 > 0 depending only on C1, C2, B, β and the

polynomial P such that∫∫
μ1(x)μ1(x + t)μ1(x + P(t))τl0(t) dt dx ≥ c0. (4.6)

The proof of Lemma 4.1 is based on Bourgain’s energy pigeonholing argument

[3] and the Sobolev improving estimate in Proposition 1.2. We postpone its proof to the

next section.

After finding l0 and c0, we will pick α to be sufficiently close to one and

prove that ∣∣∣∣
∫∫

μi1(x)μi2(x + t)μi3(x + P(t))τl0(t) dt dx

∣∣∣∣ ≤ c0/8, (4.7)

when (i1, i2, i3) �= (1, 1, 1). For the sake of simplicity, let us assume that we are working

with (i1, i2, i3) = (1, 1, 2). The proofs of the other cases are similar. In the previous

sections, we proved that∣∣∣∣
∫∫

μ1(x)μ1(x + t)μ2(x + P(t))τl0(t) dt dx

∣∣∣∣ ≤ Cl0‖μ1‖2
H−s0 ‖μ2‖H−s0 , (4.8)

for some s0 > 0 depending only on the polynomial P. By the definition of μ1 and the

assumption on μ, we have

‖μ1‖2
H−s0 ≤ ‖μ‖2

H−s0 ≤ C2
2(1 − α)−2B

∑
k≥1

|k|−β |k|−2s0 . (4.9)

Next, we turn to the term ‖μ2‖H−s0 .

‖μ2‖2
H−s0 ≤ C2

2(1 − α)−2B

⎛
⎝ ∑

1≤k≤2N

k2

(2N + 1)2 k−β−2s0 +
∑

k>2N

k−β−2s0

⎞
⎠

� C2
2(1 − α)−2B

(
N3−β−2s0

N2 + N1−β−2s0

)
≤ C2

2(1 − α)−2BN1−β−2s0 .

(4.10)
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Combined with (4.8), we obtain

∣∣∣∣
∫∫

μ1(x)μ1(x + t)μ2(x + P(t))τl0(t) dt dx

∣∣∣∣ ≤ Cl0C10
2 (1 − α)−10BN(1−β−2s0)/2. (4.11)

Recall (4.5). If we choose α close enough to one, depending on all the other parameters,

we will be able to conclude (4.7).

5 Proof of Lemma 4.1

Before we start the proof of Lemma 4.1, we state a preliminary lemma. Recall the

definition of ϑ in Section 3.

Lemma 5.1 (Bourgain [3]). For a nonnegative function f supported on [0, 1] and k, l ∈ N,

we have ∫ 1

0
f ( f ∗ ϑk)(f ∗ ϑ�) ≥ c0

(∫ 1

0
f
)3

for some constant c0 > 0 depending only on the choice of ϑ .

The proof of this lemma was omitted in [3]. For a proof, we refer to [5].

In this section, we will use f to stand for μ1. Hence, f is a function satisfying

∫
f = 1 and 0 ≤ f ≤ A · 26BC1 =: M. (5.1)

For simplicity, we assume ||τ0||1 = 1 and change the notation a bit by taking

τl(t) = 2lτ0(2lt) instead of τl(t) = τ0(2lt). (5.2)

We also need to show that l0 can be bounded from above by a number that depends only

on C1, C2, B, β, and P. Denote

�l =
∫∫

f (x)f (x + t)f (x + P(t))τl(t) dt dx. (5.3)

For �′, �, �′′ ∈ N with 1 ≤ �′ ≤ � ≤ �′′, we have

�l =
∫ 1

0

∫ 1

0
f (x)f (x + t)f (x + P(t))τ�(t) dx dt

= I1 + I2 + I3,
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where

I1 =
∫ 1

0

∫ 1

0
f (x)f (x + t)(f ∗ ϑ�′)(x + P(t))τ�(t) dx dt,

I2 =
∫ 1

0

∫ 1

0
f (x)f (x + t)(f ∗ ϑ�′′ − f ∗ ϑ�′)(x + P(t))τ�(t) dx dt,

I3 =
∫ 1

0

∫ 1

0
f (x)f (x + t)(f − f ∗ ϑ�′′)(x + P(t))τ�(t) dx dt.

We analyze each of the terms separately. Splitting f − f ∗ ϑ�′′ into Littlewood–

Paley pieces and applying Lemmas 2.2 and 2.1, it follows that for some σ > 0, we have

|I3| �M 2γ0�−σ�′′ ‖ f ‖2
L2(R)

≤ 2−100c0,

where the last inequality holds provided that �′′ >
γ0
σ

� + C(M), which will hold for

sufficiently large � provided that �′′ > 2 γ0
σ

�. Here, c0 is the constant from Lemma 5.1

and C(M) is a quantity depending on M, σ , and c0 but not on � or �′. We have also

applied the pointwise bound 5.1, resulting a square of ‖f ‖2 instead of a cubic power.

