
FLYOS: Integrated Modular Avionics for

Autonomous Multicopters

Anam Farrukh

Boston University

afarrukh@bu.edu

Richard West

Boston University

richwest@bu.edu

Abstract— Autonomous multicopters often feature federated
architectures, which incur relatively high communication costs
between separate hardware components. These costs limit the
ability to react quickly to new mission objectives. Additionally,
federated architectures are not easily upgraded without intro-
ducing new hardware that impacts size, weight, power and cost
(SWaP-C) constraints. In turn, such constraints restrict the use
of redundant hardware to handle faults.

In response to these challenges, we propose FlyOS, an Inte-
grated Modular Avionics (IMA) approach to consolidate mixed-
criticality flight functions in software on heterogeneous multicore
aerial platforms. FlyOS is based on a separation kernel that stati-
cally partitions resources among virtualized sandboxed OSes. We
present a dual-sandbox prototype configuration, where timing-
and safety-critical flight control tasks execute in a real-time OS
alongside mission-critical vision-based navigation tasks in a Linux
sandbox. Low latency shared memory communication allows
flight commands and data to be relayed in real-time between
sandboxes. A hypervisor-based fault-tolerance mechanism is also
deployed to ensure failover flight control in case of critical
function or timing failures. We validate FlyOS’s performance
and showcase its benefits when compared against traditional
architectures in terms of predictable, extensible and efficient
flight control.

Index Terms—integrated modular avionics, autonomous mul-
ticopters, partitioning hypervisor, real-time flight control, fault-
tolerance

I. INTRODUCTION

Multicopters have traditionally adopted a federated architec-

ture [43,56], which isolates and distributes flight management

functions of different criticalities across separate hardware

components [13,20]. Relatively powerful multicore CPUs are

managed by a general purpose operating system (GPOS) such

as Linux, and execute low time-sensitivity mission tasks. At

the same time, an embedded microcontroller, or digital signal

processor (DSP), processes the critical low-level flight control

stack, often referred to as the autopilot. Connected locally via

a slow serial (UART) interface, the loosely-coupled framework

suffers from high latency and limited bandwidth communica-

tion when transferring commands between the two subsystems.

This severely restricts the throughput and responsiveness of

autonomous mission tasks, leading to coarse-grained drone

control.

In order to ensure fault-tolerance against critical functional

failures, the combined hardware and software stack of the

low-level flight controller requires redundancy, which quickly

Fig. 1: FlyOS dual-sandbox configuration: Linux + Quest.
∗For the purposes of this work, we identify ring -1 to be the root mode

software layer, which sits between the hardware and non-root guest.

becomes prohibitive given the limited size, weight, power

and cost (SWaP-C) requirements of small-scale (< 10kg)

UAVs [28]. Additionally, constantly evolving autopilot fea-

tures and functionality updates often render the resource

constrained controller architecture obsolete, adding to hard-

ware replacement and maintenance costs over time. Lack of

flexibility in customization of autopilot stacks thus restricts a

wide-spread deployment of multicopters across the connected

aerial infrastructure.

In this work, we present FlyOS, which challenges the

traditional federated approach to implement a predictable, safe

and extensible flight management system. FlyOS takes inspi-

ration from Integrated Modular Avionics (IMA) [84,85] and

ARINC-653 (Avionics Application Software Standard Inter-

face) [26,60] partitioning standard for avionic functions. These

design guidelines envision consolidation of mixed-criticality

flight functions on a centralized hardware platform, while

ensuring temporal and spatial isolation of critical software

components from execution-time interference.

FlyOS employs a separation kernel [72] to map two or

more guest operating systems to virtualized sandbox domains.

Virtualization technologies, featured by modern heterogeneous

platforms, are used to statically partition hardware resources

(processing cores, memory and I/O devices) and software

components between separate execution environments. The

individual system partitions operate together as a tightly cou-

pled distributed system-on-a-chip. Explicitly defined shared

memory communication channels set up low-latency and high

bandwidth control and data paths between sandboxes. Isolation

between guest domains allow for safe, secure and predictable

consolidation of functional avionic components.

FlyOS enables software redundancy to meet SWAP-C con-

straints of small-scale UAVs. The system aims to overcome

IMA’s inherent limitation to fault containment by provid-

ing strict temporal and spatial partitioning between guests.

FlyOS therefore protects against fault propagation across guest

boundaries avoiding system-wide failure and corruption.

For our prototype implementation, shown in Fig. 1, we

map the distributed companion architecture of traditional mul-

ticopter systems entirely in software using a dual-sandbox

approach. Timing and safety critical flight control modules

are implemented as latency-sensitive threads in a lightweight

real-time OS (Quest [34]), alongside mission control tasks in

Yocto Linux. FlyOS works on the principle of partitioning

hypervisors [55,67,73,86] whereby each guest directly man-

ages its own set of allocated resources without any run-time

intervention of the most trusted compute base (TCB) of the

hypervisor. It differs in its partitioning scheme compared to

the state-of-the-art ARINC-653 extended architectures, which

predominantly employ consolidating hypervisors [32,81,82].

These systems rely on the hypervisor for management of

shared resources on behalf of the hosted guests. Hypervisor-

based shared resource management potentially adds undue

overheads, which impact predictability and determinism of

critical flight control.

In this work, we refactor a performance-critical flight

controller to execute with real-time guarantees on Quest. A

camera-based vision detection and tracking subsystem is then

implemented in a Linux sandbox as part of our mission control

functionality (e.g., to represent a search and rescue objec-

tive). We also implement a hypervisor-based fault-recovery

subsystem for fail-safe flight control in the presence of critical

actuation failures.

Contributions: In this paper, we: 1) lay down the foundation

for next-generation flight architectures designed around the

principle of integrated modular avionics for multicopters,

2) describe FlyOS’s separation kernel in the context of a

dual-sandbox implementation co-hosting Linux with Quest,

3) implement a timing- and safety-critical flight stack with

a low-level attitude (3D orientation) controller by retrofitting

a well-known autopilot as a real-time application, 4) introduce

high-level mission-critical autonomous navigation control, and

5) implement online fault-tolerance for time-bounded activa-

tion of failover flight control.

We evaluate FlyOS’s performance with real-world experi-

ments on a quadcopter. We also compare inter-sandbox com-

munication overheads against a typical companion-board ar-

chitecture of a popular drone system manufactured by Intel®.

FlyOS opens opportunities for system-wide optimizations, re-

configurability and improved resource usage, while reducing

size, weight and power requirements of the underlying hard-

ware.

The following section describes the FlyOS model, by mo-

tivating our design goals, followed by an overview of the

system framework. Section III presents an extensive evaluation

of flight performance with hardware-in-the-loop experiments.

Related work is described in Section IV, while conclusions

and future work are discussed in Section V.

II. FLYOS: A FLIGHT MANAGEMENT FRAMEWORK

A. Motivation

FlyOS is designed around a characteristic set of goals

for functional safety, timing predictability and efficiency of

flight control for multi-rotor UAVs. As such, this work targets

timing- and safety-criticality [64] dimensions of the mixed-

criticality architecture design-space for drone autopilots. We

define safety-criticality as a measure of functional importance

of a software component to the overall flight control operation.

Timing criticality on the other hand is concerned with guar-

anteeing real-time flight control responses within prescribed

temporal bounds.

Orthogonal to this work, we define a third dimension of

security criticality [65,66] for tasks and system components,

which directly concerns policies related to the preservation of

information integrity and confidentiality. Although an imple-

mentation and evaluation of such policies is beyond the scope

of this paper, we note that the FlyOS architecture lends itself

to support security capabilities such as gateway services at

communication interfaces between sandboxed domains. This

allows checks to be enforced that mitigate threats from ma-

licious attacks. Carefully designed hypervisor-based security

policies [50,79] allow FlyOS to monitor and validate flow of

information between sandboxes such as mission commands.

Notwithstanding, we focus our architectural objectives on

the following principles of design:

1) Isolation. Software consolidation based on the IMA con-

cept and ARINC-653 standard requires temporal and spatial

isolation between avionic functions that are critical for cor-

rect flight operation from other less-critical and non-essential

services. FlyOS employs a novel partitioning approach in

this context to allocate hardware resources of a centralized

platform to virtualized system-level partitions. The goal is to

deploy separate guest environments for locally-hosted tasks of

different criticalities. Details of our design are presented in

Section II-B.

2) Extensibility. Low-criticality sandboxes support re-

configurable and adaptable autonomous mission applications,

which reduces redeployment costs. Similarly one or more

real-time sandboxes allow hot-plugging of flight controllers

tuned to different flight characteristics, e.g., for high

maneuverability versus greater stability.

3) Enhanced Functionality. FlyOS targets hardware platforms

with multiple cores, advanced sensors, high-speed networks,

buses, and device interfaces (e.g., Camera Serial Interface),

which are often unavailable in simpler autopilot platforms.

FlyOS leverages the capabilities of multicore platforms with

hardware virtualization support to build sophisticated flight

management software that would otherwise require separate

hardware components, increasing the size, weight, power and

cost overheads.

4) Fault Tolerance. FlyOS’s sandboxed design, by virtue of

partitioning, inherits fault-containment capabilities inherent to

federated or hardware-distributed architectures, which operate

on the principle of separation of concerns. FlyOS’s thin

hypervisor layer has a minimal memory foot-print and resides

at the most privileged protection domain within each sand-

box. The hypervisor (a.k.a., virtual machine monitor (VMM))

implements a run-time health-monitoring subsystem within its

trusted compute base. This allows functional and timing related

faults within a guest to be detected.

FlyOS’s integrated and modular nature opens opportunities

to incorporate system-wide redundancy at the software level.

However, FlyOS does not address hardware fault redundancy

due to SWaP-C restrictions.

B. System Design

The separation kernel approach enables temporal and spa-

tial isolation of multiple guest operating systems {kernel +

user space} by encapsulating their run-time execution within

distinct sandboxed domains or system-level partitions. To this

end, FlyOS leverages hardware-virtualization to implement a

partitioning hypervisor, which statically splits the hardware

resources i.e. CPU cores, regions of memory and I/O devices

amongst guest sandboxes. Each guest kernel directly manages

an allocated set of resources at system run-time without

intervention of the hypervisor (VMM). Unlike traditional

consolidating hypervisors such as Xen [27] and KVM [49], the

VMM is not involved in any run-time resource management on

behalf of the guest and is therefore removed from the normal

execution control path. This keeps the trusted code base of the

VMM to a bare minimum, which is < 4KB in size.

Each sandbox is isolated on mutually exclusive set of cores

within the machine. Hardware-managed shadow (extended)

page tables securely isolate each operating system image

in non-overlapping regions of physical memory and manage

guest physical to host (or machine) physical memory transla-

tions. Similarly, sandboxes are given direct access to mutually

exclusive subsets of I/O devices. Interrupts are delivered

directly to the guest kernel to which a device is explicitly

assigned. This avoids the run-time overhead of VMM traps

for individual device management.

A performance monitoring subsystem employing hardware

counters provides FlyOS with the ability to predict last-level

shared cache occupancy [87,88]. Such estimates are then used

by static page coloring techniques to partition shared caches

between sandboxes [52,91]. Consequently, a guest kernel is

isolated from any temporal and spatial interference in its

execution by another guest.

Explicit communication between pairs of guests is accom-

plished via secure, low-latency and high-bandwidth shared

memory channels [58,63,78] that employ either asyn-

chronous [77] or ring-buffer (semi-synchronous) structural se-

mantics. A standard inter-partition communication library [78]

is employed for this purpose. Mixed-criticality task pipelines

are then able to span sandbox domains [42], to sustain a

diverse set of avionic functions under a common flight objec-

tive. FlyOS therefore allows a scalable and capability enriched

flight management system to be realized based on the design

objectives in Section II-A.

1) The Prototype: Fig. 1 presents our proof-of-concept

implementation in a dual-sandbox configuration. The Quest

real-time operating system (RTOS) hosts timing- and safety-

critical flight control functionality alongside a legacy Yocto

Linux system for high-level mission control. FlyOS’s sepa-

ration kernel architecture allows a mutually beneficial symbi-

otic relationship to be established between the two isolated

sandboxes: the light-weight RTOS gains access to the pre-

existing third-party libraries, run-time frameworks, toolchains,

device-drivers and various other legacy services, while the

general-purpose system is empowered with hard real-time

flight execution capabilities.

FlyOS’s execution begins with the Quest RTOS booting

up as a standalone bare-metal system. The bootstrapping pro-

cess proceeds to activate the hypervisor monitor logic baked

within the core image. On instantiation, the monitor partitions

hardware resources among the two guest domains based on

boot-time configuration parameters. A snapshot instance of

the Quest kernel along with the minimal monitor code base

is replicated in a distinct non-overlapping physical memory

region for the Linux guest sandbox. The kernel copy is

then replaced with the Yocto Linux binary image, which is

thereafter launched on its pre-assigned bootstrap processor.

Depending on the sandbox configuration, one instance of

Quest kernel + VMM logic acts as a bootloader for each

new guest OS. Both kernels are then allowed to independently

proceed with their respective normal boot procedure eventually

transitioning into user-space. This marks the completion of

each sandbox’s initialization.

Our implementation targets multicore x86-based embedded

flight computers with hardware-virtualization (VT-x) exten-

sions [24]. For the current work, we utilize the quad-core Aero

Compute Flight Hardware by Intel® [9]. Processing cores and

I/O devices of the platform are asymmetrically distributed

between the two sandboxes.

FlyOS allows a configurable number of CPU cores to be

partitioned among guests. For our example implementation,

Linux is assigned one physical core. This greatly simplifies

the use of Linux’s SCHED DEADLINE scheduling policy, and

allows relatively easy enforcement of service guarantees for

mission tasks with the included PREEMPT-RT patch. In con-

trast, Quest is configured to work in SMP mode and uses a

round-robin load-balancer to statically assign real-time flight

control tasks to the three remaining processing cores.

Our flight control software runs as a multithreaded applica-

tion for Quest, taking advantage of the parallelism supported

by this core assignment. Spare CPU capacity available to the

RTOS supports the addition of future timing critical tasks.

To ensure timing predictability for concurrently executing

tasks, techniques are employed that handle both cache and

bus contention [92].

In FlyOS, the inertial measurement unit (IMU), motors,

electronic speed controllers, and serial debugging ports are

exclusively allocated to Quest. In contrast, Linux is given

access to the USB host controller for the camera interface

discussed in Section II-C2.

Linux and Quest independently manage their assigned re-

sources using their respective guest scheduling policies in

isolated execution environments. The memory resident mon-

itor code in each kernel is only invoked at run-time, to set

up inter-sandbox communication channels and handle guest

preemption timers. Such a timer is enabled for the most

critical Quest sandbox, as part of FlyOS’s hypervisor-level

fault-detection mechanism discussed in Section II-C3.

C. Avionic Capabilities

1) Real-Time Flight Controller: For the example flight

controller implementation, we take inspiration from our team’s

previous work [30,39] on the popular open-source autopilot:

Cleanflight [5]. Cleanflight’s vanilla flight control features a

minimalist software stack targeted towards flight efficiency

and functional robustness, reliability and performance. Control

tasks are tightly coupled in a linear closed feedback loop,

which employs sensor data processing with attitude estimation

to regulate motor speeds for tracking a target trajectory [39].

Differential angular velocities of the motors generate net

rotational torques to adjust the roll, pitch and yaw attitude

about the center-of-gravity of the multicopter.

Cleanflight’s responsive attitude maneuverability gives it a

competitive edge over other open-source autopilots [2,4,8,14].

However, it is specifically tailored to execute as firmware on

resource-constrained microcontrollers. Low-frequency single-

core processing with limited memory restricts Cleanflight’s

ability to implement complex controllers (e.g. model predictive

control) or autonomous obstacle avoidance or object tracking

missions.

We empower Cleanflight’s performance-critical flight con-

trol loop with autonomous functionality by retrofitting the

native tasks to execute as real-time user-space threads within

the Quest sandbox (Fig. 1). The main control components are

identified and subsequently classified into flight safety and

mission critical task-brackets based on their importance to

flight control functionality and corresponding consequences

on operational failure.

