
Jumpstart: Fast Critical Service Resumption for a

Partitioning Hypervisor in Embedded Systems

Ahmad Golchin

Boston University

golchin@bu.edu

Richard West

Boston University

richwest@bu.edu

Abstract—Complex embedded systems are now supporting the
co-existence of multiple OSes to manage services once assigned
to separate embedded microcontrollers. Automotive systems, for
example, now use multiple OSes to consolidate electronic control
unit (ECU) functions on a centralized embedded computing
platform. Such platforms have the complexity of an industrial
embedded PC, with multiple cores and hardware virtualization
capabilities. This enables a partitioning hypervisor to spatially
and temporally share the physical machine with separate guest
OSes, which manage services of different criticality levels. How-
ever, PC-class hardware incurs a large latency to bootstrap
an OS and associated application-level services. A firmware
BIOS performs a power-on-self-test, and then loads OS images
into memory from a bootable storage device. This latency is
unacceptable in time-critical embedded systems, where important
services must be operational within milliseconds of starting the
system. In this paper, we present Jumpstart, a PC-class power
management approach that minimizes the wakeup delay of a
partitioning hypervisor for use in embedded systems. We show
how Jumpstart resumes critical OS services and tasks from a low
power suspended state in approximately 600 milliseconds, and
reduces full system startup delay by a factor of 23. Additionally,
Jumpstart consumes minimal power compared to approaches
requiring a system boot from a previously powered-off state. By
comparison, an alternative firmware-optimized bootloader, called
Slim, reduces boot latency by a factor of 1.8.

Index Terms—partitioning hypervisors, power management,
ACPI, real-time operating systems

I. INTRODUCTION

Embedded systems are witnessing significant advances in

complexity. For example, modern automotive systems support

10s to 100s of millions of lines of code [16], and have upwards

of 100 electronic control units (ECUs) for chassis, body,

powertrain, infotainment and vehicle control services [21],

[36], [51]. Rather than using separate microcontroller hard-

ware to run individual tasks, embedded systems designers are

looking to consolidate functionality on a centralized com-

puting platform. This is true of automotive systems, which

aim to replace the abundance of ECUs with software tasks

running on a more powerful centralized machine [17], [26].

This potentially saves costs, reduces wiring, and simplifies

packaging in space-limited situations.

Embedded system tasks have varying temporal and spatial

constraints. For example, timing-critical tasks in automotive

systems must complete within tight timing bounds for the

system to remain operational, and they must be sufficiently

isolated from other tasks to ensure appropriate safety integrity

levels are maintained [28]. In the absence of separate hardware

to isolate tasks, a centralized platform must provide other

mechanisms to avoid spatial interference. One approach is to

use hardware virtualization.

PC-class hardware is a low-cost approach to satisfy the

requirements of a centralized embedded system. Modern PCs

feature multicore CPUs with hardware virtualization capab-

ilities (e.g., Intel VT-x, and AMD-V). An embedded PC

supporting a partitioning hypervisor [18], [42], [50] is then

able to assign tasks of different criticality (or integrity) levels

to different guest domains. Unlike traditional consolidating

hypervisors, which share a physical machine among all guests,

a partitioning hypervisor divides machine resources among

separate guests. Each guest then accesses its own processing

cores, physical memory and subset of I/O devices. Tasks

operating in one domain are isolated both temporally and

spatially from tasks in another domain (because they cannot

directly access the same cores, memory and I/O devices).

In this paper, we first introduce our real-time partitioning

hypervisor, called Quest-V [50]. Our hypervisor is being used

to build a centralized automotive system, DriveOS [45], for an

electric vehicle being developed with a partner company. This

system combines the Quest RTOS [19] with Linux to manage

the functional requirements of the vehicle. Separate ECUs are

replaced with a collection of simpler CAN-bus transceivers

that link sensors and actuators to a central PC. Software tasks

are assigned to different RTOS and Linux instances, depending

on their timing and safety requirements.

The major challenge addressed in this paper is the reduction

of startup latency for a partitioning hypervisor running on

PC-class hardware, in the context of an automotive system.

Whereas traditional embedded microcontrollers would be op-

erational within milliseconds of receiving power, a PC takes

tens of seconds to boot an OS and instantiate a task. Current

vehicle users would find the added boot-time latency of a PC-

class system unacceptable, given they are used to vehicles

being operational within milliseconds to a few seconds of

being started. Moreover, critical functions that communicate

with a CAN bus must be operational with low latency to ensure

the vehicle starts in a safe state. The bound on this latency is

dictated by a programmed delay that determines when CAN

networks are active and generating traffic.

While a PC-class system has the overhead of a firmware

power-on-self-test (POST) and the loading of an OS from

bootable storage into RAM, we show how to mitigate much

of this latency using modern power-management techniques

in the context of a partitioning hypervisor. In this paper, we

describe Jumpstart, which enables our vehicle management

system to execute its critical real-time services in several

hundred milliseconds of starting the vehicle.

The contributions of this paper are: (1) a brief explanation

of the partitioning hypervisor used in our vehicle management

system, (2) a power management-aware version of our system,

called Jumpstart, which replaces shutdown and cold boot

operations of our system with suspend-to-RAM (S2R) and

resume operations, in response to a vehicle’s stop and start

events, (3) a portable method for partitioning and safeguarding

the power management features of PC-class hardware in our

hypervisor, (4) a description of the challenges and techniques

to orchestrate S2R and resume operations among our hy-

pervisor, RTOS and Linux, while incurring lower overheads

than a non-virtualized Linux system, and (5) an empirical

demonstration of how Jumpstart prioritizes the resumption

of timing-critical tasks in preference to less-critical services

running in Linux.

We compare Jumpstart with a standalone Linux system

and show that while both consume similar power, Jumpstart

resumes critical tasks with lower latency, despite the overheads

of our partitioning hypervisor. Jumpstart is able to resume

a system more than 20 times faster than one requiring a

cold boot. Our approach is the first to support low-latency

resumption of critical services, which are isolated from less

important tasks, in a partitioning hypervisor running on PC-

class hardware.

The next section describes further motivation behind our

system design. Section IV then describes Jumpstart. This is

followed by Section V, which compares the performance of

Jumpstart to standalone Linux and the Slim bootloader [4].

Slim is a firmware developed by Intel to reduce startup latency

for PCs. Related work is described in Section VI, followed by

conclusions and future work in Section VII.

II. MOTIVATION

Our work is focused on the design of complex next-

generation embedded systems. We envision such systems

providing support for hundreds of software threads executing

on multiple cores, and requiring both temporal and spatial isol-

ation according to different criticality or integrity levels [28].

Our vehicle management system, depicted in Figure 1 and

further described in Section IV-A, is designed with this philo-

sophy. It uses relatively low-cost PC hardware to consolidate

ECU functions as software threads on a centralized platform.

Threads are assigned to different sandbox (or guest) domains

according to functional, timing and safety requirements. The

approach allows for automotive systems to be easily upgraded

or extended with new functionality, without the need for

additional ECUs or other hardware components.

Next-generation vehicle management systems are not only

faced with the challenge of ensuring functional, timing and

safety requirements. They are required to startup and shutdown

Real-time Control Tasks and
Sensor Data Processing
e.g., Torque Vectoring,
Battery Management

Quest Kernel

Monitor (Ring -1)

CPU 0, ... , M

Memory

USB-CAN Interface

Serial Port

GUI Applications
e.g., Instrument Cluster,
In-Vehicle Infotainment,

ADAS

Jumpstart
Power

Management

Linux Kernel

Monitor (Ring -1)

CPU M+1, ..., N-1

Memory

GPU

Bluetooth WiFiAudio

Secure
Shared
Memory

Ri
ng

 3
Ha

rd
wa

re

Ring 0

Sandbox 0 Sandbox S-1

Jumpstart
Power

Management

Figure 1. Structure of the Jumpstart vehicle management system

when the vehicle is running or parked, respectively. The (cold)

boot-time latency of a PC-class OS is far greater than what

is acceptable in an automotive system. Owners of modern

vehicles accustomed to minimal startup latency after pressing

a dashboard start button or unlocking a door would not accept

the boot delay of a PC-based OS before being able to drive.

CAN buses, sensors and actuators would also need delayed

activation until the system is properly initialized. In a drive-

by-wire system, for example, CAN messages convey steering,

throttle and braking values to actuators, to control vehicle

movement. It would be potentially disastrous to allow un-

initialized communication within a vehicle before the central

management system is bootstrapped.

The boot delays of a PC-class vehicle management system

are made worse in the context of a partitioning hypervisor,

which hosts multiple guest OSes. These startup delays are

avoided if the system is kept running, even when a vehicle is

not in use. However, this consumes unnecessary power from

the finite capacity battery within the vehicle. It is therefore

preferable to shutdown or suspend a system when not in use.

A parked vehicle then only needs to consume enough power

to keep peripheral circuits alive, such as for an alarm.