To estimate I2, we apply the Cauchy–Schwarz inequality in x, which yields

|I2| ≤
∫ 1

0
‖ f (x)f (x + t)‖L2

x
‖(f ∗ ϑ�′′ − f ∗ ϑ�′)(x + P(t))‖L2

x
τ�(t) dt

�M ‖ f ∗ ϑ�′′ − f ∗ ϑ�′ ‖2.

Passing to the last line, we bounded the L∞ norm of f by M and the L1 norm of τ� by one.

To estimate I1, we compare it with

I4 =
∫ 1

0

∫ 1

0
f (x)f (x + t)(f ∗ ϑ�′)(x)τ�(t) dx dt

=
∫ 1

0
f (x)(f ∗ ϑ�′)(x)(f ∗ τ�)(x) dx.

Consider the difference

I4 − I1 =
∫ 1

0

∫ 1

0
f (x)f (x + t)

(
(f ∗ ϑ�′)(x) − (f ∗ ϑ�′)(x + P(t))

)
τ�(t) dx dt.

By the mean value theorem, we obtain

|( f ∗ ϑ�′)(x) − ( f ∗ ϑ�′)(x + P(t))| ≤ 2�′ ‖ f ∗ (ϑ�′)′‖∞|P(t)| ≤ M2�′−�+1,
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whenever t is in the support of τ�. If �′ is sufficiently large depending on M and c0, then

choosing � > 2�′ gives

|I4 − I1| ≤ 2−100c0.

We return to analyzing the term I4, which we write as

I4 =
(∫ 1

0
f (x)(f ∗ ϑ�′)(x)

(
(f ∗ τ�)(x) − (f ∗ ϑ�′)(x)

)
dx

)
(5.4)

+
(∫ 1

0
f (x)(f ∗ ϑ�′)(x)(f ∗ ϑ�′)(x) dx

)
. (5.5)

By Lemma 5.1, the term (5.5) is bounded from below by c0. For (5.4), we use the triangle

inequality and Young’s convolution inequality to estimate

‖f ∗ τ� − f ∗ ϑ�′ ‖2

�M ‖(f ∗ τ� ∗ ϑ�′′) − (f ∗ ϑ�′ ∗ τ�)‖2 (5.6)

+ ‖τ� − (τ� ∗ ϑ�′′)‖1 (5.7)

+ ‖ϑ�′ − (ϑ�′ ∗ τ�)‖1. (5.8)

By another application of Young’s convolution inequality in (5.6), we bound the last

display by

�M ‖( f ∗ ϑ�′′) − ( f ∗ ϑ�′)‖2 + ‖τ� − (τ� ∗ ϑ�′′)‖1 + ‖ϑ�′ − (ϑ�′ ∗ τ�)‖1.

By the mean value theorem, the 2nd and 3rd terms are bounded from above by 2−100c0

provided �′ is chosen large enough and that � > 2�′ and �′′ > 2�. This in turn bounds (5.4)

from above by

‖ f ∗ ϑ�′′ − f ∗ ϑ�′ ‖2 + 2−99c0.

From the estimates for the terms I1, I2, I3, I4, and I4 − I1, we obtain

c0 ≤ �l + CM‖f ∗ ϑ�′ − f ∗ ϑ�′′ ‖2 + 2−90c0.

Here, CM is a large constant that depends only on M. For instance, it suffices to take

CM = M10. Therefore, we have either �l > 2−10c0 or

‖ f ∗ ϑ�′ − f ∗ ϑ�′′ ‖2 > 2−10C−1
M c0.
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By the preceding discussion, we can construct a sequence {�0 < �1 < · · · < �k < · · · } ⊆ N,

which is independent of f and satisfies �k+1 ≤ C�k for some sufficiently large constant

C such that for each k either

��k
> 2−10c0

or

‖ f ∗ ϑ�k
− f ∗ ϑ�k+1

‖2 > 2−10c0C−1
M . (5.9)

Observe that for any K ≥ 0, one has

K∑
k=0

(
‖ f ∗ ϑ�k

− f ∗ ϑ�k+1
‖2

2

)
≤ C0‖ f ‖2

2 ≤ C0M2 (5.10)

with C0 independent of K and f . Let us fix K > C02100c−2
0 C2

MM4. If (5.9) holds for all

0 < k ≤ K, then (5.10) yields K ≤ C02100c−2
0 C2

MM4, which is a contradiction. Thus, for

some 0 ≤ k ≤ K, we necessarily have ��k
> 2−10c0. Together with �k+1 ≤ C�k, this gives

a lower estimate on ��k
, as claimed in Lemma 4.1.

