FLYOS: Integrated Modular Avionics for
Autonomous Multicopters

Anam Farrukh
Boston University
afarrukh @bu.edu

Abstract— Autonomous multicopters often feature federated
architectures, which incur relatively high communication costs
between separate hardware components. These costs limit the
ability to react quickly to new mission objectives. Additionally,
federated architectures are not easily upgraded without intro-
ducing new hardware that impacts size, weight, power and cost
(SWaP-C) constraints. In turn, such constraints restrict the use
of redundant hardware to handle faults.

In response to these challenges, we propose Fly0OS, an Inte-
grated Modular Avionics (IMA) approach to consolidate mixed-
criticality flight functions in software on heterogeneous multicore
aerial platforms. FlyOS is based on a separation kernel that stati-
cally partitions resources among virtualized sandboxed OSes. We
present a dual-sandbox prototype configuration, where timing-
and safety-critical flight control tasks execute in a real-time OS
alongside mission-critical vision-based navigation tasks in a Linux
sandbox. Low latency shared memory communication allows
flight commands and data to be relayed in real-time between
sandboxes. A hypervisor-based fault-tolerance mechanism is also
deployed to ensure failover flight control in case of critical
function or timing failures. We validate FlyOS’s performance
and showcase its benefits when compared against traditional
architectures in terms of predictable, extensible and efficient
flight control.

Index Terms—integrated modular avionics, autonomous mul-
ticopters, partitioning hypervisor, real-time flight control, fault-
tolerance

I. INTRODUCTION

Multicopters have traditionally adopted a federated architec-
ture [43,56], which isolates and distributes flight management
functions of different criticalities across separate hardware
components [13,20]. Relatively powerful multicore CPUs are
managed by a general purpose operating system (GPOS) such
as Linux, and execute low time-sensitivity mission tasks. At
the same time, an embedded microcontroller, or digital signal
processor (DSP), processes the critical low-level flight control
stack, often referred to as the autopilot. Connected locally via
a slow serial (UART) interface, the loosely-coupled framework
suffers from high latency and limited bandwidth communica-
tion when transferring commands between the two subsystems.
This severely restricts the throughput and responsiveness of
autonomous mission tasks, leading to coarse-grained drone
control.

In order to ensure fault-tolerance against critical functional
failures, the combined hardware and software stack of the
low-level flight controller requires redundancy, which quickly

Richard West
Boston University
richwest@bu.edu

Attitude Estimation

OpenCV  Tracking

PID Controller
Autonomous

Stack Sensors + Actuators

Software

Linux Sandbox Quest Sandbox

11 L T T
)| |1 Userspace Real-Time
1aL : Flight Controller
it (ring 3) g
A

N il

0 Object { BlackBox, | 1 RX
%) Detection \ Logging / | i

\ VA

. P |
1 1
1 1
1L
1 1

ey

""""" RTOS: Quest Kernel 7=~ ~=-=1
(ring 0)

GPOS: Linux Kernel ;
1

(ring0) |

[}

[ Devices ]{ Core(s) J[ Memorv} [ Devices ]{ Core(s) ]{ Memorv]

Heterogeneous Hardware Platform

Fig. 1: FlyOS dual-sandbox configuration: Linux + Quest.
*For the purposes of this work, we identify ring -1 to be the root mode
software layer, which sits between the hardware and non-root guest.

becomes prohibitive given the limited size, weight, power
and cost (SWaP-C) requirements of small-scale (< 10kg)
UAVs [28]. Additionally, constantly evolving autopilot fea-
tures and functionality updates often render the resource
constrained controller architecture obsolete, adding to hard-
ware replacement and maintenance costs over time. Lack of
flexibility in customization of autopilot stacks thus restricts a
wide-spread deployment of multicopters across the connected
aerial infrastructure.

In this work, we present FlyOS, which challenges the
traditional federated approach to implement a predictable, safe
and extensible flight management system. FlyOS takes inspi-
ration from Integrated Modular Avionics (IMA) [84,85] and
ARINC-653 (Avionics Application Software Standard Inter-
face) [26,60] partitioning standard for avionic functions. These
design guidelines envision consolidation of mixed-criticality
flight functions on a centralized hardware platform, while
ensuring temporal and spatial isolation of critical software
components from execution-time interference.

FlyOS employs a separation kernel [72] to map two or
more guest operating systems to virtualized sandbox domains.
Virtualization technologies, featured by modern heterogeneous
platforms, are used to statically partition hardware resources
(processing cores, memory and I/O devices) and software



components between separate execution environments. The
individual system partitions operate together as a tightly cou-
pled distributed system-on-a-chip. Explicitly defined shared
memory communication channels set up low-latency and high
bandwidth control and data paths between sandboxes. Isolation
between guest domains allow for safe, secure and predictable
consolidation of functional avionic components.

FlyOS enables software redundancy to meet SWAP-C con-
straints of small-scale UAVs. The system aims to overcome
IMA’s inherent limitation to fault containment by provid-
ing strict temporal and spatial partitioning between guests.
FlyOS therefore protects against fault propagation across guest
boundaries avoiding system-wide failure and corruption.

For our prototype implementation, shown in Fig. 1, we
map the distributed companion architecture of traditional mul-
ticopter systems entirely in software using a dual-sandbox
approach. Timing and safety critical flight control modules
are implemented as latency-sensitive threads in a lightweight
real-time OS (Quest [34]), alongside mission control tasks in
Yocto Linux. FlyOS works on the principle of partitioning
hypervisors [55,67,73,86] whereby each guest directly man-
ages its own set of allocated resources without any run-time
intervention of the most trusted compute base (TCB) of the
hypervisor. It differs in its partitioning scheme compared to
the state-of-the-art ARINC-653 extended architectures, which
predominantly employ consolidating hypervisors [32,81,82].
These systems rely on the hypervisor for management of
shared resources on behalf of the hosted guests. Hypervisor-
based shared resource management potentially adds undue
overheads, which impact predictability and determinism of
critical flight control.

In this work, we refactor a performance-critical flight
controller to execute with real-time guarantees on Quest. A
camera-based vision detection and tracking subsystem is then
implemented in a Linux sandbox as part of our mission control
functionality (e.g., to represent a search and rescue objec-
tive). We also implement a hypervisor-based fault-recovery
subsystem for fail-safe flight control in the presence of critical
actuation failures.

Contributions: In this paper, we: 1) lay down the foundation
for next-generation flight architectures designed around the
principle of integrated modular avionics for multicopters,
2) describe FlyOS’s separation kernel in the context of a
dual-sandbox implementation co-hosting Linux with Quest,
3) implement a timing- and safety-critical flight stack with
a low-level attitude (3D orientation) controller by retrofitting
a well-known autopilot as a real-time application, 4) introduce
high-level mission-critical autonomous navigation control, and
5) implement online fault-tolerance for time-bounded activa-
tion of failover flight control.

We evaluate FlyOS’s performance with real-world experi-
ments on a quadcopter. We also compare inter-sandbox com-
munication overheads against a typical companion-board ar-
chitecture of a popular drone system manufactured by Intel®.
FlyOS opens opportunities for system-wide optimizations, re-
configurability and improved resource usage, while reducing

size, weight and power requirements of the underlying hard-
ware.

The following section describes the FlyOS model, by mo-
tivating our design goals, followed by an overview of the
system framework. Section III presents an extensive evaluation
of flight performance with hardware-in-the-loop experiments.
Related work is described in Section IV, while conclusions
and future work are discussed in Section V.

II. FLYOS: A FLIGHT MANAGEMENT FRAMEWORK
A. Motivation

FlyOS is designed around a characteristic set of goals
for functional safety, timing predictability and efficiency of
flight control for multi-rotor UAVs. As such, this work targets
timing- and safety-criticality [64] dimensions of the mixed-
criticality architecture design-space for drone autopilots. We
define safety-criticality as a measure of functional importance
of a software component to the overall flight control operation.
Timing criticality on the other hand is concerned with guar-
anteeing real-time flight control responses within prescribed
temporal bounds.

Orthogonal to this work, we define a third dimension of
security criticality [65,66] for tasks and system components,
which directly concerns policies related to the preservation of
information integrity and confidentiality. Although an imple-
mentation and evaluation of such policies is beyond the scope
of this paper, we note that the FlyOS architecture lends itself
to support security capabilities such as gateway services at
communication interfaces between sandboxed domains. This
allows checks to be enforced that mitigate threats from ma-
licious attacks. Carefully designed hypervisor-based security
policies [50,79] allow FlyOS to monitor and validate flow of
information between sandboxes such as mission commands.

Notwithstanding, we focus our architectural objectives on
the following principles of design:

1) Isolation. Software consolidation based on the IMA con-
cept and ARINC-653 standard requires temporal and spatial
isolation between avionic functions that are critical for cor-
rect flight operation from other less-critical and non-essential
services. FlyOS employs a novel partitioning approach in
this context to allocate hardware resources of a centralized
platform to virtualized system-level partitions. The goal is to
deploy separate guest environments for locally-hosted tasks of
different criticalities. Details of our design are presented in
Section II-B.

2) Extensibility. Low-criticality sandboxes support re-
configurable and adaptable autonomous mission applications,
which reduces redeployment costs. Similarly one or more
real-time sandboxes allow hot-plugging of flight controllers
tuned to different flight characteristics, e.g., for high
maneuverability versus greater stability.

3) Enhanced Functionality. FlyOS targets hardware platforms
with multiple cores, advanced sensors, high-speed networks,
buses, and device interfaces (e.g., Camera Serial Interface),
which are often unavailable in simpler autopilot platforms.



FlyOS leverages the capabilities of multicore platforms with
hardware virtualization support to build sophisticated flight
management software that would otherwise require separate
hardware components, increasing the size, weight, power and
cost overheads.

