- 1 Unifying climate change biology across realms and taxa
- 2 Malin L. Pinsky¹, Lise Comte², and Dov F. Sax³
- 3 ¹ Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ,
- 4 USA, malin.pinsky@rutgers.edu @pinskylab
- ⁵ School of Biological Sciences, Illinois State University, Normal, IL, USA, <u>lccomte@ilstu.edu</u>
- 6 @Lise Comte
- 7 ³ Department of Ecology, Evolution and Organismal Biology & Institute at Brown for Environment and
- 8 Society, Brown University, Providence, RI, USA, dov_sax@brown.edu
- 10 Corresponding author: Pinsky, M. L. (malin.pinsky@rutgers.edu)
- 12 Keywords

9

11

14

- 13 global warming, global change, microclimate, range shift, thermoregulation, extinction
- 15 Abstract
- A major challenge in modern biology is to understand extinction risk from climate change across all
- 17 realms. Recent research has revealed that physiological tolerance, behavioral thermoregulation, and small
- 18 elevation shifts are dominant coping strategies on land, while large-scale latitudinal shifts are more
- important in the ocean. Freshwater taxa may face the highest global extinction risks. Nevertheless, some
- species in each realm face similar risks because of shared adaptive, dispersal, or physiological tolerances
- 21 and abilities. Taking a cross-realm perspective offers unique research opportunities because confounding,
- 22 physical factors in one realm are often disaggregated in another realm. Cross-realm, across taxa, and other
- 23 forms of climate-change biology synthesis are needed to advance our understanding of emergent patterns
- of risk across all life.

The need for cross-realm synthesis

Climate change poses an existential risk to species and ecosystems worldwide [1,2]. While there is broad consensus that the number of species at risk is large [3], there is substantially less consensus about which regions and **realms** (see Glossary) face the greatest risks or how species will cope with ongoing and future changes [4–6]. Terrestrial animals and plants from temperate regions are the most well-studied [7,8], and yet evidence suggests the most vulnerable taxa may lie outside these groups [4,9–11]. Ultimately, there are simply too many species to assess each individually. Instead, there is a need to understand the emergent patterns of climate responses so as to identify broadly analogous conditions across realms and taxa, understand processes of community re-assembly and changing ecosystem function, compare against past biotic upheavals in earth history [12], and guide more targeted conservation efforts.

Recent research has made great strides in understanding some of the similarities and differences among taxa, but there is a need to synthesize this progress in the emerging field of climate change biology (Box 1). Terrestrial, freshwater, and marine realms present fundamentally different physical settings within which species respond to climate change and within which they have evolved substantially different life history strategies (Box 2). We focus here on recent research progress, further research needs, and the benefits of synthesizing across realms and across taxa. Relatively few analyses cross the divisions among the terrestrial, freshwater, and marine realms, and of those that do, most studies focus on single climate change coping mechanisms, e.g., range shifts or adaptive evolution [3,9,10,13–25]. Focusing on single mechanisms leaves the emergent responses, including **extinction risk**, obscured. Because dominant mechanisms can differ across species and across realms, a broad rather than reductionist perspective is needed to understand how and why biodiversity changes in response to climate. Broad perspectives can also reveal unexpected similarities. For instance, if certain tropical montane species face a constellation of risks similar to certain temperate freshwater species, then understanding these parallels could inform strategies to mitigate those risks [2,8]. In an era of increasing scientific specialization, identifying similarities across disconnected research communities is important for innovation and progress [26].

By working from first principles across realms, regions, and species, we provide a conceptual synthesis to inform an understanding of macroscale climate change risks and to support global conservation strategies across all realms. We then identify research needs and changes in research practice to further integrate knowledge across realm boundaries.

Coping with climate change

Attempts to compare climate risk across species have focused on particular and often disparate processes [3,5,6,9,15,27]. Various authors have identified tropical forest [11,28], polar [29], freshwater [30], endemic [31], or tropical reef [32] species as those at great or even the greatest risk for reasons that include low physiological tolerance for warming, loss of climatically suitable habitat, and barriers to dispersal to newly suitable regions. A common framework to reconcile these risks and integrate these processes is important (Fig. 1).

At the **trailing range edge**, a suite of mechanisms allows organisms to cope with environmental changes *in situ* and avoid **extirpation**. Processes that reduce the risk of extirpation range from physiological tolerance to plasticity and evolutionary adaptation [27,33–36]. Behavior and development allow organisms to avoid stressful conditions by altering when and where to be active over the daily or seasonal cycle, including **phenological shifts** by plants and animals [17,37]. Genomic factors like mutation load or inbreeding may make extirpation more likely [35,36].

In contrast, expansion to newly suitable locations at the **leading range edge** is mediated by dispersal and subsequent establishment (Fig. 1). The first step (dispersal), results from both the dispersal ability of an organism and the suitability of the environment through which it disperses. Short-distance dispersal events can allow species to access substantially new microclimates in regions with sharp physical gradients across slope, aspect, or habitat structure, including differences in water stress on north vs. south-facing slopes or across forest-edge to interior [38,39] (Fig. 1). Somewhat more substantial shifts move species along elevation or depth gradients. Long-distance dispersal events are important in allowing

species to access new environments in regions with mild physical gradients, such as latitudinal shifts in terrestrial regions with low topographic variation, and for dispersal among insular habitats [40].

Processes important for *in situ* persistence and for expansion also interact in important ways. For example, plasticity or evolution can generate faster dispersal or establishment [36]. Likewise, adaptation to new biotic or abiotic conditions experienced during range expansion can be important for subsequent establishment [18,41]. Indirect effects mediated through interactions with other species can increase or decrease the risk of range contraction or expansion [42].

The hierarchy of mechanisms illustrated in Fig. 1 and the relative importance of each mechanism is mediated by the interaction between species traits and environments. Together, these response mechanisms determine the manner in which species survive and the relative climate risk they face. Some species, for instance, will tolerate climate change in place, while others will experience **range shifts** to new locations. The spectrum of outcomes is summarized by the relative degree of trailing-edge range contraction and leading-edge range expansion (Fig. 2). The risk, however, may also depend on transient dynamics [43], including temporal lags like **immigration credits** and **extinction debts** [44,45].

Predicting limits to survival in place

Many species cannot persist at the trailing edges of their ranges as climate continues to change (Fig. 1, Fig. 2) [46]. Marine organisms, in particular, appear to have less physiological tolerance for warmer conditions than species in other realms [9], though this sensitivity is offset slightly by greater **thermal plasticity** in marine and freshwater species than in species on land [16] (Fig. 1 and Text S1). On land, species with the most limited physiological tolerance for further warming occur at intermediate latitudes (20-30°), while those in the ocean are found near the equator [9]. Latitudinal patterns in physiological tolerance are more intermediate in freshwater species [10]. The greater habitat heterogeneity on land, in the intertidal zone, and in freshwater (Box 2) also suggest greater opportunities for **behavioral thermoregulation** and moving to nearby microclimate refugia than in fully marine environments (Fig. 1), which may explain the higher frequency and rate of latitudinal contractions in the

ocean than on land [9,14,37]. Despite recent synthesis, it remains unclear the extent to which species across realms can use phenological shifts to persist in place and whether such abilities differ among realms (Fig. 1) [25].

Despite these general differences among realms, at least a few species facing the same types of limits to survival can be found in all realms (Fig. 2, Table S2). Species from more climatically stable environments often lack the physiological tolerance, plasticity, behavioral mechanisms, or standing genetic variation (evolutionary capacity) to cope with ongoing change *in situ*. Theory predicts that evolutionary processes may be most important near the equator, where fewer new and expanding species are likely to emerge as competitors [47] or in marine species with especially large population sizes [48,49]. The thermal heterogeneity of tropical coral reefs and mountainsides may provide corals and alpine plants, respectively, with an important reservoir of standing genetic variation that could allow **evolutionary rescue** [50–52]. However, traits like upper thermal limits appear to have limited evolutionary potential [13,53], and anthropogenic stresses can further reduce evolutionary capacity [54].

An ongoing research challenge is to interpret and understand the ranges that have not contracted. Is the lack of contraction an indication that these species can persist through physiological tolerance, evolution, acclimation, use of microclimate refugia, or amelioration of other stressors (e.g., competition or predation)? Or does apparent stability simply indicate delayed contraction (extinction debt) or insufficient sampling?

Predicting impediments to range expansion

Natural impediments to range shifts and expansion are likely, perhaps counterintuitively, to operate in similar ways across realms (Fig. 2, Table S2), even if the relative frequency of these processes differs substantially (Fig. 1). Insular environments, characterized by physical conditions that vary from regional norms, often have rare or endemic taxa and these species will face similar challenges in range expansion—whether they reside on mountain peaks, in isolated freshwater lakes or marine lakes—as each has species that are unlikely to successfully disperse among these habitats (Box 2). Many species will

likewise be limited by continental or saltwater basin margins. Just as a terrestrial or freshwater species along the continental margin in South Africa cannot disperse southward, a marine species in the Mediterranean Sea cannot directly disperse northward to escape warming conditions [55].

Many species will also be limited by physical or biotic processes that impact propagule dispersal. Marine currents that flow predominately in one direction along a coastline (when propagules are released) will limit the directionality of range shifts in a similar way that animal movements limit range shifts of certain plants (Box 2) [56,57]. The east-west orientation of physical features, such as mountain ranges or coastlines, will also impede poleward shifts or even shift species towards lower latitudes at higher elevations or deeper depths [58,59]. Finally, habitat discontinuities are important across realms, including the absence of rocky habitat amid long stretches of sandy, marine habitat or the absence of upland forest at lower elevations.

In contrast, anthropogenic impediments to dispersal are likely to differ in importance among realms. Species abundance and trophic level have been heavily depleted in many marine ecosystems, but for the most part, the habitat types present historically still occur and there are few anthropogenic barriers to dispersal [21]. In contrast, freshwater environments have been dammed at staggering frequencies, e.g., more than 3,700 dams just in the northeast US [60], each of which blocks the dispersal of some species. In terrestrial environments, large contiguous blocks of anthropogenic habitats (such as agricultural land or urban sprawl) now impede the dispersal of many species (Box 2).

In marine environments, the higher frequency of species with long-distance dispersal abilities and the lower importance of natural and human impediments to dispersal (Box 2) help explain why leading-edge range expansions are more common and of larger magnitude relative to terrestrial and freshwater ones (Fig. 1) [14]. Marine taxa with planktonic dispersal, often allowing for broad and distant colonization, provide a sharp contrast to terrestrial species, like earthworms that shift their distributions by only tens of kilometers over millennia [61]. Dispersal in the freshwater realm is often constrained along dendritic watersheds and dispersal opportunities may be extremely heterogeneous depending on the taxa and physical gradients, e.g., whether riverine systems run north-south vs. east-west. An open

question is whether these differences in dispersal capacity and climate exposure are sufficient to explain observed differences in range edge expansions, or whether additional differences in establishment and subsequent population growth also contribute.

A research agenda for insights across realms

The cross-realm research to date suggests that climate responses may occur at fundamentally different biological scales in different realms. Population-scale range expansions and contractions are better-documented in the ocean, but individual-scale responses through physiological tolerance and behavior are more commonly observed on land (Fig. 1). Understanding the future of global biodiversity will therefore require an integrative approach that links across biological scales from organismal to populations and communities. For which species is individual-scale adaptation sufficient to offset limited expansion of leading edges on land? Are range shifts sufficient for all but polar species in the ocean to offset a lack of persistence *in situ*? How do these processes interact in freshwater? Without this integration, climate biology will remain fragmented and lack the ability to forecast the future of biodiversity on earth.

The differences in observed climate responses across realms (Fig. 1) also raises fundamental questions about how species traits interact with a changing environment. Species across realms have evolved somewhat but not entirely different sets of traits and life histories, shaped in part by the spatial and temporal heterogeneity of each realm. Are these trait differences sufficient to explain the differences in observed climate responses? Or are there other fundamental differences among realms? To date, difficulties in making equivalent comparisons across realms have prevented a clear answer. Answering this question will be critical for building climate biology on a solid foundation of species traits that can be generalized across the tree of life.

Research across realms also provides important advantages, including for ecological synthesis efforts that test macroecological processes. Many environmental factors and species traits are colinear in one realm, making it difficult to untangle causal factors, but are disaggregated in other realms. For

instance, seasonality increases with latitude and with decreasing average temperatures on land, but not in the oceans. Likewise, different types of anthropogenic threats generally coincide on land, but not in the ocean [20]. Trophic level increases with body size in the ocean and freshwater environments, but not in terrestrial ones [22]. Ultimately, by integrating data and analyses across realms, researchers can better identify causal mechanisms and disentangle the factors mediating species' responses to climate change.

The full range of processes (Fig. 1) operate in each realm but, as August Krogh argued in the context of physiology, there is often a particularly convenient study system with which to address each question [62]. When a given process cannot be tractably studied in a given realm, we suggest a modified version of Krogh's principle: cross-realm-inspired studies that leverage advantages from one realm to inform our understanding of another realm. For example, local adaptation and gene flow are vital to understanding how corals respond to climate change [63], but a carefully controlled experiment may be easier to implement in plants with common gardens and reciprocal transplants; the experiment could be designed to mimic coral-like dispersal and other demographic characteristics. Evolution through time may be important in all realms, but most amenable to study in short-lived species [64]. With collaboration to ensure that studies cover the range of conditions relevant across realms, such single-realm studies could provide broad insight.

Towards a unified climate change biology across realms

We believe that there are at least four structural and cultural changes that would enable and facilitate this work. First, although there are special funding calls for research that works across broad disciplines (such as sociology and ecology) and across disciplines within biology (such as ecology and physiology or evolution), there is little effort in many places, such as the USA, to explicitly encourage and fund research that works across silos by taxonomic group (e.g., fishes and plants), regions (e.g., temperate, polar and tropical), or realms (marine, freshwater and terrestrial). Focused funding calls that fostered work across these silos would help overcome the inertia of working across realms, provide a nearly immediate increase in the amount of across-realm work, and improve long-term dialogue among

sub-fields. Second, integration could be facilitated by creating explicit opportunities for cross-silo synthesis and research at the interface between realms at scientific conferences, which currently tend to segregate along subdisciplinary lines. Examples like the International Biogeography Society meetings or the Species on the Move conferences have begun to do this. Third, graduate student training could be broadened to include more across-realm and across-taxonomic group exposure. Approaches for accomplishing this could include field courses that integrate across current silos, as well as a return to the broader natural history training that was common in the past. Fourth, but integrally related to the last point, this unification would be facilitated by changes in academic culture that enable students to invest in the time needed for across-realm (or taxon or region) experience. Our current culture strongly incentivizes immediate specialization and research narrowing, enabling publications to be produced more quickly. While changing this aspect of our current culture would be difficult, it would probably also be the most impactful.

Concluding remarks

As illustrated in this paper, a rapid acceleration of research attention in the last decade has begun to bring key similarities and differences among realms into focus [3,9,10,13,14,16–24]. These emergent patterns contain substantial gaps and uncertainties (Table S1), but also begin to point towards the types of species most at risk from climate change. However, our synthesis also highlights that substantially more research is needed to bridge gaps in understanding between scales of biological organization, among taxonomic groups, and across environmental realms.

Climate change and climate variability impact all levels of biological diversity, from genes to ecosystems. One of the greatest challenges facing scientists now is to understand how these impacts, and responses to those impacts, will scale across levels of biological organization and how the emergent responses will differ across species and ecosystems in all realms on Earth (see Outstanding Questions Box). Developing and fostering the emerging field of climate change biology can help us to meet this

- challenge, advance our basic understanding of the natural world, and provide the basis needed for making
- 232 informed decisions about how best to safeguard biological diversity globally.

Box 1: A need for synthesis in global change biology

234

241

244

251

235 We document the need and promise of developing a greater synthesis across realms and taxa, but this 236 effort is illustrative of a broader need for synthesis in climate change biology across a diverse set of axes. 237 Here we provide examples of other areas of climate change biology that would benefit from synthesis. 238 Within taxon, across realm synthesis – Many taxa, particularly when considered across broader 239 phylogenetic levels, are found in multiple realms. Examples include vascular plants, arthropods, 240 mammals, and others. Leveraging the physical differences among realms (Box 2), while controlling for shared biological characteristics (i.e., of closely related species), offers the potential to identify the 242 relative importance of intrinsic species traits and extrinsic habitat properties in facilitating climate change 243 responses. Within realm, across region or across taxa synthesis – Much of the existing synthesis in climate change 245 biology has focused at this level, e.g., comparing the rate at which species shift their distribution. 246 However, more work is needed, as we still lack clear answers to basic questions, e.g., which regions of 247 the world will experience the highest extinction rates [3]. Synthesis across biomes (e.g. dispersal-248 mediated range shifts in deserts vs. tropical rain forests) is largely unaddressed. Here too, differences in 249 the physical setting offer research opportunities and points of leverage for increased understanding. 250 Across time responses – Integrating biological responses to changes in climate across different time scales is another topic that would benefit from synthesis. For instance, how the relative importance of processes 252 illustrated in Fig. 1 varies across disparate time scales, from geological to contemporary, is not well 253 understood [65,66]. Basic, albeit counterintuitive questions, like when might evolutionary rescue operate 254 more quickly than dispersal-mediated range shifts, haven't been placed into a synthetic framework – one 255 that can guide subsequent inquiry and contextualize existing knowledge.

Function across novel to historic ecosystems – As climate changes drive changes in the composition of species assemblages, there is increasing need for synthesis across ecosystem functions. Is there a predictable sign or magnitude of change for ecosystem functioning of increasingly novel assemblages? Do novel ecosystems composed primarily of species that have shifted their distributions in response to climate change differ in functioning from novel assemblages dominated by inter-continental invaders? Answering these and related questions pose tremendous opportunities to advance the field of climate change biology.

Box 2: Differing physical characteristics across realms

Differences in the physical characteristics and structural properties of each realm influence how organisms are exposed to and respond to climate change (Fig. I). Air has a quarter the heat capacity, twenty-three times lower thermal conductivity, and dramatically higher transparency to solar radiation than water, which creates an environment on land with much greater exposure to high frequency thermal variability through time and space than in the water [67,68]. These differences in thermal variability influence the evolution of physiological tolerance and plasticity [16,69] and also create much faster rates of isotherm shifts in the ocean than on land [70,71]. The higher habitat and thermal heterogeneity in terrestrial and, to a lesser extent, freshwater systems compared to their less heterogeneous marine counterparts also provides more opportunities to persist in place through behavioral thermoregulation and shifts to nearby climate refugia [48] (Fig. I A-C). However, these differences in fluid media among realms also introduce stressors that can interact synergistically with temperature, including precipitation on land (where water is scarce) or acidification and deoxygenation in aquatic environments (where oxygen is scarce).

Habitat dimensionality—such as the surface of terrestrial ecosystems, dendritic river networks, and three-dimensional environments in oceans—delimit how organisms can redistribute to track changing climatic conditions (Fig. I D-F). On land, species can track shifting climates by moving upward, poleward, or a combination of both as dictated by the underlying topography [72]. Similarly, marine species can move deeper rather than latitudinally, especially in regions with strong temperature gradients, though in ways not as limited by topography [73]. In contrast, redistribution in fresh waters is more likely to be constrained by network structure and the availability of upstream habitat [74].

Habitat directionality that arises from atmospheric winds, stream flows and ocean currents restricts movement patterns that can facilitate or inhibit species capacity to track shifting climates [75] (Fig. I G-I). The higher degree of anthropogenic habitat fragmentation in terrestrial and freshwater systems reduces dispersal opportunities [76], whereas human activities in the ocean (especially

overfishing) erode species ability to persist in place and reduce biotic barriers to colonization and establishment [54,77] (Fig. I J-L).

Some organisms inhabit multiple realms, including certain aquatic insects, intertidal organisms with sessile adults, and diadromous species. These species often move between realms during developmental transitions in complex life cycles, exposing them to stressors and limits in each environment. These transitions may impose a form of double jeopardy, putting these species at particularly high risk of extinction. Alternatively, cross-realm transitions may provide opportunities for escape from stressful climate conditions and opportunities to mitigate the dispersal limitations imposed by individual realms. Either way, understanding the realms in which these species reach limits to survival may provide greater insight into cross-realm differences in climate vulnerability.

303	Glossary
304	
305	Behavioral thermoregulation: behavioral adjustments to regulate body temperature (e.g., to minimize
306	climate exposure) by capitalizing on accessible microhabitats, modifying activity periods, and adopting
307	different thermo- and environmental stress-regulatory strategies.
308	Immigration credit: time lags in colonization events after an environmental change (e.g., in climate),
309	resulting in delayed shift or expansion of a species range into areas that are newly suitable.
310	Extinction debt: time lags in extirpation events after an environmental change (e.g., in climate), resulting
311	in delayed loss of populations and range contraction from areas that are newly unsuitable.
312	Extinction risk: likelihood of a species going globally extinct throughout all of its range within the
313	foreseeable future.
314	Extirpation: local extinction of a species at a particular geographic location within its range.
315	Evolutionary rescue: genetic adaptation that allows the recovery and persistence of a population under
316	otherwise unsuitable conditions.
317	Leading range edge: current limit of species distribution (often coldest) where populations are expanding
318	into increasingly suitable habitats under climate change.
319	Phenological shifts: changes in the timing of life-history events, including timing of migration or
320	reproduction.
321	Range shifts: changes in the distribution limits of a species, often along altitudinal, latitudinal or depth
322	gradients.
323	Realm: a broad classification of biological environments, used here in the sense of marine, terrestrial, or
324	freshwater environments.
325	Thermal plasticity: phenotypic changes in response to changes in climate that allow organisms to rapidly
326	adjust their thermal tolerance without evolutionary change.
327	Trailing range edge: current limit of species distribution (often warmest) where populations are
328	contracting from increasingly unsuitable habitats under climate change.

329 Acknowledgments

- We thank M. Tingley, J. Lenoir, and two reviewers for helpful feedback on earlier drafts, and J. Levine
- and J. Chase for discussions that informed our thinking. M.L.P. was supported by NSF #DEB-1616821
- 332 and #CBET-2137701.

333

334

335 References

- 336 Scheffers, B.R. et al. (2016) The broad footprint of climate change from genes to biomes to people.
- 337 *Science* 354,
- Dawson, T.P. et al. (2011) Beyond Predictions: Biodiversity Conservation in a Changing Climate.
- 339 *Science* 332, 53–58
- 340 3 Urban, M.C. (2015) Accelerating extinction risk from climate change. *Science* 348, 571–573
- 341 4 Deutsch, C.A. et al. (2008) Impacts of climate warming on terrestrial ectotherms across latitude.
- 342 *Proc. Natl. Acad. Sci. U. S. A.* 105, 6668–6672
- 5 Dillon, M.E. et al. (2010) Global metabolic impacts of recent climate warming. Nature 467, 704–6
- Wasseur, D.A. et al. (2014) Increased temperature variation poses a greater risk to species than
- 345 climate warming. *Proc. R. Soc. B Biol. Sci.* 281, 20132612
- 346 7 Lenoir, J. and Svenning, J.-C. (2015) Climate-related range shifts a global multidimensional
- 347 synthesis and new research directions. *Ecography* 38, 15–28
- 348 8 de los Ríos, C. et al. (2018) Persistence of methodological, taxonomical, and geographical bias in
- assessments of species' vulnerability to climate change: A review. *Glob. Ecol. Conserv.* 15, e00412
- 9 Pinsky, M.L. et al. (2019) Greater vulnerability to warming of marine versus terrestrial ectotherms.
- 351 *Nature* 569, 108–111
- 352 10 Comte, L. and Olden, J.D. (2017) Climatic vulnerability of the world's freshwater and marine fishes.
- 353 *Nat. Clim. Change* 7, 718–722
- 354 11 Huey, R.B. et al. (2009) Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc.

- 355 *B Biol. Sci.* 276, 1939–48
- 356 12 Nogués-Bravo, D. et al. (2018) Cracking the Code of Biodiversity Responses to Past Climate
- 357 Change. *Trends Ecol. Evol.* 33, 765–776
- 358 13 Bennett, J.M. et al. (2021) The evolution of critical thermal limits of life on Earth. Nat. Commun. 12,
- **359** 1198
- 360 14 Lenoir, J. et al. (2020) Species better track climate warming in the oceans than on land. Nat. Ecol.
- 361 *Evol.* 4, 1044–1059
- 362 15 Wheatley, C.J. et al. (2017) Climate change vulnerability for species—Assessing the assessments.
- 363 *Glob. Change Biol.* 23, 3704–3715
- 364 16 Gunderson, A.R. and Stillman, J.H. (2015) Plasticity in thermal tolerance has limited potential to
- buffer ectotherms from global warming. Proc. R. Soc. B Biol. Sci. 282, 20150401–20150401
- Thackeray, S.J. et al. (2016) Phenological sensitivity to climate across taxa and trophic levels. Nature
- 367 535, 241–245
- 368 18 Spence, A.R. and Tingley, M.W. (2020) The challenge of novel abiotic conditions for species
- undergoing climate-induced range shifts. *Ecography* 43, 1571–1590
- 370 19 Sunday, J.M. et al. (2019) Thermal tolerance patterns across latitude and elevation. Philos. Trans. R.
- 371 *Soc. B Biol. Sci.* 374, 20190036
- 372 20 Bowler, D.E. et al. (2020) Mapping human pressures on biodiversity across the planet uncovers
- anthropogenic threat complexes. *People Nat.* 2, 380–394
- 374 21 McCauley, D.J. et al. (2015) Marine defaunation: Animal loss in the global ocean. Science 347,
- 375 1255641–1255641
- 22 Potapov, A. et al. (2019) Trophic position of consumers and size structure of food webs across
- aquatic and terrestrial ecosystems. *Am. Nat.* 194, 823–839
- 378 23 Antão, L.H. et al. (2020) Temperature-related biodiversity change across temperate marine and
- 379 terrestrial systems. *Nat. Ecol. Evol.* 4, 927–933
- 380 24 Bowler, D.E. et al. (2017) Cross-realm assessment of climate change impacts on species' abundance

- 381 trends. *Nat. Ecol. Evol.* 1, 0067
- 382 25 Cohen, J.M. et al. (2018) A global synthesis of animal phenological responses to climate change. Nat.
- 383 *Clim. Change* 8, 224–228
- 384 26 Gould, R.K. (2021) How creativity can help research on the multiple values of nature become more
- innovative and inclusive. *People Nat.* DOI: 10.1002/pan3.10204
- Dahlke, F.T. et al. (2020) Thermal bottlenecks in the life cycle define climate vulnerability of fish.
- 387 *Science* 369, 65–70
- 28 Colwell, R.K. et al. (2008) Global Warming, Elevational Range Shifts, and Lowland Biotic Attrition
- 389 in the Wet Tropics. *Science* 322, 258–261
- 390 29 Penn, J.L. et al. (2018) Temperature-dependent hypoxia explains biogeography and severity of end-
- Permian marine mass extinction. *Science* 362, eaat1327
- 392 30 Radinger, J. et al. (2018) Improved river continuity facilitates fishes' abilities to track future
- environmental changes. J. Environ. Manage. 208, 169–179
- 394 31 Manes, S. et al. (2021) Endemism increases species' climate change risk in areas of global
- biodiversity importance. *Biol. Conserv.* 257, 109070
- 396 32 Muir, P.R. et al. (2015) Limited scope for latitudinal extension of reef corals. Science 348, 1135–
- 397 1138
- 398 33 Gunderson, A.R. et al. (2017) Estimating the benefits of plasticity in ectotherm heat tolerance under
- natural thermal variability. Funct. Ecol. 31, 1529–1539
- 400 34 Padfield, D. et al. (2016) Rapid evolution of metabolic traits explains thermal adaptation in
- 401 phytoplankton. *Ecol. Lett.* 19, 133–142
- 402 35 Aguirre-Liguori, J.A. et al. (2021) The evolutionary genomics of species' responses to climate
- 403 change. Nat. Ecol. Evol. 5, 1350–1360
- 404 36 Nadeau, C.P. and Urban, M.C. (2019) Eco-evolution on the edge during climate change. *Ecography*
- 405 42, 1280–1297
- 406 37 Sears, M.W. et al. (2016) Configuration of the thermal landscape determines thermoregulatory

- performance of ectotherms. *Proc. Natl. Acad. Sci. U. S. A.* 113, 10595–10600
- 408 38 Isaak, D.J. et al. (2016) Slow climate velocities of mountain streams portend their role as refugia for
- 409 cold-water biodiversity. *Proc. Natl. Acad. Sci.* 113, 4374–4379
- 410 39 Zellweger, F. et al. (2020) Forest microclimate dynamics drive plant responses to warming. Science
- 411 368, 772–775
- 412 40 Bertrand, R. et al. (2011) Changes in plant community composition lag behind climate warming in
- 413 lowland forests. *Nature* 479, 517–20
- 414 41 Bridle, J.R. et al. (2014) Evolution on the move: specialization on widespread resources associated
- with rapid range expansion in response to climate change. *Proc. R. Soc. B Biol. Sci.* 281, 20131800
- 416 42 Vandvik, V. et al. (2020) Biotic rescaling reveals importance of species interactions for variation in
- biodiversity responses to climate change. *Proc. Natl. Acad. Sci.* 117, 22858–22865
- 418 43 Hastings, A. et al. (2018) Transient phenomena in ecology. Science 361, eaat6412
- 419 44 Alexander, J.M. *et al.* (2018) Lags in the response of mountain plant communities to climate change.
- 420 *Glob. Change Biol.* 24, 563–579
- 421 45 Jackson, S.T. and Sax, D.F. (2009) Balancing biodiversity in a changing environment: extinction
- debt, immigration credit and species turnover. *Trends Ecol. Evol.* 25, 153–160
- 423 46 Wiens, J.J. (2016) Climate-Related Local Extinctions Are Already Widespread among Plant and
- 424 Animal Species. *PLOS Biol.* 14, e2001104
- 425 47 Norberg, J. et al. (2012) Eco-evolutionary responses of biodiversity to climate change. Nat. Clim.
- 426 *Change* 2, 747–751
- 48 Sunday, J.M. et al. (2014) Thermal-safety margins and the necessity of thermoregulatory behavior
- 428 across latitude and elevation. *Proc. Natl. Acad. Sci. U. S. A.* 111, 5610–5
- 429 49 DeWoody, J.A. and Avise, J.C. (2000) Microsatellite variation in marine, freshwater and anadromous
- fishes compared with other animals. *J. Fish Biol.* 56, 461–473
- 431 50 Cotto, O. et al. (2017) A dynamic eco-evolutionary model predicts slow response of alpine plants to
- dimate warming. *Nat. Commun.* 8, 15399

- 433 51 Palumbi, S.R. et al. (2014) Mechanisms of reef coral resistance to future climate change. Science
- 434 344, 895–898
- 435 52 Gauzere, J. et al. (2020) Microgeographic adaptation and the effect of pollen flow on the adaptive
- potential of a temperate tree species. *New Phytol.* 227, 641–653
- 437 53 Buckley, L.B. and Kingsolver, J.G. (2021) Evolution of Thermal Sensitivity in Changing and
- 438 Variable Climates. Annu. Rev. Ecol. Evol. Syst. 52,
- 439 54 Planque, B. et al. (2010) How does fishing alter marine populations and ecosystems sensitivity to
- 440 climate? *J. Mar. Syst.* 79, 403–417
- 441 55 Ben Rais Lasram, F. et al. (2010) The Mediterranean Sea as a 'cul-de-sac' for endemic fishes facing
- 442 climate change: A marine endemic hotspot under threat. Glob. Change Biol. 16, 3233–3245
- 443 56 González-Varo, J.P. et al. (2021) Limited potential for bird migration to disperse plants to cooler
- 444 latitudes. *Nature* 595, 75–79
- Fricke, E.C. *et al.* (2022) The effects of defaunation on plants' capacity to track climate change.
- 446 *Science* 375, 210–214
- 447 58 Kuhn, E. et al. (2016) Early signs of range disjunction of submountainous plant species: an
- unexplored consequence of future and contemporary climate changes. Glob. Change Biol. 22, 2094—
- 449 2105
- 450 59 Pinsky, M.L. et al. (2013) Marine taxa track local climate velocities. Science 341, 1239–1242
- 451 60 Graf, W.L. (1999) Dam nation: A geographic census of American dams and their large-scale
- 452 hydrologic impacts. *Water Resour. Res.* 35, 1305–1311
- 453 61 James, S.W. (2004) Planetary processes and their interactions with earthworm distributions and
- ecology. In Earthworm Ecology (2nd edn) (Edwards, C. A., ed), pp. 53–62, CRC Press
- 455 62 Krogh, A. (1929) The progress of physiology. *Am. J. Physiol.* 90, 243–251
- 456 63 McManus, L.C. et al. (2021) Evolution and connectivity influence the persistence and recovery of
- 457 coral reefs under climate change in the Caribbean, Southwest Pacific, and Coral Triangle. *Glob*.
- 458 *Change Biol.* 27, 4307–4321

- 459 64 Geerts, A.N. et al. (2015) Rapid evolution of thermal tolerance in the water flea Daphnia. Nat. Clim.
- 460 *Change* 5, 956–956
- 461 65 Polly, P.D. et al. (2011) History matters: ecometrics and integrative climate change biology. Proc. R.
- 462 *Soc. B Biol. Sci.* 278, 1131–1140
- 463 66 Jackson, S.T. and Blois, J.L. (2015) Community ecology in a changing environment: Perspectives
- 464 from the Quaternary. *Proc. Natl. Acad. Sci. U. S. A.* 112, 4915–4921
- 465 67 Steele, J.H. (1985) A comparison of terrestrial and marine ecological systems. *Nature* 313, 355–358
- 466 68 Denny, M.W. (1993) Air and Water: The Biology and Physics of Life's Media, Princeton University
- 467 Press.
- 468 69 Ruokolainen, L. et al. (2009) Ecological and evolutionary dynamics under coloured environmental
- 469 variation. *Trends Ecol. Evol.* 24, 555–563
- 470 70 Burrows, M.T. et al. (2011) The Pace of Shifting Climate in Marine and Terrestrial Ecosystems.
- 471 *Science* 334, 652–655
- 472 71 Woolway, R.I. and Maberly, S.C. (2020) Climate velocity in inland standing waters. *Nat. Clim.*
- 473 *Change* 10, 1124–1129
- 474 72 Auer, S.K. and King, D.I. (2014) Ecological and life-history traits explain recent boundary shifts in
- elevation and latitude of western North American songbirds: Range boundary shifts in songbirds.
- 476 *Glob. Ecol. Biogeogr.* 23, 867–875
- 477 73 Burrows, M.T. et al. (2019) Ocean community warming responses explained by thermal affinities
- and temperature gradients. *Nat. Clim. Change* 9, 959–963
- 479 74 Troia, M.J. et al. (2019) Species traits and reduced habitat suitability limit efficacy of climate change
- refugia in streams. Nat. Ecol. Evol. 3, 1321–1330
- 481 75 García Molinos, J. et al. (2017) Ocean currents modify the coupling between climate change and
- biogeographical shifts. Sci. Rep. 7, 1–9
- 483 76 Fourcade, Y. et al. (2021) Habitat amount and distribution modify community dynamics under
- 484 climate change. *Ecol. Lett.* 24, 950–957

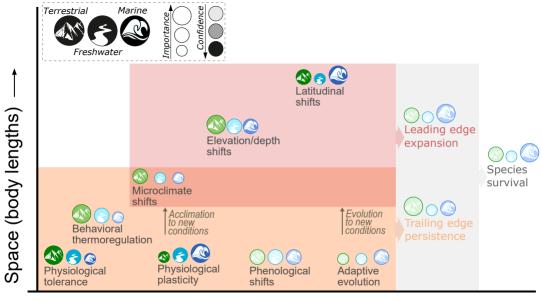
Ling, S.D. *et al.* (2009) Overfishing reduces resilience of kelp beds to climate-driven catastrophic
 phase shift. *Proc. Natl. Acad. Sci. U. S. A.* 106, 22341–5

Figure Legends

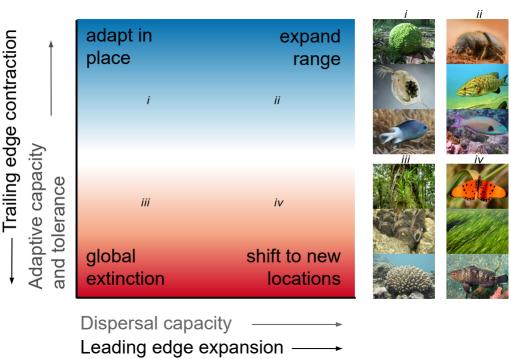
Figure 1. Hierarchy of climate change coping mechanisms within species. Species cope with climate change and variability through a hierarchy of processes across scales of time and space, from the physiology and behavior of individual organisms to the spatial dynamics and evolution of populations and species. The relative importance of different mechanisms for coping with changing climates differ on average across terrestrial, freshwater, and marine realms (as represented by the size of the icons), resulting in differences in the overall degree of trailing edge persistence, leading edge expansion, and, ultimately, species survival. Relative positions of the different mechanisms and ratings were based on existing literature to represent broad patterns and do not apply to all species. Confidence in the relative ratings (as represented by the degree of transparency) indicates our qualitative assessment of the degree of support from the scientific literature (see also Text S1 and Table S1 for references).

Figure 2. Climate change consequences for species survival. Response to climate change and implications for global extinction risk, expressed as the relative rates of leading edge expansion and trailing edge contraction. These spatio-temporal dynamics lead to divergent outcomes for species survival and some species in each realm are likely to fall in each category. (i) Species likely to adapt in place have limited dispersal ability/opportunity and broad climatic tolerance/adaptive capacity such as Osage orange (Maclura pomifera), Daphnia spp., and spiny chromis (Acanthochromis polyacanthus). (ii) Species likely to expand their range have high dispersal capacity and expanding climatically suitable habitat such as bark beetles, smallmouth bass (Micropterus dolomieu), and parrotfish (Scaridae). (iii) Species likely to contract their range are locally distributed, climate sensitive, and have limited adaptive capacity and dispersal capacity such as montane tropical epiphytes, freshwater mussels, and Acropora coral. (iv) Species likely to shift to new locations have high dispersal capacity and are sensitive to climate such as many butterflies, aquatic pondweeds, and black sea bass (Centropristis striata). See Table S2 for details and Table S3 for photo credits.

Fig. I. Environmental differences across realms set the stage for different climate change responses.


Realms differ substantially in the habitat heterogeneity, dimensionality, directionality, and human impacts, which together influence how organisms persist and redistribute in response to variation and change in climate. See Table S4 for photo credits.

Highlights


- An integrated perspective crossing terrestrial, freshwater, and marine realms is essential to understand where and why species are most vulnerable to climate change.
- The dominant eco-evolutionary processes for coping with climate change differ across realms.
- Cross-taxa and cross-realm research can provide unique insights and opportunities to advance our understanding of the processes and mechanisms threatening species survival.
- Academic culture and practice often impedes cross-realm research, such that structural and cultural transitions are needed to advance a more unified field of climate change biology.

Box -- Outstanding research questions

- To what extent does climate-related extinction risk differ across terrestrial, freshwater, and marine realms?
- To what extent do species that live across multiple realms or at the interfaces between realms face amplified or mitigated extinction risk from climate change?
- How do indirect climate change effects through altered biotic interactions affect species climate responses across realms?
- In which realms and taxa do immigration credits and extinction debts manifest most strongly?
- Can species traits explain differences in range shifts across taxa and realms?
- How does the role of adaptive evolution to climate change differ across realms?
- When do stationary trailing edges indicate successful adaptation to novel conditions?
- Do non-climatic human impacts interact with climate change similarly or differently across realms?
- Do species range shifts scale up similarly across realms to affect community reorganization, macroecological biodiversity patterns, and ecosystem function?

Time (generations) →

Freshwater **Terrestrial** Marine (A) (B) (C) Habitat heterogeneity (D) (E) (F) Habitat dimensionality (G) (1) (H) Habitat directionality (J) (K) (L) Human impacts

Supplementary Material

Unifying climate change biology across realms and taxa

Malin L. Pinsky¹, