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Abstract We prove a sharp upper bound on the number of integer solutions
of the Parsell–Vinogradov system in every dimension d ≥ 2.
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2 S. Guo, R. Zhang

1 Introduction and statement of main results

Fix d, s ≥ 1 and k ≥ 2. We use x to denote the vector (x1, . . . , xd) ∈ R
d , and

i to denote the d-tuple (i1, . . . , id) of non-negative integers. The monomial
xi1
1 . . . xid

d will be abbreviated to xi. Consider the integer solutions

x1, x2, . . . , xs, y1, y2, . . . , ys (1.1)

of the Parsell–Vinogradov system of Diophantine equations

xi
1 + · · · + xi

s = yi
1 + · · · + yi

s . (1.2)

Here 0 ≤ i1, i2, . . . , id ≤ k range through all possible integers such that
1 ≤ i1 + i2 +· · ·+ id ≤ k. Moreover, d refers to the dimension of this system,
and k refers to its degree. For instance, when d = 1, the system (1.2) consists
of the following k equations

xi
1 + · · · + xi

s = yi
1 + · · · + yi

s, with 1 ≤ i ≤ k, (1.3)

known as the classical Vinogradov system.
For a large constant N , we let Js,d,k(N ) denote the number of integer solu-

tions (1.1) of the system of equations (1.2) with 1 ≤ x1, j , . . . , xd, j , y1, j , . . . ,

yd, j ≤ N for each 1 ≤ j ≤ s. Denote

K j,k = j · k

j + 1

(
k + j

j

)
. (1.4)

We prove

Theorem 1.1 For every d ≥ 2, s ≥ 1 and k ≥ 2, we have an upper bound

Js,d,k(N ) �d,k,s,ε N sd+ε +
d∑

j=1

N (2s−1) j+d−K j,k+ε, (1.5)

for every integer N and every ε > 0, with an implicit constant depending on
all the parameters d, k, s and ε.

The upper bound (1.5) is sharp up to N ε . Parsell, Prendiville and Wooley
[30] obtained the lower bound

Js,d,k(N ) �d,k,s N sd +
d∑

j=1

N (2s−1) j+d−K j,k , (1.6)
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On integer solutions of Parsell–Vinogradov systems 3

for every d, s and k, which is also conjectured to be an upper bound. When
d = 1, the conjecture was resolved, up to N ε , by Wooley [40] and Bourgain
et al. [11] (see also Wooley [42]). Moreover, Wooley [37,38,41] and Ford and
Wooley [16] have also recorded significant partial progress towards the final
resolution of the problem in dimension one.

In the present paper we provide an affirmative answer to the conjecture of
[30] in every dimension d ≥ 2. A few special cases in dimension d = 2
are previously known: The case d = 2, k = 2 was solved by Bourgain and
Demeter [9], and the case d = 2, k = 3 by Bourgain, Demeter and the first
author [10]. Moreover, in a general dimension d, bounds (1.5) have also been
obtained by Parsell, Prendiville and Wooley [30] for “large” s, improving
earlier results due to Parsell [28,29] and a related result due to Arhipov et
al. [1]. We refer to Theorem 1.1 in [30] for the precise statement. Indeed, the
authors of [30] handled a much more general class of systems, the translation-
invariant systems, in their paper.

The quantity Js,d,k(N ) with d = 1 has been extensively studied, partly
because of its close connections toWaring’s problem [36] and to the Riemann-
Zeta function [15].

The investigation of the quantities Js,d,k(N ) for d ≥ 2 was initiated by
Parsell in [29]. This paper also explains some of the motivation behind con-
sidering such quantities. For instance, one motivation comes from counting
rational linear subspaces of a given dimension lying on the hyper-surface
defined by

c1zk
1 + · · · + cszk

s = 0, (1.7)

for given c1, . . . , cs ∈ Z. In order to apply the Hardy–Littlewood circle
method, one needs a good upper bound for Js,d,k(N ).

A second motivation, which is akin to Waring’s problem and already
appeared in [1], is from representing homogeneous polynomials of multi-
ple variables by sums of linear forms raised to a power given by the degree
of the polynomial. Let us take the example of two variables. Let k ≥ 2 be
a positive integer. What is the least number s of linear forms of t1 and t2 we
need, such that every�(t1, t2), a degree k homogeneous polynomial of integer
coefficients, can be written as

�(t1, t2) =
s∑

j=1

(x j t1 + y j t2)
k, (1.8)

for some integers {x j }s
j=1 and {y j }s

j=1? By expanding the right hand side, this
amounts to finding integer solutions of
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4 S. Guo, R. Zhang

s∑
j=1

xα
j yk−α

j = the coefficient of tα1 tk−α
2 , for every 0 ≤ α ≤ k. (1.9)

Again if one intends to attack this problem using the Hardy–Littlewood circle
method, good upper bounds on Js,d,k(N ) will become crucial.

In the end, wemention a third application of our result. Bounds for the num-
ber of solutions of Parsell–Vinogradov systems (in one or more dimensions)
have recently been discovered to play an unexpected role in proving Burgess-
type bounds for short mixed character sums. These generalize the so-called
Burgess bound, which led to a subconvexity bound for Dirichlet L-functions,
and has held an unbroken record for upper bounds for shortmultiplicative char-
acter sums since the 1950s. Precisely, recent work of Heath-Brown and Pierce
[21] and Pierce [31] proves bounds for short mixed multiplicative character
sums in arbitrary dimensions, in which the additive character is evaluated at a
polynomial; results on the Parsell–Vinogradov systems allow these bounds to
be equivalently sharp uniformly in the degree of the polynomial.

Closely related to the number of solutions (1.1) of the system of equations
(1.2) are several sharp decoupling inequalities. For d ≥ 1 and k ≥ 2, let Sd,k
be the d dimensional surface in R

n with

n = nd(k) :=
(

d + k

k

)
− 1, (1.10)

defined by

Sd,k = {�d,k(t1, t2, . . . , td) : (t1, t2, . . . , td) ∈ [0, 1]d}, (1.11)

where the entries of �d,k(t1, t2, . . . , td) consist of all the monomials
t i1
1 t i2

2 . . . t id
d with 1 ≤ i1 + i2 + · · · + id ≤ k, that is,

�d,k(t1, t2, . . . , td) = (t1, t2, . . . , td , t21 , t1t2, . . . , t1td , t22 , t2t3, . . . ).

(1.12)

For a subset R ⊂ [0, 1]d , define the extension operator associated to the set R
by

E (d,k)
R g(x) =

∫
R

g(t) exp(x · �d,k(t))dt. (1.13)

Also, for a ball B ⊂ R
n of radius rB centered at cB , we will use the weight

wB(x) =
(
1 + |x − cB |

rB

)−C
, (1.14)
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On integer solutions of Parsell–Vinogradov systems 5

where C is a large constant whose value will not be specified. For each p ≥ 2,
we denote by V (d,k)(δ, p) the smallest constant such that

‖E (d,k)

[0,1]d g‖L p(wB ) ≤ V (d,k)(δ, p)

⎛
⎜⎜⎝

∑
�: cube in [0,1]d

l(�)=δ

‖E (d,k)
� g‖p

L p(wB )

⎞
⎟⎟⎠

1/p

, (1.15)

for each ball B ⊂ R
n of radius δ−k . Estimates of the form (1.15) will be

referred to as l p L p decouplings. Moreover, define

�d,k(p) := max
{(1

2
− 1

p

)
d, max

1≤ j≤d

{(
1 − 1

p

)
j − K j,k

p

}}
. (1.16)

By a standard argument (see page 638 of [11]), Theorem 1.1 follows from

Theorem 1.2 For every d ≥ 1, k ≥ 1 and p ≥ 2, we have

V (d,k)(δ, p) �d,k,p,ε δ−�d,k(p), (1.17)

for every ε > 0.

In the rest of the paper, we will focus on proving Theorem 1.2. In other
words, to prove Theorem 1.1, we follow the approach of decoupling theory.
Decoupling theory originated from the paper [35] by Wolff, and was further
developed by Łaba and Wolff [23], Łaba and Pramanik [22], Garrigós and
Seeger [17,18] and Bourgain [5]. A breakthrough came with the resolution of
the l2-decoupling conjecture by Bourgain and Demeter [6]. For more recent
development, we refer to [7,8,14,26] and [24], and the reference therein. In
particular, in the work of Li [24], the author also obtained an effective bound
of the decoupling constant for the parabola.

Another potential approach of proving Theorem 1.1 is via efficient congru-
encing. This is a powerful tool a number of people have been developing in
recent years. We refer to Wooley [42] for a complete overview of the most
recent development. We also refer to Wooley [39] and Brandes and Woo-
ley [13] concerning systems of Diophantine equations that are not translation
invariant. Moreover, one can also consult the review paper [32] by Pierce for a
detailed discussion on the efficient congruencing method and the decoupling
method in Vinogradov’s Mean Value Theorem.

At the end of the introduction, we mention a few novelties of the present
paper. In an earlier attempt of trying to push the argument of [11] to higher
dimensions, by Bourgain, Demeter and the first author [10], one major dif-
ficulty one encounters is the linear algebra that is involved in checking the
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6 S. Guo, R. Zhang

validity of the Brascamp–Lieb inequalities, see Conjecture 1.3 [10]. By invok-
ing some complicated linear algebra, a special case d = 2, k = 3 of this
conjecture was resolved in [10]. Here we completely resolve this conjecture
in every dimension d and for every degree k (see Theorem 2.1), by using
some elementary algebra and some combinatorics argument, in particular, a
Schwartz-Zippel type counting argument.

A second novelty comes from the way how the induction-on-scales argu-
ment is carried out, see Sect. 7. If we compare the case d = 1 with the case
d ≥ 2 in (1.5), the most obvious difference is that in the latter case, the upper
bound becomes much more complicated in the sense that it contains more
terms. Indeed, when d = 1, there are only two terms involved in the upper
bound. Hence to prove (1.5) for all s ≥ 1, it suffices to prove it at the critical
exponent s = k(k + 1)/2. Everything else follows from “interpolating” with
trivial bounds at s = 2 and s = ∞. In the case of a general dimension d, there
are about d/2 terms that truly appear on the right hand side of (1.5). Hence
there are about d/2 many critical points we need to find out. Afterwards, we
need to prove a sharp upper bound at each critical point. Our induction-on-
scales argument is designed carefully such that all critical exponents (indeed
all exponents s ≥ 1) can be handled uniformly.

A third novelty is in the ball-inflation lemma (see Lemma 4.4). The idea of
ball-inflations originated from the work of Bourgain, Demeter and Guth [11].
To deal with the Parsell–Vinogradov systems in higher dimensions, a variant
was proposed in [10]. However, to apply that ball-inflation lemma, one needs
to prove sharp lq L p decoupling estimates as an intermediate step, for certain
q < p. Here by an lq L p decoupling, we mean an estimate similar to (1.15),
but with an lq sum over cubes � in place of the l p one. In the present paper,
we manage to get rid of this technicality, and make use of l p L p decouplings
only. We postpone the more detailed discussion to Sect. 4.

Remark In a later paper by Zorin-Kranich and the first author [19], certain
arguments in the current paper have been simplified. In particular, the “tree-
growing” procedure in Fig. 2 is viewed from a different perspective. As a
consequence, certain algebraic calculations in Sect. 8 can be simplified (see
Section 3.6 and Section 3.7 in [19]). Moreover, the argument in Sect. 9 of the
current paper has also been slightly simplified. We refer to Section 5 of [19].
This simplification does not have much to do with the new perspective men-
tioned above. It is also slightly more robust for general translation-invariant
systems.

Notation Throughout the paper we will write A �υ B to mean that A ≤ C B
for a certain implicit constant C that depends on the parameter υ. Typically,
this parameter is either ε or K . The implicit constant will never depend on the
scale δ or on the balls we integrate over. Most of the time it will, however,
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On integer solutions of Parsell–Vinogradov systems 7

depend on d, k and on the Lebesgue index p. Since these can be thought of
as being fixed parameters, we will in general not write �d,k,p. We use the
following notation for averaged integrals:

‖F‖L p

 (wB) =

( 1

|B|
∫

|F |pwB

)1/p
.

Here B is ball in R
n . For a set A, the symbol |A| will refer to either the

cardinality of A if A is finite, or to its Lebesgue measure if A has positive
measure. For a real number x , we use [x] to denote the largest integer that is
smaller than or equal to x .

2 A theorem of linear algebra

For each t ∈ [0, 1]d and 1 ≤ l ≤ k−1, we letM(l)(t) denote the nd(k)×nd(l)
matrix whose columns are the vectors �

(α)
d,k(t), with α running through all the

multi-indices with 1 ≤ |α| ≤ l, that is

M(l) = (∂1�d,k, . . . , ∂d�d,k, ∂11�d,k, ∂12�d,k,

. . . , ∂1d�d,k, ∂22�d,k, ∂23�d,k, . . . ). (2.1)

Take a linear spaceV = span{v1, v2, . . . , vdim(V )} ⊂ R
nd (k). For convenience,

we let all vi be column vectors in R
nd (k). Define

M(l)
V (t) = (v1, v2, . . . , vdim(V ))

T × M(l)(t).

Here “×” refers to the product of two matrices. Hence for each t ∈ [0, 1]d ,
M(l)

V (t) is a dim(V ) × nd(l) matrix. We prove

Theorem 2.1 For each d ≥ 2 and k ≥ 2, each 1 ≤ l ≤ k − 1 and each linear

subspace V ⊂ R
nd (k), the matrix M(l)

V (t) has at least one minor of order

[dim(V ) · nd(l)

nd(k)

]
+ 1, (2.2)

whose determinant, viewed as a function of t ∈ [0, 1]d , does not vanish iden-
tically.

Proof We postpone the proof to Sect. 10, where we prove the equivalent The-
orem 10.8. �	

The result described in the above theorem is almost theminimal requirement
if one intends to prove Theorem 1.2 via the multi-linear approach initiated by
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8 S. Guo, R. Zhang

Bourgain and Demeter [6]. If Theorem 2.1 were false, then there would not
exist any collection of sets from [0, 1]d that are “transverse”, in the sense of
the Brascamp–Lieb transversality condition (4.3).

The statement of Theorem 2.1 was conjectured by Bourgain, Demeter and
the first author [10]. The special cases d = 2, k ≥ 2 and l = 1 were first
conjectured byBourgain andDemeter [9].Moreover, in [9] the authors verified
the cases d = 2, l = 1 and 2 ≤ k ≤ 4. The cases d = 2, k = 3 and 1 ≤ l ≤ 2
were verified in [10]. Here we completely resolve the conjecture.

3 Parabolic rescaling

We will repeatedly use the following result (see Proposition 7.1 from [9]),
which will be referred to as parabolic rescaling.

Lemma 3.1 Let k ≥ 2, d ≥ 1 and let 0 < δ < σ ≤ 1. Then for each p ≥ 2,
each cube R ⊂ [0, 1]d with side length σ and each ball B ⊂ R

n with radius
δ−k we have

‖E (d,k)
R g‖L p(wB) ≤ V (d,k)

( δ

σ
, p

)⎛
⎝ ∑

R′⊂R: l(R′)=δ

‖E (d,k)

R′ g‖p
L p(wB)

⎞
⎠

1/p

.

(3.1)

The sum on the right hand side runs through a collection of cubes of side-length
δ that cover R and have disjoint interiors.

To prove this lemma, we apply a change of variables to turn the cube R to
the unit cube [0, 1]d , and then apply the definition of V (d,k) from (1.15). We
refer to [9] for the details.

4 Ball-inflation lemmas

The proof of Theorem 1.2 is via inductions on scales. To prove Theorem 1.2
for given d ≥ 2 and k ≥ 2, we assume that we have obtained (1.17) for every
pair (d ′, k′) �= (d, k) with d ′ ≤ d and k′ ≤ k. In this section, we will state a
crucial lemma that allows us to pass from scales to scales.

Let m be a positive integer. For 1 ≤ j ≤ m, let Vj be a linear subspace of
R

n of dimension n0 which is independent of j . Also let π j : R
n → Vj denote

the orthogonal projection onto Vj . Define

�( f1, f2, . . . , fm) =
∫

Rn

m∏
j=1

f j (π j (x))dx, (4.1)
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On integer solutions of Parsell–Vinogradov systems 9

for f j : Vj → C. We recall the following theorem due to Bennett, Carbery,
Christ and Tao [3].

Theorem 4.1 ([3]). Given p ≥ 1, the estimate

|�( f1, f2, . . . , fm)| �
m∏

j=1

‖ f j‖p (4.2)

holds if and only if np = n0m and the following Brascamp–Lieb transversality
condition is satisfied

dim(V )≤ 1

p

m∑
j=1

dim(π j (V )), for each linear subspace V ⊂R
n. (4.3)

An equivalent formulation of the estimate (4.2) is

∥∥∥∥∥∥∥

⎛
⎝ m∏

j=1

g j ◦ π j

⎞
⎠

1/m
∥∥∥∥∥∥∥

q

�

⎛
⎝ m∏

j=1

‖g j‖2
⎞
⎠

1/m

, (4.4)

with q = 2n
n0

. The restriction that p ≥ 1 becomes n0m ≥ n. Throughout
the proof, the parameter m will always be chosen large enough. Hence this
condition is always satisfied. The transversality condition (4.3) becomes

dim(V ) ≤ n

n0m

m∑
j=1

dim(π j (V )), for each subspace V ⊂ R
n. (4.5)

For a fixed degree k ≥ 2 in the definition of Sd,k in (1.11), we will choose

n = nd(k) and n0 = nd(l) for each l ∈ {1, 2, . . . , k − 1}. (4.6)

Here n is the dimensional of the space that we are working in. The different
choices of n0 come from the fact that at difference stages of our proof, we will
view our d-dimensional surface Sd,k as a “n0-dimensional” surface in R

n (see
Lemma 4.4). In another word, we will look at the l-th order tangent space of
Sd,k , given by

V (l)(t) := span{�(α)(t)}1≤|α|≤l at a point t ∈ [0, 1]d , (4.7)

and this results in a linear space of dimension n0 as above. Moreover, m will
again be a large constant that will be chosen later.
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10 S. Guo, R. Zhang

To work with the Brascamp–Lieb transversality condition (4.5), we intro-
duce the following notion of transversality.

Definition 4.2 Let M be a large number. The M sets R1, . . . , RM ⊂ [0, 1]d

are called ν-transverse, if for each polynomial P(t) with deg(P) ≤ k100d! and
‖P‖ = 1, we have that for each choice of M

�d,k
different sets Ri1, . . . , Ri M

�d,k

,

there exists at least one set Ri j such that

|P(t)| ≥ ν, for each t ∈ Ri j . (4.8)

Here�d,k is a large constant depending only on d and k that will be determined
later. Moreover ‖P‖ denotes a norm of the polynomial P which is given by
the l1 sum of all the coefficients of P .

Intuitively, a collection of sets is called transverse, if the zero set of an
arbitrary normalised polynomial of a “small” degree passes through only a
tiny portion of the given collection of sets.

Based on Theorem 2.1, we are able to show that the notion of transversality
introduced in Definition 4.2 is stronger than the Brascamp–Lieb transversality
condition. Indeed, we will prove the following slightly stronger result, which
is an essential ingredient in deriving the following crucial ball-inflation lemma
(Lemma 4.4).

Let K be a large number. By K -cube we mean a dyadic cube of length K −1

inside the unit cube [0, 1]d . Let ColK denote the collection of all K -cubes in
[0, 1]d .

Lemma 4.3 Let K be a large integer. Suppose we have a collection of M many
K -cubes R1, . . . , RM , which are νK -transverse for some νK > 0. If M ≥ K ,
then for each t j ∈ R j and each 1 ≤ l ≤ k − 1, the collection of linear spaces
{V (l)(t j )}1≤ j≤M satisfy the Brascamp–Lieb transversality condition (4.3)with
n0 = nd(l).