4) Fault Tolerance. FlyOS’s sandboxed design, by virtue of
partitioning, inherits fault-containment capabilities inherent to
federated or hardware-distributed architectures, which operate
on the principle of separation of concerns. FlyOS’s thin
hypervisor layer has a minimal memory foot-print and resides
at the most privileged protection domain within each sand-
box. The hypervisor (a.k.a., virtual machine monitor (VMM))
implements a run-time health-monitoring subsystem within its
trusted compute base. This allows functional and timing related
faults within a guest to be detected.

FlyOS’s integrated and modular nature opens opportunities
to incorporate system-wide redundancy at the software level.
However, FlyOS does not address hardware fault redundancy
due to SWaP-C restrictions.

B. System Design

The separation kernel approach enables temporal and spa-
tial isolation of multiple guest operating systems {kernel +
user space} by encapsulating their run-time execution within
distinct sandboxed domains or system-level partitions. To this
end, FlyOS leverages hardware-virtualization to implement a
partitioning hypervisor, which statically splits the hardware
resources i.e. CPU cores, regions of memory and I/O devices
amongst guest sandboxes. Each guest kernel directly manages
an allocated set of resources at system run-time without
intervention of the hypervisor (VMM). Unlike traditional
consolidating hypervisors such as Xen [27] and KVM [49], the
VMM is not involved in any run-time resource management on
behalf of the guest and is therefore removed from the normal
execution control path. This keeps the trusted code base of the
VMM to a bare minimum, which is < 4KB in size.

Each sandbox is isolated on mutually exclusive set of cores
within the machine. Hardware-managed shadow (extended)
page tables securely isolate each operating system image
in non-overlapping regions of physical memory and manage
guest physical to host (or machine) physical memory transla-
tions. Similarly, sandboxes are given direct access to mutually
exclusive subsets of I/O devices. Interrupts are delivered
directly to the guest kernel to which a device is explicitly
assigned. This avoids the run-time overhead of VMM traps
for individual device management.

A performance monitoring subsystem employing hardware
counters provides FlyOS with the ability to predict last-level
shared cache occupancy [87,88]. Such estimates are then used
by static page coloring techniques to partition shared caches
between sandboxes [52,91]. Consequently, a guest kernel is
isolated from any temporal and spatial interference in its
execution by another guest.

Explicit communication between pairs of guests is accom-
plished via secure, low-latency and high-bandwidth shared
memory channels [58,63,78] that employ either asyn-

chronous [77] or ring-buffer (semi-synchronous) structural se-
mantics. A standard inter-partition communication library [78]
is employed for this purpose. Mixed-criticality task pipelines
are then able to span sandbox domains [42], to sustain a
diverse set of avionic functions under a common flight objec-
tive. FlyOS therefore allows a scalable and capability enriched
flight management system to be realized based on the design
objectives in Section II-A.

1) The Prototype: Fig. 1 presents our proof-of-concept
implementation in a dual-sandbox configuration. The Quest
real-time operating system (RTOS) hosts timing- and safety-
critical flight control functionality alongside a legacy Yocto
Linux system for high-level mission control. FlyOS’s sepa-
ration kernel architecture allows a mutually beneficial symbi-
otic relationship to be established between the two isolated
sandboxes: the light-weight RTOS gains access to the pre-
existing third-party libraries, run-time frameworks, toolchains,
device-drivers and various other legacy services, while the
general-purpose system is empowered with hard real-time
flight execution capabilities.

FlyOS’s execution begins with the Quest RTOS booting
up as a standalone bare-metal system. The bootstrapping pro-
cess proceeds to activate the hypervisor monitor logic baked
within the core image. On instantiation, the monitor partitions
hardware resources among the two guest domains based on
boot-time configuration parameters. A snapshot instance of
the Quest kernel along with the minimal monitor code base
is replicated in a distinct non-overlapping physical memory
region for the Linux guest sandbox. The kernel copy is
then replaced with the Yocto Linux binary image, which is
thereafter launched on its pre-assigned bootstrap processor.

Depending on the sandbox configuration, one instance of
Quest kernel + VMM logic acts as a bootloader for each
new guest OS. Both kernels are then allowed to independently
proceed with their respective normal boot procedure eventually
transitioning into user-space. This marks the completion of
each sandbox’s initialization.

Our implementation targets multicore x86-based embedded
flight computers with hardware-virtualization (VT-x) exten-
sions [24]. For the current work, we utilize the quad-core Aero
Compute Flight Hardware by Intel® [9]. Processing cores and
I/O devices of the platform are asymmetrically distributed
between the two sandboxes.

FlyOS allows a configurable number of CPU cores to be
partitioned among guests. For our example implementation,
Linux is assigned one physical core. This greatly simplifies
the use of Linux’s SCHED_DEADLINE scheduling policy, and
allows relatively easy enforcement of service guarantees for
mission tasks with the included PREEMPT-RT patch. In con-
trast, Quest is configured to work in SMP mode and uses a
round-robin load-balancer to statically assign real-time flight
control tasks to the three remaining processing cores.

Our flight control software runs as a multithreaded applica-
tion for Quest, taking advantage of the parallelism supported
by this core assignment. Spare CPU capacity available to the
RTOS supports the addition of future timing critical tasks.



To ensure timing predictability for concurrently executing
tasks, techniques are employed that handle both cache and
bus contention [92].

In FlyOS, the inertial measurement unit (IMU), motors,
electronic speed controllers, and serial debugging ports are
exclusively allocated to Quest. In contrast, Linux is given
access to the USB host controller for the camera interface
discussed in Section II-C2.

Linux and Quest independently manage their assigned re-
sources using their respective guest scheduling policies in
isolated execution environments. The memory resident mon-
itor code in each kernel is only invoked at run-time, to set
up inter-sandbox communication channels and handle guest
preemption timers. Such a timer is enabled for the most
critical Quest sandbox, as part of FlyOS’s hypervisor-level
fault-detection mechanism discussed in Section II-C3.

C. Avionic Capabilities

1) Real-Time Flight Controller: For the example flight
controller implementation, we take inspiration from our team’s
previous work [30,39] on the popular open-source autopilot:
Cleanflight [5]. Cleanflight’s vanilla flight control features a
minimalist software stack targeted towards flight efficiency
and functional robustness, reliability and performance. Control
tasks are tightly coupled in a linear closed feedback loop,
which employs sensor data processing with attitude estimation
to regulate motor speeds for tracking a target trajectory [39].
Differential angular velocities of the motors generate net
rotational torques to adjust the roll, pitch and yaw attitude
about the center-of-gravity of the multicopter.

Cleanflight’s responsive attitude maneuverability gives it a
competitive edge over other open-source autopilots [2,4,8,14].
However, it is specifically tailored to execute as firmware on
resource-constrained microcontrollers. Low-frequency single-
core processing with limited memory restricts Cleanflight’s
ability to implement complex controllers (e.g. model predictive
control) or autonomous obstacle avoidance or object tracking
missions.

We empower Cleanflight’s performance-critical flight con-
trol loop with autonomous functionality by retrofitting the
native tasks to execute as real-time user-space threads within
the Quest sandbox (Fig. 1). The main control components are
identified and subsequently classified into flight safety and
mission critical task-brackets based on their importance to
flight control functionality and corresponding consequences
on operational failure.

Table I lists each required Cleanflight task, 7;, with budget,
C;, and period T;. These tasks have hard deadlines equal
to their corresponding periods. Sensor (IMU) and actuator
(MOTOR) tasks are bound to kernel-level threads that handle
real-time I/O. These threads read gyroscope and accelerometer
data, and write pulse-width modulation (PWM) commands to
the motors, respectively. Sensing, processing and actuation
tasks form pipelines [30,41], along which data flows from
inputs to outputs.

TABLE I: List of essential flight tasks in FlyOS.

Budget Time Freq IO Sandbox L.
Tasks (us) |Period (us)| (Hz) Criticality Assignment Description
IMU
(GYRO + ACC) 100 1,000 1,000 | SAFETY Quest Sample sensor data
Linux .
RX 20 20,000 50 | MISSION + Specify target
Quest commands.
Calculate current
ATTITUDE 20 10,000 | 100 | SAFETY Quest X :
attitude of copter
PID + MIXER | 10 2,000 | 500 | SAFETY Quest | Attitude controller
+ throttle mix
MOTOR 1,000 | 2,500 | 400 | SAFETY Quest Process PWM
commands
Limux Log flight + mission|
BLACKBOX | 20 2,000 | 500 |BACK-GND + ©g gdm s
Quest
Quest uses a variant of rate-monotonic scheduling

(RMS) [29] algorithm by defining a virtual CPU (vCPU) ab-
straction as a schedulable entity [34] on top of a physical CPU
(pCPU). Threads and their corresponding pipe wrappers are
directly mapped to vCPUs, which are then mapped to pCPUs.
This two-level scheduling hierarchy guarantees each task 7; to
execute for C; time units every 7; when runnable [57].

In accordance with RMS, vCPUs are assigned static priori-
ties based on their time periods: highest priority is given to the
smallest time period and vice versa. Quest executes interrupt
service routines in a separate real-time thread context with
a time period inherited from its user-level counterpart. This
allows I/O interrupts to be handled at the correct priority of the
task issuing the request thus enabling real-time management
and deterministic accounting of CPU clock cycles for each de-
vice interrupt. The scheduling subsystem therefore guarantees
temporal isolation between flight control threads.

Fig. 2 shows the distribution of control functionality be-
tween Yocto Linux and Quest in our dual-sandbox setup.
Timing and safety-critical control threads are allocated to
Quest while mission-critical functionality is mainly ported to
Linux. For RX (Table I), a setpoint generator (Process-1) in
Linux communicates across an asynchronous shared memory
pipe-buffer with a light-weight thread in the RTOS acting

1
Pllpe-Z B

RX Motor

i +
1 | \ Mixer _

ASIVN Roll ; Target §
e Attitude )
ab Error .

Camera

Image Manual /

< A PWM |
veew ) mmp (veru) ) |
y O i

Task Pipe

Feed |, \Pitch

- | vepu
oY - [i -
- ' Mtlssm.n L = 'yaw Task Pipe
Application Fipe Buffer oy vottle
i

1
Process 1

Task Pipe
=

Sensor
Fusion

) _ | very —Data |
Task Pipe j

Acc + Gyro
Current

Attitude Raw Sensor|

[ veru
W Task Pipe

BlackBox

1
1
1
1
1
1
I
1
1
1
1 Flight Controller Run-time Data
'

Process 2

T:teMMC FIFO ch:gs i :sf\;mc
Orage /” BlackB: ! % E{ﬂ uffers
Ap:lcica::" & _ LL Multi-threaded
Ring Buffer j Task Pipe Flight Control Loop ;
Linux ! Quest

Fig. 2: FlyOS’s software-distributed flight-control model with threaded tasks.



as a receiver gateway. Similarly, a background logger thread
(BLACKBOX) receives flight data (Process-2) in Linux from the
corresponding sender-stub in Quest. A FIFO circular-buffer
transfers the time-ordered history of flight logs, which are
saved to permanent file storage in Linux.

Asynchronous pipe buffers are implemented using Simp-
son’s four-slot algorithm [71,77], which ensures data freshness
and integrity. The control loop needs to keep track of the
most recently sampled sensor values and target trajectory
updates. Pipe-buffers therefore allow accurate data-flow and
low-latency attitude control in response to the most up-to-date
current and required state of the drone.

We identify two task pipelines within the main flight
control loop:1) intra-sandbox Pipe-1: IMU — MOTOR and
2) inter-sandbox Pipe-2: RX — MOTOR. Pipe-1 comprises
1) IMU sampling and processing, 2) sensor fusion based on
a complementary-filter [74,90] for ATTITUDE estimation, 3) a
PID+MIXER that transforms the error between actual and
target attitudes into control signals mixed with throttle, and
4) a MOTOR thread that generates PWM waveforms for the
multicopter’s motors.

Pipe-2 involves the mission task in Linux (Process-1), which
computes target attitude and thrust set-points based on the
application’s flight objective. The reference commands are
then sent to the gateway receiver (RX), which forwards the
roll, pitch and yaw targets along the feed-forward path of the
loop, shared with Pipe-1 (refer to Fig. 2). FlyOS envisions a
criticality-aware distribution of tasks among guest domains.
Task pipelines are thus composed on the basis of each task’s
role and importance in the perception, planning and control of
the drone.

2) Autonomous Vision Subsystem: We implement vision
navigation in Linux for our mission application. Linux sup-
ports a rich collection of USB video-class drivers for interfac-
ing with hardware cameras. Corresponding libraries and APIs
provided by Video4Linux (V4L), OpenCV and CUDA toolk-
its enable efficient development and testing of autonomous
perception applications using state-of-the-art image capture
technology.

For autonomous mission control, we design a simple face-
image detection and tracking application that relies on libre-
alsense [11] and OpenCV for capturing and processing camera
images. We utilize a USB3.0 Intel RealSense (R200) [15]
camera module, which features a 3D imaging system that is
capable of providing color and depth video streams. Fig. 3
depicts individual task components of our vision framework
along with the intrinsic characteristics of the R200 camera.
Algorithm 1 details our application loop from image frame
capture to generation and communication of mission control
commands (setpoints) to the flight controller executing in
Quest.

OpenCV supports a ready-to-use face detection algorithm
based on the Haar-feature cascade classifier [83] approach.
Known for its speed and simplicity, its one of the most popular
algorithms still used today for frontal-face detection with high

“R200” Imaging Component Overview

= Color Depth (IR)
Right |RI Left IR Active pixels 640 x 480 640 x 480
&
£Amer 2Me’  pixel Format RGBS 216
;41‘j;j»,~’1w i © _I# Frame rate 60 fps 60 fps
Color Module Field of view T7° x43°x70° 70° x 46°x 59°
Camera Connector (DxVxH) (Cone) (Cone)
Vision Subsystem: Face Detection Tracking
ASYNC
) Capture Detect |, Compute Determine SBUS
2 Frame Face Error Distance |||} Commands I I |
@ E
> = Y De-project pixels Pipe
o _g < (px,py) to 3D world |; Buffer
sall & OpenCV | Point (xy,2)
>l ¢ +
2 ig + Logging ‘
Linux |

Fig. 3: FlyOS’s vision subsystem (Process-1) with the RealSense R200
Camera.

accuracy and image-scale invariance. We utilize OpenCV’s
built-in repository of pre-trained parameters for the cascade
classifier composed of 22 total stages and a sliding window of
20x20 pixels (px). An integrated classifier function (Line 10)
detects faces in each frame captured by the color camera at
run-time and returns a bounding rectangle.

We calculate the center coordinates (Line 12) of the face
to determine an offset distance from the frame center in 2D
pixel coordinates. These are forwarded to a linear algorithm,
which computes the required direction of movement for the
multicopter as well as the target set-points for the pitch and
yaw rotational axes to minimize the offset and track the
detected face (Lines 13-14).

Our algorithm enables configuration of rate of
change of set-point commands in each axis of rotation
(rate_{dPitch,dYaw}). This allows us to affect the
sensitivity and precision of mission control per unit of error
distance, which in turn impacts responsiveness of flight

Algorithm 1 Image Detection and Tracking

Require: Haar-classier pre-trained XML file containing stage thresholds and
filter weights: haarcascades/haarcascade_frontal face_alt.xml

Require: < cv :: Rect > faces /*array to store detected face(s)*/

Require: rate_{dPitch,dY aw} /*rates of change of command*/

: async_chan = create_shared_memory (ASYNC_TYPE)

: ctx = r200_create_context()

: r200_enable_stream(ctz, { COLOR, DEPTH})

: while true do

/* Capture and retrieve image frame */

data = get_raw_frame_data() /*for enabled image streams*/
frame = to_openCV_matriz(data) /*frame vector to matrix*/
{pzo,pyo} = {fmm;'wls , fmmg'mws} /#*frame center*/

/* OpenCV: detect face */
cv::CascadeClassifier.detect M ultiScale( frame, faces,

min=200x200,max=1000x 1000)

11: /* Estimate distance offset and generate command */

12: {f-'ECa fyc} — faces[()z].wzdth’ faces[O%.hezght /#1st face’s center®/

13: dPitch = rate_dPitchX(fyc - pyo) /*pitch-up distance*/

14: dYaw = rate_dY awX(fzc - pro) /*yaw-right distance*/

15: /* command in correct format */

16: commandData[Roll,Pitch,Yaw, Throttle] = F({O, dPitch, dYaw, O})

/*F(command) is the conversion function specific to the flight controller*/

17: /* Write to shared memory */

18: write_shared_memory(async_chan , commanData)

19: end while

SoRNUAELN S

—_




control to target commands. Data is converted to a compatible
RX format (Line 16) for the gateway thread in Quest and sent
across shared memory (Line 18). For the Cleanflight autopilot,
set-point values are packaged as SBUS [68] protocol frames
before transfer.

We use the depth stream to de-project the offset distance in
pixels into a real-world displacement of the face-image from
the camera center, in meters. This allows us to convert between
different coordinate systems, and log the multicopter’s angular
movement against the ground truth trajectory of the image.

SCHED_DEADLINE is used to schedule the vision process
allowing mission commands to be generated with sufficient
predictability. Our design also caters for face occlusions for
a limited time-horizon. We configure a threshold time-out
value before the mission is aborted. This allows configurable
tolerance against occasional occlusions.

We note that this work does not focus on performance
comparisons between different real-time face-detection frame-
works. Instead the OpenCV implementation serves as a model
example of showcasing the autonomous capability and practi-
cal feasibility of FlyOS’s architecture. Mission tasks in Linux
are able to effectively communicate commands to the flight
controller tasks over a low latency inter-sandbox channel inter-
face. FlyOS therefore ensures predictable autonomous control
with bounded worst-case end-to-end latencies. Section III
validates FlyOS’s autonomous tracking capability.

3) Fault-Tolerance Subsystem: FlyOS’s virtualized sand-
boxed architecture lends itself to support high-confidence
avionic systems. The partitioning hypervisor prevents access
to the separate memory spaces and resources assigned to
remote guests. FlyOS’s distributed system-on-a-chip design
attempts to contain faults within separate sandboxes, similar to
how federated architectures isolate faults in separate hardware.
Our fault tolerance subsystem enables:

1) Software component level tolerance for failures within user-
space applications: A functional or timing based failure is
detrimental to the safe operation of the multicopter if it directly
affects the real-time and safety-critical behavior of the flight
control loop. FlyOS allows flight controller redundancy across
different sandboxes and implements efficient controller hand-
off mechanisms. In this work, we focus on faults within the
critical MOTOR task.

FlyOS uses heartbeats to capture a class of functional and
timing failures, which jeopardize the progress of critical tasks.
For example, if the motor task fails to generate a heartbeat by
a certain time, this could jeopardize the control of the drone.
Loss or delay of a heartbeat triggers the activation of a failover
controller to maintain flight.

2) Sandbox level (or kernel level) tolerance for failures im-
pacting the entire guest OS domain: Such failures often involve
kernel memory corruption or other types of malicious kernel
attacks initiated by external non-certified third-party services.
A local copy of the VMM in each guest sandbox allows for
sandbox-level redundancy. The VMM is able to quarantine

a malicious guest and even re-instantiate or duplicate an
entire guest partition with its corresponding application stacks,
to replace the corrupted guest instance. I/O device hand-off
between sandboxes with replica-coordination mechanisms is
implementable in FlyOS’s monitor logic. Failover standbys
will be activated while the original sandbox is recovered,
thereby providing an online and effective way to handle such
system-level faults. We reserve further discussion on this topic
for future work.

We propose a unified fault-detection mechanism, which
operates in the most-secure mode (root-mode) of the system.
The VMM keeps a runtime health-check of the critical tasks
within its respective sandbox through timer-initiated guest
preemptions (VM-exits). x86 hardware-assisted virtualization
timers called VMX-preemption timers are leveraged for this
purpose. The timer operates at a frequency proportional to
the hardware time-stamp counter (TSC) [21] available to each
core of the processor. This detection mechanism has the benefit
to be agnostic to functional, event or timing related failures
within the system.