Fortunately, modern PCs have Advanced Configuration and

Power Interface (ACPI) compliant firmwares that enable the

machine to switch into different global (G#), and correspond-

ing sleep (S#) power states. While a working PC operates in

global ACPI state G0 (or, equivalently, sleep state S0), it is

possible to take advantage of low power sleep states when the

machine is inactive. A PC-class vehicle management system is

able to transition to sleep state S3, to conserve power, when

not in use. The sleep state S3 suspends a system to RAM.

Transition from S3 to S0 enables faster resumption of services

when the vehicle is restarted.

In the context of a vehicle management system, low latency

activation of timing-critical services to manage chassis and

powertrain functions is essential. This is achieved by allowing

real-time services to resume in parallel with legacy services

provided by a system such as Linux.

Figure 2 shows the power consumption in Watts for a

Cincoze DX1100 industrial PC for different ACPI sleep power

states. A DX1100 running our vehicle management system is

being tested in the Drako Motors GTE electric car [20]. ACPI

sleep state S5 is the soft-off state, where the PC uses very little

power but requires a full system reboot on restart. However,

the suspend-to-RAM state, S3, uses almost identical power to

S5 but allows the system to be resumed in a way that bypasses

the firmware POST and bootloading stages. In Jumpstart,

the partitioning hypervisor and guest OSes are suspended to

RAM, enabling critical services to be subsequently resumed

in hundreds of milliseconds.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000

P
o
w

e
r

(W
a
tt
s
)

Time (Seconds)

S0
S3
S5

Figure 2. Cincoze DX1100 power consumption in different ACPI S-states

III. BACKGROUND

A. PC Power Management

The power management capabilities of an Intel-Architecture

PC (as well as modern ARM platforms) are divided between

the Advanced Configuration and Power Interface (ACPI) [7]

and PCI [38] standards. PCI provides the PCI-PM [39] con-

figuration interface to observe and control power states of PCI

devices and buses. PCI-PM follows a set of standard power

states defined by ACPI for devices (D-States) and PCI-BUS

links (B-States). ACPI also defines system-wide power states

such as shutdown, suspend-to-RAM, and suspend-to-disk, as

well as power states for processors. It also specifies a number

of special devices such as an embedded controller (EC), power

button, battery, laptop lid and so forth, and provides a uniform

interface to them. Every IA-PC must implement one EC device

that provides, through ACPI, a programmatic interface to the

glue logic of the motherboard in order to relay electricity

to CPU sockets and buses, and sense wake-up signals such

as from the power button and real-time clock (RTC) alarm.

Figure 3 provides an overview of the ACPI-defined CPU

and system-wide power states as well as allowable transitions

between them. Each allowable transition is depicted as an

arrow. For example, it is possible to reach the G3 state from

G0, G1, and G2, while a transition from G3 to G1 is not

allowed.

The G-states are abstract system-wide power states that

specify what CPU (C) and Device (D) states are available.

G0/S0 - System Working G1 - System Sleeping

C0 - CPU ExecutingC1
CPU Halted

C2
CPU Idle

C3
CPU Idle

S1 - Standby

S3 - Suspend to RAM

S4 - Suspend to Disk
Px States
(DVFS)

Tx States

G2/S5 - Soft Off

G3 - Mechanical Off

Figure 3. ACPI power states

For example, CPU states are only valid in G0 and G1/S1.

CPUs are not powered in higher G-states. While in G1/S3,

only some peripheral devices and buses may be on. In the

G2/S5 shutdown or “soft-off” state, the system consumes a

minimal amount of electricity to keep the EC and a few devices

in standby mode. This enables the PC to power on in response

to events such as pressing the power button, the RTC alarm

expiring, or arrival of a Ethernet packet (for Wake-on-LAN

operation). The G3 “mechanical off” state, on the other hand,

refers to the situation where the PC is unplugged from an

electrical power source.

In the G0 state, each CPU exposes several sub-states, C0

to Cn. CPUs execute in C0, and halt in C1 and deeper

C states. These states differ in power saving and entry/exit

latency. The deeper the C-state, the potentially greater power

saving but longer delay to bring the CPU into an executing

state. C1 is entered whenever the CPU executes an HLT

instruction. Deeper C-states are accessible through Model-

Specific Registers (MSRs). The C0 state is divided into sub-

states called CPU performance states (P-States). In P-states,

the CPU is working, but the CPU voltage and frequency vary.

Again, system software controls P-states through MSRs while

the CPU is in C0. P-states are implemented by the dynamic

voltage/frequency circuitry (DVFS) of the CPU. Similar to

P-states, T-states are sub-states of C0. They save power by

only changing CPU frequency, and are usually used to handle

thermal events. Guest kernels manage their CPU power states

using MSRs granted access by the hypervisor.

As for power management of peripheral devices, ACPI

specifies four D-states, D0 to D3. D0 is the working state

in which the device is fully powered and operational. D3

is the power-off state. Depending on device capabilities, D3

sometimes has two sub-states: Hot-D3 and Cold-D3, with

the latter being equivalent to a complete power-down of the

device. In this case, there is no voltage provided to the device

by the bus. Naturally, all devices support Cold-D3 as when

a PCI bus link is powered down, the devices attached to the

bus will lose power and transition to Cold-D3. D-states differ

in power saving, device context preservation, and entry/exit

latencies. Deeper D-states (D3-cold is the deepest state) lose

more device context information, take longer to resume to D0

and save more power. System software controls the transition

between D-states by accessing PCI-PM capability registers of

PCI devices. The power states of devices are also accessible

through ACPI functions written in ACPI Machine Language

(AML). Firmware developers utilize AML to port such func-

tionalities to different hardware platforms at a higher level of

abstraction. Jumpstart’s partitioning hypervisor uses an open

source implementation of the ACPI Component Architecture

(ACPICA [8]) to interpret AML functions.

The G1 sleeping state consists of three sub-states we refer

to as the ACPI S1, S3 and S4 states. Deeper S-states provide

more power saving at the cost of longer resumption delay. S1

is the lightweight sleep state, with only CPU caches discarded.

S2 is not currently supported by the ACPI standard. S3 has

all system context lost except main memory. In S3, there

is electrical current running into the memory controller in

addition to the EC and wake-up signal sources. All devices

except wake-up sources must be in D3 before transitioning

into S3. S4 saves system context to disk and then discards

non-persistent memory state. The system software manages

S-state transitions via special I/O ports of the EC that are

enumerable through ACPI.

Power management techniques are often categorized into

runtime (a.k.a. Dynamic) and system-wide (a.k.a. Static) meth-

ods. Runtime power management involves transitioning CPUs

and devices into lower power states while the system is run-

ning. For example, Linux provides device usage notification

APIs in the kernel as a way for drivers to help the Operating

System Power Management (OSPM) make opportunistic de-

cisions about switching D-states of the devices. CPU power

and performance states (notably, C and P-states) are usually

manipulated by the kernel, and based on workload and selected

scheduling policies. Unlike runtime power management that

only affects parts of the system, system-wide methods (G1,

G2, and G3), as the name suggests, concern the system as

a whole. Therefore, they cannot be employed by the OSPM

as frequently as runtime methods, but they offer more power-

saving properties.

B. Challenges of Real Power Management

In the context of virtualized environments, power methods

are divided into real versus virtual [47] depending on whether

or not they are passed through to the actual hardware when

issued by a guest operating system.

Performing real power methods in virtualized environments

leads to several challenges when more than one guest OS

has access to underlying host-physical resources. Our vehicle

management system’s ACPI S3 power method is influenced

by the following challenges: (1) The hypervisor must deny

access to the EC by unauthorized guest OSes to prevent

untrusted software from performing system shutdown, reboot

or suspend, thus disrupting the execution of the vehicle’s

critical services when it is not safe to do so. Section IV-B1

describes how Jumpstart provides this capability for its hyper-

visor. (2) The hypervisor must orchestrate system-wide power

transitions to ensure all guest OSes and their services are in

the proper state before entering and after leaving the target

power state. Section IV-B2 elaborates our solution in the case

of the ACPI S3 power method. (3) Resuming the RTOS from

RAM affects the behavior of real-time tasks involved in the

reading and processing of sensors, and producing actuator

values, both in terms of timing and validity of their results.

Section IV-B3 explains how Jumpstart addressed this issue. (4)

Upon resuming from RAM, the vehicle management system

should prioritize the startup of the RTOS over Linux, while

taking advantage of the parallelism offered by the underlying

multicore processing hardware.

As explained in Section IV-A, the Quest RTOS shares

the boot logic of our hypervisor. This design results in the

RTOS being operational in milliseconds after the hypervisor’s

initialization.

IV. JUMPSTART SYSTEM DESIGN

A. Quest-V Partitioning Hypervisor

Jumpstart is an extension to the DriveOS [45] centralized

automotive system, which uses Quest-V to consolidate both

timing-sensitive and non-critical tasks of an electric vehicle

onto an embedded PC. Jumpstart adds power management cap-

abilities to DriveOS, to ensure that critical tasks are resumed

with low latency when a vehicle is started. 1 Example critical

tasks include torque vectoring and battery management, while

less critical tasks include those that manage the Instrument

Cluster (IC) and In-Vehicle Infotainment (IVI).