Proof Fix a linear space V ⊂ R
nd (k) given by span{v1, v2, . . . , vdim(V )}. We

need to show that

dim(V ) ≤ nd(k)

M · nd(l)

M∑
j=1

dim(π j (V )). (4.9)

By the rank-nullity theorem, dim(π j (V )) equals the rank of the matrix

M(l)
V (t j ). By Theorem 2.1 and a simple compactness argument, there exists a

small constant θd,k > 0, such that the matrixM(l)
V has at least oneminor deter-

minant of order given by (2.2), denoted by P , that satisfies 1
θd,k

≥ ‖P‖ ≥ θd,k .
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On integer solutions of Parsell–Vinogradov systems 11

Moreover, we know that the degree of the polynomial P is smaller than

k ·
([dim(V ) · nd(l)

nd(k)

]
+ 1

)
≤ k100d!. (4.10)

Recall that R1, . . . , RM are νK -transverse. By definition, we know that there
exists at least M(1 − 1

�d,k
) different sets from {R j }1≤ j≤M , on each of which

the polynomial P does not vanish. This is the same as saying that on these
M(1 − 1

�d,k
) many cubes, the matrix M (l)

V has rank at least

[dim(V ) · nd(l)

nd(k)

]
+ 1. (4.11)

Hence the right hand side of (4.9) is greater than

nd(k)

nd(l)

(
1 − 1

�d,k

)([dim(V ) · nd(l)

nd(k)

]
+ 1

)
. (4.12)

By choosing �d,k large enough, the last display is easily seen to be bigger
than or equal to dim(V ). This finishes the proof of the estimate (4.9). �	

We are ready to state one main lemma.

Lemma 4.4 (Ball-inflation lemma). Let R1, . . . , RM be M cubes from ColK
that are ν-transverse for some ν > 0. Fix k ≥ 2 and n = nd(k). Fix 1 ≤ l ≤
k − 1. Let B be an arbitrary ball in R

n of radius ρ−(l+1). Let B be a finitely
overlapping cover of B with balls � of radius ρ−l . Then for each p ≥ 2nd (k)

nd (l) ,

for each g : [0, 1]d → C, we have

1

|B|
∑
�∈B

⎡
⎢⎢⎣

M∏
i=1

⎛
⎝ ∑

Ji ⊂Ri ,l(Ji )=ρ

‖E (d,k)
Ji

g‖
p·nd (l)
nd (k)

L

p·nd (l)
nd (k)

# (w�)

⎞
⎠

nd (k)

p·nd (l)

⎤
⎥⎥⎦

p
M

�ε ρ−ε

⎡
⎢⎢⎣

M∏
i=1

⎛
⎝ ∑

Ji ⊂Ri ,l(Ji )=ρ

‖E (d,k)
Ji

g‖
p·nd (l)
nd (k)

L

p·nd (l)
nd (k)

# (wB)

⎞
⎠

nd (k)

p·nd (l)

⎤
⎥⎥⎦

p
M

, (4.13)

for every ε > 0.

The proof of Lemma 4.4 relies on multilinear Kakeya inequalities, and
is almost the same as that of Theorem 6.6 in [11] (see also Lemma 6.5 in
[10]). Moreover, the required multilinear Kakeya inequalities can be proven
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12 S. Guo, R. Zhang

by applying the Brascamp–Lieb inequalities in Theorem 4.1 and the induction
argument in [20] and [2]. Here we leave out the details.

The idea of ball-inflations originated from the work of Bourgain, Demeter
and Guth [11] (see Theorem 6.6 there): Fix dimension d = 1. Under the same
assumptions as in Lemma 4.4, the authors of [11] proved

1

|B|
∑
�∈B

⎡
⎢⎣

M∏
i=1

⎛
⎝ ∑

Ji ⊂Ri ,l(Ji )=ρ

‖E (d,k)
Ji

g‖2
L

p·nd (l)
nd (k)

# (w�)

⎞
⎠

1/2
⎤
⎥⎦

p/M

� ρ−ε

⎡
⎢⎣

M∏
i=1

⎛
⎝ ∑

Ji ⊂Ri ,l(Ji )=ρ

‖E (d,k)
Ji

g‖2
L

p·nd (l)
nd (k)

# (wB)

⎞
⎠

1/2
⎤
⎥⎦

p/M

. (4.14)

Notice that on both sides of (4.14) we have l2 summations over Ji ⊂ Ri ,
which is different from that of (4.13).

Moreover, in an earlier attempt of pushing the analysis of [11] to higher
dimensions, by Bourgain, Demeter and the first author, the case d = 2, k = 3

was considered. There an estimate similar to (4.14), with l
8
3 sum over Ji ⊂ Ri

in place of the l2 sum, was proposed to use. The exponent 8
3 plays a crucial

role in the analysis in [10], see Page 833 for a detailed discussion. The use
of this exponent brought in a whole host of extra technicalities. For instance,
it forces us to understand sharp lq L p decoupling inequalities associated with
Sd,k for an exponent q (< p) that is as small as possible.

One new feature that is introduced in the current paper is that no anymagical
number like 8

3 is necessary. Moreover, we do not need to invoke any lq L p

decoupling with q < p either. This will be explained in detail when we come
to applying the ball-inflation lemma, in the iteration argument in Sect. 7.

Remark 4.1 It is worth mentioning that, for generic d and k, even if one man-
ages to prove sharp l2L p decouplings for the surface (1.11), they usually do
not imply sharp l p L p decouplings. Perhaps one simplest case is when d = 2
and k = 2, as was considered by Bourgain and Demeter [9]. In this case, in
order to obtain Theorem 1.2 with d = k = 2 via an l2L p decoupling, one
would need to prove

‖E (d,k)

[0,1]d g‖p �p,ε δ−ε

⎛
⎜⎜⎜⎝

∑
�: cube in [0,1]d

l(�)=δ

‖E (d,k)
� g‖2p

⎞
⎟⎟⎟⎠

1/2

, (4.15)
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On integer solutions of Parsell–Vinogradov systems 13

for p = 8 and for every ε > 0. However, the above estimate is not true at
p = 8: The surface S2,2 contains a piece of a parabola, and for a parabola, an
estimate of the type (4.15) can hold only for p ≤ 6.

5 The Bourgain–Guth argument

For a large number K ∈ N, for K ≤ M ≤ K d , we denote by
V (d,k)(δ, p, νK , M) the smallest constant such that

∥∥∥∥∥∥∥
(

M∏
i=1

E (d,k)
Ri

g

) 1
M

∥∥∥∥∥∥∥
L p(wB)

≤ V (d,k)(δ, p, νK , M)

M∏
i=1

⎛
⎝ ∑

J⊂Ri ;l(J )=δ

‖E (d,k)
J g‖p

L p(wB)

⎞
⎠

1
p·M

. (5.1)

Here B ⊂ R
n is an arbitrary ball of radius δ−k , and R1, . . . , RM are νK -

transverse cubes from ColK , with a constant νK depending only on K .
Moreover, we define

V (d,k)(δ, p, νK ) = sup
K≤M≤K d

V (d,k)(δ, p, νK , M). (5.2)

As can be seen from the definition of the multi-linear decoupling constant
in (5.2), the degree of the multi-linearity M is no longer a fixed constant,
but takes values in an interval depending on K . This kind of multi-linear
decoupling constant first appeared in [10]. In previous works [9] and [11],
only a fixed degree M is used. This use of multi-linearity is forced, on one
hand by an incomplete understanding of the geometry of transverse sets, and
on the other hand, by the needs of running the Bourgain–Guth argument [12]
more efficiently.

In Theorem 2.1, we only proved that transverse sets exist. In another word,
given a collection of K -cubes, if a “large” portion of them do not sit near the
zero set of any polynomial of degree less than k100d!, then they are transverse.
This should be considered as a qualitative, but not quantitative understanding
of transversality. However, even this qualitative version requires some compli-
cated linear algebra and combinatorics. It will be of interest to know whether
one can work with a fixed degree M of multi-linearity which depends only on
k (as in [11]).
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14 S. Guo, R. Zhang

A second place where a range of degrees of multi-linearity is required is
in the forthcoming Bourgain–Guth argument. There this subtle point will be
explained in detail.

Theorem 5.1 For each p ≥ 2, ε > 0 and K ∈ N, there exists CK ,p,ε > 0
and β(K , p, ε) > 0 with

lim
K→∞ β(K , p, ε) = 0, for each p and ε, (5.3)

such that for each small enough δ, we have

V (d,k)(δ, p) ≤ δ−β(K ,p,ε)−ε−�d−1,k(p)

+ CK ,p,ε logK
1

δ
max

δ≤δ′≤1
(δ/δ′)−�d−1,k(p)−εV (d,k)(δ′, p, νK ).

(5.4)

The proof of this theorem is a variant of that of Theorem 5.7 in [10], which
is built on the Bourgain–Guth argument. Theorem 5.1 will be obtained by
iterating the following Proposition 5.2. This iteration has been standard, hence
we leave it out.

Proposition 5.2 For each p ≥ 2, each ε > 0 and each K ≥ 1, we have

‖E (d,k)

[0,1]d g‖L p(wB)

�ε,p K 1− 2
p +ε

⎛
⎝ ∑

R∈ColK

‖E (d,k)
R g‖p

L p(wB)

⎞
⎠

1/p

+ K
�d−1,k (p)

k +ε

⎛
⎝ ∑

β∈ColK1/k

‖E (d,k)
β g‖p

L p(wB)

⎞
⎠

1/p

+ K 100k!d!V (d,k)(δ, p, νK )

⎛
⎝ ∑

�∈Col
δ−1

‖E (d,k)
� g‖p

L p(wB)

⎞
⎠

1/p

(5.5)

for each B ⊂ R
nd (k) of radius δ−k with δ < 1/K .

Proof of Proposition 5.2 We start by writing

E (d,k)

[0,1]d g =
∑

R∈ColK

E (d,k)
R g. (5.6)
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On integer solutions of Parsell–Vinogradov systems 15

By theuncertainty principle, on eachball BK of radius K , the function |E (d,k)
R g|

is essentially a constant. We use |E (d,k)
R g(BK )| to denote this constant, and

we write |E (d,k)
R g(x)| ≈ |E (d,k)

R g(BK )| for x ∈ BK . The reader is invited
to consult [24] for a rigorous argument. We temporarily fix BK . Denote by
R∗ = R∗(BK ) the cube that maximises |E (d,k)

R g(BK )|. Let Col∗K be those
cubes R ∈ ColK such that

|E (d,k)
R g(BK )| ≥ K −10d |E (d,k)

R∗ g(BK )|. (5.7)

There are no particular reasons why we used K −10d on the right hand side. It
can also be K −100d or even smaller. Initialise

STOCK = Col∗K .

We repeat the following algorithm. Throughout the algorithm, STOCK will
always be a subset of Col∗K .

If |STOCK| ≤ 10K , then the algorithm terminates. We can write on each
x ∈ BK

∣∣∣E (d,k)

[0,1]d g(x)

∣∣∣ =
∣∣∣∣

∑
R∈ColK

E (d,k)
R g(x)

∣∣∣∣

� max
R

∣∣∣E (d,k)
R g(BK )

∣∣∣ +
∣∣∣∣

∑
R∈Col∗K

E (d,k)
R g(x)

∣∣∣∣. (5.8)

We integrate both sides on BK and apply an L2 orthogonality argument, to
obtain

∥∥∥E (d,k)

[0,1]d g
∥∥∥

L p(wBK )
� K 1− 2

p

⎛
⎝ ∑

R∈ColK

‖E (d,k)
R g‖p

L p(wBK )

⎞
⎠

1/p

. (5.9)

We raise both sides to the power p and sum over a finitely overlapping cover
of B using balls BK to recover the desired (5.5).

If M := |STOCK| ≥ 10K and if for every given polynomial Q(t) with
‖Q‖ = 1 of degree less than k100d!, at most

[ M
�d,k

]
of the cubes in STOCK

intersect the 10
K neighborhood of the zero set of Q, then the algorithm termi-

nates. Here �d,k is the large constant given in Definition 4.2. Note first that in
this case the cubes in STOCK are νK −transverse for some νK > 0. Thus, by
(5.7) and the triangle inequality, we have for x ∈ BK
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16 S. Guo, R. Zhang

∣∣∣E (d,k)

[0,1]d g(x)

∣∣∣ ≤ K d max
∣∣∣E (d,k)

R g(BK )

∣∣∣ ≤ K 20d

(
M∏

i=1

|E (d,k)
Ri

g(BK )|
)1/M

.

(5.10)

Integrating on BK , then raising to the power p, summing over BK as before,
and applying the definition of the multi-linear decoupling inequality as in (5.2)
lead to the inequality (5.5).

In the end, we assume that M := |STOCK| ≥ 10K and that there is a
polynomial Q(t) of degree less than k100d!, and a subset G ⊂ STOCK with at
least

[ M
�d,k

] + 1 cubes, each of which intersects the 10
K neighborhood of the

zero set of Q. We denote by G
K

1
k
the collection of the cubes β from Col

K
1
k

which contain at least one element from G. Note that each cube in G
K

1
k
will

be inside the 10K − 1
k neighbourhood of the zero set of Q. We write

∣∣∣E (d,k)

[0,1]d g
∣∣∣ ≤

∣∣∣∣
∑

β∈G
K
1
k

E (d,k)
β g

∣∣∣∣ +
∣∣∣∣

∑
β /∈G

K
1
k

∑
R∈ColK :R⊂β

E (d,k)
β g

∣∣∣∣. (5.11)

We reset the value

STOCK := STOCK\{R ∈ Col∗K : R ⊂ β, for some β ∈ G
K

1
k
.
}

and repeat the algorithm.
It is not difficult to see that this algorithm can only be repeated for at most

O(log K ) times. Each repetition will add another term to the sum (5.11). Each
such term will be estimated using the following result.

Claim 5.3 Let K be a large number. Let P be a polynomial of d variables
with degree smaller than k100d! and ‖P‖ = 1. Let S denote the zero set of the
polynomial P that lies inside [0, 1]d . Then for each p ≥ 2, we have

∥∥∥∥
∑

β∈Col
K
1
k
:β∩S �=∅

E (d,k)
β g

∥∥∥∥
L p(BK )

� K
�d−1,k (p)

k +ε

⎛
⎜⎜⎝

∑
β∈Col

K
1
k
:β∩S �=∅

‖E (d,k)
β g‖p

L p(BK )

⎞
⎟⎟⎠

1
p

, (5.12)

for each small constant ε > 0.
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On integer solutions of Parsell–Vinogradov systems 17

It remains to prove Claim 5.3. For a large integer Z , for 1 ≤ d ′ ≤ d, and a
collection of Z -cubes, called CZ , we define the d ′-multiplicity of CZ to be the
maximal number of cubes from CZ that a line parallel to the d ′-th coordinate
axis can pass through. We use Md ′(CZ ) to denote the d ′-multiplicity of the
collectionCZ .Moreover, define themultiplicityM(CZ ) of the collectionCZ by

M(CZ ) := min
1≤d ′≤d

Md ′(CZ ). (5.13)

Lemma 5.4 Let Z be a large integer. Let P be a polynomial of d variables
with ‖P‖ = 1. Let S denote the zero set of P that lies in [0, 1]d . Let CZ denote
the collection of all Z-cubes β such that 2β ∩ S �= ∅. Then CZ can be split into
C(d, deg(P)) many disjoint collections, each of which is of multiplicity one.

Here we use C(d, deg(P)) to denote a constant that depends only on d and
the degree of P. Moreover, for a constant C > 1, we use Cβ to mean the cube
of the same center as β but of side-length C times the side-length of β.

We postpone the proof of Lemma 5.4 until the end of this section, and first
finish the proof of Claim 5.3. By applying Lemma 5.4 to the collection of cubes
β ∈ Col

K
1
k
with β∩S �= ∅, we obtainC(d, deg(P))many disjoint collections

of K
1
k -cubes, each of which is of multiplicity one. For each such a collection,

the corresponding (5.3) can be proven easily by applying Fubini’s theorem
and already established decoupling inequalities for the surface Sd−1,k . This
finishes the proof of Claim 5.3. �	
Proof of Lemma 5.4. The proof is via an induction on the dimension d. We
learnt this idea fromWongkew [34]. When d = 1, the proof is trivial. Suppose
we have proven Lemma 5.4 for all d ∈ {1, 2, . . . , D}. Now take d = D + 1.
Denote ζ = Z−1. On the unit cube [0, 1]D+1, draw the ζ -separated lattice
points, that is, points of the form

(k1ζ, . . . , kD+1ζ ) with k1, . . . , kD+1 ∈ {0, 1, . . . , Z}. (5.14)

Let H be the collection of all hyperplanes that are parallel to one coordinate
plane and contain at leat one ζ -separated lattice point. Without loss of general-
ity, we assume that our polynomial P does not vanish identically on any hyper-
plane inH, as otherwise we can apply an extremely small perturbation to P .

We apply the following algorithm. Initialise

ι = 1 and S = {t ∈ [0, 1]D+1 : P(t) = 0}. (5.15)

ConsiderHι, the collection of all hyperplanes inH that are perpendicular to the
ι-th coordinate axis eι. The polynomial P restricted to a hyperplane Hι ∈ Hι,
denoted by P|Hι , is a non-zero polynomial of degree ≤ deg(P). Denote by
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18 S. Guo, R. Zhang

ColZ (Hι) the collection of all the Z -cubes (of dimension D + 1) that have
non-empty intersection with S ∩ Hι. We apply our induction hypothesis to
P|Hι , and obtain that ColZ (Hι) can be split into at most C(D, deg(P)) many
sub-collections, each of which is of multiplicity one. This further implies that

⋃
Hι∈Hι

ColZ (Hι) (5.16)

can be split into at most 2C(D, deg(P)) many sub-collections, each of which
is of multiplicity one. Update

ι = ι + 1 and S = S\( ∪Hι∈Hι ColZ (Hι)
)
. (5.17)

This algorithm will terminate either when ι = D + 2 or when S = ∅.
After the above algorithm terminates: If we are in the case S = ∅, then we

can take

C(D + 1, deg(P)) = 2(D + 1)C(D, deg(P)). (5.18)

If we are in the case ι = D + 2, then the remaining zero set S may still not be
empty. However, we must have

S ∩
⎛
⎝D+1⋃

ι=1

⋃
Hι∈Hι

Hι

⎞
⎠ = ∅. (5.19)

This implies every connected component of S must live in the interior of a Z -
cube. A classic result in real algebraic geometry due to Oleinik and Petrovskii
[27], Thom [33] and Milnor [25] says that the number of connected compo-
nents can be bounded by a constant depending only on D + 1 and deg(P).
Hence we can takeC(D +1, deg(P)) to be the sum of 2(D +1)C(D, deg(P))

and such an upper bound. This finishes the proof of Lemma 5.4. �	

6 Proof of the main theorem: the case of small p

In this section, we focus on the case

p ≤ 2nd(k)

nd(1)
. (6.1)

This is the relatively easier case, compared with the case of p being large.
In the previous section we controlled the linear decoupling constant using the
multi-linear ones. This will allow us to apply Bourgain’smulti-linear argument
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On integer solutions of Parsell–Vinogradov systems 19

from [5], multi-linear restriction estimates due to Bennett, Carbery and Tao [4]
and Bennett, Bez, Flock and Lee [2], to conclude the desired linear decoupling
inequality in Theorem 1.2.

Recall that in Theorem 5.1 we prove that, for every large integer K and
every small ε > 0, there exists �K ,p,ε > 0 and β(K , p, ε) > 0 with

lim
K→∞ β(K , p, ε) = 0, for each p and ε, (6.2)

such that for each small enough δ, we have

V (d,k)(δ, p) ≤ δ−β(K ,p,ε)−�d−1,k(p)−ε

+ CK ,p,ε logK
1

δ
max

δ≤δ′≤1
(δ/δ′)−�d−1,k(p)−εV (d,k)(δ′, p, νK ).

(6.3)

We will prove that for each 2 ≤ p ≤ 2·nd (k)
nd (1) , it holds that

V (d,k)(δ, p, νK ) �K ,ε

(
1

δ

)d
(
1
2− 1

p

)
+ε

. (6.4)

This, combined with (6.3), will imply

V (d,k)(δ, p) ≤ δ−β(K ,p,ε)−�d−1,k(p)−ε

+ CK ,p,ε logK
1

δ
max

δ≤δ′≤1
(δ/δ′)−�d−1,k(p)−ε(δ′)−d

(
1
2− 1

p

)
−ε

.

(6.5)

There are two cases:

�d−1,k(p) ≥ d
(1
2

− 1

p

)
and �d−1,k(p) < d

(1
2

− 1

p

)
(6.6)

In the former case, (6.5) becomes

V (d,k)(δ, p) �K ,p,ε δ−β(K ,p)−�d−1,k(p)−ε. (6.7)

In the latter case, it becomes

V (d,k)(δ, p) �K ,p,ε

(
logK

1

δ

)
δ
−d

(
1
2− 1

p

)
−ε

. (6.8)

In either case, for every given small ε > 0, we can always choose K large
enough so that
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V (d,k)(δ, p) �p,ε δ
−max

{
�d−1,k(p),d

(
1
2− 1

p

)}
−ε

. (6.9)

Under the assumption that p ≤ 2nd(k)/nd(1), it is always the case that

max
{
�d−1,k(p), d

(1
2

− 1

p

)}
= �d,k(p). (6.10)

This finishes the proof of the desired linear decoupling estimate.
What remains is to prove (6.4). By (5.2), it suffices to prove that

V (d,k)(δ, p, νK , M) �K ,ε

(
1

δ

)d
(
1
2− 1

p

)
+ε

, for every K ≤ M ≤ K d .

(6.11)

Recall that V (d,k)(δ, p, νK , M) is the smallest constant such that

∥∥∥∥
(

M∏
i=1

E (d,k)
Ri

g

) 1
M ∥∥∥∥

L p(wB)

≤ V (d,k)(δ, p, νK , M)

M∏
i=1

⎛
⎝ ∑

J⊂Ri ;l(J )=δ

‖E (d,k)
J g‖p

L p(wB)

⎞
⎠

1
p·M

. (6.12)

Here B ⊂ R
n is a ball of radius δ−k , and R1, . . . , RM are νK -transverse cubes

from ColK . Denote pc = 2nd (k)
nd (1) . We will prove

∥∥∥∥
(

M∏
i=1

E (d,k)
Ri

g

) 1
M ∥∥∥∥

L pc (wB)

�
(1

δ

)d
(
1
2− 1

pc

)
+ε

M∏
i=1

⎛
⎝ ∑

J⊂Ri ;l(J )=δ

‖E (d,k)
J g‖pc

L pc (wB)

⎞
⎠

1
pc ·M

. (6.13)

By interpolation, this, combined with the trivial decoupling inequality at p =
2,

V (d,k)(δ, 2, νK , M) � 1, (6.14)

implies (6.11). We refer to Bourgain and Demeter [6] for such an interpolation
argument. In particular, it relies on the so-called “balanced functions” and on
a pigeonholing argument.
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It remains to prove (6.13). Under the assumptions on R1, . . . , RM , Bennett
et al. [2] proved that

∥∥∥∥
(

M∏
i=1

E (d,k)
Ri

g

) 1
M ∥∥∥∥

L pc (wB)

�K ,ε δ−ε

M∏
i=1

‖g|Ri ‖
1
M
2 . (6.15)

See Theorem 1.3 there. By Plancherel’s theorem, and by a simple localisation
argument, we obtain

∥∥∥∥
(

M∏
i=1

E (d,k)
Ri

g

) 1
M ∥∥∥∥

L pc (wB)

�K ,ε δ−εδk(n−d)/2
M∏

i=1

‖E (d,k)
Ri

g‖
1
M
L2(wB)

. (6.16)

Recall that d = nd(1) is the dimension of the surface, and n = nd(k) is the
total dimension of the space that our surface lives in. By L2 orthogonality, the
right hand side of the last display is further comparable to

δ−εδk(n−d)/2
M∏

i=1

⎛
⎝ ∑

J⊂Ri ;l(J )=δ

‖E (d,k)
J g‖2L2(wB)

⎞
⎠

1
2M

(6.17)

In the end, we apply Hölder’s inequality to bound (6.17) by

δ−ε

M∏
i=1

⎛
⎝ ∑

J⊂Ri ;l(J )=δ

‖E (d,k)
J g‖2L pc (wB)

⎞
⎠

1
2M

� δ−εδ
−d

(
1
2− 1

pc

) M∏
i=1

⎛
⎝ ∑

J⊂Ri ;l(J )=δ

‖E (d,k)
J g‖pc

L pc (wB)

⎞
⎠

1
Mpc

. (6.18)

This finishes the proof of (6.13), thus the proof of the desired decoupling for
2 ≤ p ≤ 2nd (k)

nd (1) .

7 An iteration argument: the case of large p

In this section, we deal with the case

p >
2nd(k)

nd(1)
, (7.1)
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which we assume throughout the whole section. For fixed d and k, we define

pd(k) := 2Kd,k

d
. (7.2)

This exponent is determined by letting

(1
2

− 1

p

)
d =

(
1 − 1

p

)
d − Kd,k

p
. (7.3)

These two terms are separately the first and last terms on the right hand side
of (1.17).

The desired decoupling inequalities (1.17) will be proven via an iteration
argument in the spirit of [11] (the case d = 1 and k ≥ 1) and [10] (the case
d = 2 and k = 3). However the scenarios in [11] and [10] are relatively
simpler, because in the case d ∈ {1, 2}, for every k ≥ 1, there is only one
critical exponent for (1.17), given by p = pd(k). Once the desired bound
(1.17) is proven for p = pd(k), by interpolations with trivial bounds at p = 2
and p = ∞, everything else follows.

For d ≥ 3, there are about d/2 many critical exponents, and to conclude
Theorem1.2,we need to prove sharp decoupling inequalities at all these critical
exponents. Unfortunately, the distribution of these critical exponents is not
even entirely clear to us. Indeed, we do no even understand very well how
many these exponents there are.

In Fig. 1, we take the case of dimension d = 5 and degree k being large
(k ≥ 10 is enough). The graph of �d,k(p) as a function 1/p is given by the
solid line segments Q1Q2Q3Q4Q5. The kink points Q2, Q3 and Q4 give rise
to three critical exponents.

In the present paper, we propose to “ignore” all these critical exponents.
Instead, we choose the superficially more complicated approach, which is to
prove the desired bound (1.17) at each individual p ≥ 2 separately, with-
out appealing to interpolations. Simply speaking, the reason of choosing this
approach is that, we believe all these so-called “critical exponents” are indeed
very misleading. They do not play any role, other than the negative role of
making our main theorem more complicated to prove.

However there is one exponent that plays a key role, which is the one given
by (7.2). Unfortunately for almost all combinations of d and k, the exponent
pd(k) is given by a “fake” kink point, which makes it more difficult for us to
discover it and realise its important role. See Fig. 1. We extend line segments
Q1Q2 and Q5Q4 and let themmeet at the point Qc. The horizontal coordinate
of Qc is exactly 1/pd(k).

The first major difficulty one confronts when applying such an approach
is how to choose various indices (see qd,k(l) in (7.4) and Fig. 2) to run the
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Fig. 1 Kink points

iteration argument, as illustrated by Fig. 2. The key role that the “fake” kink
point plays is that it gives rise to pd(k), which further helps us with finding
other critical indices as given by (7.4).

Remark 7.1 Our understanding of the role of the fake kink point Qc remains
to be improved. In our current approach, (generically) none of the “real” crit-
ical exponents plays any role, which is surprising since they all appear very
naturallywhen considering contributions from surfaces of intermediate dimen-
sions. In our decouplingmachinery, it is exactly the fake kink point, rather than
any “real” kink points, that suggests a set of scales b j and exponents γ j for
which the key Lemma 7.6 holds. See Remarks 7.2, 7.3 and 7.4 for more dis-
cussion on how we design this machinery inspired by the fake kink point.

To explain the idea of the iteration steps, we take the example of the case
(d, k) = (2, 4), which is the first unknown case. This case may not be that
typical at first sight, as it only admits one critical exponent. However, let us
pretend that we do not know this fact, and for the purpose of explaining the
idea of the iteration, this case is already good enough.

We first introduce the terms that will appear in our iteration argument. For
given d and k, define

qd,k(l) := max
{
2,

p · pd(l)

pd(k)

}
, with l = {1, 2, . . . , k − 1}. (7.4)
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For a positive number r , we use Br to denote a ball of radius δ−r . Let K be a
large integer. Let M be an integer in the interval [K , K d ]. Let R1, . . . , RM be
cubes from ColK that are νK -transverse. Here νK is the constant that appeared
in the Bourgain–Guth argument (see the line above (5.10)). It depends only
on K . Define

Dt (q, Br ) :=
⎛
⎝ M∏

i=1

∑
Ji,q⊂Ri

‖E (d,k)
Ji,q

g‖t
Lt
#(wBr )

⎞
⎠

1
t M

(7.5)

and

Ap(q, Br , s) =
⎛
⎝ 1

|Bs(Br )|
∑

Bs∈Bs(Br )

Dqd,k(1)(q, Bs)p

⎞
⎠

1/p

. (7.6)

HereBs(Br ) denotes a finitely overlapping collection of balls Bs that lie inside
of a ball Br . In the notation Ji,q , the index i indicates that this cube lies in Ri ,
and q indicates that the cube Ji,q has side length δq .

Terms similar to Dt (q, Br ) and Ap(q, Br , s) with the same names already
appeared in both [11] and [10]. In [11], the term Dt (q, Br ) is defined to be

⎛
⎝ M∏

i=1

∑
Ji,q⊂Ri

‖E (d,k)
Ji,q

g‖2Lt
#(wBr )

⎞
⎠

1
2M

. (7.7)

The reason of using an l2 sum is that, in [11] the sharp l2-decoupling inequality
associated with the one dimensional curve S1,k is still available and useful,
for every k ≥ 2. When dimension d is bigger than one, sharp l2-decoupling
inequalities will no long be able to imply sharp bounds on numbers of integer
solutions of Parsell–Vinogradov systems.

In the case of dimension d > 1, instead of an l2L p decoupling, we will
prove an l p L p decoupling, as stated in (1.15). Hence it is very tempting to
define Dt (q, Br ) to be

⎛
⎝ M∏

i=1

∑
Ji,q⊂Ri

‖E (d,k)
Ji,q

g‖p
Lt
#(wBr )

⎞
⎠

1
pM

. (7.8)

Using this term requires us to prove the following variant of the ball-inflation
inequalities in Lemma 4.4 and (4.14)
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1

|B|
∑
�∈B

⎡
⎢⎣

M∏
i=1

⎛
⎝ ∑

Ji ⊂Ri ,l(Ji )=ρ

‖E (d,k)
Ji

g‖p

L

p·nd (l)
nd (k)

# (w�)

⎞
⎠

1/p
⎤
⎥⎦

p/M

� ρ−ε

⎡
⎢⎣

M∏
i=1

⎛
⎝ ∑

Ji ⊂Ri ,l(Ji )=ρ

‖E (d,k)
Ji

g‖p

L

p·nd (l)
nd (k)

# (wB)

⎞
⎠

1/p
⎤
⎥⎦

p/M

. (7.9)

However, counter-examples show that (7.9) is wrong, which prevents us from
iterating (7.8) in the forthcoming iteration argument. As an alternative for both
(7.7) and (7.8), we propose to iterate (7.5).

Before we start the first step of the iteration argument, we collect a few
lemmas that will be used several times there. Moreover, define αl and βl such
that

1
nd (l)
nd (k)

= αl
nd (l+1)

nd (k)

+ 1 − αl
pd (l)
pd (k)

. (7.10)

and

1
pd (l)
pd (k)

= 1 − βl
pd (l−1)

pd (k)

+ βl
nd (l)
nd (k)

. (7.11)

Remark 7.2 The exponents {αl} and {βl} are chosen such that the infinite sum
(7.90) holds true. This identity is the most important algebraic identity in the
paper. It guarantees the whole iteration to work.

Lemma 7.1 (the First Hölder inequality). For given d, k ≥ 1 and 1 ≤ l ≤
k − 1, we have

D nd (l)p
nd (k)

(1, Bl+1) �
(
1

δ

)d(1−αl )
(

pd (k)

p·pd (l)− 1
qd,k (l)

)
Dαl

nd (l+1)p
nd (k)

(1, Bl+1)

×D1−αl
qd,k(l)

(1, Bl+1). (7.12)

Proof of Lemma 7.1. In the case p·pd (l)
pd (k)

≥ 2, the desired estimate follows
immediately from the standard Hölder inequality. In the other case, we first
apply the standard Hölder inequality to obtain

D nd (l)p
nd (k)

(1, Bl+1) � Dαl
nd (l+1)p

nd (k)

(1, Bl+1) × D1−αl
p·pd (l)
pd (k)

(1, Bl+1). (7.13)
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Next, we apply one more step of Hölder to the second term on the right hand
side of the last expression,

D p·pd (l)
pd (k)

(1, Bl+1) �
(
1

δ

)d
(

pd (k)

p·pd (l)− 1
qd,k (l)

)
Dqd,k(l)(1, Bl+1). (7.14)

This finishes the proof of the First Hölder inequality. �	
Lemma 7.2 (the Second Hölder inequality). For given d, k ≥ 1 and 2 ≤ l ≤
k − 1, we have

Dqd,k(l)

( l + 1

l
, Bl+1

)

�
(1

δ

)d· l+1
l ·
(

1
qd,k (l)−

pd (k)

pd (l)·p
)

−d· l+1
l ·
(

1
qd,k (l−1)−

pd (k)

pd (l−1)·p
)

(1−βl )

Dβl
nd (l)p
nd (k)

( l + 1

l
, Bl+1

)
× D1−βl

qd,k(l−1)

( l + 1

l
, Bl+1

)
. (7.15)

Proof of Lemma 7.2. There are two cases: qd,k(l) = 2 and qd,k > 2. Let us
first work on the former case. In such a case, we also have qd,k(l − 1) = 2.
Hence the desired bound follows simply from the standard Hölder inequality

Dqd,k(l)

( l + 1

l
, Bl+1

)
�

(1
δ

) d(l+1)
l ·

(
1

qd,k (l)−
nd (k)

nd (l)p

)
D nd (l)p

nd (k)

( l + 1

l
, Bl+1

)

(7.16)

For the latter case, by the standard Hölder inequality, we obtain

Dqd,k(l)

( l + 1

l
, Bl+1

)
� Dβl

nd (l)p
nd (k)

( l + 1

l
, Bl+1

)
× D1−βl

p·pd (l−1)
pd (k)

( l + 1

l
, Bl+1

)
.

(7.17)

Hence the desired estimate follows from another time of applying Hölder

D p·pd (l−1)
pd (k)

( l + 1

l
, Bl+1

)

�
(1

δ

) d(l+1)
l ·

(
pd (k)

p·pd (l−1)− 1
qd,k (l−1)

)
Dqd,k(l−1)

( l + 1

l
, Bl+1

)
(7.18)

This finishes the proof of the Second Hölder inequality. �	
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The first step of the ball-inflation argument Alongside, we will draw a
picture (see Fig. 2) to illustrate what we will be doing at each step.

In this step, we will start with

Ap(1, Bk, 1) =
⎛
⎝ 1

|B1(Bk)|
∑

B1∈B1(Bk)

Dqd,k(1) (1, B1)p

⎞
⎠

1/p

. (7.19)

Recall that here we are working with k = 4. First, by the standard Hölder
inequality,

⎛
⎝ 1

|B1(Bk)|
∑

B1∈B1(Bk)

Dqd,k(1)(1, B1)p

⎞
⎠

1/p

�
(1

δ

)d
(

1
qd,k (1)−

nd (k)

nd (1)p

) ⎛
⎝ 1

|B1(Bk)|
∑

B1∈B1(Bk)

D nd (1)p
nd (k)

(1, B1)p

⎞
⎠

1/p

.

(7.20)

Second, applying Lemma 4.4 with l = 1 to the right hand side of (7.20), we
obtain

(1
δ

)d
(

1
qd,k (1)−

nd (k)

nd (1)p

)
+ε

⎛
⎝ 1

|B2(Bk)|
∑

B2∈B2(Bk)

D p·nd (1)
nd (k)

(1, B2)p

⎞
⎠

1/p

. (7.21)

Here and in the rest, ε is a real number that can be made arbitrarily small. Its
value may change from line to line. In Fig. 2, we draw the root node, denoted
by p·nd (1)

nd (k)
, to represent (7.21).

By the First Hölder inequality with l = 1, the latter factor of (7.21) can be
bounded by

δ
−d(1−α1)

(
pd (k)

p·pd (1)− 1
qd,k (1)

)
︸ ︷︷ ︸

1-Hölder with l=1

(7.22)

×
⎛
⎝ 1

|B2(Bk)|
∑

B2∈B2(Bk)

D pnd (2)
nd (k)

(1, B2)p

⎞
⎠

α1
p

×
⎛
⎝ 1

|B2(Bk)|
∑

B2∈B2(Bk)

Dqd,k(1)(1, B2)p

⎞
⎠

1−α1
p

. (7.23)
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This step corresponds to the bifurcation of the root node into two nodes,
denoted by qd,k(1) and

p·nd (2)
nd (k)

.

Remark 7.3 Here one may wonder why we do not introduce α̃l given by

1
p·nd (l)
nd (k)

= α̃l
p·nd (l+1)

nd (k)

+ 1 − α̃l

qd,k(l)
, (7.24)

and bound the latter factor of (7.21) directly by applying the standard Hölder
inequality, without losing the δ-power (7.22). This idea may work as well, if

{qd,k(l)}k−1
l=1 are adjusted appropriately. However it will generate a significant

amount of extra calculations after the iteration steps. Moreover, it will very
likely destroy the crucial algebraic identity (7.90). Here we artificially lose a
term (7.22), to make the iterationmore trackable. For instance, see the iterative
formula (7.66). Most importantly, (7.90) remains unchanged.

We further process these two terms/nodes in (7.23). By L2 orthogonality,
we bound (7.23) by

δ−�d,1(qd,k(1))(1−α1)︸ ︷︷ ︸
L2orthogonality

×
⎛
⎝ 1

|B2(Bk)|
∑

B2∈B2(Bk)

D pnd (2)
nd (k)

(1, B2)p

⎞
⎠

α1
p

×
⎛
⎝ 1

|B2(Bk)|
∑

B2∈B2(Bk)

Dqd,k(1)(2, B2)p

⎞
⎠

1−α1
p

. (7.25)

We apply Lemma 4.4 with l = 2 to the second last term in the last display,
and bound the whole term by

δ−�d,1(qd,k(1))(1−α1)−ε︸ ︷︷ ︸
L2orthogonality

×
( 1

|B3(Bk)|
∑

B3∈B3(Bk)

D pnd (2)
nd (k)

(1, B3)p
) α1

p
Ap(2, Bk, 2)1−α1 . (7.26)

The last term in (7.26) will not be further processed andwill carry over directly
to the iteration procedure in the end.

It is the second last term in (7.26) that will be further processed. The current
frequency scale we are working with is δ. To pass to even smaller frequency
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scales, the idea in [11] is to use a lower-degree decoupling inequality. Of course
the same idea is also hidden in Wooley’s efficient congruencing, just with a
different formulation. By the First Hölder inequality,

D p·nd (2)
nd (k)

(1, B3) � δ
−d(1−α2)

(
pd (k)

p·pd (2)− 1
qd,k (2)

)
︸ ︷︷ ︸

1-Hölder with l=2

Dqd,k(2)(1, B3)(1−α2)D p·nd (3)
nd (k)

(1, B3)α2 . (7.27)

During this step, the node p·nd (2)
nd (k)

bifurcates into two further nodes, denoted

by qd,k(2) and
p·nd (3)
nd (k)

.

According to the definition (7.5), having the former term Dqd,k(2)(1, B3)

means that we are working on ‖ERi,1g‖
L

qd,k (2)
# (wB3 )

. By the uncertainty prin-

ciple, such a ball of radius δ−3 does not distinguish the surface Sd,k from

(�d,2(t1, . . . , td), 0, . . . , 0). (7.28)

We refer to Lemma 8.2 in [11] to make such a statement precise. By applying
an lqd,k(2)Lqd,k(2) lower-degree decoupling inequality for the two-dimensional
surface S2,2 (see either [9] or [10]), (7.27) can be further bounded by

δ
−d(1−α2)

(
pd (k)

p·pd (2)− 1
qd,k (2)

)
︸ ︷︷ ︸

1-Hölder with l=2

δ− 1
2�d,2(qd,k(2))(1−α2)︸ ︷︷ ︸
decoupling for S2,2

× Dqd,k(2)

(3
2
, B3

)(1−α2)

D p·nd (3)
nd (k)

(1, B3)α2 . (7.29)

We need to further process the term Dqd,k(2)
(3
2 , B3

)
. By the Second Hölder’s

inequality with l = 2 and the L2 orthogonality,

Dqd,k(2)

(3
2
, B3

)

� δ
−d· 32 ·

(
1

qd,k (2)−
pd (k)

pd (2)·p
)
+d· 32 ·

(
1

qd,k (1)−
pd (k)

pd (1)·p
)
(1−β2)︸ ︷︷ ︸

2-Hölder with l=2

× Dqd,k(1)

(3
2
, B3

)1−β2
D pnd (2)

nd (k)

(3
2
, B3

)β2
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� δ
−d· 32 ·

(
1

qd,k (2)−
pd (k)

pd (2)·p
)
+d· 32 ·

(
1

qd,k (1)−
pd (k)

pd (1)·p
)
(1−β2)︸ ︷︷ ︸

2-Hölder with l=2

× δ− 3
2�d,1(qd,k(1))(1−β2)︸ ︷︷ ︸
L2 orthogonality

×Dqd,k(1)(3, B3)1−β2 D p·nd (2)
nd (k)

(3
2
, B3

)β2
. (7.30)

During this step, the node qd,k(2) bifurcates into two nodes qd,k(1) and
p·nd (2)
nd (k)

.

Remark 7.4 Here we make a comment on the Second Hölder inequality in
Lemma 7.2. It is akin to Remark 7.3. One again may wonder why we did not
replace βl by β̃l , which is defined via

1

qd,k(l)
= 1 − β̃l

qd,k(l − 1)
+ β̃l

p·nd (l)
nd (k)

, (7.31)

and applied the standard Hölder inequality in the proof of Lemma 7.2. This
way of applying Hölder’s inequality will not produce any loss in δ−1. The
reason is that we would like to keep {αl} and {βl} essentially unchanged when
we consider different values of p. Hence as long as we verify (7.90) for one
exponent p, it will be true for every p.

So far we have obtained

Ap(1, B4, 1) � δ−ε × δ
−d

(
1

qd,k (1)−
nd (k)

nd (1)p

)
× δ

−d(1−α1)

(
pd (k)

p·pd (1)− 1
qd,k (1)

)
︸ ︷︷ ︸

1-Hölder with l=1

× δ−�d,1(qd,k(1))(1−α1)︸ ︷︷ ︸
L2orthogonality

× δ
−dα1(1−α2)

(
pd (k)

p·pd (2)− 1
qd,k (2)

)
︸ ︷︷ ︸

1-Hölder with l=2

× δ− 1
2�d,2(qd,k(2))(1−α2)α1︸ ︷︷ ︸
decoupling for S2,2

× δ− 3
2�d,1(qd,k(1))(1−β2)α1(1−α2)︸ ︷︷ ︸

L2 orthogonality

× δ
−α1(1−α2)

[
d· 32 ·

(
1

qd,k (2)−
pd (k)

pd (2)·p
)
−d· 32 ·

(
1

qd,k (1)−
pd (k)

pd (1)·p
)
(1−β2)

]
︸ ︷︷ ︸

2-Hölder with l=2

Ap(2, B4, 2)1−α1 Ap(3, B4, 3)α1(1−α2)(1−β2)

×
[

1

|B3(B4)|
∑

B3∈B3(B4)

D p·nd (2)
nd (k)

(3
2
, B3

)p
] α1(1−α2)β2

p

D p·nd (3)
nd (k)

(1, B4)α1α2

(7.32)

Here the last term is obtained by applying Lemma 4.4 with l = 3.
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We further process the last term in the last display. Similar to the steps
from (7.27) to (7.29), we will first apply the First Hölder’s inequality to
D p·nd (3)

nd (k)

(1, B4), and then apply an lqd,k(3)Lqd,k(3) decoupling inequality for

the surface S2,3 and an lqd,k(2)Lqd,k(2) decoupling inequality for the surface
S2,2 for the resulting terms. In the end, we obtain

Ap(1, B4, 1) � δ−ε × δ
−d

(
1

qd,k (1)−
nd (k)

nd (1)p

)
× δ

−d(1−α1)
(

pd (k)

p·pd (1)− 1
qd,k (1)

)
︸ ︷︷ ︸

1-Hölder with l=1

× δ−�d,1(qd,k(1))(1−α1)︸ ︷︷ ︸
L2orthogonality

× δ
−dα1(1−α2)

(
pd (k)

p·pd (2)− 1
qd,k (2)

)
︸ ︷︷ ︸

1-Hölder with l=2

× δ− 1
2�d,2(qd,k(2))(1−α2)α1︸ ︷︷ ︸
decoupling for S2,2

× δ− 3
2�d,1(qd,k(1))(1−β2)α1(1−α2)︸ ︷︷ ︸

L2 orthogonality

× δ
−α1(1−α2)

[
d· 32 ·

(
1

qd,k (2)−
pd (k)

pd (2)·p
)
−d· 32 ·

(
1

qd,k (1)−
pd (k)

pd (1)·p
)
(1−β2)

]
︸ ︷︷ ︸

2-Hölder with l=2

× δ
−dα1α2(1−α3)

(
pd (k)

p·pd (3)− 1
qd,k (3)

)
︸ ︷︷ ︸

1-Hölder with l=3

× δ− 1
3�d,3(qd,k(3))α1α2(1−α3)︸ ︷︷ ︸
decoupling for S2,3

× δ
−α1α2(1−α3)

[
d· 43 ·

(
1

qd,k (3)−
pd (k)

pd (3)·p
)
−d· 43 ·

(
1

qd,k (2)−
pd (k)

pd (2)·p
)
(1−β3)

]
︸ ︷︷ ︸

2-Hölder with l=3

Ap(2, B4, 2)1−α1 Ap(3, B4, 3)α1(1−α2)(1−β2)

×
[

1

|B3(B4)|
∑

B3∈B3(B4)

D p·nd (2)
nd (k)

(3
2
, B3

)p
] α1(1−α2)β2

p

× D p·nd (3)
nd (k)

(4
3
, B4

)α1α2(1−α3)β3

× Dqd,k(2)(2, B4)α1α2(1−α3)(1−β3)Dp(1, B4)α1α2α3 . (7.33)

This finishes the first stage of the ball-inflation argument.

Intermediate stages of the ball-inflation argument In the first stage, we
have obtained an estimate for Ap(1, B4, 1) for each ball B4. To continue, we
choose an extremely large integer r , raise both sides of (7.33) to the p-th power,
and sum over B4 ∈ B4(Br ) on both sides of (7.33). As a consequence, we
obtain
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Fig. 2 Tree-growing

Ap(1, Br , 1) � δcertain powerAp(2, Br , 2)1−α1 Ap(3, Br , 3)α1(1−α2)(1−β2)

×
[

1

|B3(Br )|
∑

B3∈B3(Br )

D p·nd (2)
nd (k)

(3
2
, B3

)p
] α1(1−α2)β2

p

×
[

1

|B4(Br )|
∑

B4∈B4(Br )

D p·nd (3)
nd (k)

(4
3
, B4

)p
] α1α2(1−α3)β3

p

×
[

1

|B4(Br )|
∑

B4∈B4(Br )

Dqd,k(2)(2, B4)p
] α1α2(1−α3)(1−β3)

p

Dp(1, Br )α1α2α3 .

(7.34)

There are six terms on the right hand side. The first term Ap(2, Br , 2) and the
second term Ap(3, Br , 3) have the same structure as the term on the left hand
side. Hence they are ready to be iterated. The last term Dp(1, Br ) is already
of the shape of the decoupling inequality (1.15). Hence it will not be further
processed and will carry over directly to the iteration argument.

The remaining three terms will be further processed. The principle is very
clear: Nodes in Fig. 2 with the same name will be processed in a similar way.
The term with D p·nd (2)

nd (k)

(3
2 , B3

)
will be processed in a way similar to that of
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D p·nd (2)
nd (k)

(1, B2) in (7.25) and (7.26). The same principle applies to the other

remaining two terms.

After enough many steps of the ball-inflations We run the previous ball-
inflation argument for enough many steps. We will terminate at a step where
only terms of the forms

Ap(bi , Br , bi ), Dp(di , Br ), (7.35)[
1

|Bu′
i (Br )|

∑
Bu′

i ∈Bu′
i
(Br )

D p·nd (2)
nd (k)

(u′
i

2
, Bu′

i

)p
]1/p

(7.36)

and

[
1

|Bu′′
i (Br )|

∑
Bu′′

i ∈Bu′′
i
(Br )

D p·nd (3)
nd (k)

(u′′
i

3
, Bu′′

i

)p
]1/p

(7.37)

are involved. Here bi , di , u′
i and u′′

i are fractions, in particular, u′
i and u′′

i are
extremely large as real numbers. The symbol ui is reserved for later use. In
other words, we will terminate the ball-inflation at a step where no terms
involving Dqd,k(2) or Dqd,k(3) appear.

Let us pause and explain why we can allow terms involving D p·nd (2)
nd (k)

and

D p·nd (3)
nd (k)

to be only of the forms (7.36) and (7.37), respectively. We can guar-

antee that for every such term, its predecessor in Fig. 2 is either qd,k(2) or
qd,k(3). Let us take the example of qd,k(2). Recall that at such a node, similar
to (7.29), we treated our surface as a quadratic surface, and applied a sharp
lqd,k(2)Lqd,k(2) decoupling inequality to it. Afterwards, we applied a Second
Hölder inequality. This will result exactly in a term of the form (7.36).

Suppose we arrive at

Ap(1, Br , 1) � δ−λ−ε

(
r1∏

i=0

Ap(bi , Br , bi )
γi

)(
r2∏

i=0

Dp(di , Br )τi

)
(7.38)

r3∏
i=1

[
1

|Bu′
i (Br )|

∑
Bu′

i ∈Bu′
i
(Br )

D p·nd (2)
nd (k)

(u′
i

2
, Bu′

i

)p
]θ ′

i /p

(7.39)

r4∏
i=1

[
1

|Bu′′
i (Br )|

∑
Bu′′

i ∈Bu′′
i
(Br )

D p·nd (3)
nd (k)

(u′′
i

3
, Bu′′

i

)p
]θ ′′

i /p

. (7.40)
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Here r, r1, r2, r3 and r4 are extremely large numbers that are irrelevant to
us, and the individual values of bi , di , u′

i , u′′
i , γi , τi , θ

′
i and θ ′′

i will not be
important. The quantities that matter will appear soon.

The following lemma shows that λwill still stay controlledwhen r, r1, r2, r3
and r4 become larger and larger.

Lemma 7.3 There exists a constant �d,k < +∞ such that

λ < �d,k . (7.41)

In particular, �d,k is independent of r, r1, r2, r3 and r4.

The proof of Lemma 7.3 is postponed to the forthcoming section. We first
use this lemma to show that the contributions from (7.39) and (7.40) are “neg-
ligible”. Let us again take the example of (7.39). By the standard Hölder
inequality,

[
1

|Bu′
i (Br )|

∑
Bu′

i ∈Bu′
i
(Br )

D p·nd (2)
nd (k)

(u′
i

2
, Bu′

i

)p
]θ ′

i /p

� δ−2du′
i θ

′
i Dp

(u′
i

2
, Br

)θ ′
i
.

(7.42)

We will prove

Lemma 7.4 Under the above notation, for every ε > 0, we can run our ball-
inflation argument for enough many steps, depending on ε, such that

∑
i

u′
iθ

′
i < ε. (7.43)

We apply Lemma 7.4 to (7.38)–(7.40). For a given small positive ε > 0, we
run the ball-inflation appropriately such that

∑
i

u′
iθ

′
i < ε. (7.44)

Hence we obtain

Ap(1, Br , 1) � δ−λ−ε

(
r1∏

i=0

Ap(bi , Br , bi )
γi

)(
r2∏

i=0

Dp(di , Br )τi

)
(7.45)

r3∏
i=1

Dp

(u′
i

2
, Br

)θ ′
i

r4∏
i=1

Dp

(u′′
i

3
, Br

)θ ′′
i

(7.46)
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We rename u′
i , u′′

i , θ
′
i and θ ′′

i and write (7.45)–(7.46) as

Ap(1, Br , 1) � δ−λ−ε

(
r1∏

i=0

Ap(bi , Br , bi )
γi

)(
r2∏

i=0

Dp(di , Br )τi

)

×
( r5∏

i=0

Dp(ui , Br )θi

)
. (7.47)

Later in Lemma 7.7 we will see that the contribution from (7.46) will also be
“negligible”.

Proof of Lemma 7.4. From Fig. 2 and the step of (7.30), we see that whenever

a term D p·nd (2)
nd (k)

(u′
i
2 , Bu′

i
)
is produced, there is always one companion term

Ap(u′
i , Br , u′

i ) that is also produced. These two terms correspond to two nodes
in Fig. 2 which bifurcate from a node qd,k(2). To be precise, at this step, we
applied once the Second Hölder inequality

Dqd,k(2)

(u′
i

2
, Bu′

i

)
�

(
1

δ

)some irrelevant power

Dβ2
nd (2)p
nd (k)

(u′
i

2
, Bu′

i

)

×D1−β2
qd,k(1)

(u′
i

2
, Bu′

i

)
. (7.48)

Afterwards, we applied an L2 orthogonality argument, and the term Dqd,k(1)(u′
i
2 , Bu′

i
)
evolved into Ap(u′

i , Br , u′
i ). Hence we are able to find a large con-

stant L , depending on r, r1, r2, r3 and r4, such that

∑
i

u′
iθ

′
i ≤ 100

⎛
⎝ ∑

i :bi >L

biγi

⎞
⎠ . (7.49)

Moreover, L → ∞ as r, r1, r2, r3, r4 → ∞. Hence Lemma 7.4 follows if we
can prove

lim
r1→∞

r1∑
i=0

biγi < ∞, (7.50)

as every biγi is positive. Indeed, we will prove something much stronger in
Lemma 7.6. For the purpose of deriving Lemma 7.4, the statement of (7.50)
is enough.
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Let us recall how Dqd,k(2)

(u′
i
2 , Bu′

i
)
was generated. First of all, it bifurcated

from a node denoted by p·nd (2)
nd (k)

through a First Hölder inequality. Afterwards,
we applied a decoupling inequality for the surface Sd,2:

Dqd,k(2)

(u′
i

3
, Bu′

i

)
� δ− u′

i
6 �d,2(qd,k(2))Dqd,k(2)

(u′
i

2
, Bu′

i

)
. (7.51)

Hence it follows that

lim
r1→∞

r1∑
i=0

biγi < 100λ. (7.52)

In end end we apply the uniform bound for λ obtained in Lemma 7.3. �	
We calculate the value of λ. Notice that λ will increase as r, r1, r2, r3 and

r4 increase. Moreover, Lemma 7.3 implies that

λ0 := lim
r,r1,r2,r3,r4→∞ λ (7.53)

is a finite number. We bound λ by λ0 and calculate the value of λ0. We turn
to Fig. 2. As previously we were iterating the estimates from (7.19) to (7.33),
the value of λ0 will consequently be given by an iterative formula.

We let w1 be a weight attached to the root of the tree in Fig. 2. It collects
all the losses in δ−1 that are generated after the root node p·nd (1)

nd (k)
is created.

Hence

λ0 = w1 + d
( 1

qd,k(1)
− nd(k)

nd(1)p

)
. (7.54)

The weight w1 collects both contributions from η1 and w2. We first applied
the First Hölder inequality in (7.22) and lost a power

d(1 − α1)
( pd(k)

p · pd(1)
− 1

qd,k(1)

)
(7.55)

in δ−1. Secondly, associated to η1, we applied an L2 orthogonality argument
in (7.25) and lost a power

�d,1(qd,k(1))(1 − α1) (7.56)
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in δ−1. Hence we obtain

w1 = �d,1(qd,k(1))(1 − α1) + α1 · w2 + d(1 − α1)
( pd(k)

p · pd(1)
− 1

qd,k(1)

)
.

(7.57)

For w2, we first applied the First Hölder inequality with l = 2 in (7.27), and
lost a power

d(1 − α2)
( pd(k)

p · pd(2)
− 1

qd,k(2)

)
(7.58)

in δ−1, and then applied one step of a lower-dimensional decoupling inequality
as in (7.29), and lost a power

1

2
�d,2(qd,k(2))(1 − α2) (7.59)

in δ−1. Hence

w2 = 1

2
�d,2(qd,k(2))(1 − α2) + (1 − α2)η2 + α2 · w3

+ d(1 − α2)
( pd(k)

p · pd(2)
− 1

qd,k(2)

)
(7.60)

Similarly, we obtain an equation for w3,

w3 = 1

3
�d,3(qd,k(3))(1 − α3) + (1 − α3)η3

+d(1 − α3)
( pd(k)

p · pd(3)
− 1

qd,k(3)

)
. (7.61)

Now we derive equations for ηi . First of all, η1 is associated to the term
Ap(2, B, 2), which does not contribute to δ−λ0 . Hence η1 = 0. Next, for η2,
in the estimate (7.30), we applied the Second Hölder inequality with l = 2,
which contributes

d · 3
2

·
(

1

qd,k(2)
− pd(k)

pd(2) · p

)
− d · 3

2
·
(

1

qd,k(1)
− pd(k)

pd(1) · p

)
(1 − β2).

(7.62)

We also used an L2 orthogonality argument, which contributes

3

2
�d,1(qd,k(1))(1 − β2). (7.63)
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Hence

η2 = 3

2
�d,1(qd,k(1))(1 − β2) + 3

2
β2w2

+ d · 3
2

·
(

1

qd,k(2)
− pd(k)

pd(2) · p

)

− d · 3
2

·
(

1

qd,k(1)
− pd(k)

pd(1) · p

)
(1 − β2) (7.64)

Similarly, for η3, we have

η3 = 2

3
�d,2(qd,k(2))(1 − β3) + 4

3
(1 − β3)η2 + 4

3
β3w3

+ d · 4
3

·
(

1

qd,k(3)
− pd(k)

pd(3) · p

)

− d · 4
3

·
(

1

qd,k(2)
− pd(k)

pd(2) · p

)
(1 − β3) (7.65)

By the equations from (7.57) to (7.65), we are able to calculate the constant
λ0 for the case k = 4.

For the more general dimension d and degree k, we obtain

wl = 1

l
�d,l

(
qd,k(l)

)
(1 − αl) + (1 − αl)ηl + αlwl+1

+ d(1 − αl)
( pd(k)

p · pd(l)
− 1

qd,k(l)

)
: 1 ≤ l ≤ k − 1;

ηl = d · l + 1

l
·
(

1

qd,k(l)
− pd(k)

pd(l) · p

)

− d · l + 1

l
·
(

1

qd,k(l − 1)
− pd(k)

pd(l − 1) · p

)
(1 − βl)

+ (l + 1)

l(l − 1)
�d,l−1

(
qd,k(l − 1)

)
(1 − βl)

+ l + 1

l
ηl−1(1 − βl) + l + 1

l
βlwl : 2 ≤ l ≤ k − 1;

η1 = 0; wk = 0. (7.66)

By solving this system of linear equations, we will be able to find the exact
value of λ0.

Remark 7.5 In Remark (7.3) and Remark (7.4), we commented on twoHölder
inequalities proved in Lemma 7.1 and Lemma 7.2 separately, and why we
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applied Hölder in those particular ways. The price we need to pay is that the
iterative formula (7.66) looks a bit complicated.

The last round of iterations So far we have obtained

Ap(1, Br , 1)

� δ−λ0−ε

(
r1∏

i=0

Ap(bi , B, bi )
γi

)(
r2∏

i=0

Dp(di , B)τi

)( r5∏
i=0

Dp(ui , Br )θi

)
.

(7.67)

Recall that λ0 can be calculated by the iterative formula (7.66). The estimate
will be iterated. To avoid producing unnecessarily long terms, we introduce
some further notation to simplify (7.67). Define

di+r2 := ui and τi+r2 := θi . (7.68)

Under this notation, (7.67) can be rewritten as

Ap(1, Br , 1) � δ−λ0−ε

(
r1∏

i=0

Ap(bi , B, bi )
γi

)(
r6∏

i=0

Dp(di , B)τi

)
, (7.69)

with r6 = r2+r5. Let u be a small positive number. By renaming our frequency
scales, we also obtain

Ap(u, B, u) � δ−uλ0−ε

(
r1∏

i=0

Ap(ubi , B, ubi )
γi

)(
r6∏

i=0

Dp(udi , B)τi

)
,

(7.70)

for every ball B with a large enough radius. Moreover, if we take u to be small
enough, then B can be taken to be a ball of radius δ−k .

Now we iterate the above estimate W times, and obtain

A p(u, B, u) �ε,r,M δ−uλ0−ε

⎛
⎝ r1∏

j1=0

δ
−uλ0b j1γ j1

⎞
⎠

× . . .

×
⎛
⎝ r1∏

j1=0

r1∏
j2=0

. . .

r1∏
jW−1=0

δ
−uλ0b j1b j2 ...b jW−1γ j1γ j2 ...γ jW−1

⎞
⎠

×
⎛
⎝ r6∏

j1=0

Dp(ud j1 , B)
τ j1

⎞
⎠

⎛
⎝ r6∏

j1=0

r1∏
j2=0

Dp(u · d j1b j2 , B)
τ j1γ j2

⎞
⎠
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× . . .

