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ABSTRACT
Time-series databases are becoming an indispensable component
in today’s data centers. In order to manage the rapidly growing
time-series data, we need an e�ective and e�cient system solution
to handle the huge tra�c of time-series data queries. A promising
solution is to deploy a high-speed, large-capacity cache system
to relieve the burden on the backend time-series databases and
accelerate query processing. However, time-series data is drasti-
cally di�erent from other traditional data workloads, bringing both
challenges and opportunities. In this paper, we present a �ash-
based cache system design for time-series data, called TSCache. By
exploiting the unique properties of time-series data, we have de-
veloped a set of optimization schemes, such as a slab-based data
management, a two-layered data indexing structure, an adaptive
time-aware caching policy, and a low-cost compaction process. We
have implemented a prototype based on Twitter’s Fatcache. Our
experimental results show that TSCache can signi�cantly improve
client query performance, e�ectively increasing the bandwidth by
a factor of up to 6.7 and reducing the latency by up to 84.2%.
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1 INTRODUCTION
Time-series databases are becoming an indispensable component
in today’s data centers [33, 34]. In recent years, we have witnessed
a wide-spread use of time-series data for various applications, such
as data analysis [2, 49, 67], IoT deployment [40, 72], Internet mon-
itoring [57, 65], system alerting and diagnosis [33, 34], data min-
ing [48, 51], visualization [59], and many others [34, 39, 41, 60].

Time-series data is a sequence of numerical data points collected
over time [31, 32], such as stock prices, sensor readings, exceptional
event counts, etc. Time-series data is interesting, because it provides
users the ability of tracking “changes over time”, which enables us
to extract valuable, dynamic information that is often unavailable
by solely examining each individual, static “snapshot”. However,
due to the nature of such data, handling a huge and quickly growing
time-series dataset demands a highly e�cient system design. For
example, Twitter’s Observability stack routinely collects 170 million
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metrics every minute and serves up to 200 million queries per
day [11]. High-speed query processing for time-series data is highly
desirable but very challenging to realize.

A simple solution is to place the entire time-series database in
memory, such as Google’s Monarch [34]. Such an approach, though
works, would incur excessively high deployment cost, especially
considering the ever-growing volume of time-series data. A more
cost-e�cient alternative solution is to design a high-speed, large-
capacity �ash cache system for time-series data to accelerate the
queries. If the requested data can be found in the cache, a query
can be completed quickly without generating extra tra�c to the
backend time-series database, relieving the pressure on the con-
gested database server and improving the response time and system
throughput. However, designing a highly e�cient caching scheme
for time-series data is non-trivial. The unique properties of time-
series data bring both challenges and opportunities.

1.1 Challenges and Opportunities
Time-series data is special. Several unique properties make it dras-
tically di�erent from handling data in a traditional �ash cache
system [6, 46, 61, 70]. We must fully exploit these unique optimiza-
tion opportunities and address a number of critical challenges in
processing time-series data queries.

• Property #1: Time-series data is write-once and append-only.
Time-series data is collected to record the evolution of a speci�c
metric over time intervals. In other words, time-series data re-
�ects the facts that happened during the past time. Such data is
simply a stream of historical data points and by nature is not sub-
ject to modi�cation later. As such, time-series data is immutable
and append-only [32]. In fact, many time-series databases, such as
BTrDB [41], provide a special write-once data abstraction for man-
aging time-series data. Thus, a read-only cache would su�ce. We
can completely disregard data updates in cache and the related data
consistence issues between cache and database, which signi�cantly
simpli�es the cache design for time-series data.

• Property #2: Range queries are dominant in time-series queries.
Time-series data is generally used for trend forecasting or behavior
analysis, which are based on a collection of data points over a
time range. A single data point is often uninteresting. Thus, unlike
in traditional databases, range queries are typically the dominant
operations in time-series databases [28, 39, 41, 63].

The dominance of range queries makes general �ash caching
schemes unsuitable for several reasons. First, conventional cache is
mostly designed and optimized for point queries by caching data
objects or blocks individually, rather than ranges of related data
points as a collection. Second, conventional cache adopts an all-
or-none caching method. An access to cache would be either a hit
or a miss. In contrast, time-series cache must consider partial hit
situations (some data points of a query are cached). Third, overlaps
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among range query results are common, e.g., two queries have
overlapped time ranges. This causes duplicate data points in cache
and must be removed for an e�cient use of the cache space.

• Property #3: Time-series data queries have a unique and highly
skewed access pattern.Most time-series data applications, such as
behavior analysis, trend forecasting, problem diagnosis and alerting,
are particularly interested in the recently collected data [3, 39].
Facebook has reported that at least 85% of their queries are focused
on data points collected in the past 26 hours [65], meaning that
users’ interests on time-series data are strongly correlated with
data creation time, and such an interest quickly diminishes as time
elapses. On the other hand, we should note that some aged data
metrics could also gain interests. For instance, Etsy’s Kale system
periodically searches through the historical data to �nd anomalies
with similar patterns [12, 39], which creates “hot spot” ranges over
the entire time series. These two patterns could be mixed, further
increasing the di�culty for making caching decisions.

1.2 Flash-based Caching for Time-series Data
In this paper, we propose a novel �ash-based caching scheme, called
TSCache, for time-series data. The goal is to provide a highly e�-
cient caching solution to improve the query performance for time-
series databases. To the best of our knowledge, this is the �rst work
on �ash-based caching for time-series data.

As a versatile distributed caching service, TSCache maintains
user-supplied time-series data in high-speed, large-capacity �ash
storage and responds to users’ requests of retrieving the stored data.
Similar to Memcached [25], TSCache does not directly interact with
the backend time-series database, meaning that TSCache is not an
intermediate layer between the client and the database server, which
allows TSCache to provide a general-purpose caching service for a
variety of time-series databases simultaneously. As an abstraction
of the time-series caching services, TSCache provides a simple, time
range-based, key-value-like interface for users to easily store and
retrieve data in the cache.

In our design, TSCache adopts a set of optimization schemes to
exploit the unique properties of time-series data for caching. (1)
Leveraging the write-once property, all data stored in TSCache is
read-only, meaning that no changes can be made after being stored.
This greatly simpli�es our cache design and allows us to develop a
log-like mechanism to store and manage the cache data in large-
chunk slabs, which optimizes the I/O performance and reduces
the management cost. (2) For optimizing range query searches, we
have developed a two-layered indexing scheme to quickly �lter out
irrelevant data points and accelerate the time-based search in a huge
pool of time-series data points in cache. (3) In order to deal with the
unique access patterns of time-series workloads, we have developed
an adaptive cache replacement policy to identify themost important
time-series data for maximizing the utilization of the limited cache
space. (4) We have also designed a low-cost compaction scheme to
remove duplicate data in cache by merging overlapping data points
during run time. With all these dedicated designs and optimizations,
we can build a highly e�cient time-series data cache.

TSCache is also highly optimized for �ash storage. For example,
its read-only cache design is particularly suitable for �ash mem-
ory, which is known for its relatively weak write performance
and lifetime issues [43, 45, 52]. The I/O operations in TSCache

are parallelized, which exploits the internal parallelism of �ash
SSD [44, 47]. TSCache also organizes large, sequential writes by
�ushing in-memory slabs to �ash in large chunks, which is favored
by �ash storage for performance and durability [38, 45].

In order to evaluate the performance of TSCache, we have imple-
mented a prototype based on Twitter’s Fatcache [10], which is an
open-source �ash-based key-value cache. Our implementation in-
cludes about 6,500 lines of C code for �ash-based time-series cache
server, 600 lines of Go code for a modi�ed In�uxDB client, and an
augmented API library based on libMemcached 1.0.18. We have
evaluated TSCache with �ve real-world time-series datasets, includ-
ing vehicle tra�c, Bitcoin transactions, air pollution measurement,
environmental sensoring, and taxis trajectory data. Our experimen-
tal results show that our time-series cache design can signi�cantly
improve client query performance, increasing the bandwidth by a
factor of up to 6.7 and reducing the latency by up to 84.2%.

The rest of this paper is organized as follows. Section 2 gives
the background. Section 3 and 4 describe the design and imple-
mentation. Section 5 presents our experimental results. Section 6
discusses the related work. The �nal section concludes this paper.

2 BACKGROUND
2.1 Time-series Data
Time-series data is a sequence of numerical data points collected
over time [31, 32]. Each data point is collected at discrete time
intervals. A timestamp is associated with each data point upon
data generation. Time-series data can be classi�ed into regular and
irregular data, depending on the sampling time interval. The time
interval is correlated to the data sampling rate. The higher the
sampling rate is, the more data points are generated. Generally,
the timestamp resolution of millisecond or second level is su�-
cient to satisfy most use cases. Some application scenarios demand
a higher precision at nanosecond level, e.g., telemetry data [41].
As the process of data generation, collection, and distillation is
highly automated, time-series data often has a high growth rate,
demanding an e�cient system for handling such workloads.

2.2 Time-series Databases
Time-series databases have become increasingly popular in the
past few years [30]. A variety of time-series databases have been
developed for di�erent purposes [19, 26, 29, 41].

Among the time-series databases, In�uxDB ranks the top ac-
cording to DB-Engines [17]. As a mature and popular time-series
database, In�uxDB has been widely used for storing, analyzing,
and retrieving data metrics. In the following, we use In�uxDB as a
representative one to introduce the basics of time-series databases.

In�uxDB [20] is an open-source time-series database. It is fully
written in Go without external dependencies. In�uxDB accepts
SQL-like queries, called In�uxQL, via HTTP or JSON over UDP.
It supports simple data aggregations but complex join operations
are not supported. Its storage engine adopts a data structure called
TSM-Tree, which is similar to LSM-Tree [64], to optimize insert
operations. In�uxDB does not support delete, but it removes expired
data according to the speci�ed retention policy.

In In�uxDB, the time-series data is stored in shards. A shard
usually covers a speci�c time range of data points. Each shard is



Table 1: An illustration of measurement in In�uxDB [21].

Time Btr�y Hnybees Location Scientist
15-08-18T 00:00:00Z 12 23 1 langstroth
15-08-18T 00:00:00Z 1 30 1 perpetua
15-08-18T 00:06:00Z 3 28 1 perpetua
15-08-18T 00:06:00Z 1 30 1 langstroth

Table 2: An illustration of series in In�uxDB [21].

Series Measurement Tag Set [Loc., Sci.] Field Key
series 1 census [1, langstroth] butter�ies
series 2 census [1, perpetua] butter�ies
series 3 census [1, langstroth] honeybees
series 4 census [1, perpetua] honeybees
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Figure 1: An illustration
of data�ow in TSCache.
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Figure 2: An illustration
of TSCache structure.

an independent data management unit, which has its individual
cache, Write Ahead Log (WAL), and TSM �les. To guarantee data
reliability, the incoming data is �rst written into WAL and then
stored in TSM �les on disk. Each TSM �le is a read-only �le storing
compressed time-series data in a columnar format. The structure of
a TSM �le is similar to SSTable in LevelDB [24] and includes four
sections, namely header, blocks, index, and footer. Multiple shards
with disjoint time ranges can be further organized in a shard group
and share the same retention policy. Expired shards are removed
from the database to release resources.

In�uxDB is schemaless. Users can add measurement, tag set, and
�eld set to database at any time according to their needs. In�uxDB
manages time-series data in measurement, which is akin to “table”
in a traditional SQL database. Each data point is associated with a
timestamp upon data generation. Di�erent data points can have
the same timestamp. Each data point has one or multiple �eld keys
and one or multiple tag keys. All data points are sorted in the time
order when stored in the measurement. Here we use an example
shown in Table 1 for explanation.

Table 1 illustrates an example that measures the census of but-
ter�ies and honeybees by two scientists in di�erent locations. This
measurement has two �eld keys, Butter�ies and Honeybees. The
data in the two columns represents the actual �eld values. Note that
�eld keys are strings, while �eld values can be integers, strings,
�oats, etc. A unique combination of �eld values for di�erent �eld
keys is also called a �eld set. In this example, we have four time-
series data points in three di�erent �eld sets, of which the �eld
set (butter�ies=1, honeybees=30) has two data points. It is worth
noting that �eld set cannot be indexed. Using an improper �eld
value as the �lter condition may incur a long search time.

Each data point can also be associated with one or multiple
tag keys. Two tag keys in the measurement are location and sci-
entist, each of which is associated with their tag values (“1” for
location, and “langstroth” and “perpetua” for scientist). A tag set
is a unique combination of tag values for di�erent tag keys. In
this measurement, we have two tag sets in total, (location=“1”, sci-
entist=“langstroth”) and (location=“1”, scientist=“perpetua”). Both
tag key and tag value can only be strings, being used as metadata
to describe the �eld value. Di�erent from �eld set, tag set can be
indexed, which improves the query e�ciency with a proper setting.

A series refers to a logical group of data points which share the
same measurement name, tag set, and �eld key. In Table 2, we have
four series in the measurement in total. In other words, the series
de�nes the structure of a time-series dataset. Understanding the
series concept is useful for practitioners to achieve high e�ciency
of operations on time-series database.

3 DESIGN
In this paper, we present a highly e�cient time-series cache system
design, called TSCache, to accelerate client queries to time-series
databases. The goal of TSCache is to provide independent, network-
based caching services for time-series database clients.

As shown in Figure 1, a typical work�owwith TSCache is similar
to Memcached—Upon a time-series query, the client �rst queries
the TSCache server. If the data is found in cache, the cache server
retrieves the data and returns to the client; otherwise, the client re-
ceives NOT_FOUND and needs to directly query the backend database,
and then it sends the received time-series data to the cache server
for caching and serving future queries. Upon insertion, data points
are directly inserted into the backend database without involving
TSCache, meaning that TSCache is not in the critical path.

Such a design brings two important advantages for time-series
workloads. First, it detaches the cache from any speci�c database,
allowing us to provide a general-purpose, shareable caching service
for various types of time-series databases. Second, it is similar to
popular key-value caching services, such as Memcached [25] and
Redis [27], which many developers and practitioners are already
familiar with, enabling an easy and smooth adoption in practice.

3.1 Architecture Overview
As illustrated in Figure 2, TSCache has �ve major components:
(1) Time-range based interface: A general, simpli�ed interface is
provided for clients to store and retrieve time-series data, which
is typically a collection of data points returned from a time-series
database for a query. (2) Slab manager: TSCache adopts a slab-based
management to accommodate incoming data in large, write-once-
read-many chunks as a sequence of continuous data points in the
time order. (3) Data index: A two-layered data indexing structure
is used to quickly �lter out irrelevant data points and accelerate
time-range based searches. (4) Cache manager: An adaptive cache
replacement scheme is designed to identify the most valuable data
for caching, which is optimized for the unique access patterns in
time-series workloads. (5) Compaction module: A low-cost com-
paction process runs in the background to remove duplicate data
points for optimizing cache space utilization.

3.2 Time-range based Interface
Traditional cache systems are designed for caching data objects
or chunks individually. Each data item in cache can be located by
an identi�er, such as a key, an object ID, or a block number, etc.



Time-series caching is di�erent. A client typically caches the query
result for a speci�ed time range, which is a logical dataset that
contains a sequence of data points. However, we cannot directly
use query as a unit for caching and management, because the time
range of interest often changes. For example, a client may need to
zoom in/out and examine a sub-range of the time-series data.

To address the above issue, the data in TSCache is identi�ed by
two basic properties, query and time. The former de�nes a speci�c
query condition, and the latter de�nes a contiguous time range. In
this way, we can track for a speci�c query, which time range of
data points is available in our cache server.

Interface design. Inspired by key-value caches, TSCache pro-
vides a Time-range based, Key-value-like Interface for clients to
store and retrieve data. Speci�cally, we use the data query state-
ment excluding the time range part to calculate a 160-bit SHA-1
hash value [1] as a key to represent the query. We provide an API
function in libMemcached library as a tool to help users quickly
generate a hash key for a given query statement. Then, the key is
used as a handle to interact with the cache server. Due to the SHA-1
hashing, the query can be uniquely identi�ed with the key.

This approach brings several bene�ts. First, TSCache does not
need to understand the speci�cs of a query, but only needs to di�er-
entiate queries using the keys, which avoids parsing complex data
query statements in the cache system. Second, it allows TSCache
to be seamlessly integrated with a variety of time-series databases,
which may use totally di�erent query languages. Third, this inter-
face mimics the widely used key-value interface, making it easier
to be adopted in practice by users.

API functions. TSCache provides two basic operations for users
to set (store) and get (retrieve) data in the cache, as follows.

Set(key, value, time_start, time_end) stores the client-
supplied data to the cache server. The key is a 160-bit digest calcu-
lated using the SHA-1 cryptographic hash function based on the
data query statement. The value is a JavaScript Object Notation
(JSON) [23] �le with a collection of data points encoded, which is
shareable across di�erent platforms. The time range of the data
points is speci�ed by time_start and time_end. The key and the
time range pair together uniquely identify the value. The client is
responsible for guaranteeing that the supplied data points are the
complete result of a database query for a speci�ed time range.

Get(key, time_start, time_end) retrieves data points from
the cache server according to the provided key and time range. The
key represents the query, and the pair of time_start and time_end
speci�es the requested time range. To retrieve data points from the
cache server, it needs to meet two conditions: The key should be
matched, and based on that, the requested time range should be
covered by the cached data. The data points returned to the client
are encoded as a JSON �le to guarantee its integrity.

3.3 Handling Partial Hits
Unlike in traditional cache, where a requested data object is either
found in cache (a hit) or not (a miss), a special situation, partial hit,
may happen in time-series cache. For example, the requested time
range cannot be completely covered by the data in cache.

We have two possible options to handle partial hit situations: (1)
The cache returns the partially found data to the client, which then
submits another query to the database to retrieve the missing part,

or (2) the cache noti�es the client INCOMPLETE, and the client then
submits the full query to the database to load the complete data.

Handling partial hits. To understand the performance impact
of the above two choices, we have designed an experiment to com-
pare their I/O e�ciencies. In order to simulate the partial hit sce-
nario, we split a request into two operations, �rst reading from
the cache and then from the backend database in a sequence, and
calculate the sum of the incurred latencies for each request. More
details about the system setup are available in Section 5.

Figure 3 shows the average latency of reading data from the
cache server and the database server with di�erent request sizes. For
requests smaller than 512 KB, the time spent on the database server
dominates the query latency, meaning that splitting a relatively
small request does not bring much performance bene�ts. However,
for large requests (over 512 KB), retrieving data even partially from
the cache server is helpful. For 4-MB requests, reading half from
cache can reduce the average latency by 36.2%, compared to reading
it all from the database. This result indicates that the bene�t of
loading partial data from cache depends on the request size.

TSCache adopts an adaptive approach to handle partial hits. (1) If
the requested data size is small (less than 512 KB in our prototype),
we treat partial hit simply as a miss and quickly respond to the
client without further searching the cache, and the client needs to
submit a full request to the database server. (2) For large requests,
we return the partial data found in the cache server to the client,
and the client needs to create another partial request to load the
remaining data from the database server.

It is worth noting here that partial hit happens whenever two
queries have partially overlapping data, disregarding their creation
time (new or old). TSCache selectively returns the cached data only
when it is cost bene�cial to retrieve the partially hit data, which
avoids unnecessary overhead as discussed above.

Request size estimation. The adaptive handling of partial hits
demands an estimation of the data amount for a request. If the
partial data is too small, we desire to quickly respond to the client
INCOMPLETE. In reality, however, it is di�cult for the cache server to
make an accurate estimation, because for a given request, both the
number of involved data points and the size of each data point are
unknown. We could simply scan the cache to look up the involved
data points, but this approach is clearly very time-consuming and
foils the e�ort of quickly responding to the client.

TSCache estimates the data size as follows. Upon a data write to
the cache server, we know the time range) and the data amount+ ,
based onwhichwe can calculate an estimated data density,⇡ = + /) .
The density information is associatedwith the time range and stored
in the key index as part of the metadata (see Section 3.5). Upon a
read request for a time range C , the data amount is estimated as
C ⇥ ⇡ . In this way, we can quickly estimate how much data would
be involved in the query and decide whether we should handle a
partial hit as a miss by only accessing the key index.

Fragmented requests. Allowing partial hits may lead to a more
complicated situation, which is that a request could split into many
small, disjoint ranges. A simple example is, assuming the requested
time range is [0, 100] and the cache covers the time range of [25, 75],
then the client has to generate requests to the database server for
two time ranges of [0, 25] and [75, 100]. The real-world scenarios
could be more complex, creating several critical challenges.
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First, the client must be prepared to handle a variety of possi-
ble cases, analyze received data, generate multiple requests, merge
received data, etc. It puts an excessive burden on programmers,
discouraging them to adopt this caching service. Second, the cache
server design becomes too complex. The cache has to search all pos-
sible disjoint time ranges. Third, a more complex protocol is needed
for client-cache communications to represent and deliver these
multi-range data. Finally, and most importantly, the performance
gain of handling many small requests is in question, especially
considering the involved overhead and additional I/Os.

We tackle this problem by using a simple solution: The cache
returns partial data only if the head or the tail part of the requested
time range is covered in cache (see Figure 4). In all other cases, we
handle it as a miss. It guarantees that one query would split into at
most two parts, one to the cache and the other to the database.

This design greatly simpli�es the problem. First, the client be-
comes simple. It only needs to concatenate the two parts together.
Second, the cache server is also simpli�ed and only needs to handle
one continuous time range query. Third, the protocol is also simpli-
�ed. We only need to specify the time range in the returned JSON
�le. Finally, the size estimation is simpler and becomes feasible.

3.4 Slab Management
Time-series data is write-once and append-only. We take advantage
of this property and use a log-like mechanism to manage data in
large chunks. In TSCache, the basic unit for data management is
a slab, which stores a sequence of time-series data points in their
time order. Thus each slab represents a time range of data.

The slab-based management brings several advantages. First, it
creates sequential, large writes, which is bene�cial in terms of write
performance and lifetime for �ash devices [38, 45, 61]. Second, for
range queries, organizing consecutive data points in a large slab
improves I/O e�ciency. Third, managing data in large units can
e�ectively reduce the management overhead.

Slab structure. As shown in Figure 5, each slab is an individual,
self-contained unit, which stores a sequence of data points and the
associated metadata for a continuous time range. A slab consists of
two parts, header and data. The header part contains the metadata
that describes the data part and facilitates a quick search for a query;
the data part stores a list of data points sorted in the time order.

To understand the rationale of our slab-structure design, we �rst
explain a critical challenge that we must address. In time-series
cache, a cached data point could be associated with multiple queries,
each represented by a query key. Simply mapping a key to an

individual set of data points would result in severe data redundancy
in cache, since the query results may overlap. Alternatively, we
could map multiple keys to each shared data point. However, due
to the huge number of data points, building a many-key-to-many-
data-points mapping structure is unrealistic. Simply recording each
query’s start and stop positions is also infeasible, since data points
of di�erent queries may be mixed due to time range overlaps.

We use a Label-based Reverse Mapping to solve the problem. We
associate each data point with a set of �ag bits (128 bits), called
bit array. Each bit corresponds to a query key in the slab. A set bit
means the data point is associated with the query. The bit array
essentially labels the keys of a data point in a space-e�cient way. To
complete the reverse data-point-to-keys mapping, we need another
structure in the slab header as described below.

Key array. The �rst part of the slab header is a reserved area
for a list of 128 SHA-1 keys, called key array. The key array is a
collection of unique query keys, each of which has at least one data
point appearing in the slab. Each 160-bit key corresponds to one
bit in the above-mentioned bit array.

The key array and the bit array together map each data point
back to the associated keys, bringing two bene�ts. First, it allows us
to attach a small bit array (128 bits) to label each data point, which
is simple and space e�cient. Second, organizing all resident keys
in the header allows us to load a small header to quickly �lter out a
query that does not have data in the slab, which avoids reading the
entire slab and improves the speed.

The number of keys allowed in a slab can be extended. In general,
128 keys are su�cient for a slab in most cases. If a slab needs
to accommodate more than 128 keys, we may copy the slab to a
temporary bu�er in memory, double the key array and bit array
size to 256 entries, then copy the data points back, and update the
related header information. Due to the extra space needed for the
additional keys, we may need to create an extra slab to contain all
the data points in the original slab.

Time markers. The second part of the slab header maintains a
special structure to help quickly locate the position of the target
data in the slab. A slab stores a large number of data points in the
time order. However, a query may only need to access a sub-range
of them. Since the sizes of data points vary, it is di�cult to estimate
the position of the �rst data point in the target time range. Scanning
the data points would incur read ampli�cation problem.

To accelerate this process, for each 4 KB block of the data part,
we store a time marker in the slab header to track the timestamp
and the in-slab o�set of the �rst data point of this block. In our



Key N

[t0, t1]

...

Key 0

Key 1

Key 2

SID 0[t0, t3]

Key Index Slab Index

[t2, t3]
[t4, t5]...

[tn-1, tn]

...

Field 0

Field 1

Field 2

Field N

[t0, t1]
Bloom filter

...

[tn-1, tn]

SID 1
[t2, t3]

Bloom filter

SID N
[tn-1, tn]

Bloom filter
Virtual time Physical time

Figure 6: Two-layered data indexing.

[t0, t1]HeadLevel0:

HeadLevel1:

HeadLevel2:

HeadLevel3:

[t2, t3] [t4, t5] [t6, t7] [t8, t9]

[t2, t3]

[t2, t3]

[t2, t3]

[t6, t7]

Figure 7: Time-range based skip list.

DemotionPromotion

LRU
Partition:

FIFO
Partition:

...

Slab

...

Ghost Slab

Rlru Glru

Rfifo Gfifo

...

Figure 8: Cache replacement policy.

current setting, we reserve space for storing 256 time markers. For
a query that speci�es a time range, we simply read the list of time
markers, and locate the one closest to the start time of the requested
time range and read data from there. It allows us to avoid reading
the unwanted data, signi�cantly reducing read ampli�cation.

Data part. The rest of the slab stores data points. We adopt a
column-based style. Each slab only stores data points of a speci�c
�eld (a column). This is for two reasons. First, we can simultane-
ously read multiple slabs containing di�erent �elds, which creates
parallel I/Os on �ash and accelerates the request. Second, it enables
us to address a unique issue in time-series caching, which is how
to combine incomplete data points together. A query to time-series
database may not always request all �elds. In the cache, if we store
data points in the row-based manner, many “holes” would appear
in a row, which would cause signi�cant space waste.

3.5 Two-layered Data Indexing
An e�cient data indexing structure is crucial to the query perfor-
mance. In TSCache, we use a two-layered in-memory data indexing
structure to ful�ll this requirement. As shown in Figure 6, two sep-
arate indexing structures, key index and slab index, are independent
from each other and designed for di�erent purposes.

Key index. The key index structure keeps track of the queries
that have data cached in the system. Its main purpose is to facilitate
us to quickly �lter out cache misses, either in cases when the query
key is not found in the cache, or the key is found but the requested
time range is not found.

The key index structure is organized as a hash tablewith skip lists.
The �rst level is a traditional hash table indexed by the query keys.
Each key is associated with a sequence of individual time ranges,
which is organized in a skip list structure [66]. When adding a new
time range into the cache, any overlapping time ranges would be
merged, ensuring that the key’s time ranges are non-overlapping.

For a given key, as shown in Figure 7, its time ranges are orga-
nized as a 4-level skip list. Each item represents an individual time
range [time_start, time_end]. Each level is a singly linked list.
The bottom level (Level 0) is a complete list of all the time range
items sorted in the ascending time order. Each of the upper levels
(Level 1 to Level 3) provides a list of reference points to selected
items. The higher the level is, the shorter the list is. The structure of
skip list allows us to quickly skip unrelated time ranges and locate
the target time range, which accelerates the search process in a long
list. We �nd that a skip list of 4 levels is su�cient for our workloads.
More details about skip list can be found in prior work [66].

Slab index. The slab index keeps track of all the slabs in the
cache. For each slab, we maintain a 28-byte slab node in memory
to manage its metadata, including a 4-byte slab ID (SID), a 8-byte
Bloom �lter, and two 8-byte timestamps, which represent the phys-
ical time range of the data points in the slab.

Similar to column store databases, TSCache manages �elds (akin
to “column” in a traditional database) in separate slabs. Each slab
contains a sequence of data points for a speci�c �eld. Thus, the �rst
level of the slab index is organized as a hash table indexed by the
�eld number. As a typical time-series measurement has only 4 to
10 �elds, a 16-bucket hash table is su�cient for most cases.

A �eld is associated with a list of non-overlapping virtual time
ranges, each of which corresponds to a set of slabs whose data
points together cover a continuous range of time. We connect the
slab nodes belonging to a virtual time range using a singly linked
list in the ascending time order. Note that the slabs in a list may
have overlapping physical time ranges. A compaction procedure
periodically runs to remove the duplicate data (see Section 3.7).

In order to quickly search for the target key and time range in
the list of slabs, we also leverage the Bloom �lter and the physical
time range information in slab nodes. (1) In a slab node, the Bloom
�lter tracks the query keys whose data points are stored in the
slab. If the Bloom �lter indicates that the target key is not in the
slab, we simply skip it and examine the next slab; otherwise, (2) we
further compare the target time range with the slab’s physical time
range, which records the �rst and last timestamps in the slab. If the
requested time range is completely or partially in the slab’s physical
time range, we then read the slab from the cache; otherwise, we skip
the slab and examine the next one in the list. In this way, we can
quickly �lter out irrelevant slabs without incurring unnecessary
I/Os (for reading slab headers), improving the cache lookup speed.

Handling a query. Upon a cache query with a key and a speci-
�ed time range, it works as follows. We �rst search the key index
structure to determine if the key is found in cache. If true, we fur-
ther search the key index to determine if the target time range is
cached. If the time range is partially hit, we run the request size
estimator (see Section 3.3) to decide if we return partial data to the
client. In the case of a hit or a partial hit, we further turn to the
slab index structure. For each requested �eld, we �rst locate the
involved virtual time ranges, and then locate the involved slabs.
Then we read the slab data and �nally return it to the client.

3.6 Time-aware Caching Policy
Time-series data workloads exhibit a unique, mixed access pattern:
The more recently created data typically gain more popularity
than old data, while some relatively aged data also exhibits high
popularity as “hot spot” time ranges. We introduce a Time-aware
Caching Policy for managing time-series data in TSCache.

Cache replacement policy. As shown in Figure 8, we logically
divide the cache into two partitions, which are managed separately
using di�erent caching policies.1 The upper-level LRU partition

1Note that this division is logical. Moving a slab from one partition to the other only
needs metadata changes and does not involve physical data movement.



maintains a list of slabs that contain relatively old but “hot” time
range data. This partition uses the traditional LRU replacement
algorithm. The lower-level FIFO partition maintains a list of slabs
that are arranged in the time order and managed using a simple
FIFO replacement algorithm. The partition sizes are adaptively
auto-tuned according to workloads during run time.

Our caching policy works as follows. When a slab is added into
the cache, it is �rst inserted into the lower-level FIFO partition. Since
most time-series workloads are more interested in the recent data,
we adopt the First-in-�rst-out (FIFO) replacement policy, meaning
that the oldest slab would be evicted �rst. We divide the FIFO list
into two equal-size parts (old and new). Upon an re-access to a slab,
if it is in the �rst half (newer) of the FIFO list, the slab remains in
its current position in the FIFO list with no action; otherwise, it
is promoted into the upper-level LRU partition. In the meantime,
the least recently used (LRU) slab in the LRU partition is demoted
into the FIFO partition and inserted into the list according to its
time. For eviction, we always choose the oldest slab at the tail of
the FIFO list as the victim slab for eviction.

The design rationale is as follows. We use the FIFO partition
to manage most slabs in their original time order, which ensures
that the more recent slabs to stay in the cache longer and the old
data would be evicted �rst. However, if a relatively old slab is re-
accessed, it means that this slab is likely to cover a hot time range.
So we promote it to the LRU region and give it a second chance to
stay in cache for longer time. If a slab in the LRU list cools down, it
would be demoted to the FIFO list and eventually evicted.

Auto-tuning partition sizes. Partition sizes can a�ect perfor-
mance. The larger the LRU partition is, the cache replacement is
more like the traditional LRU. We set the initial sizes of the LRU and
FIFO partitions at the ratio of 1:2, similar to the inactive and active
lists in Linux kernel [54]. We also design an adaptive, auto-tuning
method to adjust the partition sizes during run time.

We attach a ghost slab to the end of the LRU partition and the
FIFO partition, called ⌧;AD and ⌧ 5 8 5 > , respectively. The ghost slab
does not contain actual data but only themetadata of the last evicted
slab. We also keep track of the number of hits to the least recently
used slab resident in the LRU partition and the oldest slab resident
in the FIFO partition, called ';AD and '5 8 5 > , respectively. Each time
when a slab is evicted, we also make the size-tuning decision based
on the observed hits on the four above-said slabs as follows.

Let us use� to denote the number of hits in a speci�ed slab. There
are three possible situations. (1) If � (⌧;AD ) � � ('5 8 5 > ) is greater
than � (⌧ 5 8 5 > ) � � (';AD ), it indicates that taking a slab from the
FIFO partition and giving it to the LRU partition can bring bene�ts
in increasing the number of slab hits. Thus we enlarge the LRU
partition size by one slab and reduce the FIFO partition size by one
slab. (2) If � (⌧;AD ) � � ('5 8 5 > ) is lower than � (⌧ 5 8 5 > ) � � (';AD ),
we take a slab from the LRU partition to the FIFO partition. (3)
Otherwise, we keep the current partition size unchanged.

3.7 Compaction
To quickly handle the ingress �ow, TSCache always allocates free
slabs to accommodate incoming data points for caching. This de-
sign creates large, sequential I/Os and signi�cantly improves write
performance, but it also incurs several issues.

First, since di�erent queries’ results may overlap, duplicate data
points may exist in slabs. Such redundancy must be removed to
save cache space. Second, the space of a slab may not be completely
used (the tail part). Third, having more slabs also means a longer
list of slabs in the slab index, which slows down the search process.

In order to address these issues, TSCache periodically runs a
Compaction procedure in the background to remove duplicate data
points. It works as follows. Each virtual time range is associated
with a slab node list. If the number of slabs on the list exceeds
a prede�ned threshold (e.g., 16 slabs), a compaction procedure is
initiated to merge slabs and remove duplicate data points. We follow
the reverse chronological order (the new slabs �rst) to read and
merge data points. This process repeats until the entire list of slabs
is scanned and merged. If multiple virtual time ranges need to be
compacted, we compact each of them, also starting from the most
recent one and following the same procedure.

It is worth noting an optimization here. Due to the unique proper-
ties of time-series data, relatively old time-series data is more likely
to be removed out of cache soon. Compacting such to-be-removed
data is clearly an unnecessary waste of time. Thus, we always start
compaction in the reverse chronological order (the new slabs �rst).
For each virtual time range, we read the slabs and merge the data
points into a new list of slabs. In this process, since a data point
could be associated with more than one key, the related bit array
needs to be updated. It is also worth noting that depending on the
number of keys in a slab, we can �exibly expand the header part of
a slab as described in Section 3.4.

4 IMPLEMENTATION
In order to evaluate the performance of TSCache, we have im-
plemented a time-series cache prototype based on Twitter’s Fat-
cache [10]. Our prototype adds about 6,500 lines of C code. In the
prototype, the time-series data is managed in the restructured slabs
to handle time range queries. We have also modi�ed the original
hash table by using the proposed time-range based skip list for data
indexing. Fatcache originally adopts a synchronous FIFO-based
replacement policy. Our prototype implements an asynchronous,
two-level replacement algorithm customized for time-series data.

For communications between the client and the cache server, our
TSCache prototype encodes all data points of a query in a JSON �le
by using cJSON library [5]. One change we made to the library is
that the original integer variables in cJSON structure is replaced
with long integer types to accommodate long timestamps. Since
JSON is widely supported in various language libraries on di�er-
ent platforms, using JSON �les for client-cache communications
ensures cross-system compatibility and allows our TSCache server
to support a diverse set of time-series databases.

We have also implemented a client manager, adding about 600
lines of Go code based on the In�uxDB client [22], to access the
cache server and the backend In�uxDB database server. To support
time range query and also maintain high scalability, we have imple-
mented our time-series cache API interface based on libMemcached
1.0.18 [8]. The added API support allows a client to deliver the time
range parameters to the cache server. We use the cgo method in
our Go client to call the C functions provided in libMemcached for
communications with the cache server.



Table 3: The characteristics of time-series datasets.
Name Tra�c BTC Pollution Sensor Trajectory

Sampl. interval (Sec) 300 24 300 30 300
Num. of �elds 9 7 8 8 5

Duration Jan. 2006⇠Nov. 2014 Jan. 1980⇠Sep. 2020 Jan. 2010⇠Oct. 2014 Jan. 1996⇠Apr. 2004 Oct. 2007⇠Feb. 2008
Num. of data points 288,467,566 141,619,759 215,201,210 257,654,957 389,319,566

Total size (GB) 21.0 13.5 20.7 20.2 20.9

5 EVALUATION
5.1 Experimental Setup
We have conducted a set of experiments to evaluate our caching
scheme. Our test platform includes a client, which generates time-
series data requests, a TSCache server, which serves data cache
requests, and an In�uxDB server with default settings, which serves
as the backend time-series database.

System setup. Our experiments are performed on three Lenovo
TS440 ThinkServers with 64-bit Ubuntu 18.04 LTS systems. Each
server is con�gured with a 4-core Intel Xeon E3-1266 3.3-GHz
processor, 12 GB memory, and a 7,200 RPM 1-TB Western Digital
hard drive. The cache server is equipped with a 400-GB Intel 750
PCIe �ash SSD. The SSD device is directly controlled by the cache
manager with no �le system. All read and write operations are
executed in direct_io mode to bypass the OS page cache. In the
database server, a separate 7,200 RPM 2-TB Seagate hard drive is
used to host an In�uxDB 1.1.1 database as the backend to avoid the
interference with the system drive. The three servers are connected
in a 10-Gbps Ethernet network.

Datasets. Five real-world time-series datasets are used for syn-
thesizing realistic time-series data in our experiments. Tra�c [14]
is a collection of vehicle tra�c data in the city of Aarhus, Denmark
over a period of six months. BTC [16] records Bitcoin transaction in-
formation between a buyer and a seller, covering a duration of over
1 year. Pollution [13] is a collection of air pollution measurements
that are generated based on the Air Pollution Index [9]. Sensor [4]
is collected from 54 sensors deployed at the Intel Berkeley Research
Lab. Trajectory [75, 76] is a sample of T-Drive trajectory dataset,
which contains one-week trajectories of 10,357 taxis. The original
datasets are relatively small. In order to fully exercise our system,
we synthesize larger datasets by repeating each original dataset
multiple times to cover a longer duration, and the original sampling
rate, �elds, etc. remain unchanged. More details are in Table 3.

Workloads. We use time-series benchmark YCSB-TS [7] to gen-
erate queries with di�erent time ranges for our experiments. Each
query has a time range [time_start, time_end] following Latest
distribution. The time range length of each query follows Zip�an
distribution between maxscanlength and minscanlength as de-
�ned in con�guration. All queries excluding the time range part
are used as keys for caching, following Zip�an distribution.

We con�gure a Full workload, the queries of which have time
range varying from one minute to one week, representing a typical
use case in practice. The average request size is 15.11 KB, 13.68 KB,
15.15 KB, 10.12 KB, and 24.77 KB for Tra�c, BTC, Pollution, Sensor,
and Trajectory, respectively. For each dataset, we generate 100,000
queries with variable time ranges following Zip�an distribution as
de�ned in YCSB-TS. We use this workload for our experiments
in overall comparison and component studies. For comparison

with Fatcache, we also con�gure three extra workloads to request
time-series data in di�erent time ranges (see Section 5.2). In our
experiments, we �nd that an excessively large number of clients
can overload the server in the database-only case. We use 64 client
threads to run the workloads, which allows us to fully exercise the
system without over-saturating it. The cache size, unless otherwise
speci�ed, is set to 10% of the workload’s dataset size.

5.2 Overall Comparison
In this section, we show the overall performance of TSCache for
speeding up queries using a set of time-series data workloads. We
measure the performance using three key metrics, hit ratio, band-
width, and latency. To ensure each experiment begins at the same
state, we �rst create a database and load data points into the data-
base, and in each run, we start with the same loaded database.

We compare TSCache with three other system solutions. (1)
Single database server. Our baseline case is a non-caching, database-
only system which runs a single In�uxDB server, denoted as Single-
DB. (2) Two database servers. TSCache uses an additional cache
server. For fair comparison, we also con�gure a two-server database-
only system, in which two identical database servers are deployed
to share the workload of incoming queries in a round-robin manner,
denoted as Dual-DB. For the two database-only systems, we also
con�gure an SSD-based setup, denoted as Single-DB-SSD and Dual-
DB-SSD, respectively, for studying the e�ect of storage devices. (3)
General-purpose cache. To compare with a general-purpose caching
solution, we have implemented a simple time-series cache based on
Twitter’s Fatcache [10], denoted as Fatcache. The time-series data
stream is divided into chunks using �xed-size time units, similar
to prior work [71]. Each chunk is stored in cache as an individual
caching unit indexed by its query and time range.

Overall comparison. Figure 9 shows the overall performance
of the four system solutions. Compared to the two database-only
systems, TSCache achieves the best overall performance across all
the �ve workloads. By caching only 10% of the dataset, TSCache
improves the bandwidth by a factor of 2.7–6.7 and reduces the
average latency by 63.6%–84.2% than Single-DB. If comparing with
Dual-DB, the two-server setup, TSCache increases the bandwidth
by a factor of 1.7–3.4 and reduces the latency by 42.3%–68.6%.

TSCache is also much more e�cient than simply adopting a
general-purpose cache. In this test, we use a 4-hour time unit to
chunk time-series data in Fatcache. In Figure 9(a), we can see that
TSCache achieves a signi�cantly higher hit ratio than Fatcache.
TSCache achieves a hit ratio of 88%–92.1% under the �ve workloads,
which is an increase of 30.8–59.9 percentage points (p.p.) than
Fatcache. As a result, TSCache improves the bandwidth by a factor
of 1.4–3 and reduces the average latency by 22%–66.9%.

TSCache vs. Fatcache. To understand the performance gains
in more details, we further compare TSCache with Fatcache using
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Figure 9: Hit ratio, bandwidth, and latency comparison between di�erent system solutions under �ve data workloads.
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Figure 10: Hit ratio, bandwidth, and latency comparison between Fatcache and TSCache under Trajectory data workload.

three special workloads on Trajectory dataset, Small, Medium, and
Large, which request time-series data in a time range of 1 minute
to 1 hour, 1 hour to 1 day, and 1 day to 1 week, respectively. The
average request size is 2.28 KB, 58.82 KB, and 348.91 KB for Small,
Medium, and Large workloads, respectively. We also con�gure four
time unit sizes, from 0.5 hour to 4 hours, for chunking time-series
data in Fatcache. In general, the more �ne-grained chunking is, the
higher hit ratio but also higher overhead would be.

As shown in Figure 10, under Small workload with Trajectory
dataset, TSCache achieves a hit ratio 22.2–86.9 p.p. higher than
Fatcache, improving the bandwidth by a factor of 3–6.5 and reducing
the latency by 70.6%–84.1%. For Fatcache, small requests cannot
bene�t from cache due to the �xed-size chunking. For chunking
in 2-hour units (Fatcache-2h) and 4-hour units (Fatcache-4h), the
hit ratios even drop to zero. Under Medium workload, although
the hit ratio of TSCache is 8.5 p.p lower than the best Fatcache
con�guration (Fatcache-0.5h), it achieves comparable bandwidth
and latency. Fatcache gains more partial hits, but due to the request
splitting, it does not translate into observable performance bene�ts.
This e�ect is more evident with Large workload. Although the
more partial hits in Fatcache bring 5.2–6.6 p.p. higher hit ratios
than TSCache, the bandwidth of TSCache is 3%–50.8% higher than
Fatcache and the latency is 2.9%–34.6% lower. It is mainly because
Fatcache has to split a large time range query into many small
ones, which incurs severe I/O ampli�cation. In fact, the number
of requests is ampli�ed by 21.5 times for Fatcache-0.5h, which
overloads the servers. This result clearly shows that simply using
general-purpose caching is ine�cient for time-series data.