Table I lists each required Cleanflight task, τi, with budget,

Ci, and period Ti. These tasks have hard deadlines equal

to their corresponding periods. Sensor (IMU) and actuator

(MOTOR) tasks are bound to kernel-level threads that handle

real-time I/O. These threads read gyroscope and accelerometer

data, and write pulse-width modulation (PWM) commands to

the motors, respectively. Sensing, processing and actuation

tasks form pipelines [30,41], along which data flows from

inputs to outputs.

TABLE I: List of essential flight tasks in FlyOS.

Quest uses a variant of rate-monotonic scheduling

(RMS) [29] algorithm by defining a virtual CPU (vCPU) ab-

straction as a schedulable entity [34] on top of a physical CPU

(pCPU). Threads and their corresponding pipe wrappers are

directly mapped to vCPUs, which are then mapped to pCPUs.

This two-level scheduling hierarchy guarantees each task τi to

execute for Ci time units every Ti when runnable [57].

In accordance with RMS, vCPUs are assigned static priori-

ties based on their time periods: highest priority is given to the

smallest time period and vice versa. Quest executes interrupt

service routines in a separate real-time thread context with

a time period inherited from its user-level counterpart. This

allows I/O interrupts to be handled at the correct priority of the

task issuing the request thus enabling real-time management

and deterministic accounting of CPU clock cycles for each de-

vice interrupt. The scheduling subsystem therefore guarantees

temporal isolation between flight control threads.

Fig. 2 shows the distribution of control functionality be-

tween Yocto Linux and Quest in our dual-sandbox setup.

Timing and safety-critical control threads are allocated to

Quest while mission-critical functionality is mainly ported to

Linux. For RX (Table I), a setpoint generator (Process-1) in

Linux communicates across an asynchronous shared memory

pipe-buffer with a light-weight thread in the RTOS acting

Fig. 2: FlyOS’s software-distributed flight-control model with threaded tasks.

as a receiver gateway. Similarly, a background logger thread

(BLACKBOX) receives flight data (Process-2) in Linux from the

corresponding sender-stub in Quest. A FIFO circular-buffer

transfers the time-ordered history of flight logs, which are

saved to permanent file storage in Linux.

Asynchronous pipe buffers are implemented using Simp-

son’s four-slot algorithm [71,77], which ensures data freshness

and integrity. The control loop needs to keep track of the

most recently sampled sensor values and target trajectory

updates. Pipe-buffers therefore allow accurate data-flow and

low-latency attitude control in response to the most up-to-date

current and required state of the drone.

We identify two task pipelines within the main flight

control loop:1) intra-sandbox Pipe-1: IMU → MOTOR and

2) inter-sandbox Pipe-2: RX → MOTOR. Pipe-1 comprises

1) IMU sampling and processing, 2) sensor fusion based on

a complementary-filter [74,90] for ATTITUDE estimation, 3) a

PID+MIXER that transforms the error between actual and

target attitudes into control signals mixed with throttle, and

4) a MOTOR thread that generates PWM waveforms for the

multicopter’s motors.

Pipe-2 involves the mission task in Linux (Process-1), which

computes target attitude and thrust set-points based on the

application’s flight objective. The reference commands are

then sent to the gateway receiver (RX), which forwards the

roll, pitch and yaw targets along the feed-forward path of the

loop, shared with Pipe-1 (refer to Fig. 2). FlyOS envisions a

criticality-aware distribution of tasks among guest domains.

Task pipelines are thus composed on the basis of each task’s

role and importance in the perception, planning and control of

the drone.

2) Autonomous Vision Subsystem: We implement vision

navigation in Linux for our mission application. Linux sup-

ports a rich collection of USB video-class drivers for interfac-

ing with hardware cameras. Corresponding libraries and APIs

provided by Video4Linux (V4L), OpenCV and CUDA toolk-

its enable efficient development and testing of autonomous

perception applications using state-of-the-art image capture

technology.

For autonomous mission control, we design a simple face-

image detection and tracking application that relies on libre-

alsense [11] and OpenCV for capturing and processing camera

images. We utilize a USB3.0 Intel RealSense (R200) [15]

camera module, which features a 3D imaging system that is

capable of providing color and depth video streams. Fig. 3

depicts individual task components of our vision framework

along with the intrinsic characteristics of the R200 camera.

Algorithm 1 details our application loop from image frame

capture to generation and communication of mission control

commands (setpoints) to the flight controller executing in

Quest.

OpenCV supports a ready-to-use face detection algorithm

based on the Haar-feature cascade classifier [83] approach.

Known for its speed and simplicity, its one of the most popular

algorithms still used today for frontal-face detection with high

Fig. 3: FlyOS’s vision subsystem (Process-1) with the RealSense R200
Camera.

accuracy and image-scale invariance. We utilize OpenCV’s

built-in repository of pre-trained parameters for the cascade

classifier composed of 22 total stages and a sliding window of

20x20 pixels (px). An integrated classifier function (Line 10)

detects faces in each frame captured by the color camera at

run-time and returns a bounding rectangle.

We calculate the center coordinates (Line 12) of the face

to determine an offset distance from the frame center in 2D

pixel coordinates. These are forwarded to a linear algorithm,

which computes the required direction of movement for the

multicopter as well as the target set-points for the pitch and

yaw rotational axes to minimize the offset and track the

detected face (Lines 13–14).

Our algorithm enables configuration of rate of

change of set-point commands in each axis of rotation

(rate {dP itch, dY aw}). This allows us to affect the

sensitivity and precision of mission control per unit of error

distance, which in turn impacts responsiveness of flight

Algorithm 1 Image Detection and Tracking

Require: Haar-classier pre-trained XML file containing stage thresholds and
filter weights: haarcascades/haarcascade frontalface alt.xml

Require: < cv :: Rect > faces /*array to store detected face(s)*/
Require: rate {dP itch, dY aw} /*rates of change of command*/
1: async chan = create shared memory (ASYNC TYPE)
2: ctx = r200 create context()
3: r200 enable stream(ctx, {COLOR, DEPTH})
4: while true do

5: /* Capture and retrieve image frame */
6: data = get raw frame data() /*for enabled image streams*/
7: frame = to openCV matrix(data) /*frame vector to matrix*/

8: {px0, py0} = { frame.cols

2
,
frame.rows

2
} /*frame center*/

9: /* OpenCV: detect face */
10: cv::CascadeClassifier.detectMultiScale(frame,faces,

min=200×200,max=1000×1000)
11: /* Estimate distance offset and generate command */

12: {fxc, fyc} =
faces[0].width

2
,
faces[0].height

2
/*1st face’s center*/

13: dPitch = rate dP itch×(fyc - py0) /*pitch-up distance*/
14: dYaw = rate dY aw×(fxc - px0) /*yaw-right distance*/
15: /* command in correct format */
16: commandData[Roll,Pitch,Yaw, Throttle] = F({0, dPitch, dYaw, 0})

/*F(command) is the conversion function specific to the flight controller*/
17: /* Write to shared memory */
18: write shared memory(async chan , commanData)
19: end while

control to target commands. Data is converted to a compatible

RX format (Line 16) for the gateway thread in Quest and sent

across shared memory (Line 18). For the Cleanflight autopilot,

set-point values are packaged as SBUS [68] protocol frames

before transfer.

We use the depth stream to de-project the offset distance in

pixels into a real-world displacement of the face-image from

the camera center, in meters. This allows us to convert between

different coordinate systems, and log the multicopter’s angular

movement against the ground truth trajectory of the image.

SCHED DEADLINE is used to schedule the vision process

allowing mission commands to be generated with sufficient

predictability. Our design also caters for face occlusions for

a limited time-horizon. We configure a threshold time-out

value before the mission is aborted. This allows configurable

tolerance against occasional occlusions.

We note that this work does not focus on performance

comparisons between different real-time face-detection frame-

works. Instead the OpenCV implementation serves as a model

example of showcasing the autonomous capability and practi-

cal feasibility of FlyOS’s architecture. Mission tasks in Linux

are able to effectively communicate commands to the flight

controller tasks over a low latency inter-sandbox channel inter-

face. FlyOS therefore ensures predictable autonomous control

with bounded worst-case end-to-end latencies. Section III

validates FlyOS’s autonomous tracking capability.