×
⎛
⎝ r6∏

j1=0

r1∏
j2=0

· · ·
r1∏

jW =0

Dp(ud j1b j2 . . . b jW , B)
τ j1γ j2 ...γ jW

⎞
⎠

×
⎛
⎝ r1∏

j1=0

r1∏
j2=0

· · ·
r1∏

jW =0

A p(u · b j1b j2 . . . b jW , B, u · b j1b j2 . . . b jW )
γ j1γ j2 ...γ jW

⎞
⎠ .

(7.71)

We start to process the long product (7.71). It is similar to the calculation in
Page 864–865 in [10]. We will divide the analysis into three steps. In the first
step, we collect all the powers of 1

δ
. In the second, we use a rescaling argument

to handle all the Dp-terms. In the last step, we deal with the remaining Ap-
terms.

Collecting the powers of 1
δ
. We obtain

uλ0 + uλ0

⎛
⎝ r1∑

j=0

b jγ j

⎞
⎠ + · · · + uλ0

⎛
⎝ r1∑

j=0

b jγ j

⎞
⎠

W−1

= uλ0 ·
1 −

(∑r1
j=0 b jγ j

)W

1 −
(∑r1

j=0 b jγ j

) . (7.72)

The contribution from the Dp-terms. By parabolic rescaling (Lemma 3.1), the
product of all these Dp-terms can be controlled by

⎛
⎝ r6∏

j1=0

Vp(δ
1−ud j1 )

τ j1 Dp(1, B)
τ j1

⎞
⎠

×
⎛
⎝ r6∏

j1=0

r1∏
j2=0

Vp(δ
1−ud j1b j2 )

τ j1γ j2 Dp(1, B)
τ j1γ j2

⎞
⎠

× · · · ×
⎛
⎝ r6∏

j1=0

r1∏
j2=0

· · ·
r1∏

jW =0

Vp(δ
1−ud j1b j2 ...b jW )

τ j1γ j2 ...γ jW Dp(1, B)
τ j1γ j2 ...γ jW

⎞
⎠

�

⎛
⎝ r6∏

j1=0

Vp(δ
1−ud j1 )

τ j1

⎞
⎠ ×

⎛
⎝ r6∏

j1=0

r1∏
j2=0

Vp(δ
1−ud j1b j2 )

τ j1γ j2

⎞
⎠ × . . .

×
⎛
⎝ r6∏

j1=0

r1∏
j2=0

· · ·
r1∏

jW =0

Vp(δ
1−ud j1b j2 ...b jW )

τ j1γ j2 ...γ jW

⎞
⎠

× (
Dp(1, B)

)1−(∑r1
j=0 γ j

)W

(7.73)
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The contribution from the Ap-term. By invoking Hölder’s inequality this term
can be bounded by

r1∏
j1=0

· · ·
r1∏

jW =0

(1
δ

)d·u·b j1 ...b jW γ j1 ...γ jW [
Dp(b j1 . . . b jW u, B)

]γ j1 ...γ jW . (7.74)

To control the Dp term, we again invoke the parabolic rescaling, and bound
the last expression by

(1
δ

)d·u
(∑r1

j=0 b j γ j

)W r1∏
j1=0

· · ·
r1∏

jW =0

(
Vp(δ

1−ub j1 ...b jW )
)γ j1 ...γ jW

×(
Dp(1, B)

)γ j1 ...γ jW . (7.75)

We summarize what we have proven so far as follows.

Proposition 7.5 Fix d ≥ 2 and k ≥ 2. For each p >
2nd (k)
nd (1) , each ball B of

radius δ−k , and each sufficiently small u, we have

Ap(u, B, u) �
(1

δ

)ε+uλ0·
1−
(∑r1

j=0 b j γ j

)W

1−
(∑r1

j=0 b j γ j

) +du
(∑r1

j=0 b j γ j

)W

Dp(1, B)

×
⎛
⎝ r6∏

j1=0

Vp(δ
1−ud j1 )τ j1

⎞
⎠

×
⎛
⎝ r6∏

j1=0

r1∏
j2=0

Vp(δ
1−ud j1b j2 )τ j1γ j2

⎞
⎠

× · · · ×
⎛
⎝ r6∏

j1=0

r1∏
j2=0

· · ·
r1∏

jW =0

Vp(δ
1−ud j1b j2 ...b jW )τ j1γ j2 ...γ jW

⎞
⎠

×
⎛
⎝ r1∏

j1=0

· · ·
r1∏

jW =0

(
Vp(δ

1−ub j1 ...b jW )
)γ j1 ...γ jW

⎞
⎠ . (7.76)

Here r1 and r6 are two extremely large numbers that will be chosen later.

The final step of the proof Now we come to the final step of the proof for the
desired decoupling inequality at the exponent p. We will combine Theorem
5.1 with Proposition 7.5. Let ηp be the unique number such that
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lim
δ→0

V (d,k)(δ, p)

δ−(ηp+μ)
= 0, for each μ > 0, (7.77)

and

lim sup
δ→0

V (d,k)(δ, p)

δ−(ηp−μ)
= ∞, for each μ > 0. (7.78)

Let B have radius δ−k . We substitute the bound V (d,k)(δ, p) �μ δ−(ηp+μ) into
the right hand side of (7.76), and obtain

Ap(u, B, u) �r1,r6,K ,μ,W δ−ηp,μ,u,r1,r6,W Dp(1, B), (7.79)

where

ηp,μ,u,r1,r6,W

= uλ0 ·
1 −

(∑r1
j=0 b j γ j

)W

1 −
(∑r1

j=0 b j γ j

) + du

⎛
⎝ r1∑

j=0

b j γ j

⎞
⎠

W

+ (μ + ηp)

⎡
⎢⎣1 − u ·

⎛
⎝ r1∑

j=0

b j γ j

⎞
⎠

W

− u

⎛
⎝ r6∑

j=0

d j τ j

⎞
⎠ 1 −

(∑r1
j=0 b j γ j

)W

1 −
(∑r1

j=0 b j γ j

)
⎤
⎥⎦ .

(7.80)

Recall that M is an integer from [K , K d ], and R1, . . . , RM are cubes from
ColK that are νK -transverse. By Cauchy–Schwarz,

∥∥∥∥
⎛
⎝ M∏

i=1

ERi g

⎞
⎠

1
M ∥∥∥∥

L p
# (wB )

≤ δ−du
∥∥∥∥
⎛
⎝ M∏

i=1

∑
Ri,u⊂Ri

|ERi,u g|qd,k (1)

⎞
⎠

1
qd,k (1)M ∥∥∥∥

L p
# (wB )

� δ−du

⎛
⎜⎜⎝ 1

|Bu(B)|
∑

Bu∈Bu(B)

∥∥∥∥∥∥∥

⎛
⎝ M∏

i=1

∑
Ri,u⊂Ri

|ERi,u g|qd,k (1)

⎞
⎠

1
M ·qd,k (1)

∥∥∥∥∥∥∥

p

L p
# (wBu )

⎞
⎟⎟⎠

1
p

.

(7.81)

By Hölder and Minkowski, this can be further bounded by

δ−du

⎛
⎝ 1

|Bu(B)|
∑

Bu∈Bu(B)

Dqd,k(1)(u, Bu)p

⎞
⎠

1
p

= δ−du Ap(u, B, u). (7.82)
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Moreover, in the above step, we have used the fact that |ERi,u g| is essentially
a constant on each ball of radius δ−u . So far we have obtained

∥∥∥∥
(

M∏
i=1

ERi g

) 1
M ∥∥∥∥

L p
# (wB)

�r1,r6,K ,μ,W δ−du−ηp,μ,u,r1,r6,W Dp(1, B). (7.83)

We recall that both sides depend on g and Ri . By taking the supremum over
g, Ri and K ≤ M ≤ K d (with fixed K ) in the above estimate, we obtain

V (d,k)(δ, p, νK ) �r1,r6,K ,μ,W δ−η̃p,μ,u,r1,r6,W , (7.84)

where

η̃p,μ,u,r1,r6,W := ηp,μ,u,r1,r6,W + du. (7.85)

We move ηp from the right hand side of the expression (7.80) to the left hand
side, and then divide both sides by u to obtain

1

u
(η̃p,μ,u,r1,r6,W − ηp)

= d + μ

u
+ λ0 · 1 − (∑r1

j=0 b jγ j
)W

1 − (∑r1
j=0 b jγ j

) + d

⎛
⎝ r1∑

j=0

b jγ j

⎞
⎠

W

− (μ + ηp)

⎡
⎢⎣
⎛
⎝ r1∑

j=0

b jγ j

⎞
⎠

W

+
⎛
⎝ r6∑

j=0

d jτ j

⎞
⎠ 1 − (∑r1

j=0 b jγ j
)W

1 − (∑r1
j=0 b jγ j

)
⎤
⎥⎦ .

(7.86)

Our goal is to show that

ηp ≤ max

{(1
2

− 1

p

)
d, max

1≤ j≤d

{(
1 − 1

p

)
j − K j,k

p

}}
. (7.87)

We argue by contradiction. Suppose for contradiction that

ηp > max

{(1
2

− 1

p

)
d, max

1≤ j≤d

{(
1 − 1

p

)
j − K j,k

p

}}
. (7.88)
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We rewrite the right hand side of (7.86) as

⎛
⎝λ0 − (μ + ηp)

⎛
⎝ r6∑

j=0

d jτ j

⎞
⎠
⎞
⎠ 1 −

(∑r1
j=0 b jγ j

)W

1 −
(∑r1

j=0 b jγ j

)
︸ ︷︷ ︸

(�)

+ d + μ

u
+ (d − μ − ηp)

⎛
⎝ r1∑

j=0

b jγ j

⎞
⎠

W

. (7.89)

It transpires that the term (�) is dominant. Next we will calculate the crucial
quantity

∑∞
j=0 b jγ j . The two crucial features for this quantity are as follows.

Lemma 7.6 Under the previous notation,

∞∑
j=0

b jγ j = 1. (7.90)

In addition to this, we have that

Lemma 7.7 Under the above notation,

λ0∑∞
j=0 d jτ j

≤ max

{(1
2

− 1

p

)
d, max

1≤ j≤d

{(
1 − 1

p

)
j − K j,k

p

}}
. (7.91)

These two lemmas will be proven in forthcoming sections.
Choose now r1, r6 and W large enough, and then μ small enough. By com-

bining (7.88), (7.90) and (7.91) we obtain that for these values of p, r1, r6, W
and μ, the expression appearing in (7.89) is negative. Going back to (7.86),
for these values of p, μ, r1, r6 and W , we conclude that

η̃p,μ,u,r1,r6,W < ηp. (7.92)

For K large enough, Theorem 5.1 implies that

V (d,k)(δ, p) �K ,p,ε δ−ε max
δ≤δ′≤1

(δ′

δ

)�d−1,k(p)+ε

V (d,k)(δ′, p, νK ). (7.93)

We have two possibilities. First, if

η̃p,μ,u,r1,r6,W < �d−1,k(p) + ε, (7.94)
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then (7.93) combined with (7.84) forces

V (d,k)(δ, p) �ε

(1
δ

)ε+�d−1,k(p)

. (7.95)

This contradicts (7.88).
Second, if

η̃p,μ,u,r1,r6,W ≥ �d−1,k(p) + ε, (7.96)

then again (7.93) combined with (7.84) forces

V (d,k)(p, δ) �ε

(1
δ

)ε+η̃p,μ,u,r1,r6,W
. (7.97)

This contradicts (7.92). Since both cases lead to a contradiction, it can only be
that our original assumption (7.88) is false. This finishes the proof of (7.87).

8 Proof of Lemmas 7.3 and 7.6

In this section we will prove Lemmas 7.3 and 7.6 simultaneously. Define a
(2k − 3) × (2k − 3) matrixM = (mi, j ) by

m2i+1,2i = i + 2

i + 1
(1 − βi+1), m2i+1,2i−1 = i + 2

i + 1
βi , with 2 ≤ i ≤ k − 2;

m2i,2i+1 = 1 − αi+1, m2i,2i+2 = αi+1, with 1 ≤ i ≤ k − 2;
m1,2 = α1, m3,2 = 3

2
β2, and mi, j = 0 elsewhere. (8.1)

The linear system of equations (7.66) becomes

(w1, w2, η2, . . . , wk−1, ηk−1)
T

= M · (w1, w2, η2, . . . , wk−1, ηk−1)
T + some non-homogeneous term.

(8.2)

Here η1 = wk = 0 can be incorporated into the non-homogeneous term.
Hence Lemma 7.3 will follow from

Lemma 8.1 For every d ≥ 1 and k ≥ 2, all eigenvalues of M have moduli
strictly smaller than one.

Proof of Lemma 8.1. This lemma is proven via studying the quantity
∑∞

j=0
b jγ j , which is the main object of study of Lemma 7.6. Similar to how λ0
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can be calculated by the formula (7.66), we also have an iterative formula for∑∞
j=0 b jγ j .

We turn to Fig. 2. Assign w′
1 to the root node p·nd (1)

nd (k)
and let it collect the

contributions from all terms that come after it and contain b j and γ j . Hence

w′
1 =

∞∑
j=0

b jγ j . (8.3)

Moreover, for each 2 ≤ l ≤ k, assignw′
l to the node

p·nd (l)
nd (k)

and let it collect the
contributions from all terms that come after it and contain b j and γ j . Similarly,
for each 2 ≤ l ≤ k − 1, assign η′

l to the node qd,k(l).
From (7.22) to (7.26), the root node bifurcates into two nodes. Hence

w′
1 = α1w

′
2 + (1 − α1)η

′
1. (8.4)

Similarly we obtain

w′
l = αlw

′
l+1 + (1 − αl)η

′
l for each 2 ≤ l ≤ k − 1. (8.5)

Next we derive relations for η′
l . They satisfy

η′
l = l + 1

l
η′

l−1(1 − βl) + l + 1

l
βlw

′
l for each 2 ≤ l ≤ k − 1. (8.6)

We also observe that

η′
1 = 2 and w′

k = 0. (8.7)

Using the matrixM given by (8.1), we obtain

(w′
1, w

′
2, η

′
2, . . . , w

′
k−1, η

′
k−1)

T = M · (w′
1, w

′
2, η

′
2, . . . , w

′
k−1, η

′
k−1)

T

+ ((1 − α1)η
′
1, 0,

3

2
(1 − β2)η

′
1, 0, . . . , 0)

T . (8.8)

In the following, to simplify notation, we will abbreviate

pd( j) to p j and nd( j) to n j , for 1 ≤ j ≤ k, (8.9)

as dimension d is always fixed. Moreover, define s0 = 0 and

s j := n1 + n2 + · · · + n j with 1 ≤ j ≤ k. (8.10)

We will prove
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Lemma 8.2 Under the above notation,

w′
j = 1 + p1nk(s j−1 − ( j − 1)n j )

n j (n1 pk − p1nk)
for 1 ≤ j ≤ k, (8.11)

η′
j = j + 1

j

p j (n1 pk − p1nk) + p1(s j−1 pk − ( j − 1)p j nk)

p j (n1 pk − p1nk)

for 1 ≤ j ≤ k − 1, (8.12)

satisfy equations (8.4)–(8.7).

Herewe remark thatwithoutLemma8.1,we are not able to concludeLemma
7.6 directly from Lemma 8.2 directly. This is because we do not know the
uniqueness of solutions to the system (8.4)–(8.7). Moreover,

w′
1 = w′

2 = η′
2 = · · · = w′

k−1 = η′
k−1 = ∞ (8.13)

also satisfies (8.4)–(8.7), which should also be ruled out before concluding
Lemma 7.6 from Lemma 8.2.

The proof of Lemma 8.2 is postponed to the end of this section. We first
finish the proof of Lemma 8.1. Denote

−→w ′ = (w′
1, w

′
2, η

′
2, . . . , w

′
k−1, η

′
k−1)

T , with w′
j given by (8.11)

and η′
j by (8.12). (8.14)

Moreover, denote

−→w0
′ =

(
(1 − α1)η

′
1, 0,

3

2
(1 − β2)η

′
1, 0, . . . , 0

)T
. (8.15)

Hence Lemma 8.2 says that

−→w ′ = M−→w ′ + −→w0
′. (8.16)

Next we claim that the vector −→w ′ is positive entry-wise. To prove that w′
j > 0

for every 1 ≤ j ≤ k − 1, it is equivalent to prove

n j (n1 pk − p1nk) > p1nk(−s j−1 + ( j − 1)n j ). (8.17)

This is further equivalent to

n j n1 pk + p1nks j−1 > jn j p1nk . (8.18)

We prove
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Claim 8.3 We have the identity

p j n1 + p1s j−1 = j p1n j , (8.19)

for every 1 ≤ j ≤ k.

By applying Claim 8.3 to (8.18), we see that it is equivalent to show

n j pk > p j nk, (8.20)

which follows via a direct calculation.

Proof of Claim 8.3. We prove this claim via an induction on j . The case j = 0
follow immediately by recalling that s0 = 0. Now assume we have proven
(8.19) for j . We need to verify

p j+1n1 + p1s j − ( j + 1)p1n j+1 = 0. (8.21)

Writing s j = s j−1 + n j , and applying (8.19), we obtain the following equiv-
alent form

( j + 1)p1(n j+1 − n j ) = n1(p j+1 − p j ). (8.22)

However (8.22) follows via a straightforward calculation. �	
So far we have proven that w′

j > 0 for every 1 ≤ j ≤ k − 1. The proof that
η′

j > 0 for every 2 ≤ j ≤ k − 1 is very similar, hence we leave it out. This

finishes the proof that the vector −→w ′ is positive entry-wise.
After all these preparations, we are ready to prove that all eigenvalues of

M have moduli strictly smaller than one. This is the same as saying that every
entry ofMr will tend to zero as r → +∞. To prove this, we iterate (8.16) for
r many times, and obtain

−→w ′ = Mr−→w ′ + (Mr−1 + · · · + I2k−3)
−→w0

′. (8.23)

Here I2k−3 denotes the identity matrix of rank 2k − 3. Moreover, it is not
difficult to see that when r ≥ 2k, the vector

(Mr−1 + · · · + I2k−3)
−→w0

′ (8.24)

also becomes positive entry-wise. By iterating (8.23) with r = 2k, we obtain
that

lim
m→∞M2km = 0 entry-wise. (8.25)
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Similarly, by iterating (8.23) with r = 2k and r = 2k + j for 1 ≤ j < 2k, we
obtain that

lim
m→∞M2km+ j = 0 entry-wise. (8.26)

A very similar argument first appeared in Bourgain, Demeter and Guth [11],
in a sightly different context. See page 680 there. This finishes the proof of
Lemma 8.1. �	
Proof of Lemma 7.6. Lemma 8.1 implies that the solution to the system (8.4)–
(8.7) must be unique. Hence (8.11) and (8.12) must be the unique solution. In
the end, we just need to notice that w′

1 = 1. This finishes the proof of Lemma
7.6. �	
Proof of Lemma 8.2. That η′

1 = 2 is straightforward to check. Next we check
(8.4) and (8.5). Basic calculation yields

α j = n j+1

n j

n j pk − p j nk

n j+1 pk − p j nk
and 1 − α j = (n j+1 − n j )p j nk

n j (n j+1 pk − p j nk)
; (8.27)

β j = pk

p j

n j (p j − p j−1)

n j pk − p j−1nk
and 1 − β j = p j−1

p j

pkn j − p j nk

pkn j − p j−1nk
. (8.28)

Hence what we need to check is equivalent to

n j+1

n j

n j pk − p j nk

n j+1 pk − p j nk

n j+1(n1 pk − p1nk) + p1nk(s j − jn j+1)

n j+1(n1 pk − p1nk)

+ (n j+1 − n j )p j nk

n j (n j+1 pk − p j nk)

× j + 1

j

p j (n1 pk − p1nk) + p1(s j−1 pk − ( j − 1)p j nk)

p j (n1 pk − p1nk)

= n j (n1 pk − p1nk) + p1nk(s j−1 − ( j − 1)n j )

n j (n1 pk − p1nk)
(8.29)

By cancelling same terms on numerators and denominators or on both sides,
the above display can be simplified to

(n j pk − p j nk)[n j+1(n1 pk − p1nk) + p1nk(s j − jn j+1)]
n j+1 pk − p j nk

+ (n j+1 − n j )nk[p j (n1 pk − p1nk)+ p1(s j−1 pk −( j − 1)p j nk)]
(n j+1 pk − p j nk)

j +1

j

= n j (n1 pk − p1nk) + p1nk(s j−1 − ( j − 1)n j ). (8.30)
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Write the first term from (8.30) as

(
1 + n j pk − n j+1 pk

n j+1 pk − p j nk

)
[n j+1(n1 pk − p1nk) + p1nk(s j − jn j+1)]

(8.31)

and subtract from it the right hand side of (8.30). We observe that there is
factor (n j+1 − n j ) coming out. Cancelling this factor on both sides of the
equation, we obtain an equivalent form

(n1 pk − ( j + 1)p1nk)(n j+1 pk − p j nk) − pk[n j+1(n1 pk − p1nk)

+ p1nk(s j − jn j+1)]
+ nk( j + 1)

j
[p j (n1 pk − p1nk) + p1(s j−1 pk − ( j − 1)p j nk)] = 0.