6 Existence of Polynomial Patterns: Proof of Theorem 1.1

Let μ be as in Theorem 1.1. Let l0 be as in Theorem 1.3. Theorem 1.1 follows if we are

able to construct a Borel measure ν on [0, 1] × [0, 1] such that

ν([0, 1] × [0, 1]) > 0 (6.1)

and

ν is supported onX = {(x, y) ∈ [0, 1]2 : x, y, x + P(y − x) ∈ E, 2−l0 ≤ y − x ≤ 2−l0+1}. (6.2)

For ε > 0, define

με := μ ∗ ϑε , (6.3)

where ϑε(x) = ε−1ϑ(x/ε). A standard argument shows that

με → μ in H−s0 as ε → 0. (6.4)
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We define a linear functional ν acting on functions f : [0, 1]2 → R by

〈ν, f 〉 := lim
ε→0

∫∫
f (x, y)με(x + P(y − x))τl0(y − x) dμε(x) dμε(y). (6.5)

The following lemma holds.

Lemma 6.1. The limit in (6.5) exists for every continuous function f . Moreover,

|〈ν, f 〉| ≤ C‖f ‖∞, (6.6)

where C is independent of f .

Proof. of Lemma 6.1 For every ε > 0, the following inequality holds:

∣∣∣∣
∫∫

f (x, y)με(x + P(y − x))τl0(y − x) dμε(x) dμε(y)

∣∣∣∣
≤ ‖f ‖∞

∫∫
με(x + P(y − x))τl0(y − x) dμε(x) dμε(y).

(6.7)

By the Sobolev improving estimate in Proposition 1.2, this can be bounded by

2γ0l0‖με‖2
H−s0 ‖με‖H−s0 ≤ 23+γ0l0‖μ‖3

H−s0 . (6.8)

Recall that 1 − s0 < β. Under this assumption, we know ‖μ‖H−s0 is finite. This proves

(6.6) if the limit (6.5) exists.

It remains to prove the existence of the limit (6.5). By density, it suffices to prove

that the limit exists for every smooth function f whose Fourier series consists of only

finitely many terms. Hence, it suffices to prove that the limit

lim
ε→0

∫∫
eiN1x+iN2yμε(x + P(y − x))τl0(y − x) dμε(x) dμε(y) (6.9)

exists for given N1, N2 ∈ N. By Proposition 1.2,

∣∣∣∣
∫∫

eiN1x+iN2y(με1
− με2

)(x + P(y − x))τl0(y − x) dμε(x) dμε(y)

∣∣∣∣
≤ 2γ0l0‖με1

− με2
‖H−s0 ‖μ′‖H−s0 ‖μ′′‖H−s0 ,

(6.10)
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where

dμ′(x) = eiN1xdμε(x) and dμ′′(x) = eiN2xdμε(x). (6.11)

The right-hand side of (6.10) can be further bounded by

CN1,N2
2γ0l0‖με1

− με2
‖H−s0 ‖μ‖2

H−s0 . (6.12)

That the limit exists follows from the fact that ‖με1
− με2

‖H−s0 can be made arbitrarily

small when ε1 and ε2 are chosen small enough. This finishes the proof of Lemma 6.1. �

After obtaining Lemma 6.1, we apply the Riesz representation theorem and

obtain a nonnegative measure ν defined by (6.5). It remains to prove that ν satisfies

the desired properties (6.1) and (6.2).

To prove (6.1), we write

〈ν, 1〉 = lim
ε→0

∫∫
με(x + P(t))τl0(t) dμε(x) dμε(x + t)

=
∫∫

R2
μ̂(ξ)μ̂(η)

[∫
R

eitξ+iP(t)ητl0(t) dt
]

μ̂(ξ + η) dξ dη.

(6.13)

From Theorem 1.3, it follows that 〈ν, 1〉 ≥ c0 > 0. This proves (6.1).

Finally, we prove (6.2). Let us introduce

X̃ := {(x, y) ∈ [0, 1]2 : x, y, x + P(y − x) ∈ E}. (6.14)

By the definition of the measure ν, it is enough to prove that ν is supported on X̃. Let f

be a continuous function with supp(f ) disjoint from X̃. We need to prove that 〈ν, f 〉 = 0.