Application task failures that compromise the correctness of
real-time flight control are attributed to factors such as delayed
mission commands, incorrect tuning of the PID controller,
motor runaway or stale motor updates. Due to the closed loop
nature of the flight control, it is possible for a fault originating
in a single thread to propagate through the entire application.
Fig. 4 enumerates the steps involved in the workflow from
fault-detection to recovery for the dual-sandbox system.

The MOTOR task is instrumented to generate periodic heart-
beat messages (Step-1). A VMX-preemption timer is enabled
within the VMM logic of the Quest sandbox. It counts down
during the execution cycles of the guest, in non-root mode,
based on a configured timeout value. This directly controls
the fault-detection latency. On expiration, a low-cost VM-
exit [19,76] is triggered causing a soft-trap to the hypervisor
(Step-2). If the monitor observes a heartbeat message incon-
sistency, a system mode change is initiated (Step-3) following
a distributed recovery response (Step-4&5). Consequently, the
faulting flight controller is marked as compromised (depicted

= Rx PID = MIX R-EH_’:&MMOZ:"
FAST LOOP : !
Emergency

Land

GYROSCOPE

Heartbeat |,
PreviousHB | &

9,‘,

1 VM-Exit
Monitor -

H Recovery in
: RTOS Kernel
IPI @ @ VM-Entry

Fig. 4: Flight controller fault tolerance: detection and remote recovery.

FAILSAFE
MODE




TABLE II: Recovery path latencies for pipe-delayed in Linux.

Tasks: Linux (Detection — Recovery) Min | Average | Max

(Step-4a) IPI RX: Kernel — Userspace (ms) 0.004 0.005 0.007
(Step-4b) IPI RX Userspace — Mission Process (ms) 24 43 81
(Step-4c) Mission Process — Backup-FC: RX (ms) 19 29 35
(Step-4d) Backup-FC: RX — Shared Memory (ms) 0.005 0.075 0.4

in grey in Fig. 4) and all corresponding threads terminated.

Two proxy real-time tasks are activated, to control the sensor
(IMU) and actuator (motor) devices (Step-5). This retains
predictable safety-critical I/O control within Quest. The local
monitor sends an inter-processor interrupt (IPI) to trigger the
remote recovery pipeline, in parallel, within Linux (Step-4).
A kernel module listens for the IPI and acknowledges receipt
with an interrupt-handler routine (Step-4a).

Two userspace task pipelines (Step-4b) are then launched:
1) fast-loop response (pipe-fast), which pre-arms the backup
flight controller (Linux port of vanilla Cleanflight) to transfer
simple hover commands to the virtual device proxy interfaces
in Quest, and 2) delayed response (pipe-delayed) employing
the Linux mission task to initiate relatively more complex
maneuvers such as radio over-ride to return the multicopter
to base or force an emergency-land.

Table II shows a preliminary set of latency measurements
for each step of the online recovery within Linux. The timing
measurements incorporate processing, scheduling and transi-
tion delays, which may cause the drone to experience motor
downtime. To avoid crashing, we activate a first-response
(pipe-fast) recovery, which complements the delayed response.

To keep execution costs low, we ported vanilla Clean-
flight as a backup-controller supporting only the most critical
functionality of the fast-loop. Asynchronous communication
channels between the failover controller and real-time device
gateway threads ensure timely transfer of commands. Despite
SCHED_DEADLINE scheduling optimizations, the overheads
experienced by Linux indicate it is only really suitable as a
temporary backup until the primary hard real-time controller
is restored.

III. EVALUATION

We evaluate FlyOS for three different scenarios: 1) Manual
radio control with attitude stabilization in the presence of
an external disturbance, 2) Autonomous mission control with
face-image detection and tracking, and 3) Failover flight
control to recover from a critical actuator fault. We con-
duct hardware-in-the-loop (HIL) experiments and latency-
benchmark simulations. Our testbed setup common to all HIL
experiments is presented next.

A. Experimental Setup

1) Hardware: Figure 5 shows our custom built S500
(500mm) quadcopter mounted at the center of a 3-axis
mechanical gyroscope, called the BirdCage [39]. The three
orthogonal gimbal rings (annotated in the diagram) allow
the drone to freely rotate about its roll, pitch and yaw axes
thus enabling repeatable attitude adjustments in a controlled
environment. We also mount a flat passive screen (40" x

_RealSense R200

Screen A%
Vision Kit
(intel
\ \\ Aero Compute Board
v N ;S
B

Fig. 5: BirdCage testbed for real-world experiments. The quadcopter motor
configuration is enumerated at the bottom-right.

30") in front of the drone to project images for vision-based
tracking experiments.

The quadcopter’s frame is fitted in an X motor configuration
for symmetrical mass distribution in all three rotation axes.
This ensures 100% motor output performance [59] with 4
EMAX 935kV brushless DC motors.

We host FlyOS on Intel’s purpose-built UAV developer
kit featuring the Aero Compute Board and a complementary
vision accessory kit [10], which includes the RealSense R200
camera module.

Fig. 6 shows a block diagram layout for the hardware
modules integrated into the Aero Compute Board. This board
features 4GB RAM, a quad-core Intel Atom x7-Z8750 pro-
cessor, a GPIO expander, a 6 degrees-of-freedom BMI160
IMU (for 3-axis gyroscope + accelerometer), and an Altera
MAX10 FPGA. The processor nominally runs at 1.6GHz
and supports Intel VT-x virtualization technology. The FPGA
generates PWM motor signals from commands issued by the
Atom processor. A RadioLink R9DS receiver connects to the
GPIO expander to receive raw SBUS commands required for
manual radio control. We deploy FlyOS on the Aero Compute
Board with the task distribution shown in Fig. 2.

2) Performance Metrics and Settings: For the BirdCage
experiments, we record attitude variation profiles of the quad-

Intel R200 Camera HSUART_TX

Serial Log

1 r—

USB3.0 Connector H HSUART1 + Power

Power Distribution
Board of the Drone

4GB
Intel®Atom™ = gam
5 x7-28750
2 g 3268
c 3 = Processor — MMC Wireless
" o > 4 cores/4 threads @ ’ Transmission
o 5 ] = Radio TX
2|l ¢ B 4o -
= E & cso
(7] Atom3) Acc + Gyro .
k3 Sensors Radio RX
>
" spiocsi | [ Raw SBUS
commands
Altera®

i
4

PWM Signals

FPGA GPIO (x4)
Motor PWM signals

MAX®10
FPGA

GPIO Connector

Intel Aero Compute Board

Fig. 6: Aero Compute Board with manual radio control setup.



copter over time in response to an appropriate stimulus. We
measure the response time to achieve a steady-state target
attitude with an error-band of +0.5° (shown as horizontal
red lines in our plotted results). This allows us to account
for data imprecision and any inherent imperfections in the
drone hardware or positioning of the payload. We additionally
compute error statistics for each flight, to quantify the impact
on the accuracy of flight control. Results are averaged over at
least 3 flights.

We design microbenchmarks to draw conclusions about
the worst-case observed end-to-end (E2E) delays along critical
flight control paths. We now present FlyOS’s performance
results for each of the three flight scenarios described above.

B. Manual Radio Control

FlyOS is compared with vanilla Cleanflight (CF) firmware
leveraging manual radio control capability. The mission pro-
cess in FlyOS’s Linux sandbox reads raw SBUS radio input
from the GPIO connector of the Aero Board and sends
processed SBUS commands to the RX gateway thread in Quest.

1) Setup: Vanilla Cleanflight is flashed on an SPRAC-
INGF3 [31] flight microcontroller and installed on the drone.
Featuring the STM32F3 processor, it offers native support for
the original flight stack. A TX/RX pair is used to ARM the
drone and transfer throttle and attitude target commands to the
autopilot. Cleanflight is configured to run the same subset of
critical flight control tasks as FlyOS (Section II-C). The main
loop-time for the fast-loop is set to the maximum supported
frequency of 1000Hz, which represents the best response
time performance [39] on the microcontroller platform. PID
constants for both FlyOS and Cleanflight autopilots are tuned
to yield stable flight control behavior with minimal response
time.

2) Results: For the BirdCage experiment, our steady-state
target is set at a horizontal hover (0° £ 0.5°) in the Roll axis.
A transient step-input attitude disturbance is introduced in the
Roll-Right direction by displacing the corresponding axial ring
of the BirdCage by 15°. The quadcopter is then allowed to
stabilize to target hover. Due to the symmetrical nature of
the motor + mixer configuration, Roll axis proves sufficient
to showcase the attitude correction behavior. Fig. 7 shows
that FlyOS’s integrated architecture yields the same control
integrity and functional correctness as the vanilla firmware.
FlyOS, however exhibits a slightly better response time of
10.87s compared to 11s of Vanilla-CF despite running a more
complex software stack involving two guest OS domains.
Smaller peak-amplitude oscillations by FlyOS lead to lower
mean error values reported in Table III. FlyOS’s predictable
task execution therefore exhibits higher accuracy of control
with a timely and precise response from the motors. This

TABLE III: Error statistics of the flight profiles in Fig. 7.

Autopilot Mean Absolute error | RMSE
FlyOS 3.85° 5.18°
Vanilla-CF: 1000Hz 4.93° 6.53°

Comparison of Step-Input Response to Initial Attitude Disturbance

N
=3

=
[}

=
1=
1

o
1

&
1

Roll Angle (Degrees)
o
1

&
5
1

Flyos
Vanilla-CF: looptime =1000Hz ======
T T T T T T T

N
o

R
S

) 1 [y 6 2 40 12 BUl

Time (seconds)

Fig. 7: Roll-Right attitude correction profile.

manifests as lower magnitude of under- and over-shoots from
the hover target.