(8.32)

Expanding all brackets, we obtain

p j pkn1nk + p1 pks j−1nk = j p1 pkn j nk . (8.33)

However this is an immediate consequence of Claim 8.3.
Also from Claim 8.3 it follows immediately that w′

k = 0. Hence it remains
to check (8.6). The proof is slightly more tricky as we need to apply Claim 8.3
much earlier. First let us write down what we need to check:

j + 1

j

p j−1

p j

pkn j − p j nk

pkn j − p j−1nk

j

j − 1

× p j−1(n1 pk − p1nk) + p1(s j−2 pk − ( j − 2)p j−1nk)

p j−1(n1 pk − p1nk)

+ j + 1

j

pk

p j

n j (p j − p j−1)

n j pk − p j−1nk

× n j (n1 pk − p1nk) + p1nk(s j−1 − ( j − 1)n j )

n j (n1 pk − p1nk)

= j + 1

j

p j (n1 pk − p1nk) + p1(s j−1 pk − ( j − 1)p j nk)

p j (n1 pk − p1nk)
. (8.34)

We cancel same terms on numerators and denominators, and obtain

pkn j − p j nk

pkn j − p j−1nk

j

j − 1
[p j−1(n1 pk − p1nk) + p1(s j−2 pk − ( j − 2)p j−1nk)]

(8.35)
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+ pk(p j − p j−1)

n j pk − p j−1nk
[n j (n1 pk − p1nk) + p1nk(s j−1 − ( j − 1)n j )]

(8.36)

= p j (n1 pk − p1nk) + p1(s j−1 pk − ( j − 1)p j nk). (8.37)

Our goal is to find out that (p j − p j−1) factors the difference between both
sides of the equality in the last expression. In this step we need Claim 8.3.
Taking the difference between (8.35) and (8.37), we obtain

(p j−1 − p j )nk

pkn j − p j−1nk

j

j − 1
[p j−1(n1 pk − p1nk) + p1(s j−2 pk − ( j − 2)p j−1nk)]

+ j

j − 1
[p j−1(n1 pk − p1nk) + p1(s j−2 pk − ( j − 2)p j−1nk)]

− [p j (n1 pk − p1nk) + p1(s j−1 pk − ( j − 1)p j nk)]. (8.38)

This is further equal to

(p j−1 − p j )nk

pkn j − p j−1nk

j

j − 1
[p j−1(n1 pk − p1nk) + p1(s j−2 pk − ( j − 2)p j−1nk)]

+ ( j − 1)p1nk(p j − p j−1) − (n1 pk − p1nk)(p j − p j−1). (8.39)

In this step we applied Claim 8.3. What we need to check becomes

(8.39) + (8.36) = 0. (8.40)

Multiply both side by ( j − 1)(pkn j − p j−1nk) and expand all brackets. In the
end, everything is reduced to

( j − 1)nkn j−1 p1 pk − nks j−2 p1 pk − n1nk p j−1 pk = 0, (8.41)

which immediately follows from Claim 8.3. �	

9 Proof of Lemma 7.7

In the proof of this lemma, let us first write down a system of equations that∑∞
j=0 d jτ j satisfies.

In Fig. 2, for each 1 ≤ l ≤ k, assign w′′
l to the node p·nd (l)

nd (k)
and let it

collect the contributions from all terms that come after it and contain d j and
τ j . Similarly, for each 2 ≤ l ≤ k − 1, we define η′′

l and assign it to the node
qd,k(l). We obtain
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w′′
l = αlw

′′
l+1 + (1 − αl)η

′′
l for each 1 ≤ l ≤ k − 1;

η′′
l = l + 1

l
η′′

l−1(1 − βl) + l + 1

l
βlw

′′
l for each 2 ≤ l ≤ k − 1;

η′′
1 = 0 and w′′

k = 1. (9.1)

Recall

�d,k(p) = max

{(
1

2
− 1

p

)
d, max

1≤ j≤d

{(
1 − 1

p

)
j − K j,k

p

}}
. (9.2)

Lemma 7.7 amounts to proving

λ0 −
⎛
⎝ ∞∑

j=0

d jτ j

⎞
⎠�d,k(p) ≤ 0. (9.3)

Recall that λ0 is given by (7.54) and (7.66). Before proving (9.3), let us write
down a second linear system of equations that also produces λ0.

Lemma 9.1 Define

Al = �d,l(qd,k(l))

l
+ d

l

( 1

qd,k(l)
− 1

p

)
. (9.4)

Consider the linear system of equations

w̄l = (1 − αl)(Al + η̄l) + αlw̄l+1 : 1 ≤ l ≤ k − 1;
η̄l = l + 1

l
(η̄l−1 + Al−1)(1 − βl) + l + 1

l
βlw̄l : 2 ≤ l ≤ k − 1;

η̄1 = 0; w̄k = 0. (9.5)

This system admits a unique solution (w̄1, w̄2, η̄2, . . . , w̄k−1, η̄k−1). More-
over,

λ0 = w̄1. (9.6)

The proof of this lemma is postponed to the end of this section.
To prove (9.3), we will use the system (9.5) instead of (7.66). The relation

(9.3) becomes

w̄1 − �d,k(p) · w′′
1 ≤ 0. (9.7)
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Define

w̃l := w̄l − �d,k(p) · w′′
l with 1 ≤ l ≤ k − 1, (9.8)

and

η̃l := η̄l − �d,k(p) · η′′
l with 2 ≤ l ≤ k − 1. (9.9)

By (9.5) and (9.1), we obtain the following system of equations:

w̃l = (1 − αl)(Al + η̃l) + αlw̃l+1 : 1 ≤ l ≤ k − 1;
η̃l = l + 1

l
(η̃l−1 + Al−1)(1 − βl) + l + 1

l
βlw̃l : 2 ≤ l ≤ k − 1;

η̃1 = 0; w̃k = −�d,k(p). (9.10)

Our goal now is to prove that

w̃1 ≤ 0. (9.11)

Consider a variant of the system (9.10)

w̃l = (1 − αl)(Al + η̃l) + αlw̃l+1 : 1 ≤ l ≤ k − 1;
η̃l = l + 1

l
(η̃l−1 + Al−1)(1 − βl) + l + 1

l
βlw̃l : 2 ≤ l ≤ k − 1;

η̃1 = 0; w̃k = θ. (9.12)

Here we treat w̃k as a free parameter θ .

Claim 9.2 Let w̃1(θ) be the unique solution of (9.12). There exists �1 > 0
and �2 ∈ R such that

w̃1(θ) = �1θ + �2. (9.13)

That is, w̃1(θ) is strictly monotone increasing with respect to θ .

Proof of Claim 9.2. Aclaim of this form already appeared inBourgain, Deme-
ter and Guth [11], see equation (89) in page 680. Here we present a proof using
the language of matrices, which is much cleaner.

Recall the definition of the matrixM by (8.1). The linear system (9.12) can
be formulated as
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(w̃1, w̃2, η̃2, . . . , w̃k−1, η̃k−1)
T = M(w̃1, w̃2, η̃2, . . . , w̃k−1, η̃k−1)

T

+ (∗, . . . , ∗, (1 − αl)Al + αlθ, ∗)T .

(9.14)

Here each ∗ represents an irrelevant constant. Solving this linear system, we
obtain

(w̃1, w̃2, η̃2, . . . , w̃k−1, η̃k−1)
T

= (I2k−3 − M)−1(∗, . . . , ∗, (1 − αl)Al + αlθ, ∗)T . (9.15)

Here I2k−3 represents the identity matrix of rank 2k − 3. Notice that every
entry of (I2k−3 − M)−1 is non-negative as

(I2k−3 − M)−1 = I2k−3 + M + M2 + · · · (9.16)

This proves (9.13) with some �1 ≥ 0. Hence what remains is to prove that
�1 > 0. We argue by contradiction, and assume that �1 = 0. In other words,
when we send θ → +∞, the solution w̃1(θ) stays as a constant. We will prove
that every w̃l and η̃l with 2 ≤ l ≤ k − 1 also stays as a constant. It further
implies that every entry in the second last column of (I2k−3 − M)−1 is zero,
contradicting the fact that I2k−3 − M is invertible.

To prove that every w̃l and η̃l with 2 ≤ l ≤ k − 1 stays as a constant as
θ → +∞, we apply inductions. First of all, notice that w̃l and η̃l are linear
and non-decreasing in θ . Suppose so far we have proven that w̃l ′ and η̃l ′ are
constant in θ for every 1 ≤ l ′ ≤ l. From the first equation in (9.12) we see that
w̃l+1 is also constant in θ . In the end, the second equation from (9.12) tells us
that η̃l is also constant in θ . This finishes the proof of Claim 9.2. �	

In order to prove (9.11), from Claim 9.2 we conclude that it suffices to
consider the following linear system

w̃l = (1 − αl)(Al + η̃l) + αlw̃l+1 : 1 ≤ l ≤ k − 1;
η̃l = l + 1

l
(η̃l−1 + Al−1)(1 − βl) + l + 1

l
βlw̃l : 2 ≤ l ≤ k − 1;

η̃1 = 0; w̃1 = 0; (9.17)

and prove that its solution satisfies

w̃k ≥ −�d,k(p). (9.18)

Here to save some notation, we are still using the same names for variables.
The advantage of working with (9.17) is that one can solve it directly, without
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invoking inverses of matrices. Observe that (9.17) must have a solution of the
form

− w̃k =
k−1∑
l=1

λl Al, (9.19)

because of the initial conditions η̃1 = w̃1 = 0. Here {λl} j−1
l=1 is a sequence of

real numbers. We prove

Lemma 9.3 Under the above notation, we have

k−1∑
l=1

λl

l
= 1. (9.20)

In other words, if we let Al = 1/ l and solve the linear system (9.17), then its
unique solution must satisfy −w̃k = 1.

Oncewe have proven Lemma 9.3, Lemma 7.7will follow immediately from

Lemma 9.4 For every 1 ≤ l ≤ k − 1, it holds that

l Al = �d,l(qd,k(l)) + d
( 1

qd,k(l)
− 1

p

)
≤ �d,k(p), (9.21)

for every 2 ≤ p < ∞.

Proof of Lemma 9.1. Recall that λ0 is given by (7.54) and (7.66). To prove
Lemma 9.1, we subtract the linear system (7.66) for the system (9.5). It suffices
to prove that for the linear system

wl = d(1 − αl)

l

( 1

qd,k(l)
− 1

p

)
+ (1 − αl)ηl + αlwl+1

− d(1 − αl)
( pd(k)

p · pd(l)
− 1

qd,k(l)

)
: 1 ≤ l ≤ k − 1;

ηl = d(l + 1)

l(l − 1)
·
(

1

qd,k(l − 1)
− 1

p

)
(1 − βl)

+ d · l + 1

l
·
(

1

qd,k(l − 1)
− pd(k)

pd(l − 1) · p

)
(1 − βl)+

− d(l + 1)

l

( 1

qd,k(l)
− pd(k)

pd(l) · p

)
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+ l + 1

l
ηl−1(1 − βl) + l + 1

l
βlwl : 2 ≤ l ≤ k − 1;

η1 = 0; wk = 0. (9.22)

its unique solution satisfies

w1 = d
( 1

qd,k(1)
− nd(k)

nd(1) · p

)
. (9.23)

To prove this, we “decompose” the system (9.22) into the sum of three simpler
systems:

w
(2)
l = (1 − αl)

(
η

(2)
l − d

p · l

)
+ αlw

(2)
l+1 : 1 ≤ l ≤ k − 1;

η
(2)
l = l + 1

l

(
η

(2)
l−1 − d

p(l − 1)

)
(1 − βl) + l + 1

l
βlw

(2)
l : 2 ≤ l ≤ k − 1;

η
(2)
1 = 0; w

(2)
k = d/p; (9.24)

and

w
(3)
l = d(1 − αl)

l

pd(k)

pd(l) · p
+ (1 − αl)η

(3)
l + αlw

(3)
l+1 : 1 ≤ l ≤ k − 1;

η
(3)
l = d(l + 1)

l(l − 1)
· pd(k)

pd(l − 1) · p
(1 − βl) + l + 1

l
η

(3)
l−1(1 − βl)

+ l + 1

l
βlw

(3)
l : 2 ≤ l ≤ k − 1;

η
(3)
1 = 0; w

(3)
k = −d/p; (9.25)

and

w
(4)
l = (1 − αl)η

(4)
l + αlw

(4)
l+1 : 1 ≤ l ≤ k − 1;

η
(4)
l = l + 1

l
· η

(4)
l−1 · (1 − βl) + l + 1

l
βlw

(4)
l : 2 ≤ l ≤ k − 1;

η
(4)
1 = B1; w

(4)
k = 0; (9.26)

where in the last system we have applied a “change of variable”

η(4) → η(4) + Bl (9.27)
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with

Bl := d(l + 1)

l

(
− pd(k)

p · pd(l)
+ 1

qd,k(l)

)
. (9.28)

To prove (9.23), it suffices to prove

Claim 9.5 It holds

w
(2)
1 = 0, (9.29)

w
(3)
1 = d

( pd(k)

p · pd(1)
− nd(k)

nd(1) · p

)
, (9.30)

and

w
(4)
1 = d

(
− pd(k)

p · pd(1)
+ 1

qd,k(1)

)
= B1

2
. (9.31)

We begin with the proof of (9.31). Notice that the system (9.26) is exactly
the same as the system of linear equations that

∑∞
j=0 b jγ j satisfies, that is,

the system given by (8.4)–(8.6). The only difference is between η′
2 = 2 and

η
(4)
1 = B1. However, by homogeneity of these two equations, we are able to

conclude immediately that

w
(4)
1 = η

(4)
1 /2, (9.32)

from the fact that w′
1 = η′

1/2. This finishes the proof of (9.31). By applying
Lemma 9.3 and a similar homogeneity argument, we also immediately obtain
(9.29).

It remains to prove (9.30). It suffices to prove that the solution is of the form

(
d
( pd(k)

p · pd(1)
− nd(k)

nd(1) · p

)
, ∗, . . . , ∗

)
. (9.33)

Indeed, one can verify that

w
(3)
l = d

p

pd (1)nd (k)(pd (1)nd (k)−nd (1)pd (k))+nd (1)pd (k)(nd (l)pd (k)−nd (k)pd (l))

pd (1)nd (l)(nd (1)pd (k)− pd (1)nd (k))

(9.34)
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with 1 ≤ l ≤ k and

η
(3)
l = d(l+1)

pl

pd(k)

pd(l)

nd(k)pd(1)−nd(1)pd(k)+lnd(l)pd(k)−lpd(l)nd(k)

nd(1)pd(k)− pd(1)nd(k)

(9.35)

with 2 ≤ l ≤ k − 1 is indeed the unique solution to (9.25). The calculation
looks very similar to that in the proof of Lemma 8.2, hence we leave it out. �	
Proof of Lemma 9.3. To simplify our proof, we will again adopt the notation

pd( j) → p j and nd( j) → n j , for 1 ≤ j ≤ k. (9.36)

By the uniqueness of solutions, it suffices to prove that, when Al = 1/ l for
every 1 ≤ l ≤ k − 1, the system (9.17) has the solution

w̃ j = −nk(n1 p j − p1n j )

n j (n1 pk − p1nk)
with 1 ≤ j ≤ k, (9.37)

and

η̃ j = n1[(n j − n1)pk − ( j − 1)(p j+1 − p j )nk]
j (n j+1 − n j )(n1 pk − p1nk)

with 2 ≤ j ≤ k − 1.

(9.38)

First of all, let us verify the first equation in (9.17). By applying (8.27), it
becomes

− nk

n j

n1 p j − p1n j

n1 pk − p1nk

= p j nk(n j+1 − n j )

n j (n j+1 pk − p j nk)

(
1

j
+ n1[(n j − n1)pk − ( j − 1)(p j+1 − p j )nk]

j (n j+1 − n j )(n1 pk − p1nk)

)

− n j+1

n j

n j pk − p j nk

n j+1 pk − p j nk

nk(n1 p j+1 − p1n j+1)

n j+1(n1 pk − p1nk)
. (9.39)

Multiplying both sides by j (n1 pk − p1nk)(n j+1 pk − p j nk), and expanding
all brackets, we obtain

n1nk p j p j − n1nk p j p j+1 = − jn1n j p j+1 pk − ( j + 1)n j+1nk p1 p j

+ ( j + 1)n1n j+1 p j pk + ( j + 1)n j nk p1 p j

− n1n1 p j pk . (9.40)
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By applying (8.22) to the left hand side, we see that (9.40) is equivalent to

− jn j p j+1 + ( j + 1)n j+1 p j − n1 p j = 0. (9.41)

This can be verified via a direct calculation.
Next, let us verify the second equation in (9.17). We need to show

j

j + 1

n1[n j pk − n1 pk − ( j − 1)nk(p j+1 − p j )]
j (n j+1 − n j )(n1 pk − p1nk)

=
(

n1[(n j−1 − n1)pk − ( j − 2)(p j − p j−1)nk]
( j − 1)(n j − n j−1)(n1 pk − p1nk)

+ 1

j − 1

)

× p j−1(pkn j − p j nk)

p j (pkn j − p j−1nk)
− pkn j (p j − p j−1)

p j (n j pk − p j−1nk)

nk(n1 p j − p1n j )

n j (n1 pk − p1nk)
.

(9.42)

In the above expression, we have not found much cancellation. Hence we
proceed as follows: Let

Tj =
(

d + j

j

)
. (9.43)

We express every term involving j by Tj , and obtain

n j = Tj − 1; p j = 2 j

d + 1
Tj ; n j+1 = d + j + 1

j + 1
Tj − 1;

p j+1 = 2(d + j + 1)

d + 1
Tj ; n j−1 = j

d + j
Tj − 1;

p j−1 = 2 j ( j − 1)

(d + 1)(d + j)
Tj . (9.44)

Moreover, n1 = d and p1 = 2. By substituting (9.44) into (9.42) and expand-
ing all brackets, we can check easily that (9.42) indeed holds true. This finishes
the proof of Lemma 9.3. �	
Proof of Lemma 9.4. In the proof, we continue to use a set of simplified nota-
tion

pl for pd(l) and ql for qd,k(l). (9.45)

We are proving

�d,l(ql) + d
( 1

ql
− 1

p

)
≤ �d,k(p). (9.46)
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From now on we fix an l in the argument below. If l = 1, then

�d,1(p) = d
(
1 − 2

p

)
. (9.47)

Hence

�d,1(q1) + d
( 1

q1
− 1

p

)
≤ max

{
d
(1
2

− 1

p

)
, d

(
1 − 1

p

)
− Kd,k

p

}

≤ �d,k(p). (9.48)

Hence in the following we always assume l ≥ 2.
If ql = 2, then �d,l(2) = 0. The desired estimate (9.46) is trivial. Next we

assume that ql > 2. If

�d,l(ql) = d
(1
2

− 1

ql

)
, (9.49)

then by definition

�d,l(ql) + d
( 1

ql
− 1

p

)
≤ �d,k(p). (9.50)

Hence we assume from now on

�d,l(ql) =
(
1 − 1

ql

)
j − K j,l

ql
for some j = j (l) ∈ [1, d]. (9.51)

If j ≤ d/2, we claim that

�d,l(ql) + d
( 1

ql
− 1

p

)
≤ d

(1
2

− 1

p

)
. (9.52)

Indeed, this claim is equivalent to

j − j

ql
− K j,l

ql
≤ d

2
− d

ql
, (9.53)

which can be checked easily. Indeed the above inequality is linear in 1/ql .
Moreover it is very easy to verify it for both ql = 2 and ql = ∞. Hence in the
rest of the proof, we assume that j ≥ (d + 1)/2.

Now we claim that

j
(
1 − pk

ppl

)
− K j,l pk

ppl
+ d

( pk

ppl
− 1

p

)
≤ j

(
1 − 1

p

)
− K j,k

p
, (9.54)
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which clearly implies (9.46). First of all, (9.54) is equivalent to

j (l − 1)!(k + d)!
(k − 1)!(d + l)! + j (k + d)!( j + l)!