The Quest-V partitioning hypervisor employs Intel’s virtu-

alization technology (VT-x) to partition hardware resources

such as processor cores, physical memory, and I/O devices

between two or more sandboxes (i.e., guest OS domains). Each

sandbox manages its physical resources independently of other

sandboxes, and without the involvement of the hypervisor.

The hypervisor’s logic (a.k.a. the virtual machine monitor)

is cloned for each sandbox and is only used to bootstrap the

guest kernel, establish secure inter-sandbox communication

channels (ISBC) via extended page tables (EPTs) 2, and on

rare occasions process privileged operations such as guest

faults. Unlike consolidating hypervisors, the virtual machine

monitors are removed from runtime management of physical

machine resources, keeping the trusted code base very small.

A monitor has a text segment of less than 4KB.

Due to the reasons above and given the replication of monit-

ors for each sandbox, the system’s most privileged component

is less susceptible to security attacks than a conventional OS

image running directly on hardware. In the latter case, system

calls must pass control to the host kernel, whereas in our

partitioning hypervisor, these are restricted to the local guest.

Hypervisors such as Xen [11] and KVM [24] rely on Linux

acting as a “Dom0” privileged domain, while ACRN [30] uses

a similar “ServiceOS” to start a guest. In contrast, Quest-

V shares much of its code with the Quest RTOS, which is

paravirtualized for use as a guest. As Quest is responsible for

1 In this paper, we refer to the Jumpstart vehicle management system as
an instance of DriveOS extended with power management capabilities.

2Intel processors with VT-x capabilities refer to these tables as EPTs. AMD-
V processors have similar nested page tables (NPTs).

a relatively small number of critical tasks and devices (e.g., a

USB-CAN interface), its startup latency within Quest-V is far

less than either standalone Linux, or a Linux guest running in

hypervisors such as Xen, KVM and ACRN.

Quest-V combines one or more instances of the Quest RTOS

with one or more instances of Linux to form a mutually

beneficial symbiotic system [22] of S sandboxes. Each RTOS

gains access to legacy functionality that would take many

years to develop, while each legacy Linux system gains real-

time capabilities without significant modification. At the same

time, a small footprint RTOS such as Quest is more easily

verified [23], [32] and certified for timing and functional

correctness than a large system such as Linux adapted for

use in safety-critical domains.

In our vehicle management system, legacy Linux services

provide drivers for accelerators, touchscreens and graphics

controllers, to display IC readings and IVI controls. Linux

services are able to read and adjust vehicle settings via secure

and predictable shared memory channels to the RTOS, which

provides real-time control over a USB-CAN interface. This

interface connects sensors and actuators to the central PC, via

a series of CAN transceivers that replace more complex ECUs.

The potential failure of a single hardware platform is

addressed by introducing backup hardware, albeit with fewer

replicas than ECUs found in current vehicles. Memory bit

errors are addressed by replicating software functions using

techniques such as Triple-Modular Redundancy [33], or N-

versioning [10]. Hypervisor-based fault tolerance ensures one

sandboxed guest is able to recover from failure [14].

As mentioned earlier, the focus of this paper is on Jumpstart,

which provides fast resumption of critical services in the

context of our (automotive) partitioning hypervisor. Jumpstart

uses ACPI-based power management to quickly wakeup the

system from a suspended state.

B. Jumpstart Power Management

As we explained in Section II, the cold boot delay of a PC-

based vehicle management system is unacceptable. Jumpstart

shortens this delay by taking advantage of the low exit-latency

of the ACPI S3 state. Our experiments show that jumpstarting

our vehicle management system with one Quest RTOS and

Linux pair of sandboxes takes about 1 second to resume

both guests, whereas it takes about 25 seconds if the system

undergoes a cold boot. Cold booting a system means starting

it from the ACPI G2/S5 or G3 states. In contrast, a wakeup

from S3 resumes the system from RAM. Figure 4 summarizes

the steps involved in the cold boot and resumption from S3 of

our vehicle management system with color-coded blocks. In

each case, the blocks that are aligned vertically run in parallel.

Upon a cold boot, the firmware performs a Power-On-Self-

Test (POST) sequence, finds the preferred bootable media and

loads the first stage of the bootloader into a conventional

memory location. The duration of POST has a direct correla-

tion with the number of CPU cores and devices of the platform.

More CPUs and devices require more initialization and test

procedures for the firmware to follow. Once the bootloader

starts executing, it bootstraps its second stage from the boot

media. The second stage of the bootloader prepares the state

of the bootstrap processor (BSP or CPU-0), loads the kernel

and initial disk images from the disk into RAM, and calls the

startup routine of the monitor.

Monitor code starts its execution on the BSP, which later

will be assigned to the first sandbox, i.e., Quest in our

case. It then sets up proper paging and memory protection

structures in RAM, enables symmetric multiprocessing (SMP),

and activates necessary processor features to partition the

system hardware resources between our Quest RTOS and

Linux sandboxes. Once the partitioning is done, the monitor

clones itself to run on processors belonging to other sandboxes,

i.e., Linux in this paper. Then each sandbox, in parallel to

others, bootstraps its guest kernel. Both kernels initialize their

paging structures and CPU features and then initialize their

built-in modules. These are indicated by “Setup CPU” and

“Initialize Built-in Modules” labels in Figure 4.

Quest only supports built-in modules and uses a ramdisk

image loaded by its monitor. Once these are loaded and

initialized, the RTOS starts its userspace initialization by

launching an initial process. Linux, on the other hand, must

also load external modules once the filesystem is operational

(at the end of the “Mount Filesystem” block in the figure). This

is followed by Linux loading the initial services and scripts

from the root partition, and finally presenting the user with a

graphical user interface.

During a resume from S3 sequence, different software

components only reload hardware features that do not reside

in memory (such as CPU or device registers), or re-adjust

memory states (such as timers and events) that were affected

by suspending the system. This usually does not include

accessing disk or any media slower than the main memory,

hence, reducing the startup delay. More precisely, upon resum-

ing from the ACPI S3 state, the firmware executes a warm boot

procedure (marked as “WB” in Figure 4) that transitions the

system into a standard initial state, and calls the waking vector

of the software entity responsible for suspending the system to

RAM in the first place. We observed in our experiments that

the system spends less than one-tenth of the time it would

have spent in firmware for a cold boot.

The system entity whose waking vector is called by the

firmware is the monitor of the first sandbox (the Quest RTOS),

which we call the power master. The power master ensures

orderly suspension and resumption of all sandboxes in our

vehicle management system. The waking vector of the power

master recovers the states of the monitors and signals them

to resume their guests. Each guest, in parallel to others,

restores their CPU contexts and re-adjusts their timekeeping

and scheduling structures to account for the time spent in

the suspended state. The guest kernels then recover the last

state of their device drivers (the “Resume Modules” blocks),

and enqueue tasks and pending scheduling events as part of

the “Unfreeze” stage. At this time, only a context switch is

required to resume the userspace programs as their process

address spaces are already in main memory.

Legends

POST Initialize
Boot Media

Load OS
Images

Mount
Filesystem

Initialize External
Modules

Launch System
Services

Firmware Bootloader

Kernel User Space

Setup CPUPartition
Hardware

Initialize Built-in
Modules

Launch
Processes

Monitor

S3
 R

es
um

e
Co

ld
-B

oo
t

WB

Setup CPU

Unfreeze
ProcessesSetup CPUEnable

SMP

Resume
Modules

Switch
Context

Resume
Modules

BSP (Quest)

BSP (Quest)

AP (Linux)Unfreeze
Processes

Swtich
Context

Restore
Sandbox

Restore
Sandbox

Enable
SMP

Initialize
Sandbox

Partition
Hardware

Initialize
Sandbox Setup CPU Initialize Built-in

Modules
Launch GUI &

User Processes AP (Linux)Bootstrap
Linux

CPU Startup Signal

Figure 4. Sequence of events in cold boot and resuming from S3 in our vehicle management system

1) ACPI Virtualization: Unlike consolidating hypervisors

that present to guests a customized ACPI interface linked to

a virtual device interface model managed by the hypervisor,

Jumpstart modifies the view of the guests into the host physical

memory. All ACPI features (such as devices and their AML

functions) that a guest is authorized to access will be identity-

mapped through EPTs to the guest’s physical memory space,

hence removing the monitor from unnecessary ACPI-related

activities at runtime. However, in the case of AML objects and

functions related to system-wide power methods and runtime

methods of devices allocated to a different sandbox, Jumpstart

maps a modified copy of those memory pages to the guest’s

physical memory. This ensures that a guest cannot see/execute

runtime power management of devices on behalf of another

sandbox, and only the power master accesses the system-

wide power management. In addition to protecting the ACPI

memory-resident objects and functions, Jumpstart enumerates

the I/O ports (such as those of the EC’s or device PCI-PM

ports) during boot time, and registers trap handlers in the

monitor to prevent unauthorized guests from accessing them.