3) Fault-Tolerance Subsystem: FlyOS’s virtualized sand-

boxed architecture lends itself to support high-confidence

avionic systems. The partitioning hypervisor prevents access

to the separate memory spaces and resources assigned to

remote guests. FlyOS’s distributed system-on-a-chip design

attempts to contain faults within separate sandboxes, similar to

how federated architectures isolate faults in separate hardware.

Our fault tolerance subsystem enables:

1) Software component level tolerance for failures within user-

space applications: A functional or timing based failure is

detrimental to the safe operation of the multicopter if it directly

affects the real-time and safety-critical behavior of the flight

control loop. FlyOS allows flight controller redundancy across

different sandboxes and implements efficient controller hand-

off mechanisms. In this work, we focus on faults within the

critical MOTOR task.

FlyOS uses heartbeats to capture a class of functional and

timing failures, which jeopardize the progress of critical tasks.

For example, if the motor task fails to generate a heartbeat by

a certain time, this could jeopardize the control of the drone.

Loss or delay of a heartbeat triggers the activation of a failover

controller to maintain flight.

2) Sandbox level (or kernel level) tolerance for failures im-

pacting the entire guest OS domain: Such failures often involve

kernel memory corruption or other types of malicious kernel

attacks initiated by external non-certified third-party services.

A local copy of the VMM in each guest sandbox allows for

sandbox-level redundancy. The VMM is able to quarantine

a malicious guest and even re-instantiate or duplicate an

entire guest partition with its corresponding application stacks,

to replace the corrupted guest instance. I/O device hand-off

between sandboxes with replica-coordination mechanisms is

implementable in FlyOS’s monitor logic. Failover standbys

will be activated while the original sandbox is recovered,

thereby providing an online and effective way to handle such

system-level faults. We reserve further discussion on this topic

for future work.

We propose a unified fault-detection mechanism, which

operates in the most-secure mode (root-mode) of the system.

The VMM keeps a runtime health-check of the critical tasks

within its respective sandbox through timer-initiated guest

preemptions (VM-exits). x86 hardware-assisted virtualization

timers called VMX-preemption timers are leveraged for this

purpose. The timer operates at a frequency proportional to

the hardware time-stamp counter (TSC) [21] available to each

core of the processor. This detection mechanism has the benefit

to be agnostic to functional, event or timing related failures

within the system.

Application task failures that compromise the correctness of

real-time flight control are attributed to factors such as delayed

mission commands, incorrect tuning of the PID controller,

motor runaway or stale motor updates. Due to the closed loop

nature of the flight control, it is possible for a fault originating

in a single thread to propagate through the entire application.

Fig. 4 enumerates the steps involved in the workflow from

fault-detection to recovery for the dual-sandbox system.

The MOTOR task is instrumented to generate periodic heart-

beat messages (Step-1). A VMX-preemption timer is enabled

within the VMM logic of the Quest sandbox. It counts down

during the execution cycles of the guest, in non-root mode,

based on a configured timeout value. This directly controls

the fault-detection latency. On expiration, a low-cost VM-

exit [19,76] is triggered causing a soft-trap to the hypervisor

(Step-2). If the monitor observes a heartbeat message incon-

sistency, a system mode change is initiated (Step-3) following

a distributed recovery response (Step-4&5). Consequently, the

faulting flight controller is marked as compromised (depicted

Fig. 4: Flight controller fault tolerance: detection and remote recovery.

TABLE II: Recovery path latencies for pipe-delayed in Linux.

Tasks: Linux (Detection → Recovery) Min Average Max

(Step-4a) IPI RX: Kernel → Userspace (ms) 0.004 0.005 0.007

(Step-4b) IPI RX Userspace → Mission Process (ms) 24 43 81

(Step-4c) Mission Process → Backup-FC: RX (ms) 19 29 35

(Step-4d) Backup-FC: RX → Shared Memory (ms) 0.005 0.075 0.4

in grey in Fig. 4) and all corresponding threads terminated.

Two proxy real-time tasks are activated, to control the sensor

(IMU) and actuator (motor) devices (Step-5). This retains

predictable safety-critical I/O control within Quest. The local

monitor sends an inter-processor interrupt (IPI) to trigger the

remote recovery pipeline, in parallel, within Linux (Step-4).

A kernel module listens for the IPI and acknowledges receipt

with an interrupt-handler routine (Step-4a).

Two userspace task pipelines (Step-4b) are then launched:

1) fast-loop response (pipe-fast), which pre-arms the backup

flight controller (Linux port of vanilla Cleanflight) to transfer

simple hover commands to the virtual device proxy interfaces

in Quest, and 2) delayed response (pipe-delayed) employing

the Linux mission task to initiate relatively more complex

maneuvers such as radio over-ride to return the multicopter

to base or force an emergency-land.

Table II shows a preliminary set of latency measurements

for each step of the online recovery within Linux. The timing

measurements incorporate processing, scheduling and transi-

tion delays, which may cause the drone to experience motor

downtime. To avoid crashing, we activate a first-response

(pipe-fast) recovery, which complements the delayed response.

To keep execution costs low, we ported vanilla Clean-

flight as a backup-controller supporting only the most critical

functionality of the fast-loop. Asynchronous communication

channels between the failover controller and real-time device

gateway threads ensure timely transfer of commands. Despite

SCHED DEADLINE scheduling optimizations, the overheads

experienced by Linux indicate it is only really suitable as a

temporary backup until the primary hard real-time controller

is restored.

III. EVALUATION

We evaluate FlyOS for three different scenarios: 1) Manual

radio control with attitude stabilization in the presence of

an external disturbance, 2) Autonomous mission control with

face-image detection and tracking, and 3) Failover flight

control to recover from a critical actuator fault. We con-

duct hardware-in-the-loop (HIL) experiments and latency-

benchmark simulations. Our testbed setup common to all HIL

experiments is presented next.

A. Experimental Setup

1) Hardware: Figure 5 shows our custom built S500

(500mm) quadcopter mounted at the center of a 3-axis

mechanical gyroscope, called the BirdCage [39]. The three

orthogonal gimbal rings (annotated in the diagram) allow

the drone to freely rotate about its roll, pitch and yaw axes

thus enabling repeatable attitude adjustments in a controlled

environment. We also mount a flat passive screen (40” x

Fig. 5: BirdCage testbed for real-world experiments. The quadcopter motor
configuration is enumerated at the bottom-right.

30
”) in front of the drone to project images for vision-based

tracking experiments.

The quadcopter’s frame is fitted in an X motor configuration

for symmetrical mass distribution in all three rotation axes.

This ensures 100% motor output performance [59] with 4

EMAX 935kV brushless DC motors.

We host FlyOS on Intel’s purpose-built UAV developer

kit featuring the Aero Compute Board and a complementary

vision accessory kit [10], which includes the RealSense R200

camera module.

Fig. 6 shows a block diagram layout for the hardware

modules integrated into the Aero Compute Board. This board

features 4GB RAM, a quad-core Intel Atom x7-Z8750 pro-

cessor, a GPIO expander, a 6 degrees-of-freedom BMI160

IMU (for 3-axis gyroscope + accelerometer), and an Altera

MAX10 FPGA. The processor nominally runs at 1.6GHz

and supports Intel VT-x virtualization technology. The FPGA

generates PWM motor signals from commands issued by the

Atom processor. A RadioLink R9DS receiver connects to the

GPIO expander to receive raw SBUS commands required for

manual radio control. We deploy FlyOS on the Aero Compute

Board with the task distribution shown in Fig. 2.

2) Performance Metrics and Settings: For the BirdCage

experiments, we record attitude variation profiles of the quad-

Fig. 6: Aero Compute Board with manual radio control setup.

copter over time in response to an appropriate stimulus. We

measure the response time to achieve a steady-state target

attitude with an error-band of ±0.5° (shown as horizontal

red lines in our plotted results). This allows us to account

for data imprecision and any inherent imperfections in the

drone hardware or positioning of the payload. We additionally

compute error statistics for each flight, to quantify the impact

on the accuracy of flight control. Results are averaged over at

least 3 flights.

We design microbenchmarks to draw conclusions about

the worst-case observed end-to-end (E2E) delays along critical

flight control paths. We now present FlyOS’s performance

results for each of the three flight scenarios described above.