E2E latency is reported in Fig. 8 for the two task pipelines
(Pipe-1 and Pipe-2) within FlyOS’s flight control loop.
Vanilla-CF latencies provide a baseline reference. FlyOS per-
forms 59% and 20% better for Pipe-1 and Pipe-2, respectively,
in the worst-case. This ensures low-latency responsiveness
and expedited recovery from anomalous attitude shifts. FlyOS
takes advantage of the higher clock rate and powerful process-
ing capabilities of embedded multicore platforms to ensure
predictable flight behavior. Low E2E pipeline latencies are
crucial for high frequency mission control to track a trajectory
target in real-time.

C. Autonomous Mission Control

We now demonstrate how FlyOS supports autonomous
mission control. Our sample mission requires the quadcopter
to use face detection to locate and track a target image, which
is projected onto a 2D screen (Fig. 5).

1) Setup: The RealSense R200 camera is mounted at the
front of the quadcopter, such that the image plane ' center is
aligned to the middle of the screen. The image plane is set to
a resolution of 640 x 480 pixels, with the middle of the screen
having the origin coordinates, zo = 0,y, = 0.

The autonomous flight objective is three-fold: 1) detect an
image of a face of size 10x10 pixels (target) on the screen,
2) determine its horizontal or vertical displacement from the
origin, and 3) adjust the drone’s pitch or yaw attitude in the
direction of the target, to accurately align the center of the
camera plane with the projected image. In case of a moving
target, the aforementioned steps are repeated every time the
target location updates.

We interpret a static image to be equivalent to a step input
target signal, whereas a moving image corresponds to a ramp
input signal to the flight controller. The BirdCage is placed at
a fixed distance from the screen (Fig. 5), which we measure
using the native DEPTH stream from the IR-sensors in the
Realsense module. We record updates in the horizontal (x)

'We refer to image and camera plane interchangeably.



120

29 Quest Flight Controller
£ Linux Vision Processing

104.26

100{ B Linux System Overheads

80

8221k NN

1.8
X3 Vanilla-CF X1 Vanilla-CF
1751 m== Flyos 5| E= Flyos
4.55
— 1.50
@
E 4
> 1.25 3.64
)
= c
2100 3
=
u 053 0.77 2.29
207 50
: o 2
3 2
=
W 0.50
1
0.25
0.07 0.20
0.00 L ! 0 I |
Min Average Max Min Average

Pipe 1: IMU — Motor

Fig. 8: E2E latencies for two critical flight control paths within FlyOS. Vanilla-CF provides a

reference for comparison.

and vertical (y) displacement of the center of the image-plane
over time in meters, as the drone rotates in the yaw and
pitch axis, respectively. This distance is then converted into
an angular rotation in degrees using trigonometry. A similar
technique is used to record the ground truth for the target’s
movement in a pre-programmed trajectory for the duration of
each experiment.

2) Results: Pitch and Yaw attitude adjustment profiles in
response to step- and ramp-input stimuli are shown in Fig. 10
and 11 respectively. Target image location is restricted to the
positive y-axis of the screen for Pitch-Up experiments and pos-
itive x-axis for Yaw-Right experiments. Corresponding error
and response time values are reported in Table IV. Steady-state
alignment and root-mean-square fracking error is measured for
statically positioned and moving targets respectively.

For step-profiles shown in Fig. 10, the drone eventually
settles to an accurate steady-state, aligning with the image
center within +0.5° error threshold in both axes. The response
times for pitch and yaw are also within 0.9s of each other. The

Pipe 2: RX — Motor

10 20 —
9 - f"'\».f/*\ 18
w £ - T
g °® 1 e g 16 7
o 7 214 1
I o ]
a 6 : 8 12
=~ Pitch —— = 1 Yaw
2 5 o 10 -
S , Image Target - S 5 Image Target -
c -1 4 -
< < g
£ 3 s ©7]
£ 2 & 4
o > g
1 2
0 e 0 e
° LS 2 3 [y 5 [ o 0+ 2 3 & 5 & 1

Time (seconds) Time (seconds)

Fig. 10: Detecting a static image: step-response in Pitch and Yaw axis.

30 25
- ]
0 25 - -
o 3 20 ]
] o
D 20 S
@ o
=) a 15
= 15 =
L] ]
=4 D 10 4
€ 10 210
< <
=
£ 5 %5—
o >
0 4 0
T T T T T T T T T T T T
° 2 [ [ ? EEEV A ° 7 [ [ ? O 2

Time (seconds) Time (seconds)

Fig. 11: Tracking a moving image: ramp-response in Pitch and Yaw axis.

AN

3.80
Average Max
Pipeline: Vision — Motor — Logger

Max 0

Fig. 9: Round-trip times for vision pipeline with
constituent task latencies.

TABLE IV: Response time and error statistics for vision experiments.

Static Image | Moving Image
Parameters
Pitch | Yaw | Pitch Yaw
Mean Steady-State (S.S) Error (deg) 0.16 0.15 - -
Root Mean Square (RMS) of Total Error (deg) - - 1.19 0.50
Avg. Response Time to reach Target Angle (s) 4.10 | 3.21 1.26 1.22

transient control response however, shows higher magnitudes
of over- and under-shoots and sharper corrections in the pitch
axis compared to yaw’s smoother and heavily damped trace.
Similarly, ramp profiles in Fig. 11 show that the drone is
successfully able to track the target with a root-mean-square
error of 1.19° and 0.5° in pitch and yaw axis respectively.
These fall within the boundary of the 10px by 10px target-
image, which translates to the drone’s angular span of +1.25°
from the image center. We again observe that compared to
pitch, yaw response exhibits a greater accuracy of control
(lower RMSE) and smaller transient lag leading to a lower
average response time.

This performance difference results from the hyper-
sensitivity of the pitch axis to changes in airflow dynamics,
ground-effect and external environmental forces like grav-
ity [53,75]. As the quadcopter pitches up towards the target,
downstream turbulence produced by the front two propellers
interferes with the rotation of the rear propellers. This prop-
wash effect is largely absent in yaw rotations with all 4
propellers operating in the same horizontal plane. We also
note that the weight of the hardware payload, including the
battery, is predominately distributed along the pitch axis.
The resultant center-of-gravity vector therefore has a direct
impact on pitch sensitivity to slight changes in motor thrusts.
We thus observe a less damped transient response, which is
possible to improve with a more finely tuned PID controller.
Despite the differences in performance between the axes,
FlyOS exhibits efficient, autonomous detection and tracking
behavior for both static and moving targets, with reasonable
accuracy and responsiveness.

FlyOS’s vision detection pipeline spans across Linux and
Quest sandboxes. We measure round-trip latencies of the au-
tonomous pipeline: Image detection & tracking mission appli-
cation (Linux) — RX stub processing (Quest) — PID+MIXER



(Quest) — MOTOR Update (Quest)— BLACKBOX Logger
(Linux). Average and worst-case end-to-end latencies of the
entire workflow and constituent software modules are reported
as stacked bar graphs in Fig. 9. Vision processing in Linux
includes frame retrieval and processing delays, as well as
object inference delays. Inter-sandbox communication delays
and SCHED_DEADLINE scheduling overheads are aggregated
as “System Overheads”. Quest delays involve the execution
times of flight control tasks along Pipe-2. These tasks read
and process vision commands sent via shared memory, and
generate corresponding PWM commands. On average, our
vision application is able to maintain a frame processing rate
of ~30 fps. Even in the rare worst case, the processing rate
still results in the drone tracing an accurate tracking trajectory
as seen in the attitude profiles.

Although our application employs a relatively simple object
detection algorithm, it serves as proof-of-concept for FlyOS’s
ability to support real-time autonomous missions.

D. Comparison with Intel Drone

To further motivate our architectural framework, we com-
pare the communication overheads of FlyOS and the Intel
Ready-to-Fly (Intel-RTF) [7,13] drone. The Intel-RTF drone
runs the Ardupilot [2] flight controller hosted on the Pix-
hawk [35] companion microcontroller board.

1) Setup: The Intel-RTF drone is a pre-assembled quad-
copter, which supports programmable UAV applications and
mission control. The platform is a dual-board solution to
flight management. The main compute engine comprises the
Aero Compute Board connected via an HSUART (high-speed
universal asynchronous receiver-transmitter) serial bus to the
Pixhawk flight controller hardware. Pixhawk offers native
support for Ardupilot’s flight stack, which ships as a binary
with the Intel-RTF drone. We flashed the Compute Board with
the Ubuntu Linux 16.04 operating system, to develop and host
our microbenchmark for measuring communication latencies.

Communication over the serial link is managed by the
MAVLink-router soft-service within Linux. MAVLink com-
mands [36] and corresponding acknowledgment (ACK) mes-
sages are transferred between high-level mission applications
in Linux and Ardupilot’s control loop executing on the Pix-
hawk. The control loop logic within the flight stack is split into
two parts [38]: critical flight controller tasks (termed the fast-
loop) and non-critical application tasks, including MAVLink
message retrieval, processing and ACK generation. Priority is
given to the fast-loop, which executes controller sub-tasks in a
sequential manner. Remaining time of the control loop is then
distributed between application tasks that are scheduled in a
best-effort preemptive manner. In contrast, all threads within
FlyOS’s critical flight control loop, including RX processing,
are managed by a real-time scheduler that guarantees each
task’s (7;) execution time budget (C; time units) every time
period (7; time units).

We measure the round-trip latencies of the MAVLink com-
munication protocol using DroneKit’s python API [23], to
send “set-yaw-attitude” commands to the flight controller and

TABLE V: Communication overheads in federated & FlyOS architecture.

Communication protocol Min Average Max
Asynchronous Shared Memory (ms) | 0.0004 | 0.00052 | 0.0091
MAVlink on UART-serial (ms) 4.13 9.99 301.54

receive corresponding ACK messages. Similarly for FlyOS,
we use our vision-detector Yocto Linux application to transfer
yaw commands to the flight controller executing in Quest,
using asynchronous shared memory communication. For every
message sent, an ACK message is received, timed and logged
on the Linux side.

2) Results: Table V presents our results averaged over 2000
transferred messages. As shown, the MAVLink protocol incurs
a significant delay.