HDD vs. SSD. We have also con�gured an SSD-based setup
for the two database-only systems and compare with TSCache. As
shown in Figure 9, using SSD provides limited performance bene�ts
for the two database-only systems, improving the bandwidth by up
to 41.1%. TSCache outperforms them both by a factor of 1.4–4.8. It is
mainly because In�uxDB is designed for large-capacity storage and
not optimized for SSD. It also applies aggressive data compression
for space saving, which diminishes the impact of storage in overall

performance. TSCache, in contrast, is tailored to SSD’s properties,
such as creating parallel I/Os, large and sequential writes, etc., and
it also caches data in their original, uncompressed format, which
leads to better performance. Further considering the cost issues,
holding the entire time-series dataset in SSD would be an expensive
and ine�cient solution in practice.

Performance vs. cache size. We also measure the performance
e�ect of cache sizes in Figure 11. We con�gure the cache size from
4% to 10% of the workload’s dataset size. As the cache size increases,
the bandwidth and hit ratio also increase, and the latency decreases.
In particular, as we enlarge the cache size, TSCache sees an increase
of hit ratio by 23.7–48 p.p., which in turn leads to the bandwidth
increase by a factor of 1.6–2.4 and the latency decrease by 34.2%–
57.6%, which clearly shows the e�cacy of the cache system.

5.3 Scalability
Scalability is important for handling an increasing amount of time-
series data queries. As shown in Figure 12, as we increase the
number of clients from 1 to 64, the overall bandwidth increases
by a factor of 6.9–9.1 under the �ve workloads. Since we can run
multiple queries in parallel, it allows us to fully utilize the system
resources, such as the rich internal parallelism of �ash SSD [44, 47],
and thus reduce the total execution time to �nish the same amount
of query jobs. On the other hand, the average latency also increases
by a factor of 7–9.4 due to the increased delay among queries.

5.4 Slab Management
TSCache designs a unique slab structure for time-series data man-
agement. In this section, we evaluate two key components, time
markers and parallelized I/O operations.

5.4.1 The E�ect of Time Markers. In order to accelerate the in-slab
data lookup, TSCache includes a special structure in slab to mark
the timestamp of the �rst data point appearing in each block of
its data part. The purpose is to skip irrelevant blocks and quickly
locate the target time range without reading the entire slab. This
experiment compares TSCache performance with and without time
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Figure 11: Hit ratio, bandwidth, and latency of TSCache with di�erent cache sizes.
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Figure 13: Performance e�ect of time marker interval.
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Figure 14: Performance of TSCache with multi-threading.

markers. We also study the impact of time marker interval (block
size) varying from 256 B, 1 KB, 4 KB, 16 KB, to 64 KB.

As shown in Figure 13, time markers substantially improve the
performance of all �ve workloads. Under Tra�c workload, for
example, enabling TSCache with a time marker interval of 4-KB
improves the bandwidth by a factor of 1.7 and reduces the latency by
42.4%. Other workloads show similar results. Without time markers,
we have to read the entire slab to look for the target time range,
which incurs unnecessary I/Os. In the experiments, we �nd that
TSCache without time markers can incur 16.4 times more I/Os in
terms of data amount than using 4 KB-interval time markers.

The setting of timemarker interval can a�ect performance. Using
4 KB-interval time markers, the bandwidth is improved by 16.1%–
27.9% and 18.5%–26.9% and the latency is reduced by 13.9%–21.4%
and 15.7%–21.6%, compared to setting the interval to 64 KB and
256 B. It indicates that either setting the interval too coarse- or
too �ne-grained is ine�cient. The former increases the amount
of unwanted data loading, while the latter increases the storage
demand for storing time markers in the header part of the slab.
Setting time markers at 4-KB interval is generally a proper choice.

5.4.2 Parallel Slab I/O Operations. In TSCache, each slab contains
only one �eld of data points, which creates opportunities for us
to �exibly retrieve data using multiple threads in parallel. In our
prototype, we create a thread pool to e�ciently allocate a thread to
read or write data for each �eld. As Figure 14 shows, the system
using parallel operations can improve the bandwidth by 5.2%–51.8%
and reduce the latency by 4.8%–34.3% under the �ve workloads,
compared to sequentially loading data in one thread.

5.5 Time-aware Caching Policy
TSCache adopts an adaptive two-level cache replacement. The cache
space is divided into two partitions. The lower-level partition man-
ages the majority data in the FIFO manner, while the upper-level
partition manages “hot spot” data using LRU replacement.

In order to illustrate how the caching policy of TSCache works,
we simulate a time-series data workload with “hot spots". We gen-
erate and mix two sets of queries in di�erent time ranges of Tra-
jectory dataset. The �rst set of queries accesses data points over
the complete time range from Oct. 2007 to Feb. 2008. Following
Latest distribution, accesses in this query set are mostly on new
data points. The other query set simulates hot-spot accesses on
relatively old data points, concentrated in the month of Oct. 2007.
We vary the ratio of queries to new and old data points from 8:1 to
1:8 to show how TSCache responds to di�erent workloads.

Figure 15 shows the results. We can see that TSCache outper-
forms both FIFO and LRU in all cases. Compared to FIFO, TSCache
achievesmuch better performance, and this performance gapwidens
as the portion of accesses to old data increases. In particular, at the
new/old ratio of 1:4 and 1:8, the hit ratios of TSCache are 14.2 p.p.
and 17.4 p.p. higher than FIFO, respectively, which in turn results
in a bandwidth increase by 37.8% and 59.1% and a latency reduction
by 27.8% and 37.5%. This result is unsurprising. FIFO evicts old
data �rst, disregarding its hotness. TSCache, in contrast, promotes
old but hot data into the LRU partition, which prevents premature
eviction of such hot-spot data from cache.

TSCache also performs better than LRU. LRU performs unsat-
isfactorily with mixed workloads, in which the new and old data
compete for the limited cache space. TSCache divides the cache
space into two separate partitions and turns the replacement into a
scheme with two-level priorities, which e�ectively protects the hot
data and reduces cache misses. Since each cache miss would incur
a query to the backend database, which involves heavy network
and storage I/O delays, removing such high-cost cache misses can
bring signi�cant performance gains. We can see that TSCache in-
creases the bandwidth by 20.2% and decreases the latency by 17.1%
compared to LRU at the new/old ratio of 1:1.
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Figure 15: Performance comparison of LRU, FIFO, and TSCache replacement algorithms under Trajectory data workload.

TSCache auto-tunes its LRU and FIFO partition sizes during
runtime. Figure 15(d) shows this process. Taking the workload with
a ratio of 1:8 for example, the initial LRU/FIFO partition size ratio
is 1:2. As cache replacement progresses, TSCache adapts to the
workload and gradually increases the LRU partition size to 73%,
which in e�ect gives more weight to the LRU-controlled partition,
allowing TSCache to accommodate more old but hot data.

5.6 Compaction
In order to improve cache space utilization, a compaction process
periodically runs in the background to remove duplicate data points.
To evaluate its e�ect, we make a comparison between TSCache
with disabled compaction, TSCache with normal compaction, and
TSCache with optimized compaction. The normal compaction com-
pacts slabs in the chronological order (i.e., from old to new), and
the optimized compaction uses the reverse order.

E�ect of compaction. Figure 16 shows the compaction perfor-
mance under Trajectory workload. We can see that compaction sig-
ni�cantly improves TSCache performance. In particular, TSCache
with normal compaction increases the cache hit ratio by 10.5–
36.3 p.p. across the �ve workloads. This is because compaction
removes duplicate data points and allows us to accommodate more
data in cache, which e�ectively improves the bandwidth by a factor
of 1.2–2.6 and reduces the latency by 18.5%–59.1%.