B. Manual Radio Control

FlyOS is compared with vanilla Cleanflight (CF) firmware

leveraging manual radio control capability. The mission pro-

cess in FlyOS’s Linux sandbox reads raw SBUS radio input

from the GPIO connector of the Aero Board and sends

processed SBUS commands to the RX gateway thread in Quest.

1) Setup: Vanilla Cleanflight is flashed on an SPRAC-

INGF3 [31] flight microcontroller and installed on the drone.

Featuring the STM32F3 processor, it offers native support for

the original flight stack. A TX/RX pair is used to ARM the

drone and transfer throttle and attitude target commands to the

autopilot. Cleanflight is configured to run the same subset of

critical flight control tasks as FlyOS (Section II-C). The main

loop-time for the fast-loop is set to the maximum supported

frequency of 1000Hz, which represents the best response

time performance [39] on the microcontroller platform. PID

constants for both FlyOS and Cleanflight autopilots are tuned

to yield stable flight control behavior with minimal response

time.

2) Results: For the BirdCage experiment, our steady-state

target is set at a horizontal hover (0° ± 0.5°) in the Roll axis.

A transient step-input attitude disturbance is introduced in the

Roll-Right direction by displacing the corresponding axial ring

of the BirdCage by 15°. The quadcopter is then allowed to

stabilize to target hover. Due to the symmetrical nature of

the motor + mixer configuration, Roll axis proves sufficient

to showcase the attitude correction behavior. Fig. 7 shows

that FlyOS’s integrated architecture yields the same control

integrity and functional correctness as the vanilla firmware.

FlyOS, however exhibits a slightly better response time of

10.87s compared to 11s of Vanilla-CF despite running a more

complex software stack involving two guest OS domains.

Smaller peak-amplitude oscillations by FlyOS lead to lower

mean error values reported in Table III. FlyOS’s predictable

task execution therefore exhibits higher accuracy of control

with a timely and precise response from the motors. This

TABLE III: Error statistics of the flight profiles in Fig. 7.

Autopilot Mean Absolute error RMSE

FlyOS 3.85° 5.18°

Vanilla-CF: 1000Hz 4.93° 6.53°

Fig. 7: Roll-Right attitude correction profile.

manifests as lower magnitude of under- and over-shoots from

the hover target.

E2E latency is reported in Fig. 8 for the two task pipelines

(Pipe-1 and Pipe-2) within FlyOS’s flight control loop.

Vanilla-CF latencies provide a baseline reference. FlyOS per-

forms 59% and 20% better for Pipe-1 and Pipe-2, respectively,

in the worst-case. This ensures low-latency responsiveness

and expedited recovery from anomalous attitude shifts. FlyOS

takes advantage of the higher clock rate and powerful process-

ing capabilities of embedded multicore platforms to ensure

predictable flight behavior. Low E2E pipeline latencies are

crucial for high frequency mission control to track a trajectory

target in real-time.

C. Autonomous Mission Control

We now demonstrate how FlyOS supports autonomous

mission control. Our sample mission requires the quadcopter

to use face detection to locate and track a target image, which

is projected onto a 2D screen (Fig. 5).

1) Setup: The RealSense R200 camera is mounted at the

front of the quadcopter, such that the image plane 1 center is

aligned to the middle of the screen. The image plane is set to

a resolution of 640×480 pixels, with the middle of the screen

having the origin coordinates, x0 = 0, yo = 0.

The autonomous flight objective is three-fold: 1) detect an

image of a face of size 10x10 pixels (target) on the screen,

2) determine its horizontal or vertical displacement from the

origin, and 3) adjust the drone’s pitch or yaw attitude in the

direction of the target, to accurately align the center of the

camera plane with the projected image. In case of a moving

target, the aforementioned steps are repeated every time the

target location updates.

We interpret a static image to be equivalent to a step input

target signal, whereas a moving image corresponds to a ramp

input signal to the flight controller. The BirdCage is placed at

a fixed distance from the screen (Fig. 5), which we measure

using the native DEPTH stream from the IR-sensors in the

Realsense module. We record updates in the horizontal (x)

1We refer to image and camera plane interchangeably.

(Quest) → MOTOR Update (Quest)→ BLACKBOX Logger

(Linux). Average and worst-case end-to-end latencies of the

entire workflow and constituent software modules are reported

as stacked bar graphs in Fig. 9. Vision processing in Linux

includes frame retrieval and processing delays, as well as

object inference delays. Inter-sandbox communication delays

and SCHED DEADLINE scheduling overheads are aggregated

as “System Overheads”. Quest delays involve the execution

times of flight control tasks along Pipe-2. These tasks read

and process vision commands sent via shared memory, and

generate corresponding PWM commands. On average, our

vision application is able to maintain a frame processing rate

of ≈30 fps. Even in the rare worst case, the processing rate

still results in the drone tracing an accurate tracking trajectory

as seen in the attitude profiles.

Although our application employs a relatively simple object

detection algorithm, it serves as proof-of-concept for FlyOS’s

ability to support real-time autonomous missions.

D. Comparison with Intel Drone

To further motivate our architectural framework, we com-

pare the communication overheads of FlyOS and the Intel

Ready-to-Fly (Intel-RTF) [7,13] drone. The Intel-RTF drone

runs the Ardupilot [2] flight controller hosted on the Pix-

hawk [35] companion microcontroller board.

1) Setup: The Intel-RTF drone is a pre-assembled quad-

copter, which supports programmable UAV applications and

mission control. The platform is a dual-board solution to

flight management. The main compute engine comprises the

Aero Compute Board connected via an HSUART (high-speed

universal asynchronous receiver-transmitter) serial bus to the

Pixhawk flight controller hardware. Pixhawk offers native

support for Ardupilot’s flight stack, which ships as a binary

with the Intel-RTF drone. We flashed the Compute Board with

the Ubuntu Linux 16.04 operating system, to develop and host

our microbenchmark for measuring communication latencies.

Communication over the serial link is managed by the

MAVLink-router soft-service within Linux. MAVLink com-

mands [36] and corresponding acknowledgment (ACK) mes-

sages are transferred between high-level mission applications

in Linux and Ardupilot’s control loop executing on the Pix-

hawk. The control loop logic within the flight stack is split into

two parts [38]: critical flight controller tasks (termed the fast-

loop) and non-critical application tasks, including MAVLink

message retrieval, processing and ACK generation. Priority is

given to the fast-loop, which executes controller sub-tasks in a

sequential manner. Remaining time of the control loop is then

distributed between application tasks that are scheduled in a

best-effort preemptive manner. In contrast, all threads within

FlyOS’s critical flight control loop, including RX processing,

are managed by a real-time scheduler that guarantees each

task’s (τi) execution time budget (Ci time units) every time

period (Ti time units).

We measure the round-trip latencies of the MAVLink com-

munication protocol using DroneKit’s python API [23], to

send “set-yaw-attitude” commands to the flight controller and

TABLE V: Communication overheads in federated & FlyOS architecture.

Communication protocol Min Average Max

Asynchronous Shared Memory (ms) 0.0004 0.00052 0.0091

MAVlink on UART-serial (ms) 4.13 9.99 301.54

receive corresponding ACK messages. Similarly for FlyOS,

we use our vision-detector Yocto Linux application to transfer

yaw commands to the flight controller executing in Quest,

using asynchronous shared memory communication. For every

message sent, an ACK message is received, timed and logged

on the Linux side.

2) Results: Table V presents our results averaged over 2000

transferred messages. As shown, the MAVLink protocol incurs

a significant delay.

We also note that FlyOS’s shared memory inter-sandbox

communication exhibits lower overhead latencies than inter-

partition communication based on a data-distribution service

(DDS) network as evaluated by Pérez et al. in [62]. The au-

thors analyze an ARINC-653 compatible DDS communication

link between two MaRTE [12] RTOS virtualized partitions,

hosted by the XtratuM [33] hypervisor on a multicore x86

platform. Their results show average round-trip latencies of

100s of microseconds for simple data transfers. Such delays

result from the ARINC-653 virtual network service, DDS

middleware stack, hypervisor-based processing of interrupts

and other operating system overheads.

With reduced data transfer costs, FlyOS allows mission

tasks the flexibility to execute at high frequencies, while

incurring minimal delays for communicating target commands

to the flight controller. It thus ensures agile and responsive

flight control with enhanced maneuverability.