We also note that FlyOS’s shared memory inter-sandbox
communication exhibits lower overhead latencies than inter-
partition communication based on a data-distribution service
(DDS) network as evaluated by Pérez et al. in [62]. The au-
thors analyze an ARINC-653 compatible DDS communication
link between two MaRTE [12] RTOS virtualized partitions,
hosted by the XtratuM [33] hypervisor on a multicore x86
platform. Their results show average round-trip latencies of
100s of microseconds for simple data transfers. Such delays
result from the ARINC-653 virtual network service, DDS
middleware stack, hypervisor-based processing of interrupts
and other operating system overheads.

With reduced data transfer costs, FlyOS allows mission
tasks the flexibility to execute at high frequencies, while
incurring minimal delays for communicating target commands
to the flight controller. It thus ensures agile and responsive
flight control with enhanced maneuverability.

E. Failover Flight Control

We next study the performance impact of the fault iden-
tification and failover subsystem. We measure the latencies
of Detection—Recovery pipelines within each guest OS. An
artificial fault is injected within the motor-update (MOTOR)
thread, which sends stale commands to the motors after the
flight controller has been operational under Normal mode for
some time. This causes the heartbeat messages sent to the
hypervisor to stall after the fault is encountered, resulting in
a Fault-Tolerance system mode switch.

We utilize vanilla Cleanflight’s fast-loop operating at
1000Hz frequency (looptime=1ms) as our ported failover
controller. The VMX-preemption timer for Quest’s bootstrap
processor (BSP) core within the Aero Compute Board is
configured to expire periodically at intervals of 2ms (500Hz).
This defines our worst-case time bound for fault-detection.
Each sandbox’s corresponding recovery response is tracked in
parallel based on the steps enumerated in Fig. 4. End-to-end
delay statistics are presented in Fig. 12. The measured worst-
case recovery time to reach the hover state in Quest is 0.77ms.
This represents the duration from the system mode change
(Step-3 in Fig. 4) to the first set of valid hover commands
sent to the motors (Step-5).



For Linux, the measured worst-case end-to-end recovery
time for the longer pipeline (pipe-delayed) (Steps:4-4d) is
84ms. This is less than the total sum of the worst-case
constituent step latencies of the pipeline as shown in Table II.
The pipeline thus activates the emergency landing mode for
the backup flight controller within the practical latency upper
bound. Comparatively, the first response pipeline (pipe-fast)
is activated with a maximum delay of 0.41ms. This latency
comprises the combined delays for Step-4a: 6.5us and Step-
4d: 0.4ms, and falls well within the upper bound latency of
1ms (1000Hz) for the fast-loop vanilla controller. PWM hover
commands are therefore sent to the shared memory channel
with a lower latency than the pipe-delayed pipeline. The
motor proxy task in Quest reads the asynchronous channel on
activation and transfers processed commands from the Linux-
side flight controller to the motors. This allows the quadcopter
to stabilize until emergency landing is activated at a later time.

A comparative primary-backup partitioned system built for
helicopters by Jeong et al. [37] reports the first response
time to be 1lms using a hardware-in-the-loop simulation
environment. This is at-least 90% slower than FlyOS’s pipe-
fast failover hover response. A primary reason is the temporal
multiplexing approach taken by the authors for scheduling vir-
tualized primary and backup partitions onto shared hardware
resources. FlyOS’s hypervisor allows each sandbox partition
to directly and independently manage its local resources, thus
allowing activation of parallel recovery pipelines. This leads
to a more timely first response for a fault that originates in
one or more critical flight control tasks.

Fig. 13 shows the real-world attitude response profile of
the quadcopter in the BirdCage. For normal mode operation,
the primary flight controller within Quest tracks a static
image along the x-axis of the screen with corresponding yaw-
right rotations. We observe a failover response time of 2.51s
from when the motor fault is detected to the time when
the quadcopter achieves a stable hover under the control of
the backup Cleanflight. This experiment provides a practical
latency bound to regain stable flight, when the quadcopter
is subjected to physical constraints, considering factors such
as the rotational inertia of the motors and rotor drag. We
note that during the dynamic hand-off between the primary
and backup flight controllers, the motors do not exhibit any

Min Average Max Min
(Quest) Detection — Recovery Time

0.0

Average Max
(Linux) Detection — Recovery Time

Fig. 12: E2E latencies from fault detection to flight recovery within Quest
(left) and Linux (right).

Failover Response

25 — e .,
1
1
'
\\ V.l
20 H S
! g
'
¢ :
2 H o
g ' SETY-)
e ! 3
@ H 5
2 H Fault-Tolerant @
< 10 ' 3
< ' Mode - 042
g :
> :
1 Flyos: Attitude
0 — FIy:OS: System Mode ------
T r T r T v T i I ; . ; 0

o 1 [y ® [ 10 2 Ah

Time (seconds)

Fig. 13: Static image detection (Normal Mode) and Fault recovery hover
stabilization (Fault-Tolerant Mode) with fault injection at 8.27s.

visible downtime but only a change in the update frequency of
corresponding angular velocities. This example fault-tolerance
subsystem shows FlyOS to be capable of maintaining safe
failover flight control.

Our current implementation relies primarily on Linux to be
the warm standby sandbox for failover flight control. In an
effort to reduce the response time even further, we propose
using an RTOS sandbox for real-time failover recovery. This
would allow us to overcome the timing shortcomings of
Linux, and implement a real-time safety-critical backup flight
controller. However, this warrants further investigation and is
left for future work.

IV. RELATED WORK

Multicopter flight management relies primarily on federated
architectures for functional segregation. Hardware segregation
of flight control stacks from mission applications is provided
by Cube Autopilot’s co-processors [16], Intel’s Ready-to-Fly
(RTF) Drone [13,40,80], Qualcomm’s digital signal proces-
sors (DSPs) [1,6,17,22], and various companion board solu-
tions [3,43,56]. In each of these cases, timing and functional
failures are isolated from tasks running on remote hardware.

Other researchers have focused on the security of mission
components used in a federated flight management architec-
ture. For example, Klein et al. [50] use sel4 to separate
trusted from untrusted software in separate VMs of a mission
computer that is distinct from the flight control hardware.

However, to reduce size, weight, power and cost (SWaP-C),
the research community has recently considered a software-
based integrated modular avionics (IMA) approach to flight
architectures [28,70,85]. IMA in UAVs takes its inspiration
from the commercial aerospace domain led by Airbus and
Boeing [46,84], to employ temporal and spatial partitioning
techniques in compliance with ARINC-653 software develop-
ment standards.

Several mechanisms have emerged that target partitioning
at either the application [48], kernel or hypervisor level of the
consolidated flight management system. LynxOS-178 [51,54]
is a small partitioning kernel, which establishes encapsulated



domains for applications, and schedules them on shared hard-
ware in dedicated timeslots. Jo et al. [47] define an OS
abstraction layer (OSAL) for Linux and RTEMS, along with
an ARINC-653 core layer tailored for small civilian UAV
applications.

Other kernel-level partitioning approaches [45,69] extend
existing operating systems with ARINC-653 API support.
In these approaches, user-level partitions are typically mul-
tiplexed on processing cores, resulting in frequent context
switching, and potentially increased system overheads. Lack of
temporal and spatial isolation in the shared interrupt handling
subsystem for I/O devices results in unpredictable worst-case
execution times at the task level. This negatively impacts the
timing predictability of flight control, and responsiveness of
mission control.

In contrast, research in virtualization technology for avion-
ics has approached IMA’s partitioning requirement at the
system-level by employing consolidating hypervisors. These
allow multiple operating systems to run simultaneously as
virtual machines on shared flight hardware. PikeOS [18]
and AIR [32] are two micro-kernels with support for a
virtualization layer responsible for partitioning of resources
between hosted guest operating systems. These approaches to
IMA however have only been deployed in spacecraft applica-
tions [25,89]. State-of-the-art multicopters, on the other hand,
employ traditional hypervisors like Xen [81,82], VMware and
VirtualBox [44]. These offer support to host Linux VMs
extended with ARINC-653 standard APIs. Linux however
lacks hard real-time support for I/O interrupt scheduling [93],
which is needed for sensing, processing and actuation tasks in
a flight controller.

Pérez et al. [61,62] integrate DDS (data distribution ser-
vice) with ARINC-653’s port-based communication. The au-
thors validate their approach by implementing RTOS-based
publisher-subscriber partitions on the Xtratum [33] hypervisor.
The inter-partition communication is presented as a general
avionic solution applicable to all IMA based flight manage-
ment systems.

Contrary to the current virtualization solutions, FlyOS
presents a partitioning hypervisor approach tailored towards
efficient flight control for multicopters. To the best of our
knowledge, FlyOS is the first consolidated avionic system to
statically partition hardware resources between guest sand-
boxes that remain under the direct management of their
respective OS kernels at run-time. Consequently, the system
incurs minimal operational overheads. FlyOS’s separation ker-
nel thereby achieves spatial and temporal isolation in the
context of Integrated Modular Avionics for multicopters. Addi-
tionally, mixed-criticality avionic services mapped to different
sandboxes are able to communicate with low latencies using
shared memory mapped into user-level address spaces.

V. CONCLUSIONS & FUTURE WORK

This paper presents FlyOS, an integrated modular avionics
(IMA) framework for next-generation multicopter flight man-
agement systems. FlyOS employs a partitioning hypervisor to

statically partition hardware resources among virtualized guest
OS domains or sandboxes. Our prototype implementation
hosts a built-in RTOS (Quest) with a legacy feature-rich Linux
system in a dual-sandbox configuration. A real-time safety-
critical flight controller ported to Quest communicates via
shared memory with autonomous mission critical application
services in Linux.

FlyOS guarantees temporal and spatial isolation of mixed-
criticality avionic tasks consolidated onto a centralized flight
platform. Hardware virtualization support is used to implement
fault isolation, detection and recovery mechanisms for critical
flight controller failures. An empirical evaluation validates
the effectiveness of FlyOS’s approach for sustaining safe,
predictable and efficient autonomous control of a real-world
quadcopter in the presence of critical task failures.