Although Jumpstart’s method for ACPI virtualization comes

at the cost of a full ACPI and PCI enumeration during a

cold boot, it is portable across new hardware platforms and

minimizes hypervisor involvement at runtime.

2) Jumpstart Data and Control Flow: Jumpstart power

management logic is a collection of userspace APIs, kernel

modules, and a hypervisor monitor module. At the userspace

level, it provides alternative system calls to perform system-

wide power state transitions. Although Jumpstart does not

require the guest kernel to natively support the ACPI S3 state,

it requires the guest kernel to export a native kernel API to

handle system calls, suspend and resume tasks, services, and

device drivers. The monitor module then registers a hypercall

handler in order to save and restore the state of the guest and

the host, before and after power-state transitions of physical

CPUs. Finally, the monitor module also adds the proper warm

boot procedure to the monitor logic of the hypervisor.

Figure 5 depicts control and data flow using Jumpstart, for

a full ACPI S3 suspend and resume cycle. Upon cold boot of

our vehicle management system, Jumpstart selects the Quest

RTOS 3 as the authorized entity capable of issuing system-

wide power state transition requests. However, we would like

to allow low-criticality vehicle functions running in Linux

3Or a specific RTOS when there is more than one.

Jumpstart Vehicle Management System
Quest Sandbox

 Jumpstart Syscall

Enter S3

Native Quest Suspend

Suspend Other VMs

Jumpstart Hypercall

Ring 0

Native Quest Resume

Ring 3

ISB
IPC

2

3

4

7

16

6

Linux Sandbox

Enter S3

Vehicle Power Off Request

Save Guest State

Restore Guest State

Ring -1

ACPI S3 Suspend
ACPI S3 Resume

Native Linux Suspend

Jumpstart Hypercall

Native Linux Resume

ISB
IPC

Ring 0

Restore Host State

Warm Boot Vector

Wake-up
Event

VMExitVMExit

VMResumeVMResume

5

10

12

16

7

11

1ISB
IPC

Save Host State

User-Space Jumpstart Kernel Module Jumpstart Monitor Module

Inter-sandbox IPC Sync. PointHardware SignalH/W & F/W

9

13

14

15

8

Figure 5. Jumpstart suspend and resume control and data flow

to issue requests for system-wide power state changes. In

our case, such a request is required to be initiated via a

user interface (e.g., a touchscreen or physical button). This

request is then forwarded by Jumpstart to Quest via a secure

shared memory channel set up by Quest-V. A power state

change request cannot be initiated by software that runs in a

sandbox accessible to outside (vehicle) access, except when

communication with that sandbox is authenticated. This is to

prevent unwanted system suspension attacks.

Now, let us assume that the vehicle’s user interface receives

a command (e.g., enter park mode) that necessitates the

suspension of our vehicle management system into RAM. The

Linux software sends the request to Quest using an inter-

sandbox shared-memory command. This is marked by the

step 1 in Figure 5 and the dashed arrow labeled “ISB IPC”

(Inter-Sandbox Inter-Process Communication) originating in

Linux userspace. 2 Quest prepares the vehicle for a power-

down and sends a suspend-to-RAM request to the Jumpstart

module in the RTOS kernel. 3 Jumpstart uses the native

power management of the RTOS to suspend tasks, services,

and real-time device drivers. 4 It then sends inter-sandbox

messages to the Jumpstart kernel module resident in Linux to

perform effectively the same steps, but in Linux (i.e., the step

5). This is followed by step 6 , which ensures both sandboxes

have suspended their drivers and processes. 7 Then, all

CPUs trap into their monitors using a VMCALL instruction

to Jumpstart’s hypercall handler. 8 The VMExit caused by

this VMCALL instruction saves the state of each guest CPU

into its respective Virtual Machine Control Structure (VMCS)

in RAM. 9 Then the hypercall handler saves the context of

each monitor instance. 10 The monitor of the power master

(the Quest RTOS) enters S3 and halts, while other monitors

just perform an HLT instruction. It is noteworthy that since

our partitioning hypervisor does not need to manage devices

or tasks on behalf guests, the overheads of saving the context

is limited to a few CPU registers used by the monitor logic.

11 When the embedded controller receives a wake-up

signal, it powers the system on and into the ACPI S0 state.

12 The bootstrap processor (BSP) starts executing the warm

boot procedure of the firmware. 13 The firmware then yields

to Jumpstart’s “Warm Boot Vector”, which in turn restores

the context of the power master’s monitor (step 14), sends

initialization inter-processor interrupts (IPIs) to other CPUs,

and 15 returns from the hypercall handler to the guest kernel

using VMResume instructions. Upon reception of the IPIs,

other CPUs perform steps 14 and 15 . 16 At this point, all

CPUs resume the execution of their Jumpstart kernel code that

leads to the resumption of devices and tasks managed by the

respective guest OS. Algorithm 1 provides the pseudocode of

steps 8 to 15 , which every CPU executes in the context

of their corresponding monitor’s hypercall handler. Symbols

prefixed by isb, arch and VM access inter-sandbox objects

visible to all monitor instances, perform architecture-specific

functions and call VT-x specific instructions, respectively.

3) Time management: One of the challenges of resuming

a partitioning hypervisor from RAM is the corruption of

each guest’s temporal events. When the system warm boots,

the timestamp counters of the CPUs are reset to zero. If

not addressed, this could lead to the freezing of the guest

schedulers until the timestamp counter reaches its last value

before the suspension. Normally, in a standalone OS, this is

taken care of by the warm boot vector of the OS, which

is now bypassed by Jumpstart. Moreover, in a symbiotic

system like ours, the Quest RTOS and Linux domains require

timely exchanges of data and control flow. Therefore, not only

must guest timelines be restored, but they also must be re-

synchronized by Jumpstart. For this reason, Jumpstart requires

guest kernels to expose routines to update their timekeeping

via a delta value. This delta value is derived from the last

timestamp counter value before suspension, plus the time spent

in the ACPI S3 state. Fortunately, both our RTOS and Linux

provide such functionality in their kernel.

Specific to Quest is a real-time pipeline scheduling

model [22]. Each pipeline consists of an ordered sequence of

tasks with periods and budgets scheduled on sporadic servers

according to Rate Monotonic Scheduling [31]. A pipeline

represents a vehicle control function with tasks dedicated to

reading and processing sensor values, and generating output

commands. Each task is organized into two stages: an initial-

ization stage and a processing loop. Once a task ensures that

the stream of input data is stable and valid in the first stage, it

enters the loop stage, and produces a predetermined number

of outputs during each period.

When the system suspends to RAM, each pipeline will have

a mixture of raw and processed data in different tasks, which

will not correspond to the physical state of the vehicle when a

subsequent warm boot (WB) operation is performed, leading

to unpredictable behavior. The Jumpstart module in our Quest

RTOS addresses this issue by marking pipeline tasks with a

reset-on-WB flag and resetting their state (i.e., instruction and

stack pointer registers) before performing S2R. Moreover, the

replenishment lists of such tasks in the sporadic server of the

scheduler are reinitialized during WB to avoid initial deadline

misses. Non-pipelined tasks simply continue from where they

were suspended.

Algorithm 1 Jumpstart Hypercall Handler

if event = FINISHED COLD BOOT then

Jumpstart.Nup ← |Jumpstart.pcpu| // num. of running CPUs
return

end if

if event = SUSPEND then

sb← Jumpstart.sandbox[curSB]
∀G ∈ sb.guest state : sb.saved vmcs[curCPU]←VMREAD(G)
∀H ∈ sb.host state : sb.saved vmcs[curCPU]←VMREAD(H)
if curCPU = Jumpstart.BSP then

// Notify other physical CPUs to hypercall this handler
∀C ∈ Jumpstart.pcpu \ curCPU : sendIPI(C, SUSPEND)
isbWaitWhile(Jumpstart.Nup > 1)

end if

VMXOFF(curCPU) // Switches virtualization off on the current CPU

archSaveCPUState(Jumpstart.lowMemBuf [curCPU])
isbAtomicDec(Jumpstart.Nup)
if curCPU = Jumpstart.BSP then

acpiRegisterWakingVector(addr of (wbv))
acpiEnterS3(Jumpstart.wakup events)

end if

archCall(HLT)
wbv: // Warm Boot Vector
archRestoreCPUState(Jumpstart.lowMemBuf [curCPU])
if curCPU = Jumpstart.BSP then

∀C ∈ sb.cpu \ curCPU : sendStartupIPI(C, addr of (wbv))
end if

VMXON(curCPU)
∀H ∈ sb.host state : VMWRITE(H, sb.saved vmcs[curCPU])
∀G ∈ sb.guest state : VMWRITE(G, sb.saved vmcs[curCPU])
isbAtomicInc(Jumpstart.Nup)

end if

return

V. EVALUATION

We evaluated Jumpstart on a Cincoze DX1100 industrial

embedded PC, featuring a 9th generation Intel Core-i7 hexa-

core processor. Our platform features two USB3.1 Host Con-

trollers. One is allocated to the Quest RTOS to communicate

with the vehicle’s sensory inputs and actuation outputs, using

a USB-CAN interface. The other host controller is assigned

to Linux for USB Bluetooth and infotainment services (e.g.,

for smartphone integration). Other physical resources were

partitioned between Quest and Linux according to Figure 1.