E. Failover Flight Control

We next study the performance impact of the fault iden-

tification and failover subsystem. We measure the latencies

of Detection→Recovery pipelines within each guest OS. An

artificial fault is injected within the motor-update (MOTOR)

thread, which sends stale commands to the motors after the

flight controller has been operational under Normal mode for

some time. This causes the heartbeat messages sent to the

hypervisor to stall after the fault is encountered, resulting in

a Fault-Tolerance system mode switch.

We utilize vanilla Cleanflight’s fast-loop operating at

1000Hz frequency (looptime=1ms) as our ported failover

controller. The VMX-preemption timer for Quest’s bootstrap

processor (BSP) core within the Aero Compute Board is

configured to expire periodically at intervals of 2ms (500Hz).

This defines our worst-case time bound for fault-detection.

Each sandbox’s corresponding recovery response is tracked in

parallel based on the steps enumerated in Fig. 4. End-to-end

delay statistics are presented in Fig. 12. The measured worst-

case recovery time to reach the hover state in Quest is 0.77ms.

This represents the duration from the system mode change

(Step-3 in Fig. 4) to the first set of valid hover commands

sent to the motors (Step-5).

domains for applications, and schedules them on shared hard-

ware in dedicated timeslots. Jo et al. [47] define an OS

abstraction layer (OSAL) for Linux and RTEMS, along with

an ARINC-653 core layer tailored for small civilian UAV

applications.

Other kernel-level partitioning approaches [45,69] extend

existing operating systems with ARINC-653 API support.

In these approaches, user-level partitions are typically mul-

tiplexed on processing cores, resulting in frequent context

switching, and potentially increased system overheads. Lack of

temporal and spatial isolation in the shared interrupt handling

subsystem for I/O devices results in unpredictable worst-case

execution times at the task level. This negatively impacts the

timing predictability of flight control, and responsiveness of

mission control.

In contrast, research in virtualization technology for avion-

ics has approached IMA’s partitioning requirement at the

system-level by employing consolidating hypervisors. These

allow multiple operating systems to run simultaneously as

virtual machines on shared flight hardware. PikeOS [18]

and AIR [32] are two micro-kernels with support for a

virtualization layer responsible for partitioning of resources

between hosted guest operating systems. These approaches to

IMA however have only been deployed in spacecraft applica-

tions [25,89]. State-of-the-art multicopters, on the other hand,

employ traditional hypervisors like Xen [81,82], VMware and

VirtualBox [44]. These offer support to host Linux VMs

extended with ARINC-653 standard APIs. Linux however

lacks hard real-time support for I/O interrupt scheduling [93],

which is needed for sensing, processing and actuation tasks in

a flight controller.

Pérez et al. [61,62] integrate DDS (data distribution ser-

vice) with ARINC-653’s port-based communication. The au-

thors validate their approach by implementing RTOS-based

publisher-subscriber partitions on the Xtratum [33] hypervisor.

The inter-partition communication is presented as a general

avionic solution applicable to all IMA based flight manage-

ment systems.

Contrary to the current virtualization solutions, FlyOS

presents a partitioning hypervisor approach tailored towards

efficient flight control for multicopters. To the best of our

knowledge, FlyOS is the first consolidated avionic system to

statically partition hardware resources between guest sand-

boxes that remain under the direct management of their

respective OS kernels at run-time. Consequently, the system

incurs minimal operational overheads. FlyOS’s separation ker-

nel thereby achieves spatial and temporal isolation in the

context of Integrated Modular Avionics for multicopters. Addi-

tionally, mixed-criticality avionic services mapped to different

sandboxes are able to communicate with low latencies using

shared memory mapped into user-level address spaces.

V. CONCLUSIONS & FUTURE WORK

This paper presents FlyOS, an integrated modular avionics

(IMA) framework for next-generation multicopter flight man-

agement systems. FlyOS employs a partitioning hypervisor to

statically partition hardware resources among virtualized guest

OS domains or sandboxes. Our prototype implementation

hosts a built-in RTOS (Quest) with a legacy feature-rich Linux

system in a dual-sandbox configuration. A real-time safety-

critical flight controller ported to Quest communicates via

shared memory with autonomous mission critical application

services in Linux.

FlyOS guarantees temporal and spatial isolation of mixed-

criticality avionic tasks consolidated onto a centralized flight

platform. Hardware virtualization support is used to implement

fault isolation, detection and recovery mechanisms for critical

flight controller failures. An empirical evaluation validates

the effectiveness of FlyOS’s approach for sustaining safe,

predictable and efficient autonomous control of a real-world

quadcopter in the presence of critical task failures.

FlyOS’s architecture opens up future possibilities to extend

the system with additional avionic capabilities for an enriched

flight solution. We intend to expand our fault-tolerance sub-

system to handle kernel- and sandbox-level failures in a time-

bounded manner, while still maintaining the original flight

performance. In addition to redundant failover mechanisms,

complete fault-recovery will also be considered. We also

aim to incorporate real-time capabilities for adaptive flight

control, and in-flight mission re-configurability, to maintain

flight stability in varied environmental conditions.

VI. ACKNOWLEDGEMENTS

Thanks to the shepherd and reviewers for their help im-

proving this work, which is funded in part by the National

Science Foundation (NSF) Grant # 2007707. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the author(s) and do not necessarily

reflect the views of the NSF.

REFERENCES

[1] “Archived: Qualcomm Snapdragon Flight Kit,” Accessed Oct.
2021. [Online]. Available: https://ardupilot.org/copter/docs/common-
qualcomm-snapdragon-flight-kit.html

[2] “Ardupilot [Home.].” [Online]. Available: https://ardupilot.org/

[3] “Automatic Control System for UAV with a Takeoff Weight
of 100 kg up to 4000 kg,” Accessed Oct. 2021.
[Online]. Available: https://www.uavos.com/products/autopilots/ap10-
1-automatic-control-system-for-uav/

[4] “Betaflight [Home.].” [Online]. Available: https://betaflight.com/

[5] “Cleanflight [Home.].” [Online]. Available: goo.gl/uCGmr4

[6] “Flight RB5 5G Platform,” Accessed Oct. 2021. [Online]. Avail-
able: https://www.qualcomm.com/products/qualcomm-flight-robotics-
rb5-5g-platform

[7] “Github Documentation Wiki for Intel Ready to Fly Drone,” Accessed
Oct. 2021. [Online]. Available: https://github.com/intel-aero/meta-intel-
aero/wiki/02-Initial-setup

[8] “iNAV [Home.].” [Online]. Available: https://github.com/iNavFlight/
inav/wiki

[9] “Intel Aero Compute Board,” Accessed Oct. 2021. [Online].
Available: https://ark.intel.com/content/www/us/en/ark/products/97178/
intel-aero-compute-board.html

[10] “Intel Aero Vision Accessory Kit,” Accessed Oct. 2021. [Online].
Available: https://ark.intel.com/content/www/us/en/ark/products/97175/
intel-aero-vision-accessory-kit.html

[11] “Intel RealSense Github,” Accessed Oct. 2021. [Online]. Available:
https://github.com/IntelRealSense/librealsense

[12] “MaRTE.” [Online]. Available: https://www.osrtos.com/rtos/marte/

[13] “Overview of Intel Ready to Fly Drone,” Accessed Oct. 2021. [Online].
Available: https://intel.ly/3b8WwGz

[14] “PX4 [Home.].” [Online]. Available: http://px4.io/
[15] “Support for Intel RealSense Camera,” Accessed Oct. 2021. [Online].