FlyOS’s architecture opens up future possibilities to extend
the system with additional avionic capabilities for an enriched
flight solution. We intend to expand our fault-tolerance sub-
system to handle kernel- and sandbox-level failures in a time-
bounded manner, while still maintaining the original flight
performance. In addition to redundant failover mechanisms,
complete fault-recovery will also be considered. We also
aim to incorporate real-time capabilities for adaptive flight
control, and in-flight mission re-configurability, to maintain
flight stability in varied environmental conditions.

VI. ACKNOWLEDGEMENTS

Thanks to the shepherd and reviewers for their help im-
proving this work, which is funded in part by the National
Science Foundation (NSF) Grant # 2007707. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the NSF.

REFERENCES

[1] “Archived: Qualcomm Snapdragon Flight Kit,” Accessed Oct.
2021. [Online]. Available: https://ardupilot.org/copter/docs/common-
qualcomm-snapdragon-flight-kit.html]

[2] “Ardupilot [Home.].” [Online]. Available: https://ardupilot.org/

[3] “Automatic Control System for UAV with a Takeoff Weight
of 100 kg wup to 4000 kg’ Accessed Oct. 2021.
[Online]. Available: https://www.uavos.com/products/autopilots/ap10-
1-automatic-control-system-for-uav/

[4] “Betaflight [Home.].” [Online]. Available: https://betaflight.com/

[5] “Cleanflight [Home.].” [Online]. Available: goo.gl/luCGmr4

[6] “Flight RBS 5G Platform,” Accessed Oct. 2021. [Online]. Avail-
able:  https://www.qualcomm.com/products/qualcomm-flight-robotics-
rb5-5g-platform

[7]1 “Github Documentation Wiki for Intel Ready to Fly Drone,” Accessed
Oct. 2021. [Online]. Available: https://github.com/intel-aero/meta-intel-
aero/wiki/02-Initial-setup

[8] “iINAV [Home.].” [Online]. Available: https://github.com/iNavFlight/
inav/wiki

[9] “Intel Aero Compute Board,” Accessed Oct. 2021. [Online].

Available: https://ark.intel.com/content/www/us/en/ark/products/97178/

intel-aero-compute-board.html

“Intel Aero Vision Accessory Kit,” Accessed Oct. 2021. [Online].

Available: https://ark.intel.com/content/www/us/en/ark/products/97175/

intel-aero- vision-accessory-kit.html

“Intel RealSense Github,” Accessed Oct. 2021. [Online]. Available:

https://github.com/IntelRealSense/librealsense

“MaRTE.” [Online]. Available: https://www.osrtos.com/rtos/marte/

[10]

[11]

(12]



[13]

[14]
[15]

[16]

(17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26

(27

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36

[37]

(38]

[39]

“Overview of Intel Ready to Fly Drone,” Accessed Oct. 2021. [Online].
Available: https://intel.ly/3b8WwGz

“PX4 [Home.].” [Online]. Available: http://px4.io/

“Support for Intel RealSense Camera,” Accessed Oct. 2021. [Online].
Available: https://intel.ly/3uX0KKe

“The Cube Autopilot,” Accessed Oct. 2021. [Online]. Available:
https://bit.ly/3vPxbLo

“First Public Demo of Snapdragon Flight Robotics Dev Platform
in One of Worlds Smallest 4K Drones,” 2015. [Online]. Avail-
able: https://www.qualcomm.com/news/onq/2015/09/10/first-public-
demo-snapdragon-flight-robotics-dev- platform-one- worlds-smallest-4k
“SYSGO PikeOS Hypervisor,” 2015. [Online]. Available: http:
/Iwww.sysgo.com/products/pikeos-rtos-and- virtualization-concept
“[V4,4/4] Utilize the VMX Preemption Timer for TSC Deadline Timer,”
Accessed Oct. 2021, 2016. [Online]. Available: https://bit.ly/3pihmMO0
“Qualcomm  Snapdragon Flight Kit,” March 2017. [Online].
Available:  https://www.intrinsyc.com/vertical-development-platforms/
qualcomm-snapdragon-flight/

“Timer Interrupt Sources,” 2019. [Online]. Available: https://wiki.osdev.
org/Timer_Interrupt_Sources

“Journey to Mars: How our Collaboration with Jet Propul-
sion Laboratory Fostered Innovation,” 2021. [Online]. Avail-
able: https://www.qualcomm.com/news/onq/2021/03/17/journey-mars-
how-our-collaboration-jet- propulsion-laboratory-fostered-innovation

3D Robotics Inc., “DroneKit Python.” [Online]. Available: https:
//github.com/dronekit/dronekit-python

K. Adams and O. Agesen, “A Comparison of Software and Hardware
Techniques for x86 Virtualization,” in ACM SIGOPS Operating Systems
Review, vol. 40, December 2006, pp. 2-13.

J. Almeida and M. Prochazka, “Safe and Secure Partitioning with Pikeos:
Towards Integrated Modular Avionics in Space,” in Proceedings of
DASIA 2009 Data Systems in Aerospace, by Ouwehand, L. Noordwijk,
Netherlands: European Space Agency, 2009.

ARINC Std. 653P1-3, “Avionics Application Standard Software Inter-
face, Part 1 - Required Services,” Wind River Systems / IEEE Seminar,
2010.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in
ACM SIGOPS OSR, 2003.

F. Boniol and V. Wiels, “Towards Modular and Certified Avionics for
UAV,” in Journal Aerospace Lab, Alain Appriou, December 2014, pp.
1-8.

C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard Real-Time Environment,” in Journal of the ACM,
vol. 20, no. 1, 1973, pp. 46-61.

Z. Cheng, R. West, and C. Einstein, “End-to-End Analysis and Design
of a Drone Flight Controller,” in Proceedings of the ACM SIGBED
International Conference on Embedded Software (EMSOFT), Torino,
Italy, September 30-October 5 2018.

D. Clifton, “SPRACINGF3 Flight Controller Manual (Revision 4),”
2015. [Online]. Available: https://bit.ly/2Mx9dRV

J. Craveiro, J. Rufino, T. Schoofs, and J. Windsor, “Flexible Operating
System Integration in Partitioned Aerospace Systems,” in Actas do
INForum - Simposio de Informatica, 2009, pp. 49-60.

A. Crespo, 1. Ripoll, and M. Masmano, “Partitioned Embedded Archi-
tecture Based on Hypervisor: The XtratuM Approach,” in EDCC, 2010,
pp. 67-72.

M. Danish, Y. Li, and R. West, “Virtual-CPU Scheduling in the Quest
Operating System,” in /7th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2011, pp. 169-179.

DroneCode, “Pixhawk Home.” [Online]. Available: https://pixhawk.org/
Dronecode Project, “MAVLink Developer Guide.” [Online]. Available:
https://mavlink.io/en/

E. -H. Jeong and J. -G. Kim, “S/W Fault-tolerant OFP System for UAVs
Based on Partition Computing,” in 2013 International Conference on
Electronic Engineering and Computer Science, 2013.

E. Bregu, N. Casamassima, D. Cantoni, L. Mottola, and K. Whitehouse,
“Reactive Control of Autonomous Drones,” in /4th Annual International
Conference on Mobile Systems, Applications and Services (MobiSys’16),
June 2016, pp. 207-219.

A. Farrukh and R. West, “smARTflight: An Environmentally-Aware
Adaptive Real-Time Flight Management System,” in 32nd Euromicro
Conference on Real-Time Systems (ECRTS), July 2020.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

G. Brunner, B. Szebedy, S. Tanner, and R. Wattenhofer, “The Urban
Last Mile Problem: Autonomous Drone Delivery to Your Balcony,” in
2019 International Conference on Unmanned Aircraft Systems (ICUAS),
2019, pp. 1005-1012.

A. Golchin, Z. Cheng, and R. West, “Tuned Pipes: End-to-end Through-
put and Delay Guarantees for USB Devices,” in 39th IEEE Real-Time
Systems Symposium (RTSS), 2018.

A. Golchin, S. Sinha, and R. West, “Boomerang: Real-Time /O Meets
Legacy Systems,” in 2020 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). 1EEE, 2020, pp. 390-402.

Q. Gu, D. R. Michanowicz, and C. Jia, “Developing a Modular Un-
manned Aerial Vehicle (UAV) Platform for Air Pollution Profiling,” in
Sensors, 2018.

S. Han and H. W. Jin, “Full Virtualization Based ARINC 653 Parti-
tioning,” in 2011 IEEE/AIAA 30th Digital Avionics Systems Conference,
2011.

S. Han and H. W. Jin, “Kernel-Level ARINC 653 Partitioning for Linux,”
in SAC ’12: Proceedings of the 27th Annual ACM Symposium on Applied
Computing, 2012, pp. 1632-1637.

D. Jensen, “B787 Cockpit: Boeing’s Bold Move,” in Aviation Today,
2005.

H. C. Jo, J. K. Park, H. W. Jin, H. S. Yoon, and S. H. Lee, “Portable
and Configurable Implementation of ARINC-653 Temporal Partitioning
for Small Civilian UAVs,” in IEEE Access, vol. 7, 2019, pp. 142478-
142487.

Q. Kang, C. Yuan, X. Wei, Y. Gao, and L. Wang, “A User-Level
Approach for ARINC 653 Temporal Partitioning in seL4,” in ISSSR,
2016, pp. 106-110.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: The
Linux Virtual Machine Monitor,” in The Linux Symposium, vol. 1, 2007,
pp. 225-230.

G. Klein, J. Andronick, M. Fernandez, 1. Kuz, T. Murray, and G. Heiser,
“Formally Verified Software in the Real World,” Communications of the
ACM, vol. 61, no. 10, pp. 68-77, October 2018.

B. Leiner, M. Schlager, R. Obermaisser, and B. Huber, “A Compar-
ison of Partitioning Operating Systems for Integrated Systems,” in
International Conference on Computer Safety, Reliability, and Security.
Springer, 2007, pp. 342-355.

J. Liedtke, H. Hirtig, and M. Hohmuth, “OS-Controlled Cache Pre-
dictability for Real-Time Systems,” in the 3rd IEEE Real-time Technol-
ogy and Applications Symposium, 1997.

A. Liszewski, “NASA’s Supercomputers Reveal the Incredible Turbu-
lence Produced By a Drone.” [Online]. Available: https://gizmodo.com/
nasas-supercomputers-reveal-the-incredible- turbulence-p- 1791179507
LYNX Software Technologies, “LynxSecure Embedded Hypervisor and
Separation Kernel,” 2015. [Online]. Available: http://www.lynx.com/
products/hypervisors/

J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, “Bao:
A Lightweight Static Partitioning Hypervisor for Modern Multi-Core
Embedded Systems,” in Workshop on Next Generation Real-Time Em-
bedded Systems (NG-RES 2020), ser. OpenAccess Series in Informatics
(OASIcs), vol. 77.  Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2020, pp. 3:1-3:14.

L. Mejias, J. P. Diguet, C. Dezan, D. Campbell, J. Kok, and G. Coppin,
“Embedded Computation Architectures for Autonomy in Unmanned
Aircraft Systems (UAS),” in Sensors, 2021.

C. M. Mercer, S. Savage, and H. Tokuda, “Processor Capacity Reserves
for Multimedia Operating Systems,” in Technical Report. — Carnegie
Mellon University, 1993.

A. B. Montz, D. Mosberger, S. W. O’Mally, L. L. Peterson, and T. A.
Proebsting, “Scout: A Communications-Oriented Operating System,” in
Proceedings 5th Workshop on Hot Topics in Operating Systems (HotOS-
V). 1EEE, 1995, pp. 58-61.

OscarLiang.com, “Custom Motor Mixing Multirotor | What |
Calculate | Uses,” April. 22 2017. [Online]. Available: https:
/Iwww.oscarliang.com/custom- motor-output-mix-quadcopter

P. J. Prisaznuk, “ARINC 653 role in Integrated Modular Avionics
(IMA),” in IEEE/AIAA 27th Digital Avionics Systems Conference, 2008,
pp- 1.E.5-1-1.E.5-10.

H. Pérez and J. J. Gutiérrez, “Handling Heterogeneous Partitioned
Systems through ARINC-653 and DDS,” in Computer Standards &
Interfaces, vol. 50, 2017, pp. 258-268.

H. Pérez, J. J. Gutiérrez, S. Peird, and A. Crespo, “Distributed architec-
ture for developing mixed-criticality systems in multi-core platforms,”
Journal of Systems and Software, vol. 123, pp. 145-159, 2017.



[63]

[64]

[65]
[66]
[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

R. Pineiro, K. Ioannidou, S. A. Brandt, and C. Maltzahn, “Rad-flows:
Buffering for Predictable Communication,” in 2011 17th IEEE Real-
Time and Embedded Technology and Applications Symposium. 1EEE,
2011, pp. 23-33.

Radio Technical Commission for Aeronautics (RTCA) Std., “DO-
178C/ED-12C Software Considerations in Airborne Systems and Equip-
ment Certification,” 2011.

Radio Technical Commission for Aeronautics (RTCA) Std., “DO-326A
Airworthiness Security Process Specification,” 2014.

Radio Technical Commission for Aeronautics (RTCA) Std., “DO-356A
Airworthiness Security Methods and Considerations,” 2018.

R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look Mum, no
VM Exits! (Almost),” arXiv preprint arXiv:1705.06932, 2017.
ROBOTmaker, “Real-Time Graphical Representation | S.BUS Pro-
tocol.” [Online]. Available: http://www.robotmaker.eu/ROBOTmaker/
quadcopter-3d-proximity-sensing/sbus- graphical-representation

W. Ruan and Z. Zhai, “Kernel-Level Design to Support Partitioning and
Hierarchical Real-Time Scheduling of ARINC 653 for VxWorks,” in
2014 IEEE 12th International Conference on Dependable, Autonomic
and Secure Computing, 2014, pp. 388-393.

J. Rushby, “Partitioning for Avionics Architectures: Requirements,
Mechanisms and Assurance,” in NASA contractor report CR-1999-
209347, NASA Langley Research Center, 1999.

J. Rushby, “Model Checking Simpsons Four-Slot Fully Asynchronous
Communication Mechanism,” in Computer Science Laboratory—SRI
International, Tech. Rep. Issued, July 2002.

J. M. Rushby, “Design and Verification of Secure Systems,” in 8th ACM
Symposium on Operating Systems Principles, 1981, pp. 12-21.

S. C. Technology, “Jailhouse Partitioning Hypervisor,” 2014. [Online].
Available: https://github.com/siemens/jailhouse

S. O. H. Madgwick., A. J. L. Harrison, and R. Vaidyanathan, “Estimation
of IMU and MARG Orientation using a Gradient Descent Algorithm,”
in International Conference on Rehabilitation Robotics (IEEE-ICORR),
2011, pp. 1-7.

P. Sanchez-Cuevas, G. Heredia, and A. Ollero, “Characterization of the
Aerodynamic Ground Effect and Its Influence in Multirotor Control,” in
International Journal of Aerospace Engineering, vol. 2017, no. 1823056,
2017.

S. Schildermans, K. Aerts, J. Shan, and X. Ding, “Paratick: Reducing
Timer Overhead in Virtual Machines,” in 50th International Conference
on Parallel Processing (ICPP). Association for Computing Machinery,
August 2021, pp. 1-10.

H. R. Simpson, “Four-slot Fully Asynchronous Communication Mech-
anism,” in IEEE Computers and Digital Techniques 137, January 1990,
pp. 17-30.

S. Sinha and R. West, “Towards an Integrated Vehicle Management
System in DriveOS,” in ACM Transactions on Embedded Computing
Systems, vol. 20. ACM, 2021, pp. 1-24.

[79] U. Steinberg and B. Kauer, “NOVA: A Microhypervisor-Based Secure
Virtualization Architecture,” in Proceedings of the 5th European Con-
ference on Computer Systems (Eurosys). Association for Computing
Machinery, 2010, pp. 209-222.

[80] T. Morales, A. Sarabakha, and E. Kayacan, “Image Generation for
Efficient Neural Network Training in Autonomous Drone Racing,” in
2020 International Joint Conference on Neural Networks (IJCNN), 2020,
pp. 1-8.

[81] S. H. VanderLeest, “ Benefits and Implications of an ARINC
653 Hypervisor . [Online]. Available: https://dornerworks.com/about/
whitepapers/arinc-653-benefits-implications/

[82] S. H. VanderLeest, “ARINC 653 Hypervisor,” in 29th Digital Avionics
Systems Conference, 2010, pp. 5.E.2—-1-5.E.2-20.

[83] P. Viola and M. J. Jones, “Rapid Object Detection using a Boosted
Cascade of Simple Features,” in IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, February 2001.

[84] C. B. Watkins, “Integrated Modular Avionics: Managing the Allocation
of Shared Intersystem Resources,” in Proceedings of the 25th Digital
Avionics Systems Conference, 2006, pp. 1-12.

[85] C. B. Watkins and R. Walter, “Transitioning from Federated Avionics
Architectures to Integrated Modular Avionics,” in 2007 IEEE/AIAA 26th
Digital Avionics Systems Conference, 2007, pp. 2.A.1-1-2.A.1-10.

[86] R. West, Y. Li, E. Missimer, and M. Danish, “A Virtualized Separation
Kernel for Mixed-Ceriticality Systems,” in ACM Transactions on Com-
puter Systems, vol. 34, no. 3. New York, NY, USA: ACM, Jun. 2016,

. 8:1-8:41.

[87] %p West, P. Zaroo, C. A. Waldspurger, and X. Zhang, “Online Cache
Modeling for Commodity Multicore Processors,” in SIGOPS Oper: Syst.
Rev., vol. 44, 2010, pp. 19-29.

[88] R. West, P. Zaroo, C. A. Waldspurger, and X. Zhang, “CAF: Cache-
Aware Fair and Efficient Scheduling for CMPs,” in Multicore Technol-
ogy: Architecture, Reconfiguration and Modeling, CRC Press, 2013, pp.
221-253.

[89] J. Windsor, K. Eckstein, P. Mendham, and T. Pareaud, “Time And Space
Partitioning Security Components For Spacecraft Flight Software,” in
2011 IEEE/AIAA 30th Digital Avionics Systems Conference, 2011.

[90] X-IO Technologies, “Open Source IMU and AHRS algo-
rithms.” [Online]. Available: https://x-io.co.uk/open-source-imu-and-
ahrs-algorithms/

[91] Y. Ye, R. West, Z. Cheng, and Y. Li, “COLORIS: A Dynamic Cache
Partitioning System using Page Coloring,” in 23rd International Con-
ference on Parallel Architectures and Compilation Techniques, 2014.

[92] Y. Ye, R. West, J. Zhang, and Z. Cheng, “MARACAS: A Real-Time
Multicore VCPU Scheduling Framework,” in 37th IEEE Real-Time
Systems Symposium (RTSS), 2016.

[93] Y. Zhang and R. West, “Process-Aware Interrupt Scheduling and Ac-

counting,” in 27th IEEE Real-Time Systems Symposium (RTSS), 2006.



	Introduction
	FlyOS: A Flight Management Framework
	Motivation
	System Design
	The Prototype

	Avionic Capabilities
	Real-Time Flight Controller
	Autonomous Vision Subsystem
	Fault-Tolerance Subsystem


	Evaluation
	Experimental Setup
	Hardware
	Performance Metrics and Settings

	Manual Radio Control
	Setup
	Results

	Autonomous Mission Control
	Setup
	Results

	Comparison with Intel Drone
	Setup
	Results

	Failover Flight Control

	Related Work
	Conclusions & Future Work
	Acknowledgements
	References