( j + 1)!(k − 1)!(d + l)! − d(l − 1)!(k + d)!
(k − 1)!(d + l)!

+ d − j − j (k + j)!
( j + 1)!(k − 1)! ≥ 0, (9.55)

which is further equivalent to

(d − j)
(
(l − 1)!(k + d)! − (k − 1)!(d + l)!

)

≤ j

( j + 1)!
(
(k + d)!(l + j)! − (k + j)!(l + d)!

)
. (9.56)

To proceed, we define

�s := (k + d)!(l − 1)! − (k + s)!(l − 1)!(d + l)!
(l + s)!

−
(
(k + d)!(l − 1)! − (k + s + 1)!(l − 1)!(l + d)!

(l + s + 1)!
)
, (9.57)

for −1 ≤ s ≤ d − 1, and

Sh := (k + d)!(l − 1)! − (k + h)!(l − 1)!(l + d)!
(l + h)! =

∑
h≤s<d

�s, (9.58)

for −1 ≤ h < d. Observe that

�s ≥ �s−1, (9.59)

since k ≥ l + 1. Hence

S−1 ≤ d + 1

d − j
S j . (9.60)

This implies that the left hand side of (9.56) is

≤ (d + 1)
(
(k + d)!(l − 1)! − (k + j)!(l − 1)!(l + d)!

(l + j)!
)

= d + 1

l(l + 1) · · · (l + j)

(
(k + d)!(l + j)! − (k + j)!(l + d)!

)
. (9.61)
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It remains to prove

d + 1

l(l + 1) · · · (l + j)
≤ j

( j + 1)! . (9.62)

Moreover this is indeed the case since

l · · · (l + j)

( j + 1)! ≥ ( j + 2)!
( j + 1)! ≥ j + 2 ≥ d + 1

j
. (9.63)

This finishes the proof of our lemma. �	

10 Verifying the Brascamp–Lieb condition

In this section we prove Theorem 10.8 which is equivalent to Theorem 2.1.
Let a positive integer d be the dimension in our question. We usually fix

it in this section unless otherwise stated. For any positive integer l we define
[l] = {0, 1, . . . , l} for short. Note this is slightly different from the standard
convention in combinatorics by also including 0.

Definition 10.1 For a d-tuple a = (a1, . . . , ad), we define |a| = ∑d
i=1 |ai |.

For any positive integer l, define Sl = Sd
l = {a = (a1, . . . , ad) ∈

Z
d : a1, . . . , ad ≥ 0, 1 ≤ |a| ≤ l} = {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0),

(0, 0, . . . , 0, 1), . . . , (l, 0, 0, . . . , 0), (l−1, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, l)}.
By elementary counting we have |Sl | = (d+l

l

) − 1. Recall nd(l) = |Sl | =(d+l
l

) − 1.

For example, when d = 2 we use the following diagram to denote S3:

(1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2)

(0, 3)

.

We are interested in subsets of Sl . Hence we introduce a bit more notations.

Definition 10.2 We introduce a partial order on d-tuples of real numbers. For
any (b1, b2, . . . , bd) and (b′

1, b′
2, . . . , b′

d) satisfying b1 ≤ b′
1, b2 ≤ b′

2, . . ., and
bd ≤ b′

d we say (b1, b2, . . . , bd) � (b′
1, b′

2, . . . , b′
d). And those are the only

partial order relations in our definition of “�”.
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Definition 10.3 For positive integers l ≤ l ′ and a subset T ⊆ Sl , we denote
the “positive extension” T +

l ′ ⊆ Sl ′ of T at level l ′ to be

T +
l ′ =

{
(a1, a2, . . . , ad) ∈ Sl ′ : ∃(b1, b2, . . . , bd)

∈ T s.t. (b1, b2, . . . , bd) � (a1, a2, . . . , ad)

}
. (10.1)

For example, when d = 2, l = 3, l ′ = 4, if T = {(1, 1), (3, 0)} is the

following red colored subset in S3:

(1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2)

(0, 3)

, then T +
4 is the

following red colored subset in S4:

(1, 0) (2, 0) (3, 0) (4, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2)

(0, 3) (1, 3)

(0, 4)

.

We sometimes want to study cube-like objects before looking at the more
strange-looking and more complicated Sl . Hence we introduce the following
definition.

Definition 10.4 For any positive integer l, define Cl = Cd
l = {(a1, . . . , ad) ∈

Z
d : 0 ≤ ai ≤ l}. For positive integers l ≤ l ′ and a subset T ⊆ Cl , we denote

the “positive extension” T +̃
l ′ ⊆ Cl ′ to be

T +̃
l ′ =

{
(a1, a2, . . . , ad) ∈ Cl ′ : ∃(b1, b2, . . . , bd)

∈ T s.t. (b1, b2, . . . , bd) � (a1, a2, . . . , ad)

}
. (10.2)
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We look at an example similar to the one above. If d =2, assuming T ={(1,

1), (3, 0)} is the following red colored subset in C3:

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

,

then T +̃
4 is the following red colored subset in C4:

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3)

(0, 4) (1, 4) (2, 4) (3, 4) (4, 4)

.

Lemma 10.5 Let k > 0 be a positive integer. Assuming subsets A, B ⊆
Sk

⋃{(0, 0, . . . , 0)} satisfy that: For any b = (b1, . . . , bd) ∈ B, there is a
family of inductively defined subsets as the following:

Rd;b ⊆ [k], |Rd;b| = bd.
For nd /∈ Rd;b we have Rd−1;nd ;b ⊆ [k], |Rd−1;nd ;b| = bd−1.
For nd−1 /∈ Rd−1;nd ;b and nd /∈ Rd,b we have Rd−2;nd−1,nd ;b ⊆ [k],

|Rd−2;nd−1,nd ;b| = bd−2, etc.
Finally for n2 /∈ R2;n3,...,nd ;b, n3 /∈ R3;n4,...,nd ;b, . . ., and nd /∈ Rd;b we

have R1;n2,...,nd ;b ⊆ [k], |R1;n2,...,nd ;b| = b1.
Moreover the above defined sets have the following property: if some

a = (a1, . . . , ad) ∈ A and some b ∈ B satisfy ad /∈ Rd;b, ad−1 /∈
Rd−1;ad ;b, . . . , a2 /∈ R2;a3,...,ad ;b, then a1 ∈ R1;a2,a3,...,ad ;b.

Then

|A| ≤ nd(k) + 1 − |B+
k |. (10.3)

Remark 10.1 Weclaim it is possible to take A to be (Sk
⋃{(0, 0, . . . , 0)})\B+

k .
In fact if (a1, . . . , ad) is in such an A then by definition for any (b1, . . . , bd) ∈
B, one of the inequalities 0 ≤ ai < bi has to hold. Therefore taking all
Ri;∗;b = [bi − 1] suffices (as a convention [−1] = ∅). Hence the above set is
a possible candidate of A with (nd(k) + 1 − |B+

k |) elements. Thus (10.3) is
actually sharp.

123



On integer solutions of Parsell–Vinogradov systems 65

Still taking the previous example, when T = 2, B = {(1, 1), (3, 0)} ∈
S4

⋃{(0, 0)} being the red colored pairs as the following:

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2)

(0, 3) (1, 3)

(0, 4)

, then we can take A to be the set of all blue

colored pairs shown in the following diagram (where we have already colored

all pairs in B+
4 to be red):

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2)

(0, 3) (1, 3)

(0, 4)

.

Lemma10.5 onSl andSk can be deduced from the following similar Lemma
10.6 on Cl and Ck .

Lemma 10.6 Let k > 0 be a positive integer. Assuming subsets A, B ⊆ Ck
satisfy that: For any b = (b1, . . . , bd) ∈ B, there is a family of inductively
defined subsets as the following:

Rd;b ⊆ [k], |Rd;b| = bd.
For nd /∈ Rd;b we have Rd−1;nd ;b ⊆ [k], |Rd−1;nd ;b| = bd−1.
For nd−1 /∈ Rd−1;nd ;b and nd /∈ Rd;b we have Rd−2;nd−1,nd ;b ⊆ [k],

|Rd−2;nd−1,nd ;b| = bd−2, etc.
Finally for n2 /∈ R2;n3,...,nd ;b, n3 /∈ R3;n4,...,nd ;b, . . ., and nd /∈ Rd;b we

have R1;n2,...,nd ;b ⊆ [k], |R1;n2,...,nd ;b| = b1.
Moreover the above defined sets have the following property: if some

a = (a1, . . . , ad) ∈ A and some b ∈ B satisfy ad /∈ Rd;b, ad−1 /∈
Rd−1;ad ;b, . . . , a2 /∈ R2;a3,...,ad ;b, then a1 ∈ R1;a2,a3,...,ad ;b.

Then

|A| ≤ (k + 1)d − |B+̃
k |. (10.4)
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Remark 10.2 We have a similar remark to Remark 10.1 showing that Lemma
10.6 is also sharp. Taking a previous example when d = 2, B =
{(1, 1), (3, 0)} ∈ C4 colored red as the following:

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3)

(0, 4) (1, 4) (2, 4) (3, 4) (4, 4)

, then it is possible to take A to be the blue col-

ored subset in C4 shown in the following diagram (where we have already

colored all pairs in B+̃
4 to be red):

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3)

(0, 4) (1, 4) (2, 4) (3, 4) (4, 4)

.

Proof that Lemma 10.6 implies Lemma 10.5 Assuming Lemma 10.6 holds.
We prove Lemma 10.5.

Take A in Lemma 10.6 to be the A we have in Lemma 10.5. We would like
to enlarge B and apply Lemma 10.6. To achieve this we exploit the constraint
A ⊆ Sk

⋃{(0, 0, . . . , 0)}.
We add all the elements b = (b1, . . . , bd) ∈ Ck s.t. |b| > k into the set B in

Lemma 10.5 and form a new set B̃. We next check that we can apply Lemma
10.6 to A and B̃. Since A ⊆ Sk

⋃{(0, 0, . . . , 0)} ⊆ Ck , it suffices to check
the assumption of Lemma 10.6 for any newly added b ∈ B̃. Such b satisfies
|b| > k > |a| for any a ∈ A. Hence just like we have noticed in Remark
10.1, one of the inequalities 0 ≤ ai < bi has to hold. Therefore taking all
Ri;∗;b = [bi − 1] suffices.
Apply Lemma 10.6 to A and B̃, we deduce

|A| ≤ (d + 1)k − |B̃+̃
k |. (10.5)

We now determine the elements of B̃+̃
k by definition of ·+̃k . For any b′ ∈

Ck\(Sk
⋃

(0, 0, . . . , 0)), |b′| > k. Hence b′ ∈ B̃. By b′ � b′ we have b′ ∈ B̃+̃
k .
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For any b′ ∈ Sk
⋃

(0, 0, . . . , 0), |b′| ≤ k. Hence if b′′ ≺ b′ holds for some
b′′ ∈ B̃ then |b′′| ≤ k hence b′′ ∈ B. Therefore such b′ ∈ B̃+̃

k if and only if

b′ ∈ B+
k . As a conclusion, B̃+̃

k = B+
k

⊔
(Ck\(Sk

⋃
(0, 0, . . . , 0))).

Hence

|A| ≤ (k + 1)d − |B+̃
k |

= (k + 1)d − |Ck\(Sk

⋃
(0, 0, . . . , 0))| − |B+

k |
= (k + 1)d − |(k + 1)d − nd(k) − 1| − |B+

k |
= nd(k) + 1 − |B+

k | (10.6)

and (10.3) was proved. �	
Proof of Lemma 10.6 We prove (10.4) by induction on d and then on |B|. For
convenience, we denote the “deficient function” �(d, B) = min |Ck\A| =
min((k +1)d −|A|)where the minimum is taken over all A s.t. (A, B) satisfies
the assumption of Lemma 10.6. Then (10.4) is equivalent to the statement

�(d, B) ≥ |B+̃
k |. (10.7)

Weverify the inductionbasis.Whend = 1 the assumption requires alla ∈ A
in a set of cardinality b for any b ∈ B. Hence |A| ≤ minb∈B b = |[b − 1]| =
|Ck\B+̃

k | = k + 1 − |B+̃
k | and the conclusion holds. When |B| = 1, we count

the number of possibilities of a ∈ Ck\A. By assumption, the last component
of such an a can take (k + 1− bd) different possible values, and after fixing it,
the second last component can take (k + 1 − bd−1) different possible values,
. . ., finally the first component can take (k + 1− b1) different possible values
to ensure a /∈ A. Hence |A| ≤ |Ck | − ∏d

i=1(k + 1 − bi ) = (k + 1)d − |B+̃
k |.

The conclusion also holds in this case.
From now on we assume that (10.4) and hence (10.7) hold for all dimension

d ′ < d and |B ′| < |B| in the dimension d case. We can assume d > 1 and
|B| > 1.

For j ∈ [k], call the set U j = {(·, ·, . . . , ·, j)} ⊆ Ck = Cd
k to be the j-th

slice of Ck = Cd
k . It is isomorphic to Cd−1

k . For any subset B1 ∈ B, define the
projection PB1 = {(b1, . . . , bd−1) : ∃bd s.t. (b1, . . . , bd) ∈ B1} ⊆ Cd−1

k . We
have |PB1| ≤ |B1|.

We choose an element b0 = (b0,1, . . . , b0,d) ∈ B such that b0,d is the largest
possible. Let B ′ = B\{b0}. We deal with the problem “slicewisely”. For each
j ∈ [k], define B j ⊆ B to be the subset {b ∈ B : j /∈ Rd;b}. We similarly
define B ′

j from B ′. By definition, A
⋂U j ⊆ U j � Cd−1

k and PB j have to
satisfy the assumption of Lemma 10.6 in dimension d − 1 for each j ∈ [k].
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Moreover, if some A ⊆ Cd
k such that A

⋂U j and PB j satisfy the assumption
of Lemma 10.6 in dimension d −1, then A satisfies the assumption of Lemma
10.6.

We learn from the last paragraph by the induction hypothesis for d − 1 that

�(d − 1, A ∩ U j ) ≥ |(PB j )
+̃
k |. (10.8)

But from the analysis we have done and the earlier remark similar to Remark
10.1, it is possible to construct A slicewisely for each (10.8) to actually take
equality. Such an A would have�(d, A) = ∑d

j=0 |(PB j )
+̃
k |. Replace B by B ′

and run the entire set of reasoning, we get a set A′ such that A′ and B ′ satisfy
the assumption of Lemma 10.6 and

�(d, A′) =
d∑

j=0

|(PB ′
j )

+̃
k |. (10.9)

Note that we have the induction hypothesis for B ′, we deduce from (10.13)
that

d∑
j=0

|(PB ′
j )

+̃
k | ≥ |(B ′)+̃k |. (10.10)

Note that j ∈ Rd;b0 except for (d + 1 − b0,d) different values of j . Hence
for exactly b0,d different values of j we have B j = B ′

j . For all other j we have

B j = B ′
j ∪ {b0}. When B j = B ′

j we surely have (PB j )
+̃
k = (PB ′

j )
+̃
k . When

B j = B ′
j ∪ {b0} we have

(PB j )
+̃
k = (PB ′

j )
+̃
k ∪ (P{b0})+̃k = (PB ′

j )
+̃
k 	 ((P{b0})+̃k \(PB ′

j )
+̃
k ).

(10.11)

Hence in such cases

|(PB j )
+̃
k | = |(PB ′

j )
+̃
k | + |((P{b0})+̃k \(PB ′

j )
+̃
k )|

≥ |(PB ′
j )

+̃
k | + |((P{b0})+̃k \(PB ′)+̃k )|. (10.12)

Sum (10.12) over all j such that B j = B ′
j ∪ {b0}, and invoke (10.10) and

(10.8). Using the fact
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�(d, A) =
d∑

j=0

�(d − 1, A ∩ U j ), (10.13)

we deduce

�(d, A) ≥ |(B ′)+̃k | + (d + 1 − b0,d)|((P{b0})+̃k \(PB ′)+̃k )| (10.14)

Since b0,d is the largest possible, we feel comfortable comparing (B ′)+̃k and

B+̃
k . When we look slicewicely on each U j , we find that on the first b0,d slices

the two set coincide. While on the last (d + 1 − b0,d) slices the second set is
exactly equal to the union of the first set and ((P{b0})+̃k \(PB ′)+̃k ). Hence the

right hand side of (10.14) is exactly |B+̃
k |. We have proved (10.7) and hence

(10.4) for d and B, thus closing the induction. �	
We will naturally have such an A as in Lemma 10.5 arise from the proof

of Theorem 10.8 (or the equivalent Theorem 2.1) in the end of this section.
We have done a great job understanding its size by the powerful Lemma 10.5.
The expression contains B+

k . We study it in the next lemma and prove a key
inequality.

Lemma 10.7 Assuming l < k are positive integers. For any nonempty B ⊆ Sl ,
as long as B+

l �= Sl , we have

|B+
l |

|B+
k | <

|Sl |
|Sk | = nd(l)

nd(k)
. (10.15)

Proof Wedo some preliminary reductions. First we claim that to prove (10.15)
it suffices to do the case k = l + 1, i.e. proving

|B+
l |

|B+
l+1|

<
|Sl |

|Sl+1| = nd(l)

nd(l + 1)
(10.16)

when B+
l �= Sl .

In fact once we have (10.16) we always have
|B+

l |
|B+

l+1|
≤ |Sl ||Sl+1| and the equality

holds only when B+
l = Sl . Similarly we have

|B+
l+1|

|B+
l+2|

≤ |Sl+1|
|Sl+2| , . . .,

|B+
k−1|

|B+
k | ≤

|Sk−1|
|Sk | . Taking the product of everything above we have (10.15).
In the rest of the proof we prove (10.16). In other words, the global maximal

of
|B+

l |
|B+

l+1|
over all possible ∅ � B ⊆ Sl is achieved if and only if B+

l = Sl .
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It seems hard to control |B+
l | or |B+

l+1|. But we notice that the difference
of the two is a simpler object (a “layer” in |B+

l+1|). Moreover, we find that
B+

l can be decomposed into l layers of such form. This inspires us to do

the following decomposition: For any positive integer m, define B↑
m to be

B+
k

⋂{b : |b| = m} for any sufficiently large k. We can alternatively use the
straightforward definition

B↑
m =

{
b ∈ Z

d≥0 : |b| = m, ∃b′ ∈ B s.t. b′ � b
}
. (10.17)

Hence B+
l = ⊔l

m=1 B↑
m , B+

l+1 = ⊔l+1
m=1 B↑

m . |B+
l | = ∑l

m=1 |B↑
m |, B+

l+1 =∑l+1
m=1 |B↑

m |.
Next we explore the relationship between B↑

m’s.
For m ≥ 1 define Vm = Vd−1

m = {b ∈ Z
d≥0, |b| = m}. We use the super-

script d −1 to emphasize that Vd−1
m is a (d −1)-dimensional object. As before

when there is no ambiguity about the dimension we suppress this superscript.

For example,V1
4 is the following set in green:

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2)

(0, 3) (1, 3)

(0, 4)

For m > 1 and any set T ⊆ Vm we define its predecessor T − = {b =
(b1, . . . , bd) ∈ Vm−1 : (b1, . . . , bi−1, bi + 1, bi+1, . . . , bd) ∈ T, ∀1 ≤ i ≤
d}.

For example if d = 2 and T ⊆ V1
4 is the following set in green, then

T − ∈ V1
3 is the set in yellow:

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2)

(0, 3) (1, 3)

(0, 4)
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We claim: for any m > 1,

B↑
m−1 ⊆ (B↑

m)−. (10.18)

In fact assuming b = (b1, . . . , bd) ∈ B↑
m−1. Then there exists B � b′ � b.

Hence b′ � b � (b1, . . . , bi−1, bi + 1, bi+1, . . . , bd) for all 1 ≤ i ≤ d. Thus
(b1, . . . , bi−1, bi + 1, bi+1, . . . , bd) ∈ B↑

m for all 1 ≤ i ≤ d. By definition
(10.18) holds.

We will prove the following inequality:

|T −| ≤ |Vd−1
m−1|

|Vd−1
m | |T |, ∀m > 1, T ⊆ Vd−1

m (10.19)

and prove that equality holds only when T = Vd−1
m or T = ∅.