Available: https://intel.ly/3uX0KKe
[16] “The Cube Autopilot,” Accessed Oct. 2021. [Online]. Available:

https://bit.ly/3vPxbLo
[17] “First Public Demo of Snapdragon Flight Robotics Dev Platform

in One of Worlds Smallest 4K Drones,” 2015. [Online]. Avail-
able: https://www.qualcomm.com/news/onq/2015/09/10/first-public-
demo-snapdragon-flight-robotics-dev-platform-one-worlds-smallest-4k

[18] “SYSGO PikeOS Hypervisor,” 2015. [Online]. Available: http:
//www.sysgo.com/products/pikeos-rtos-and-virtualization-concept

[19] “[V4,4/4] Utilize the VMX Preemption Timer for TSC Deadline Timer,”
Accessed Oct. 2021, 2016. [Online]. Available: https://bit.ly/3pihmM0

[20] “Qualcomm Snapdragon Flight Kit,” March 2017. [Online].
Available: https://www.intrinsyc.com/vertical-development-platforms/
qualcomm-snapdragon-flight/

[21] “Timer Interrupt Sources,” 2019. [Online]. Available: https://wiki.osdev.
org/Timer Interrupt Sources

[22] “Journey to Mars: How our Collaboration with Jet Propul-
sion Laboratory Fostered Innovation,” 2021. [Online]. Avail-
able: https://www.qualcomm.com/news/onq/2021/03/17/journey-mars-
how-our-collaboration-jet-propulsion-laboratory-fostered-innovation

[23] 3D Robotics Inc., “DroneKit Python.” [Online]. Available: https:
//github.com/dronekit/dronekit-python

[24] K. Adams and O. Agesen, “A Comparison of Software and Hardware
Techniques for x86 Virtualization,” in ACM SIGOPS Operating Systems

Review, vol. 40, December 2006, pp. 2–13.
[25] J. Almeida and M. Prochazka, “Safe and Secure Partitioning with Pikeos:

Towards Integrated Modular Avionics in Space,” in Proceedings of

DASIA 2009 Data Systems in Aerospace, by Ouwehand, L. Noordwijk,

Netherlands: European Space Agency, 2009.
[26] ARINC Std. 653P1-3, “Avionics Application Standard Software Inter-

face, Part 1 - Required Services,” Wind River Systems / IEEE Seminar,
2010.

[27] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in
ACM SIGOPS OSR, 2003.

[28] F. Boniol and V. Wiels, “Towards Modular and Certified Avionics for
UAV,” in Journal Aerospace Lab, Alain Appriou, December 2014, pp.
1–8.

[29] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard Real-Time Environment,” in Journal of the ACM,
vol. 20, no. 1, 1973, pp. 46–61.

[30] Z. Cheng, R. West, and C. Einstein, “End-to-End Analysis and Design
of a Drone Flight Controller,” in Proceedings of the ACM SIGBED

International Conference on Embedded Software (EMSOFT), Torino,
Italy, September 30-October 5 2018.

[31] D. Clifton, “SPRACINGF3 Flight Controller Manual (Revision 4),”
2015. [Online]. Available: https://bit.ly/2Mx9dRV

[32] J. Craveiro, J. Rufino, T. Schoofs, and J. Windsor, “Flexible Operating
System Integration in Partitioned Aerospace Systems,” in Actas do

INForum - Simposio de Informatica, 2009, pp. 49–60.
[33] A. Crespo, I. Ripoll, and M. Masmano, “Partitioned Embedded Archi-

tecture Based on Hypervisor: The XtratuM Approach,” in EDCC, 2010,
pp. 67–72.

[34] M. Danish, Y. Li, and R. West, “Virtual-CPU Scheduling in the Quest
Operating System,” in 17th IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), 2011, pp. 169–179.
[35] DroneCode, “Pixhawk Home.” [Online]. Available: https://pixhawk.org/
[36] Dronecode Project, “MAVLink Developer Guide.” [Online]. Available:

https://mavlink.io/en/
[37] E. -H. Jeong and J. -G. Kim, “S/W Fault-tolerant OFP System for UAVs

Based on Partition Computing,” in 2013 International Conference on

Electronic Engineering and Computer Science, 2013.
[38] E. Bregu, N. Casamassima, D. Cantoni, L. Mottola, and K. Whitehouse,

“Reactive Control of Autonomous Drones,” in 14th Annual International

Conference on Mobile Systems, Applications and Services (MobiSys’16),
June 2016, pp. 207–219.

[39] A. Farrukh and R. West, “smARTflight: An Environmentally-Aware
Adaptive Real-Time Flight Management System,” in 32nd Euromicro

Conference on Real-Time Systems (ECRTS), July 2020.

[40] G. Brunner, B. Szebedy, S. Tanner, and R. Wattenhofer, “The Urban
Last Mile Problem: Autonomous Drone Delivery to Your Balcony,” in
2019 International Conference on Unmanned Aircraft Systems (ICUAS),
2019, pp. 1005–1012.

[41] A. Golchin, Z. Cheng, and R. West, “Tuned Pipes: End-to-end Through-
put and Delay Guarantees for USB Devices,” in 39th IEEE Real-Time

Systems Symposium (RTSS), 2018.
[42] A. Golchin, S. Sinha, and R. West, “Boomerang: Real-Time I/O Meets

Legacy Systems,” in 2020 IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS). IEEE, 2020, pp. 390–402.
[43] Q. Gu, D. R. Michanowicz, and C. Jia, “Developing a Modular Un-

manned Aerial Vehicle (UAV) Platform for Air Pollution Profiling,” in
Sensors, 2018.

[44] S. Han and H. W. Jin, “Full Virtualization Based ARINC 653 Parti-
tioning,” in 2011 IEEE/AIAA 30th Digital Avionics Systems Conference,
2011.

[45] S. Han and H. W. Jin, “Kernel-Level ARINC 653 Partitioning for Linux,”
in SAC ’12: Proceedings of the 27th Annual ACM Symposium on Applied

Computing, 2012, pp. 1632–1637.
[46] D. Jensen, “B787 Cockpit: Boeing’s Bold Move,” in Aviation Today,

2005.
[47] H. C. Jo, J. K. Park, H. W. Jin, H. S. Yoon, and S. H. Lee, “Portable

and Configurable Implementation of ARINC-653 Temporal Partitioning
for Small Civilian UAVs,” in IEEE Access, vol. 7, 2019, pp. 142 478–
142 487.

[48] Q. Kang, C. Yuan, X. Wei, Y. Gao, and L. Wang, “A User-Level
Approach for ARINC 653 Temporal Partitioning in seL4,” in ISSSR,
2016, pp. 106–110.

[49] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: The
Linux Virtual Machine Monitor,” in The Linux Symposium, vol. 1, 2007,
pp. 225–230.

[50] G. Klein, J. Andronick, M. Fernandez, I. Kuz, T. Murray, and G. Heiser,
“Formally Verified Software in the Real World,” Communications of the

ACM, vol. 61, no. 10, pp. 68–77, October 2018.
[51] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber, “A Compar-

ison of Partitioning Operating Systems for Integrated Systems,” in
International Conference on Computer Safety, Reliability, and Security.
Springer, 2007, pp. 342–355.

[52] J. Liedtke, H. Härtig, and M. Hohmuth, “OS-Controlled Cache Pre-
dictability for Real-Time Systems,” in the 3rd IEEE Real-time Technol-

ogy and Applications Symposium, 1997.
[53] A. Liszewski, “NASA’s Supercomputers Reveal the Incredible Turbu-

lence Produced By a Drone.” [Online]. Available: https://gizmodo.com/
nasas-supercomputers-reveal-the-incredible-turbulence-p-1791179507

[54] LYNX Software Technologies, “LynxSecure Embedded Hypervisor and
Separation Kernel,” 2015. [Online]. Available: http://www.lynx.com/
products/hypervisors/

[55] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, “Bao:
A Lightweight Static Partitioning Hypervisor for Modern Multi-Core
Embedded Systems,” in Workshop on Next Generation Real-Time Em-

bedded Systems (NG-RES 2020), ser. OpenAccess Series in Informatics
(OASIcs), vol. 77. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2020, pp. 3:1–3:14.

[56] L. Mejias, J. P. Diguet, C. Dezan, D. Campbell, J. Kok, and G. Coppin,
“Embedded Computation Architectures for Autonomy in Unmanned
Aircraft Systems (UAS),” in Sensors, 2021.

[57] C. M. Mercer, S. Savage, and H. Tokuda, “Processor Capacity Reserves
for Multimedia Operating Systems,” in Technical Report. Carnegie
Mellon University, 1993.