Since E is closed, X̃ is also closed. Moreover, dist(supp(f ), X̃) > 0. Using a partition of

unity, we are able to write f as a finite sum
∑

fj, where for each j, the function fj is

continuous and satisfies at least one of the following:

dist (supp(fj), E × [0, 1]) > 0,

dist (supp(fj), [0, 1] × E}) > 0,

dist
({

x + P(y − x) : (x, y) ∈ supp(fj)
}

, E
)

> 0.

(6.15)
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We will prove that 〈ν, fj〉 = 0 for every j. If fj satisfies either the 1st or the 2nd condition

in (6.15), then the integral in (6.5) is 0 for every ε small enough. If fj satisfies the 3rd

condition in (6.15), then the support of fj is a positive distance from the support of

με(x+P(y−x) for sufficiently small ε, so the integral is again equal to 0 if ε is sufficiently

small. This finishes the proof of (6.2).

A Appendix

We compute the derivative (∂ξ ,ξ ,η − ∂ξ ,η,η)�(ξ , η) and establish the approximation (2.66)

for tc ∈ [1, 2).

Recall that we have the expression P(t) = a1t + Q(t), where the lowest-degree

term of Q(t) is a2tα2 . The condition (2.4) on l guarantees that a2tα2 is the dominant term

of Q(t).

We will make the following claims:

(i) |Q′′(2−lt)| is bounded above and below by polynomial functions of 2−l, for

t ∈ [1, 2);

(ii) Q′ is monotone and hence invertible on [2−l, 2−l+1) and |((Q′)−1)′| is bounded

from above and below by a polynomial in 2l.

The lowest-degree term of Q′′(t) is α2(α2 − 1)a2tα2−2. By the condition (2.4) on

l, we have that, for t ∈ [1, 2), |Q′′(2−lt)| is bounded between 2−(α2−2)l−1α2(α2 − 1)|a2|
and 2−(α2−2)(l−1)+1(α2 − 1)α2|a2| for t ∈ [1, 2). Both bounds are polynomial in 2−l,

establishing (i). So, Q′ is monotone (and hence invertible) on [2−l, 2−l+1) and, by the

inverse function theorem, we have that |((Q′)−1)′| is bounded from above and below by

a polynomial in 2l. This establishes (ii).

Now, we are ready to prove the inequality. We will compute the derivative

∂ξ ∂η(∂ξ − ∂η)�(ξ , η). We will start with by taking the derivative of (2.42) with respect

to η. This derivative is

∂ξ ,η�(ξ , η) = ξ

η2 ((Q′)−1)′
(

−ξ + a1η

η

)
. (A.1)

The 3rd derivative ∂ξ ,ξ ,η�(ξ , η) is given by

∂ξ ,ξ ,η�(ξ , η) = 1

η2 ((Q′)−1)′
(

−ξ + a1η

η

)
− ξ

η3 ((Q′)−1)′′
(

−ξ + a1η

η

)
. (A.2)

The 3rd derivative ∂ξ ,η,η�(ξ , η) is given by

∂ξ ,η,η�(ξ , η) = −2ξ

η3 ((Q′)−1)′
(

−ξ + a1η

η

)
+ ξ2

η4 ((Q′)−1)′′
(

−ξ + a1η

η

)
. (A.3)
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So, the difference is(
1

η2 + 2
ξ

η3

)
((Q′)−1)′

(
−ξ + a1η

η

)
+

(
− ξ

η3 − ξ2

η4

)
((Q′)−1)′′

(
−ξ + a1η

η

)
. (A.4)

We make the substitution ρ = ξ
η
, yielding

1

η2

[
(1 + 2ρ)((Q′)−1)′(−ρ − a1) − (ρ2 + ρ)((Q′)−1)′′(−ρ + a1)

]
. (A.5)

But we also have

((Q′)−1)′ = 1

Q′′((Q′)−1)
(A.6)

and

((Q′)−1)′′ = − Q′′′((Q′)−1)

Q′′((Q′)−1)2 ((Q′)−1)′. (A.7)

Therefore, we get(
η2(Q′′((Q′)−1(−ρ − a1)))2

((Q′)−1)′(−ρ − a1)

)
(∂ξ ,ξ ,η − ∂ξ ,η,η)�(ξ , η)

=(1 + 2ρ)(Q′′((Q′)−1(−ρ − a1)))2 + (ρ2 + ρ)Q′′′((Q′)−1(−ρ − a1)).

(A.8)

The factor η2(Q′′((Q′)−1(−ρ−a1)))2

((Q′)−1)′(−ρ−a1)
is bounded between 2−δl and 2δl for some δ by (i) and (ii),

as well as the fact that η ≈ 1. This proves the desired approximation (2.66).
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