We claim that (10.19) along with its equality condition together imply
(10.16). Assuming we already have (10.19) and know that equality holds only
when T = Vm for all m > 1. We now prove (10.16). In fact by (10.19) and
(10.18) we inductively deduce that

|B↑
l | ≤ |Vl |

|Vl+1| |B
↑
l+1|, (10.20)

|B↑
l−1| ≤ |Vl−1|

|Vl | |B↑
l | ≤ |Vl−1|

|Vl | · |Vl |
|Vl+1| |B

↑
l+1| = |Vl−1|

|Vl+1| |B
↑
l+1|, (10.21)

. . . , (10.22)

|B↑
1 | ≤ |V1|

|Vl+1| |B
↑
l+1|. (10.23)

Summing over all the inequalities above we deduce

|B+
l | =

l∑
m=1

|B↑
m | ≤

∑l
m=1 |Vm |
|Vl+1| |B↑

l+1| = |Sl |
|Vl+1| |B

↑
l+1|

= |Sl |
|Sl+1| − |Sl |(|B

+
l+1| − |B+

l |). (10.24)

Elementary manipulations show that this is equivalent to (10.16) when we
replace “<” by “≤” there. However when equality holds, all the above equal-
ities involving (10.19) and (10.18) have to hold. Note that B �= ∅ hence
B↑

l+1 �= ∅. By the equality condition of (10.19), we inductively see that each

B↑
m has to be the whole Vm for m = l, l − 1, . . . , 1. Hence B+

l = Sl . A
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contradiction with the assumption we have for (10.16). Hence (10.16) holds
(without equality).

Therefore it suffices to prove (10.19) and prove that its equality holds only
when T = ∅ or Vd−1

m . We do this in the rest of the proof.
We perform an induction on dimension d. When d = 1, each V0

m is just one
point. In this case T − = ∅ when T = ∅, and T − = V0

m−1 when T = V0
m .

(10.19) holds in either case.
Assumingwealreadyproved (10.19) for all dimensions< d with full knowl-

edge on the possible situationswhenwehave equality (T being a trivial subset).
We now handle the dimension d(≥ 2) case.

We further decompose Vd−1
m into (m + 1) piecesWd−2

j,m , 0 ≤ j ≤ m as the
following (again its superscript d−2 is so chosen to emphasize the dimension):

Wd−2
j,m = {b = (b1, . . . , bd) ∈ Z

d≥0 : |b| = m, bd = m − j}
= {b = (b1, . . . , bd−1, m − j) ∈ Z

d≥0 : |(b1, . . . , bd−1)| = j}
� Vd−2

j . (10.25)

We denote σd to be the isomorphism map shown in the last line of (10.25).

HenceWd−2
j,m

σd� Vd−2
j . It is realized simply by removing the last component.

We assume accordingly that T = ⊔m
j=0 Tj where Tj = T ∩ Wd−2

j,m and

T − = ⊔m−1
j=0 (T −) j where (T −) j = T − ∩ Wd−2

j,m−1. In this way we can study
each (T −) j separately.

For a fixed 0 ≤ j ≤ m − 1 and any (d − 1)-dimensional vector b∗ =
(b1, . . . , bd−1) ∈ Vd−2

j , by definition of T − we see that (b∗, m − 1 − j) ∈
T − ⇔ (b∗, m − 1 − j) ∈ (T −) j holds if and only if the following two
conditions both hold:

(i) (b∗, m − j) ∈ T , i.e. (b∗, m − j) ∈ Tj . Alternatively we can say b∗ ∈
σd(Tj );

(ii) b∗ ∈ (σd(Tj+1))
−. Note that here (·)− is a map from Vd−2

j+1 to Vd−2
j .

By (i) we have

|(T −) j | ≤ |Tj |, (10.26)

where equality holds only when σd((T −) j ) = σd(Tj ).
By (ii) and the induction hypothesis we have

|(T −) j | ≤ |Vd−2
j |

|Vd−2
j+1 | |Tj+1|, (10.27)
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where equality only holds when both (a) σd((T −) j ) = (σd(Tj+1))
− and (b)

Tj+1 = ∅ or Tj+1 = Wd−2
j+1,m .

We now have the two key inequalities (10.26) and (10.27). We need a bit of
numerical preparation before proving (10.19) with the above two inequalities.

For d ≥ 1 and q ≥ 0, define �q,d−1 = |Vd−1
q |. These are (d − 1)-

dimensional generalizations of triangular numbers. As before for d > 1 we
know Vd−1

q = ⊔m
j=0Wd−2

j,q and eachWd−2
j,q � Vd−2

j . Hence

�q,d−1 =
q∑

j=0

� j,d−2, ∀d > 1, q ≥ 0. (10.28)

We prove that for any d ≥ 1, q ≥ 0,

∑q
j=0 � j,d−1

�q+1,d−1
<

∑q+1
j=0 � j,d−1

�q+2,d−1
(10.29)

or equivalently

∑q
j=0 � j,d−1∑q+1
j=0 � j,d−1

<

∑q+1
j=0 � j,d−1∑q+2
j=0 � j,d−1

. (10.30)

Weprove (10.30) by induction ond. Ford = 1, (10.30) becomes q+1
q+2 <

q+2
q+3

which is trivially true. We assume (10.30) is true for d < d0 and prove it for
d = d0 > 1. (10.30) is equivalent to

∑q
j=0 � j,d0−1∑q+1
j=0 � j,d0−1

<
�q+1,d0−1

�q+2,d0−1
, (10.31)

which was further implied by

0

�0,d0−1
<

� j,d0−1

� j+1,d0−1
<

� j+1,d0−1

� j+2,d0−1
, ∀ j ≥ 0. (10.32)

But by (10.28), (10.32) is equivalent to the case d = d0 −1 which was already
proved. This closes the induction and thus (10.30) (and the equivalent (10.29))
holds.
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By (10.29), we have for each 0 ≤ j ≤ m − 1,
∑m−1

q=0 �q,d−2 −∑ j−1
p=0 �p,d−2

� j,d−2
�m,d−2 > 0. With this in mind, by (10.26) and (10.27) we have

|T −| =
m−1∑
j=0

|(T −) j |

=
m−1∑
j=0

⎛
⎜⎝
∑m−1

q=0 �q,d−2 −
∑ j−1

p=0 �p,d−2

� j,d−2
�m,d−2∑m

q=0 �q,d−2
|(T −) j |

+
∑ j

p=0 �p,d−2

� j,d−2
�m,d−2∑m

q=0 �q,d−2
|(T −) j |

⎞
⎟⎠

≤
m−1∑
j=0

∑m−1
q=0 �q,d−2 −

∑ j−1
p=0 �p,d−2

� j,d−2
�m,d−2∑m

q=0 �q,d−2
|Tj |

+
m−1∑
j=0

∑ j
p=0 �p,d−2

� j,d−2
�m,d−2∑m

q=0 �q,d−2
· � j,d−2

� j+1,d−2
|Tj+1|

=
m−1∑
j=0

∑m−1
q=0 �q,d−2 −

∑ j−1
p=0 �p,d−2

� j,d−2
�m,d−2∑m

q=0 �q,d−2
|Tj |

+
m∑

j=1

∑ j−1
p=0 �p,d−2

� j,d−2
�m,d−2∑m

q=0 �q,d−2
|Tj+1|

=
∑m−1

q=0 �q,d−2∑m
q=0 �q,d−2

m∑
j=0

|Tj |

= �m−1,d−1

�m,d−1
|T |. (10.33)

Hence (10.19) holds. Moreover, the equality there implies the equality in
(10.33),which implies that the equalities of (10.26) and (10.27) both hold for all
0 ≤ j ≤ m − 1. We thus either have inductively Tm = Tm−1 = · · · = T0 = ∅,
or Tm = Wd−2

m,m , Tm−1 = Wd−2
m−1,m, . . . , T0 = Wd−2

0,m . The first case would
imply T = ∅ and the second would imply T = Vd−1

m . These together verify
the desired equality condition for (10.19).
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By the arguments in this proof, (10.16) and (10.15) hold. �	
The next Theorem 10.8 is easily seen to be equivalent to Theorem 2.1. We

are now ready to prove it.

Theorem 10.8 Let l < k be positive integers. For any vector v =
(v(i1,...,id ))i1,...,id≥0,1≤i1+···+id≤k ∈ R

nd (k), define a d-variate polynomial

fv = ∑
(i1,...,id ) v(i1,...,id )x

i1
1 xi2

2 · · · xid
d .

For an arbitrary nonzero subspace V ⊆R
nd (k) spanned by {vh}1≤h≤H=dim V ,

define r(V ) to be the rank of the following matrix over R(x1, . . . , xd) (that is
obviously independent of the choice of the basis {vh}):

Md,k,l(V ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1 fv1 ∂x1 fv2 · · · ∂x1 fvH

∂x2 fv1 ∂x2 fv2 · · · ∂x2 fvH· · · · · · · · · · · ·
∂xd fv1 ∂xd fv2 · · · ∂xd fvH

∂2x1 fv1 ∂2x1 fv2 · · · ∂2x1 fvH

∂x1∂x2 fv1 ∂x1∂x2 fv2 · · · ∂x1∂x2 fvH

∂x1∂x3 fv1 ∂x1∂x3 fv2 · · · ∂x1∂x3 fvH· · · · · · · · · · · ·
∂2xd

fv1 ∂2xd
fv2 · · · ∂2xd

fvH

· · · · · · · · · · · ·
∂ l

x1 fv1 ∂ l
x1 fv2 · · · ∂ l

x1 fvH

∂ l−1
x1 ∂x2 fv1 ∂ l−1

x1 ∂x2 fv2 · · · ∂ l−1
x1 ∂x2 fvH

· · · · · · · · · · · ·
∂ l

xd
fv1 ∂ l

xd
fv2 · · · ∂ l

xd
fvH

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10.34)

Then when H = dim V < nd(k), we always have

r(V )

H
>

nd(l)

nd(k)
. (10.35)

Proof We fix a lexicographical order on all d-variate monomials. We say that
the monomial x1i1 · · · xd

id is a lower order term than x1i ′1 · · · xd
i ′d if and only

if there is some iq < i ′q and i j = i ′j for all 1 ≤ j < q. The lexicographical
order is a total order on the set of all monomials. Moreover it is well-known
that if nonzero monomials g1 and g2 are of lower or equal order than nonzero
monomials g′

1 and g′
2, respectively, then g1g2 is of lower or equal order than

g′
1g′

2. The equality holds if and only if gi is a scalar multiple of g′
i for both

i = 1, 2.
We first observe that it is possible to choose a basis {vh}1≤h≤H of V such

that every fvh has a different highest order term from every other fvh′ (h �= h′).
This can be done by choosing v1 s.t. fv1 has the highest possible highest order
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term, then choosing v2 s.t. fv2 has the highest order term being (a) different
from the highest order term of fv1 and (b) of highest possible order, and then
choosing v3, v4, . . . in a similar way. As a remark, the set of highest order
terms of { fvh } satisfying the said condition is unique, but we do not need this
fact. We always take {vh} to be such a basis in the following discussion.

Note that all fvh do not have constant terms, hence their highest order terms
do not contain constant either. For a nonzero polynomial f denote f̃ to be
its highest order term. Replace each fvh by its highest order term f̃vh in the
expression of Md,k,l(V ), we obtain a matrix

Nd,k,l(V ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1 f̃v1 ∂x1 f̃v2 · · · ∂x1 f̃vH· · · · · · · · · · · ·
∂xd f̃v1 ∂xd f̃v2 · · · ∂xd f̃vH

∂2x1 f̃v1 ∂2x1 f̃v2 · · · ∂2x1 f̃vH

∂x1∂x2 f̃v1 ∂x1∂x2 f̃v2 · · · ∂x1∂x2 f̃vH· · · · · · · · · · · ·
∂2xd

f̃v1 ∂2xd
f̃v2 · · · ∂2xd

f̃vH

· · · · · · · · · · · ·
∂ l

x1 f̃v1 ∂ l
x1 f̃v2 · · · ∂ l

x1 f̃vH

· · · · · · · · · · · ·
∂ l

xd
f̃v1 ∂ l

xd
f̃v2 · · · ∂ l

xd
f̃vH

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.36)

over R(x1, . . . , xd). Let r1(V ) be its rank. Then we claim r1(V ) ≤ r(V ).
In fact, let

M̃d,k,l(V ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1∂x1 fv1 x1∂x1 fv2 · · · x1∂x1 fvH· · · · · · · · · · · ·
xd∂xd fv1 xd∂xd fv2 · · · xd∂xd fvH

x21∂
2
x1 fv1 x21∂

2
x1 fv2 · · · x21∂

2
x1 fvH

x1x2∂x1∂x2 fv1 x1x2∂x1∂x2 fv2 · · · x1x2∂x1∂x2 fvH· · · · · · · · · · · ·
x2d∂2xd

fv1 x2d∂2xd
fv2 · · · x2d∂2xd

fvH

· · · · · · · · · · · ·
xl
1∂

l
x1 fv1 xl

1∂
l
x1 fv2 · · · xl

1∂
l
x1 fvH

· · · · · · · · · · · ·
xl

d∂ l
xd

fv1 xl
d∂ l

xd
fv2 · · · xl

d∂ l
xd

fvH

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.37)
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and

Ñd,k,l(V ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1∂x1 f̃v1 x1∂x1 f̃v2 · · · x1∂x1 f̃vH· · · · · · · · · · · ·
xd∂xd f̃v1 xd∂xd f̃v2 · · · xd∂xd f̃vH

x21∂
2
x1 f̃v1 x21∂

2
x1 f̃v2 · · · x21∂

2
x1 f̃vH

x1x2∂x1∂x2 f̃v1 x1x2∂x1∂x2 f̃v2 · · · x1x2∂x1∂x2 f̃vH· · · · · · · · · · · ·
x2d∂2xd

f̃v1 x2d∂2xd
f̃v2 · · · x2d∂2xd

f̃vH

· · · · · · · · · · · ·
xl
1∂

l
x1 f̃v1 xl

1∂
l
x1 f̃v2 · · · xl

1∂
l
x1 f̃vH

· · · · · · · · · · · ·
xl

d∂ l
xd

f̃v1 xl
d∂ l

xd
f̃v2 · · · xl

d∂ l
xd

f̃vH

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(10.38)

It is immediate that r(V ) is the rank of M̃d,k,l(V ) and r1(V ) is the rank
of Ñd,k,l(V ). Note that for any d-variate monomial g in x1, . . . , xd and any
differential operator ∂

i1
x1 · · · ∂ id

xd , xi1
1 · · · xid

d ∂
i1
x1 · · · ∂ id

xd g is equal to a constant
multiple (depending only on i1, . . . , id and the powers of x1, . . . , xd in g) of
g. We see that if we arbitrarily fix a column (say the h-th column) in Ñd,k,l(V ),
then all entries in this column are the same up to a scalar. Indeed they are all
scalar multiples of f̃vh . For each such entry (note that it is possible to be zero),
its difference from the corresponding entry of M̃d,k,l(V ) has to be a sum of
monomials of strictly lower order than f̃vh . Hence if some subdeterminant of
Ñd,k,l is nonzero, it will be a monomial and has to be the highest order term of
the corresponding subdeterminant of M̃d,k,l . This implies the corresponding
subdeterminant of M̃d,k,l is nonzero. Hence the rank (r1(V )) of the former
matrix is not more than the rank (r(V )) of the latter.

Therefore, it suffices to prove

r1(V )

H
>

nd(l)

nd(k)
. (10.39)

We remark that since it is possible for all fvh to be different monomials, we
do not lose any information by the reduction in the last paragraph.

Without loss of generality we may assume each f̃vh is a monic monomial
x

a1,h
1 · · · x

ad,h
d for some distinct (a1,h, . . . , ad,h) ∈ Sk .

We use some elementary transforms that we just did on Nd,k,l(V ). We
multiply the “(i1, . . . , id)-th” row of Nd,k,l(V ), i.e. (∂ i1

x1 · · · ∂ id
xd f̃v1, . . . , ∂

i1
x1 · · ·

∂
id
xd f̃vH ), by xi1

1 · · · xid
d and then divide the h-th column by f̃vh . This would not
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change the rank of the matrix and will result in a scalar matrix Sd,k,l(V ) of the
following form:

Sd,k,l (V )

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 · · · a1,H
· · · · · · · · ·

ad,1 · · · ad,H
a1,1(a1,1 − 1) · · · a1,H (a1,H − 1)

a1,1a2,1 · · · a1,H a2,H
· · · · · · · · ·

ad,1(ad,1 − 1) · · · ad,H (ad,H − 1)
· · · · · · · · ·

a1,1(a1,1 − 1) · · · (a1,1 − l + 1) · · · a1,H (a1,H − 1) · · · (a1,H − l + 1)
· · · · · · · · ·

ad,1(ad,1 − 1) · · · (ad,1 − l + 1) · · · ad,H (ad,H − 1) · · · (ad,H − l + 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(10.40)

Using a bunch of elementary row transformswe obtain the following cleaner
Jd,k,l(V ) from Sd,k,l(V ) (this step is not necessary but it is good to have things
cleaner):

Jd,k,l(V ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 a1,2 · · · a1,H
· · · · · · · · · · · ·
ad,1 ad,2 · · · ad,H

a2
1,1 a2

1,2 · · · a2
1,H

a1,1a2,1 a1,2a2,2 · · · a1,H a2,H
· · · · · · · · · · · ·
a2

d,1 a2
d,2 · · · a2

d,H
· · · · · · · · · · · ·
al
1,1 al

1,2 · · · al
1,H

· · · · · · · · · · · ·
al

d,1 al
d,2 · · · al

d,H

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10.41)

Let r2(V ) be the rank of J2,k,l(V ). Then r2(V ) = r1(V ). It suffices to show
the following equivalent form of (10.39):

r2(V )

H
>

nd(l)

nd(k)
. (10.42)

Assuming Q = nd(l) − r2(V ). We may assume Q > 0 since otherwise by
the assumption H < nd(k), (10.42) holds. Then there is a nontrivial subspace
W ⊆ R

nd (l) such that dim W = Q and that any vectorw ∈ W is orthogonal to
all columns of Jd,k,l(V ). Aswe did before,we can take a basis {wq}1≤q≤Q such
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that the highest order term of fwq are mutually distinct. By our assumption,
we have

fwq (a1,h, . . . , ad,h) = 0, ∀1 ≤ q ≤ Q, 1 ≤ h ≤ H. (10.43)

Moreover we always have fwq (0, 0, . . . , 0) = 0 since fwq does not have a
constant term.

We are changing our problem towards one with purely combinatorics nature
in order to apply Lemma 10.5. We introduce a bit more notations. Let const ·
x

b1,q
1 · · · x

bd,q
d �= 0 be the highest order term of fwq . Hence when we fix xd

to be a real number, fwq is a polynomial in x1, . . . , xd−1 whose highest order

term is const · x
b1,q
1 · · · x

bd−1,q
d−1 �= 0 except ≤ bd,q possible values of xd . In any

non-exceptional case for the fixed xd , when we further fix xd−1 after fixing
xd , fwq becomes a polynomial in x1, . . . , xd−2 whose highest order term is

const·xb1,q
1 · · · x

bd−2,q
d−2 �= 0 except≤ bd−1,q possible values of xd−1 (which can

depend on the fixed xd ). We can continue to do similar reasonings and finally,
in any non-exceptional case for the fixed x2, . . . , xd , fwq is a polynomial in

x1 whose highest order term is const · x
b1,q
1 �= 0. Hence there are no more

than b1,q different possible values of x1 (which can depend jointly on the fixed
x2, . . . , xd ) that can make fwq (x1, . . . , xd) = 0.

We collect the constraints we got in the last paragraph for all pos-
sible q. Take A = {(a1,h, . . . , ad,h)}1≤h≤H

⋃{(0, . . . , 0)} and B =
{(b1,q , . . . , bd,q)}1≤q≤Q and we are in a position to apply Lemma 10.5. (10.3)
in Lemma 10.5 implies

H + 1 = |A| ≤ nd(k) + 1 − |B+
k |. (10.44)

By (10.44) and (10.15) in Lemma 10.7, we have

Q

nd(k) − H
= |B|

nd(k) − H
≤ |B|

|B+
k | ≤ |B+

l |
|B+

k | ≤ nd(l)

nd(k)
. (10.45)

If the last two inequalities of (10.45) are both actually equalities, then by
Lemma 10.7 we have B = B+

l = Sl (note that Q > 0means B �= ∅). This and
(10.44) in turn imply 0 = H = dim V . A contradiction. Hence we actually
have

nd(l) − r2(V )

nd(k) − H
= Q

nd(k) − H
<

nd(l)

nd(k)
(10.46)

which is equivalent to (10.42). By the discussion above we see (10.39) and
(10.35) hold. �	
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