[58] A. B. Montz, D. Mosberger, S. W. O’Mally, L. L. Peterson, and T. A.
Proebsting, “Scout: A Communications-Oriented Operating System,” in
Proceedings 5th Workshop on Hot Topics in Operating Systems (HotOS-

V). IEEE, 1995, pp. 58–61.
[59] OscarLiang.com, “Custom Motor Mixing Multirotor | What |

Calculate | Uses,” April. 22 2017. [Online]. Available: https:
//www.oscarliang.com/custom-motor-output-mix-quadcopter

[60] P. J. Prisaznuk, “ARINC 653 role in Integrated Modular Avionics
(IMA),” in IEEE/AIAA 27th Digital Avionics Systems Conference, 2008,
pp. 1.E.5–1–1.E.5–10.

[61] H. Pérez and J. J. Gutiérrez, “Handling Heterogeneous Partitioned
Systems through ARINC-653 and DDS,” in Computer Standards &

Interfaces, vol. 50, 2017, pp. 258–268.
[62] H. Pérez, J. J. Gutiérrez, S. Peiró, and A. Crespo, “Distributed architec-

ture for developing mixed-criticality systems in multi-core platforms,”
Journal of Systems and Software, vol. 123, pp. 145–159, 2017.

[63] R. Pineiro, K. Ioannidou, S. A. Brandt, and C. Maltzahn, “Rad-flows:
Buffering for Predictable Communication,” in 2011 17th IEEE Real-

Time and Embedded Technology and Applications Symposium. IEEE,
2011, pp. 23–33.

[64] Radio Technical Commission for Aeronautics (RTCA) Std., “DO-
178C/ED-12C Software Considerations in Airborne Systems and Equip-
ment Certification,” 2011.

[65] Radio Technical Commission for Aeronautics (RTCA) Std., “DO-326A
Airworthiness Security Process Specification,” 2014.

[66] Radio Technical Commission for Aeronautics (RTCA) Std., “DO-356A
Airworthiness Security Methods and Considerations,” 2018.

[67] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look Mum, no
VM Exits! (Almost),” arXiv preprint arXiv:1705.06932, 2017.

[68] ROBOTmaker, “Real-Time Graphical Representation | S.BUS Pro-
tocol.” [Online]. Available: http://www.robotmaker.eu/ROBOTmaker/
quadcopter-3d-proximity-sensing/sbus-graphical-representation

[69] W. Ruan and Z. Zhai, “Kernel-Level Design to Support Partitioning and
Hierarchical Real-Time Scheduling of ARINC 653 for VxWorks,” in
2014 IEEE 12th International Conference on Dependable, Autonomic

and Secure Computing, 2014, pp. 388–393.
[70] J. Rushby, “Partitioning for Avionics Architectures: Requirements,

Mechanisms and Assurance,” in NASA contractor report CR-1999-

209347, NASA Langley Research Center, 1999.
[71] J. Rushby, “Model Checking Simpsons Four-Slot Fully Asynchronous

Communication Mechanism,” in Computer Science Laboratory–SRI

International, Tech. Rep. Issued, July 2002.
[72] J. M. Rushby, “Design and Verification of Secure Systems,” in 8th ACM

Symposium on Operating Systems Principles, 1981, pp. 12–21.
[73] S. C. Technology, “Jailhouse Partitioning Hypervisor,” 2014. [Online].

Available: https://github.com/siemens/jailhouse
[74] S. O. H. Madgwick., A. J. L. Harrison, and R. Vaidyanathan, “Estimation

of IMU and MARG Orientation using a Gradient Descent Algorithm,”
in International Conference on Rehabilitation Robotics (IEEE-ICORR),
2011, pp. 1–7.

[75] P. Sanchez-Cuevas, G. Heredia, and A. Ollero, “Characterization of the
Aerodynamic Ground Effect and Its Influence in Multirotor Control,” in
International Journal of Aerospace Engineering, vol. 2017, no. 1823056,
2017.

[76] S. Schildermans, K. Aerts, J. Shan, and X. Ding, “Paratick: Reducing
Timer Overhead in Virtual Machines,” in 50th International Conference

on Parallel Processing (ICPP). Association for Computing Machinery,
August 2021, pp. 1–10.

[77] H. R. Simpson, “Four-slot Fully Asynchronous Communication Mech-
anism,” in IEEE Computers and Digital Techniques 137, January 1990,
pp. 17–30.

[78] S. Sinha and R. West, “Towards an Integrated Vehicle Management
System in DriveOS,” in ACM Transactions on Embedded Computing

Systems, vol. 20. ACM, 2021, pp. 1–24.

[79] U. Steinberg and B. Kauer, “NOVA: A Microhypervisor-Based Secure
Virtualization Architecture,” in Proceedings of the 5th European Con-

ference on Computer Systems (Eurosys). Association for Computing
Machinery, 2010, pp. 209–222.

[80] T. Morales, A. Sarabakha, and E. Kayacan, “Image Generation for
Efficient Neural Network Training in Autonomous Drone Racing,” in
2020 International Joint Conference on Neural Networks (IJCNN), 2020,
pp. 1–8.

[81] S. H. VanderLeest, “ Benefits and Implications of an ARINC
653 Hypervisor .” [Online]. Available: https://dornerworks.com/about/
whitepapers/arinc-653-benefits-implications/

[82] S. H. VanderLeest, “ARINC 653 Hypervisor,” in 29th Digital Avionics

Systems Conference, 2010, pp. 5.E.2–1–5.E.2–20.

[83] P. Viola and M. J. Jones, “Rapid Object Detection using a Boosted
Cascade of Simple Features,” in IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, February 2001.

[84] C. B. Watkins, “Integrated Modular Avionics: Managing the Allocation
of Shared Intersystem Resources,” in Proceedings of the 25th Digital

Avionics Systems Conference, 2006, pp. 1–12.

[85] C. B. Watkins and R. Walter, “Transitioning from Federated Avionics
Architectures to Integrated Modular Avionics,” in 2007 IEEE/AIAA 26th

Digital Avionics Systems Conference, 2007, pp. 2.A.1–1–2.A.1–10.

[86] R. West, Y. Li, E. Missimer, and M. Danish, “A Virtualized Separation
Kernel for Mixed-Criticality Systems,” in ACM Transactions on Com-

puter Systems, vol. 34, no. 3. New York, NY, USA: ACM, Jun. 2016,
pp. 8:1–8:41.

[87] R. West, P. Zaroo, C. A. Waldspurger, and X. Zhang, “Online Cache
Modeling for Commodity Multicore Processors,” in SIGOPS Oper. Syst.

Rev., vol. 44, 2010, pp. 19–29.

[88] R. West, P. Zaroo, C. A. Waldspurger, and X. Zhang, “CAF: Cache-
Aware Fair and Efficient Scheduling for CMPs,” in Multicore Technol-

ogy: Architecture, Reconfiguration and Modeling, CRC Press, 2013, pp.
221–253.

[89] J. Windsor, K. Eckstein, P. Mendham, and T. Pareaud, “Time And Space
Partitioning Security Components For Spacecraft Flight Software,” in
2011 IEEE/AIAA 30th Digital Avionics Systems Conference, 2011.

[90] X-IO Technologies, “Open Source IMU and AHRS algo-
rithms.” [Online]. Available: https://x-io.co.uk/open-source-imu-and-
ahrs-algorithms/

[91] Y. Ye, R. West, Z. Cheng, and Y. Li, “COLORIS: A Dynamic Cache
Partitioning System using Page Coloring,” in 23rd International Con-

ference on Parallel Architectures and Compilation Techniques, 2014.

[92] Y. Ye, R. West, J. Zhang, and Z. Cheng, “MARACAS: A Real-Time
Multicore VCPU Scheduling Framework,” in 37th IEEE Real-Time

Systems Symposium (RTSS), 2016.

[93] Y. Zhang and R. West, “Process-Aware Interrupt Scheduling and Ac-
counting,” in 27th IEEE Real-Time Systems Symposium (RTSS), 2006.

	Introduction
	FlyOS: A Flight Management Framework
	Motivation
	System Design
	The Prototype

	Avionic Capabilities
	Real-Time Flight Controller
	Autonomous Vision Subsystem
	Fault-Tolerance Subsystem

	Evaluation
	Experimental Setup
	Hardware
	Performance Metrics and Settings

	Manual Radio Control
	Setup
	Results

	Autonomous Mission Control
	Setup
	Results

	Comparison with Intel Drone
	Setup
	Results

	Failover Flight Control

	Related Work
	Conclusions & Future Work
	Acknowledgements
	References