We used four cores with hyperthreading disabled but with

VT-x enabled. We also used a specialized Linux based on

kernel version 4.19 to run the IC and IVI applications de-

veloped by our industrial partner. As our Advanced Driver

Assistance System (ADAS) software was not yet implemented

in our vehicle management system when performing these ex-

periments, we ran the open-source opengl-glxcontexts

benchmark to represent a high power demand for the PC.

opengl-glxcontexts creates additional graphical con-

texts to fully utilize the DX1100 integrated GPU. Quest acts

as the power master and exchanges CAN messages through a

Kvaser USBCan Pro 2xHS CAN bus interface connected to

a USB3.1 host controller. The following experiments report

the power usage of our system in various ACPI S-states, as

well as delays involved in switching between these states.

Figure 6 summarizes those delays when booting the system

using different methods investigated in this paper.

A. Jumpstart Power Consumption

For this experiment, we attached a Keithley DMM6500

digital multimeter to the power supply inputs of the DX1100.

The multimeter measured both current and voltage drawn by

the PC, from which we could derive power consumption. After

an initial boot up, we switched the vehicle management system

between running (S0) and sleep states S3 and S5 at 5 minute

intervals. Table I reports the power consumption in each state

of this test, over a total of 10 iterations.

Table I
VEHICLE MANAGEMENT SYSTEM POWER CONSUMPTION IN WATTS OF

ACPI S0, S3 AND S5 STATES

State/Power(Watts) Average Median Standard Deviation

S0 (Running) 22.250 24.106 4.696

S3 (Suspend-to-RAM) 2.473 2.431 0.225

S5 (Shut Down) 2.643 2.690 0.234

As the results suggest, suspending the system into RAM

(S3) achieves as much power-saving as placing the system into

the shutdown state (S5). Moreover, we are able to save more

power in S3 by disabling all unnecessary wake-up sources

such as Ethernet and USB, before transitioning from S0.

Peripheral circuits that control the wakeup capabilities of

the machine are either on or off in S5, depending on the

profile chosen by the UEFI firmware for the EC. Normally,

UEFI firmware allows system administrators to configure what

peripherals stay on while the system is in S5. However, in

the ACPI S3 state, it is possible for software to control

which peripheral circuits maintain power for the purpose of

responding to later wakeup events. In our case, the system

maintains power to the memory, the EC, and the power button

when in S3. However, the UEFI firmware on the DX1100 does

not allow a full shutdown of the USB ports in S5, which to the

best of our knowledge is why the system consumes slightly

less power on average in S3. Note that S5 is in many ways

worse that a mechanical off G3 state in this case, as the latter

consumes no power but both G3 and S5 require a full system

reboot when the system is reactivated.

B. Cold Boot Delays

To better understand the impact of different layers - from

firmware and bootloader to userspace programs - we con-

figured the DX1100 to run Quest and Linux, both independ-

ently and as Jumpstart vehicle management system sand-

boxes. In each case, we measured the time it takes for the

DX1100 to cold boot from the ACPI S5 (shutdown) state

to the first moment that Quest or Linux userspace software

becomes runnable. For Quest, userspace software is required

to handle critical USB-CAN messages, while Linux is required

to run IC, IVI and other non-time-critical services. Hence,

we measure to the point where the RTOS initiates USB-CAN

messaging, and Linux initializes the graphical user interface

(GUI).

We made sure the bootloader (in our case, GRUB) automat-

ically chooses a test system, which runs a series of scripts to

collect measurement data at specific times. The UEFI firmware

uses the timestamp counter of the bootstrap processor (BSP),

which runs at 2.4 GHz in our case, to report the following

times: (1) the start of the UEFI firmware code, (2) the time at

which UEFI finishes loading the bootloader, (3) the start time

of the bootloader, and (4) the launch time of the corresponding

kernel code. We read these values from the ACPI Firmware

Performance Data Table (FPDT).

We instrumented Quest and Quest-V to read the CPU

timestamp values at various points during the initialization of

the hypervisor, kernel, drivers, and userspace programs. As for

Linux, we used the systemd-analyze tool to gather data

regarding the time to initialize the kernel, drivers, userspace,

and the graphical user interface.

We also investigated the cold boot delay of the Slim boot-

loader [4] as an alternative solution that does not rely on ACPI.

Slim provides a highly optimized firmware for faster startup.

It also embeds a lightweight bootloader in the system’s flash

memory to eliminate the need for handling a boot partition

that is usually different from the partition containing the root

filesystem. Unlike Jumpstart, Slim is not portable and supports

only a few hardware platforms, among which, we chose UP2

as it exposes cold boot delay times similar to that of DX1100.

We ran our experiments on an UP2 platform with both the

original firmware and the Slim firmware. Unfortunately, Slim

is not fully compliant with the Multiboot standard, which

is required for our Jumpstart vehicle management system.

Therefore, we only booted Ubilinux 4 on UP2.

 0

 5

 10

 15

 20

 25

 30

Quest (Standalone)

Linux (Standalone)

Quest (Jumpstart)

Linux (Jumpstart)

T
im

e
 (

s
e

c
o

n
d

s
)

Platform: DX1100

 0

 5

 10

 15

 20

 25

 30

Original Firmware

The Slim Firmware

T
im

e
 (

s
e

c
o

n
d

s
)

Platform: UP2

Firmware
Bootloader
Hypervisor
Sandboxes Forked
RTOS Kernel & Userspace
Linux Image Relocated
Linux Kernel
Linux Userspace
Linux GUI

(a) Cold boot overheads

 0

 200

 400

 600

 800

 1000

 1200

 1400

Quest (Standalone)

Linux (Standalone)

Quest (Jumpstart)

Linux (Jumpstart)

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Platform: DX1100

Firmware Warm Boot
Hypervisor Warm Boot
Quest Guest Resumed
Linux Guest Resumed

(b) Resumption (Warm boot) overheads

Figure 6. Summary of startup delays in all scenarios

Each experimental run consists of one hundred power-

on/off cycles for the system under test. We repeated the

experiments until the impact of the last one hundred records

on the average values fell below 0.1%. Figure 6a illustrates

the average latency (in seconds) of each stage for the different

configurations. Tables II and III provide the statistics of each

stage of cold booting Quest and Linux, both as standalone

OSes and as Jumpstart vehicle management system sandboxed

guests on the DX1100, respectively. The startup latency of

Quest, from the moment the kernel starts execution to the

point the first userspace program is launched, is labeled

“Kernel to Userspace” in the tables. For Linux, the “Kernel”

overhead includes the time to initialize the Linux kernel and

all system modules. The “Userspace” delay includes loading

(from the root filesystem) and launching initial systemd

services. Likewise, the “GUI” delay accounts for the time to

start the X11 graphical environment and our vehicle’s user

interface software. Table IV shows the startup delay of UP2

with and without the Slim firmware.

Table II
COLD BOOT DELAYS OF QUEST AND LINUX AS STANDALONE SYSTEMS

(SECONDS)

Stage/Duration (s) Average Median Std. Dev.

Common to Both Configurations

Firmware 7.317 7.314 0.431

Bootloader 0.935 0.907 0.314

Standalone Quest

Kernel to Userspace 5.042 5.033 0.126

Total from Power-On 13.294 13.278 0.379

Standalone Linux

Kernel 7.864 7.826 0.135

Userspace 2.879 2.888 0.045

GUI Initialization 2.662 2.737 0.116

Total from Power-On 21.658 - -

Comparing the load time of Quest in the two configurations

reported in Tables II and III, we see the added overhead

of Quest-V. The cold boot delay of Quest running as a

sandboxed guest is 3.373s more than the standalone boot

delay (16.667 − 13.294s). Unfortunately, Linux 4.19 does

Table III
COLD BOOT DELAYS OF VARIOUS STAGES OF OUR VEHICLE MANAGEMENT

SYSTEM (SECONDS)

Stage/Duration (s) Average Median Std. Dev.