Though simple, our optimization for compaction is e�ective.
Due to the nature of time-series data, old data are more likely to be
evicted from cache soon. Compacting slabs in the reverse chronolog-
ical order (i.e., the new data �rst) avoids unnecessary compaction on
such data. With this simple optimization, the bandwidth is further
improved by 5.3%–13.2% compared to normal compaction.

Compaction triggers. TSCache initiates the compaction pro-
cess when the slab node list exceeds a certain length. Although a
low threshold setting minimizes duplicate data in cache, it incurs
high system overhead due to the more frequently triggered com-
paction. We vary the threshold from 2 slabs to 64 slabs to measure
the e�ect of di�erent settings for compaction.

Figure 17 shows that setting this threshold either too low or
too high is sub-optimal. With a low threshold setting, compaction
runs too early and too frequently, which eliminates redundant data
aggressively but incurs high interference to foreground queries. For
example, setting the threshold to 2 slabs improves the hit ratio by
only 1–3 p.p., compared to the setting of 16 slabs. However, this in-
crease of hit ratio does not translate into performance improvement.
In fact, the former’s bandwidth is 0.7%–17.7% lower than the latter.
In the meantime, if the threshold is set too high, the increase of data
redundancy in cache also hurts performance due to the reduced hit
ratio. For example, setting the threshold to 64 slabs decreases the

cache hit ratio by 5.1–11.4 p.p. compared to the setting of 16 slabs,
and the bandwidth decreases by 7.4%–20.7%.

Compaction overhead. We have also designed an experiment
to show the overhead of compaction. To exclude the impact of
caching e�ects, we �rst con�gure a su�ciently large cache capacity
to contain the entire dataset fully in cache. Since compaction also
brings bene�ts in keeping a short slab node list, in order to show the
worst-case overhead, we arbitrarily skip the �nal step of updating
the list structure after compaction. In other words, compaction in
this experiment brings no bene�t but only cost.

As shown in Figure 18, TSCache with aggressive compaction
(2 slabs) decreases the bandwidth by 10.8%–12.9% and increases the
latency by 12.1%–14.8%, compared to TSCache without compaction.
As the threshold setting increases to 32 slabs, the less frequent
compaction alleviates the bandwidth decrease and latency increase
to 1.9%–7.1% and 2.1%–7.7%, respectively. We should note that this
is an arti�cially created worst case. In experiments, we �nd that
even simply allowing compaction to update the slab node list can
o�set the overhead, performing better than no compaction.

6 RELATEDWORK
In recent years, time-series data has received high interest in both
academia and industry [2, 26, 29, 34, 39–41, 48, 49, 53, 57, 58, 60, 67,
72]. Here we discuss the prior works most related to this paper.

Most of the prior works are on time-series databases, which are
designed for di�erent purposes and emphases [15, 18, 19, 26, 29, 34,
41, 65, 69]. For example, time-series databases for data analytics (e.g.,
In�uxDB) focus on optimizing data management to improve data
ingestion and retrieval performance. Some time-series databases,
such as Gorilla [65], are designed for data monitoring and alerting,
which has a critical requirement on the response time. Some other
databases, such as Graphite [18], are designed for data graphing
and put more e�orts on data visualization.

Another set of prior works focuses on reducing the storage
overhead and increasing query performance by leveraging approxi-
mation methods, such as sampling and summarizing [33, 36, 37, 39,
49, 68]. The main purpose is to give applications quick responses
without retrieving the entire dataset. SummaryStore [39], for ex-
ample, is an approximate time-series data store for analytical and
machine learning workloads. It aggressively compacts data streams
with time-decayed summarizing based on the insight that most
analysis workloads favor recent data. Agarwal et al. [36] also pro-
pose a sampling-based method to provide close-enough answers
for approximate queries with estimated error bars. Cui et al. [49]
propose to use time-series speci�c data transformations from sim-
ple sampling techniques to wavelet transformations to trade o� the



 0

 20

 40

 60

 80

 100

Traffic BTC Pollution Sensor Trajectory

H
it 

R
at

io
 (%

)

Disabled Normal Optimized

 0

 10

 20

 30

 40

Traffic BTC Pollution Sensor Trajectory

B
a
n
d

w
id

th
 (

M
B

/s
e
c)

Disabled Normal Optimized

 0

 20

 40

 60

 80

 100

 120

 140

Traffic BTC Pollution Sensor Trajectory

La
te

nc
y 

(m
s)

Disabled Normal Optimized

Figure 16: Hit ratio, bandwidth, and latency comparison with disabled, normal, and optimized compaction in TSCache.
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Figure 18: Compaction overhead with di�erent thresholds.

bounded query inaccuracy for lower latency. BlinkDB [37] also al-
lows users to run queries on data samples, which can be adaptively
adjusted to make a dynamic tradeo� between accuracy and latency.

Another focus in prior works is to reduce query latency by hold-
ing data in memory [33, 35, 50, 56, 65]. To accelerate data queries
for real-time analysis, Scuba [33] automatically expires data (e.g.,
only keep the recent data within 1⇠2 weeks or hours) to hold the
most recent data in memory. Similarly, Gorilla [65] only stores the
data during past 26 hours in memory. Shark [50] is a distributed in-
memory data analysis system optimized for query speed based on
temporal locality. Monarch [34] stores all data in memory to satisfy
the needs for high-performance data monitoring and alerting.

Caching has been studied for improving time-series data storage
system performance. Wangthammang et al. [71] use a �xed time
unit to split data stream into multiple chunks, and store each chunk
in Memcached for accelerating queries. Druid [73], a distributed
time-series database, also splits data queries into segments to cache
in local heap memory or external Memcached. Our experiments
show that such an arbitrary chunking method can cause high over-
head and ine�cient caching. Cache replacement is a heavily stud-
ied topic. General-purpose caching algorithms, such as LIRS [55],
ARC [62] and CLOCK-Pro [54], are designed for workloads in gen-
eral computing environments. In contrast, our two-level caching
policy is speci�cally tailored to time-series data. Our experimental

results also show that it is important to exploit the unique properties
of time-series data workloads in the cache system design.

Data compression has also been studied as an e�ective method to
improve query performance on time-series data. Yu et al. [74] pro-
pose to use reinforcement learning to handle dynamic data patterns
thereby adjusting the compression scheme at a �ne granularity, thus
increasing compression ratio and decreasing overhead. Gorilla [65]
adopts delta-of-delta compression on timestamps and XOR com-
pression on data value for memory e�ciency. Sprintz [42] focuses
on optimizing compression on integers for time-series data points.
Succinct [35] proposes an e�cient Compressed Su�x Arrays tech-
nique to accommodate more compressed data in memory, and it
can execute queries directly on compressed data representation,
thereby avoiding the overhead of decompressing data.

Compared to these prior works, TSCache focuses on providing
an e�ective and e�cient �ash-based caching solution to enhance
user experience with time-series databases. Our experiments and
studies show that with careful design, this solution can provide
large-capacity, high-speed caching services at low cost.

7 CONCLUSION
In this paper, we present a highly e�cient �ash-based caching
solution, called TSCache, to accelerate database queries for time-
series data workloads. We have designed a set of optimization
schemes by exploiting the unique properties of time-series data.
We have developed a prototype based on Twitter’s Fatcache. Our
experimental results demonstrate the e�ectiveness and e�ciency
of the proposed cache system design.
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