Common to Both Sandboxes

Firmware 7.148 7.101 0.409

Bootloader 1.374 1.333 0.389

Hypervisor Initialization 2.225 2.226 0.001

Sandboxes Forked 2.505 2.506 0.002

Specific to Quest, after Fork and in Parallel to Other Sandboxes

Kernel to Userspace 3.415 3.416 0.003

Total from Power-On 16.667 16.528 0.297

Specific to Linux, after Fork and in Parallel to Other Sandboxes

Kernel Image Loaded 0.476 0.476 0.001

Kernel 7.181 7.162 0.092

Userspace 1.922 1.916 0.027

GUI Initialization 1.690 1.600 0.025

Total from Power-On 24.523 24.422 0.336

Table IV
COLD BOOT DELAYS USING THE UP2 WITH AND WITHOUT SLIM

Stage/Duration (s) Average Median Std. Dev.

Original Firmware with GRUB

Firmware 9.664 9.659 0.074

Bootloader 2.535 2.448 0.189

Kernel 5.322 5.311 0.384

Userspace 9.370 9.430 0.416

Total from Power-On 26.891 26.745 0.455

Slim Firmware and Bootloader

Firmware 2.023 2.045 0.053

Bootloader 0.345 0.344 0.003

Kernel 5.323 5.261 0.277

Userspace 7.661 7.640 0.273

Total from Power-On 15.353 15.293 0.407

not incorporate the use of ACPI FPDT to report firmware

and bootloader delays, and therefore, we could not present

the exact total cold boot delay for the standalone Linux.

However, it is safe to assume that the delay for the firmware

and GRUB to load Linux must be at least the same as that

of the RTOS, since Quest has smaller kernel and ramdisk

image files. Therefore, there is an average added delay of no

more than 2.865s (24.523− 21.658s) when running Linux in

our Jumpstart vehicle management system. The added delays

caused by Quest-V are due to loading both kernels by the

bootloader, partitioning physical resources, and initializing the

sandboxes. Finally, in Table IV, we observed 42.9% reduction

in the system startup time using Slim on the UP2.

C. Warm Boot Resumption Delays

To show the benefits of Jumpstart, we ran another set of

experiments that measure the duration of the resumption path

of Quest and Linux. As before, measurements were taken up to

the point where the RTOS and Linux start user-level services.

These results are then compared with the cold boot delays

reported earlier. Each experiment involves a hundred iterations,

in which we let the OS run normally (in S0) for five seconds,

suspend the system into RAM for five seconds, and collect the

statistics. We performed the experiment for each OS, both in

the standalone and sandboxed configurations. Each experiment

was repeated until the changes made to the average values by

the last run of the experiment - i.e., last one hundred power

cycles - were less than 0.1%.

Figure 6b shows the overheads of different stages to resume

the operation of each system configuration. Tables V and VI

show the time it takes to suspend and resume the OSes to and

from RAM, respectively, as independent OSes and Jumpstart

guest sandboxes.

Table V
SUSPEND AND RESUME DELAYS OF QUEST AND LINUX RUNNING

STANDALONE (MILLISECONDS)

Stage/Duration (ms) Average Median Std. Dev.

Common to Both OSes

Firmware Resume 512.21 512.23 4.40

Quest

Total Quest Suspend 5.69 5.90 0.51

Kernel Resume 32.78 32.81 0.06

Drivers Resume 62.37 62.37 0.01

Userspace Resume 0.59 0.59 0

Total Quest Resume 607.95 607.96 4.45

Linux

Total Linux Suspend 1406.94 1414.92 44.19

Kernel Resume 66.63 66.59 0.63

Drivers Resume 654.24 654.24 5.49

Userspace Resume 7.08 5.78 2.45

Total Linux Resume 1240.16 - -

Table VI
JUMPSTART SUSPEND AND RESUME DELAYS (MILLISECONDS)

Stage/Duration (ms) Average Median Std. Dev.

Common to Both Sandboxes

Total Jumpstart Suspend 218.80 190.36 39.94

Firmware Resume 508.21 508.22 3.55

Hypervisor Resume 33.11 33.03 0.07

Specific to Quest: After Hypervisor Resume and in Parallel to Linux

Quest Guest Resume 62.50 62.50 1.52

Total Quest Resume 603.64 603.66 3.65

Specific to Linux: After Hypervisor Resume and in Parallel to Quest

Linux Guest Resume 507.58 507.23 3.66

Total Jumpstart/Linux Resume 1048.90 1048.81 5.10

Comparing Table V against Table II, we see that the startup

time of Quest decreases from 13.294s to 0.607s. This is more

than 95% decrease in delay and includes firmware latency.

Considering only the RTOS itself, the startup time decreases

from 5.042s (cold boot) to 0.096s (resume), which is a 98%

reduction. This comes at a small 5.69ms cost that we pay to

suspend Quest. For Linux, the startup delay decreases by 94%,

i.e., from 21.658s to 1.240s at the cost of spending 1.407s to

suspend the system to RAM.

To see the impact of Jumpstart, we refer to Tables III and VI.

Based on this comparison, we observe that the startup time of

our vehicle management system has changed from 24.523s to

1.049s, when the Linux sandbox is finally operational. In this

case, Jumpstart reduces the startup time by a factor of more

than 23 (conservatively, a factor of more than 20).

A closer look at Tables V and VI reveals that although

adding Jumpstart capabilities to the Quest-V hypervisor im-

poses a negligible overhead of 33.11ms during resumption, the

Quest sandbox experiences a delay similar to when it resumes

from RAM as a standalone RTOS. The sum of delays to

resume the kernel, drivers and the userspace of the standalone

RTOS reported in Table V is 95.74ms, while the corresponding

delay as a sandboxed guest is 62.50ms. The reason is that our

vehicle management system uses the startup routine of Quest

up to the point of switching to hypervisor mode, and the RTOS

avoids duplicating this stage of initialization.

In the case of Linux, both resumption and suspension

times improve when used as a Jumpstart sandbox. This due

to fewer number of devices that Linux handles, and also

because Jumpstart implements the ACPI S3 power transition

of the whole system in a slightly more efficient manner.

Our standalone Linux takes 1.407s to suspend, while the full

Jumpstart system takes only 0.219s. Again, if we assume

firmware resume delays for Linux that are similar to that of

the standalone RTOS and Jumpstart, Linux takes about 1.240s

to resume from RAM, while Jumpstart takes 1.049s to resume

both sandboxes from main memory.

Summary: The take-home message is that a Jumpstart

vehicle management system resumes faster than a standalone

Linux system and a highly optimized firmware solution such

as Slim, despite the underlying hypervisor and additional

RTOS. Similarly, critical services related to tasks such as

USB-CAN bus initialization complete in Jumpstart’s RTOS

in just over 600 milliseconds, as shown in Figure 6b. USB-

CAN services become operational while less critical IC and

IVI graphical software is still being initialized in Linux.

As Jumpstart’s hypervisor uses the same boot logic as the

standalone RTOS, the boot time delay of our RTOS running

as a guest and standalone is similar. There are several reasons

why suspending and resuming Linux with Jumpstart takes less

time than that of the standalone configuration:

1) In a Jumpstart system, some of the devices are managed

by our RTOS and not Linux. Due to its lightweight nature,

our Quest RTOS handles suspension and resumption more

efficiently. Since the RTOS runs independently and in parallel

to Linux, the time it spends to initialize such devices will not

affect the total system-wide resumption latency.

2) Although the ACPI specification requires OSes to save

and restore the ACPI_NVS memory regions for hiberna-

tion in the ACPI S4 suspend-to-disk state, Linux performs

nvs_save and nvs_restore for ACPI S3 as well. To the

best of our knowledge, this is a work-around for faulty ACPI

firmwares. Jumpstart can be configured to perform this extra

step only for platforms that require that. The DX1100 PC has

a 4MB ACPI_NVS region, and fortunately does not require

OS help to preserve that when suspending the system to RAM.

3) Some platforms require the ACPI functions _PTS (pre-

pare to sleep) and _WAK (wake-up) before and after any

power transition. These ACPI functions help set the state

of the embedded controller within the PC. However, in our

experience, many modern platforms, including the DX1100,

do not require the invocation of _PTS and _WAK, and we omit

these steps in Jumpstart. Moreover, executing these functions

on some platforms such as the DX1100 leads to ACPI runtime

errors [15] that must be contained by the kernel.

VI. RELATED WORK

In this section we describe work related to Jumpstart, which

encompasses partitioning hypervisors, power management,

firmware and bootloaders.

A. Partitioning Hypervisors

Most work on virtualization and power management [27],

[29], [47] approaches the problem of suspending a guest while

the machine maintains operation. For traditional consolidating

hypervisors, which share machine resources among guests,

it is often impossible to power down or suspend a shared

machine unless all guests are able to suspend at the same time.

However, in partitioning hypervisors such as the one used by

Jumpstart, all guests cooperate to achieve one system-wide

goal. Specifically, they work together to implement a vehicle

management system. When a vehicle is not in use, it is possible

to suspend all guests and save power.

Jumpstart uses the Quest-V [50] partitioning hypervisor,

which is similar to Bao [34], Xtratum [18], ACRN [30], and

Jailhouse [42]. As with Quest-V, guests are able to interact

with one another through secure shared memory channels.

However, Jumpstart’s focus is on the use of power manage-

ment for low latency suspending and resuming of guests,

which can be reactivated from a low power state in parallel.

Bao [34] is a static partitioning hypervisor, aimed at mixed-

criticality applications requiring spatial and temporal isolation

in modern multi-core platforms. It is ported to the ARMv8

and RISC-V platforms. Bao implements ARM’s Power State

Coordination Interface (PSCI) [1], which is mainly used for

runtime power management. As with Quest-V, Bao does

not address fast resumption of critical services using power

management techniques. However, it implements a relatively

small footprint hypervisor and uses page coloring techniques

to enable last-level cache partitioning, further isolating tasks

in separate guest domains. Results with Bao show full system

boot-times to be good but far in excess of the resumption

delays using Jumpstart.

Xtratum [18] is another type-1 partitiong hypervisor built

for timing and safety-critical aviation applications that need to

be ARINC-653 [25] compliant. Onaindia et al [41] extended

Xtratum with runtime power monitoring and management to

dynamically reduce power consumption of peripherals and

CPUs without compromising RTOS guests.

Jailhouse [42] uses Linux to bootstrap a system that

provides cells for other guest OSes. Jailhouse relies on Linux

runtime power management to switch power states of devices

that are not shared by more than one inmate. ACRN [30]

functions as both a Type-1 consolidating and a partitioning

hypervisor. As a consolidating hypervisor, ACRN uses a

special Linux ServiceOS to bootstrap other guests referred to

as UserOSes. ACRN presents every launched UserOS with a

fake ACPI firmware and a set of predefined devices that are

managed by the ServiceOS. When running as a partitioning

hypervisor, ACRN is able to launch a UserOS as a UEFI

program, instead of requiring the ServiceOS. In this case,

ACRN grants the UserOS direct access to its resources.

Although ACRN supports system-wide power management, it

is only available when running as a consolidating hypervisor.

For the situations where ACRN is capable of suspending-

to-RAM, its ServiceOS notifies all guests via a virtual UART

communication device. All guests then save their state and trap

into the hypervisor, which performs an ACPI S3 invocation to

suspend the system. Upon resumption, the hypervisor starts

the ServiceOS, which in turn launches the guests from their

previous state. The ServiceOS must start first, as other guests

rely on its drivers to access physical devices using ACRN’s

virtual device interface.

Similar to ACRN, the Xen hypervisor [6] supports suspend-

to-RAM in consolidation mode. However, the interaction with

the power-management interface of the system is performed

by Dom0, rather than the hypervisor itself. The resumption

of unprivileged guest OSes is also carried out once Dom0

is completed. As is the case with Jumpstart and ACRN, all

guests must support suspend-to-RAM and resume-from-RAM

to be able to properly save and restore their state. Dom0 will

wait for a specific amount of time after triggering the full

system suspension for unprivileged guests to save their state.

Otherwise, the system will be suspended, and the unprivileged

guests should be launched again after Dom0 resumes.

The QNX micro-kernel [12] supports runtime power man-

agement of CPU and peripheral devices. The QNX hypervisor

follows the same goal as our work, i.e., consolidating safety

and timing critical vehicle programs into a modern PC plat-

form with multiple CPU cores. However, it does not support

power management at the hypervisor level.

The COQOS Type-1 Hypervisor [5] is designed for ARMv8

SoCs. Similar to Jumpstart’s hypervisor, COQOS supports the

orchestration of guest OSes for suspend-to-RAM. COQOS

is not open source and lacks published documentation about

its implementation or performance details. We are therefore

unable to compare it to Jumpstart.

All the hypervisors mentioned above as well as those

from Windriver [46] and MentorGraphics [35] are suitable

for mixed-criticality application domains. However, none have

focused on the problem of mitigating the long startup delays

inherent with PC-class hardware.

B. Power Management

Brown and Wysocki [15] provide a detailed view of the

suspend-to-RAM implementation in Linux, and discuss ways

to improve the suspend and wake up latency in software. Tian

et al [47] present an overview of ACPI power management and

the implications of using ACPI in virtualized environments for

the system software. They also discuss how system software

should pass ACPI features through to the guests to implement

real power management in such environments. Rush [43] also

argues the benefits of using ACPI S3 to reduce the startup

time of automotive software using standalone Linux.

Jiang et al [29] identified the challenges posed by virtual-

ization on power management in large-scale server systems

that employ consolidating hypervisors. In such environments,

hardware resources are shared among different guests through

a standard virtual device interface. Policies are then needed to

coordinate the suspension of all guests; if one guest remains

active and needs machine resources, then the system cannot

be placed into a low power state.

Other works have investigated dynamic voltage and fre-

quency scaling (DVFS) [40], device power management [49],

and energy-aware real-time scheduling [44]. These techniques

provide potential benefit to our work, but they do not address

power management in a virtualized environment.

C. Systems, Firmware and Bootloaders

Closely related to Jumpstart is work that aims to mitigate

system startup delays. Many such approaches resort to replace-

ment firmware and bootloaders [2], [3], [13], [37].

Minich et al [37] argue that there are at least two and a

half kernels between a Linux guest kernel and Intel-based

PC hardware. These include a UEFI firmware [48], a System

Management Mode (SMM) layer, and a Minix system running

as part of Intel’s Management Engine. Consequently, multiple

layers of device drivers and initialization logic sit beneath

a host OS. The authors propose reducing the UEFI ROM

image of several megabytes to its bare minimum, disabling

SMM or vectoring it to Linux, and then having Linux exclus-

ively performing system initialization. This resultant project

is LinuxBoot [2], which was formerly known as the Non-

extensible Reduced Firmware (NERF) [3]. The main aim of

LinuxBoot is to secure the system from exploitations targeting

firmware, by keeping its footprint small. The precursor to

LinuxBoot is the Coreboot project [13], which aimed at

reducing cold boot latencies of PCs using lightweight open-

source firmware. Unlike Jumpstart, these methods are tightly-

coupled to the hardware platform they run on.

Cloud computing is another domain that requires fast reboot

of virtual machines where short-lived and migratory serverless

applications are commonplace. For example, Agache et al

present Firecracker [9], a virtual machine monitor aimed at

reducing the overheads of launching serverless workloads.

Firecracker achieves a startup delay as low as 150ms by

reducing the memory footprint of VMs and launching them

in the userspace of an already booted Linux. This method is

not suitable for our use cases, because it would require the

hypervisor to be active at all times to start new guest sand-

boxes. Keeping the hypervisor running mitigates the energy

saving benefits when the system is not in use.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents Jumpstart, a method to quickly resume

a suspended PC-class vehicle management system based on

a partitioning hypervisor. While it relies on ACPI power

management techniques it is, to our knowledge, the first

system to report the use of system-wide ACPI S3 capab-

ilities in a partitioning hypervisor. It also does not require

modification to the PC-class firmware, although this would

potentially reduce the startup delay of Jumpstart further at

the cost of limited portability. This paper shows how Jump-

start avoids the costly overheads of cold boot delays on a

PC-class machine. These delays result from firmware-based

machine initialization, bootloading guest OSes and launching

application-specific services. Jumpstart is able to suspend a

system comprising an RTOS and Linux, yielding an order of

magnitude power reduction when a vehicle is not in use. At

the same time, the system is able to restart critical USB-

CAN services in the context of the RTOS within several

hundred milliseconds. Less critical Linux services that manage

graphical tasks are able to execute within approximately 1.0

second of system resumption. Overall, Jumpstart is more than

20 times faster at reactivating a system from a suspended state,

compared to a powered off state.

With Jumpstart, a Linux guest is able to resume execution

faster than an equivalent host Linux on the same physical

machine. This is due in part to the efficiency of Jumpstart’s

resume-from-RAM logic, and the need for Linux to manage

fewer devices when not running as a standalone OS. When

running in the context of Jumpstart, some devices are assigned

to the RTOS, which is able to wakeup in parallel with Linux.

As the RTOS is relatively lightweight, it is able to resume

critical services before Linux is fully operational.

Future work will study activation delays using suspend-to-

disk (ACPI S4) power management for partitioning hyper-

visors, and fast non-volatile memory (e.g., Intel Optane) to

eliminate all power usage during system suspension.

VIII. ACKNOWLEDGEMENTS

Thanks to the shepherd and reviewers for their help improv-

ing this work, which is funded in part by the National Science

Foundation (NSF) Grant # 2007707. Any opinions, findings,

and conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the

views of the NSF. Special thanks also to our colleagues at

Drako Motors and Celenum, without whose support this work

would not be possible.

REFERENCES

[1] “ARM Power State Coordination Interface,” 2021, ht-
tps://developer.arm.com/documentation/den0022/latest/.

[2] “LinuxBoot,” 2021, https://www.linuxboot.org/.

[3] “Non-extensible Reduced Firmware,” 2021, https://trmm.net/NERF/.

[4] “Slim Bootloader Project,” 2021, https://slimbootloader.github.io/.

[5] “COQOS Automotive Hypervisor,” 2022. [Online]. Available: https:
//www.opensynergy.com/automotive-hypervisor/

[6] “Xen Hypervisor,” 2022, https://xenproject.org/.
[7] ACPI, “Advanced Configuration and Power Interface - Ver6.0,” April

2015.
[8] ACPICA, “ACPI Component Architecture User Guide and Programmer

Reference - Revision 6.2,” May 2017.
[9] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,

P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight Virtualization
for Serverless Applications,” in 17th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 20). Santa Clara, CA:
USENIX Association, Feb. 2020, pp. 419–434. [Online]. Available:
https://www.usenix.org/conference/nsdi20/presentation/agache

[10] A. Avizienis, “The N-version Approach to Fault-tolerant Software,”
Software Engineering, IEEE Transactions on, no. 12, pp. 1491–1501,
1985.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in
ACM SIGOPS OSR, 2003.

[12] BlackBerry, “BlackBerry QNX Hypervisor,” 2021, ht-
tps://blackberry.qnx.com/en/.

[13] A. Borisov, “Coreboot at Your Service!” Linux Journal, vol. 2009, no.
186, p. 1, 2009.

[14] T. C. Bressoud and F. B. Schneider, “Hypervisor-based Fault Tolerance,”
ACM SIGOPS Operating Systems Review, vol. 29, no. 5, pp. 1–11, 1995.

[15] A. L. Brown and R. J. Wysocki, “Suspend-to-RAM in Linux,” in
Proceedings of the Linux Symposium, vol. 1, 2008, pp. 39–52.

[16] O. Burkacky, J. Deichmann, G. Doll, and C. Knochenhauer, “Rethinking
Car Software and Electronics Architecture,” McKinsey & Company,
2018.

[17] O. Burkacky, J. Deichmann, and J. P. Stein, “Automotive Software and
Electronics 2030: Mapping the Sector’s Future Landscape,” McKinsey

& Company, 2019.
[18] A. Crespo, I. Ripoll, and M. Masmano, “Partitioned Embedded Archi-

tecture Based on Hypervisor: The XtratuM Approach,” in EDCC, 2010,
pp. 67–72.

[19] M. Danish, Y. Li, and R. West, “Virtual-CPU Scheduling in the Quest
Operating System,” in 2011 17th IEEE Real-Time and Embedded

Technology and Applications Symposium. IEEE, 2011, pp. 169–179.
[20] Drako Motors, https://www.drakomotors.com/.
[21] W. J. Fleming, “Overview of Automotive Sensors,” IEEE Sensors

Journal, vol. 1, no. 4, December 2001.
[22] A. Golchin, S. Sinha, and R. West, “Boomerang: Real-Time I/O Meets

Legacy Systems,” in 2020 IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS). IEEE, 2020, pp. 390–402.
[23] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D. Costanzo,

“CertiKOS: An Extensible Architecture for Building Certified Concur-
rent OS Kernels,” in Proceedings of the 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI), 2016, pp. 653–
669.

[24] I. Habib, “Virtualization with KVM,” Linux Journal, vol. 2008, no. 166,
p. 8, 2008.

[25] A. R. Inc., “Avionics Application Software Standard Interface: ARINC
Specification 653,” 2010.

[26] Intel, “Benefits of ECU Consolidation,” 2020.
[27] C. Isci, S. McIntosh, J. Kephart, R. Das, J. Hanson, S. Piper,

R. Wolford, T. Brey, R. Kantner, A. Ng, J. Norris, A. Traore,
and M. Frissora, “Agile, Efficient Virtualization Power Management
with Low-Latency Server Power States,” SIGARCH Comput. Archit.

News, vol. 41, no. 3, pp. 96 – 107, Jun. 2013. [Online]. Available:
https://doi.org/10.1145/2508148.2485931

[28] ISO, “ISO 26262-3: Road Vehicles - Functional Safety - Part 3: Concept
Phase ,” 2011.

[29] C. Jiang, J. Wan, X. Xu, Y. Li, and X. You, “Power Management Chal-
lenges in Virtualization Environments,” in Systems and Virtualization

Management. Standards and the Cloud. Springer Berlin Heidelberg,
2010, pp. 1–12.

[30] H. Li, X. Xu, J. Ren, and Y. Dong, “ACRN: A Big Little Hypervisor for
IoT Development,” in Proceedings of the 15th ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments, 2019, pp.
31–44.

[31] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard Real-Time Environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[32] M. Liu, L. Rieg, Z. Shao, R. Gu, D. Costanzo, J.-E. Kim, and M.-K.
Yoon, “Virtual Timeline: A Formal Abstraction for Verifying Preemptive
Schedulers with Temporal Isolation,” POPL, vol. 4, p. 31, 2020.

[33] R. E. Lyons and W. Vanderkulk, “The Use of Triple-Modular Redund-
ancy to Improve Computer Reliability,” IBM Journal of Research and

Development, vol. 6, no. 2, pp. 200–209, 1962.
[34] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, “Bao:

A Lightweight Static Partitioning Hypervisor for Modern Multi-Core
Embedded Systems,” in Workshop on Next Generation Real-Time Em-

bedded Systems (NG-RES 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020.

[35] Mentor, “Mentor Embedded Hypervisor,” 2021,
https://www.mentor.com/embedded-software/hypervisor/.

[36] C. Miller and C. Valasek, “Adventures in Automotive Networks and
Control Units,” Def Con, vol. 21, pp. 260–264, 2013.

[37] R. Minnich, G. shun Lim, R. O’Leary, C. Koch, and X. Chen, “Replace
Your Exploit-ridden Firmware with a Linux Kernel,” 2017.

[38] PCI, “PCI Express Base Specification - Revision 2.0,” December 2006.
[39] PCI-PM, “PCI Bus Power Management Interface Specification, Rev 1.2,”

2004.
[40] P. Pillai and K. G. Shin, “Real-time Dynamic Voltage Scaling for Low-

power Embedded Operating Systems,” in Proceedings of the eighteenth

ACM symposium on Operating systems principles, 2001, pp. 89–102.
[41] T. Poggi, P. Onaindia, M. Azkarate-askatsua, K. Grüttner, M. Fakih,

S. Peiró, and P. Balbastre, “A Hypervisor Architecture for Low-Power
Real-Time Embedded Systems,” in 2018 21st Euromicro Conference on

Digital System Design (DSD), 2018, pp. 252–259.
[42] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look Mum,

No VM exits! (Almost),” arXiv preprint arXiv:1705.06932, 2017.
[43] S. A. Rush, “Application of Suspend Mode to Automotive ECUs,” in

SAE International WCX World Congress Experience, 2018.
[44] C. Scordino, L. Abeni, and J. Lelli, “Energy-aware Real-time Scheduling

in the Linux Kernel,” in Proceedings of the 33rd Annual ACM Sym-

posium on Applied Computing, 2018, pp. 601–608.
[45] S. Sinha and R. West, “Towards an Integrated Vehicle Management

System in DriveOS,” in Proceedings of the ACM SIGBED International

Conference on Embedded Software (EMSOFT). Jointly published in

ACM Transactions on Embedded Computing Systems (TECS), Volume

20, Issue 5s, October 2021, Article No.: 82, October 8-15 2021.
[46] W. R. Systems, “Wind River Hypervisor,” 2021,

https://www.windriver.com/products/operating-systems/virtualization/.
[47] K. Tian, K. Yu, J. Nakajima, and W. Wang, “How Virtualization makes

Power Management Different,” in Linux Symposium, 2007, p. 205.
[48] UEFI, “Unified Extensible Firmware Interface Forum,” 2021, ht-

tps://uefi.org/specifications.
[49] A. Weissel, B. Beutel, and F. Bellosa, “Cooperative I/O: A Novel I/O

Semantics for Energy-aware Applications,” ACM SIGOPS Operating

Systems Review, vol. 36, no. SI, pp. 117–129, 2002.
[50] R. West, Y. Li, E. Missimer, and M. Danish, “A Virtualized Separation

Kernel for Mixed-Criticality Systems,” ACM Transactions on Computer

Systems, vol. 34, no. 3, pp. 8:1–8:41, Jun. 2016.
[51] A. Winning, “Number of Automotive ECUs Continues to Rise,” May

15, 2019,
https://www.eenewsautomotive.com/news/number-automotive-ecus-
continues-rise.

	Introduction
	Motivation
	Background
	PC Power Management
	Challenges of Real Power Management

	Jumpstart System Design
	Quest-V Partitioning Hypervisor
	Jumpstart Power Management
	ACPI Virtualization
	Jumpstart Data and Control Flow
	Time management

	Evaluation
	Jumpstart Power Consumption
	Cold Boot Delays
	Warm Boot Resumption Delays

	Related Work
	Partitioning Hypervisors
	Power Management
	Systems, Firmware and Bootloaders

	Conclusions and Future Work
	Acknowledgements
	References

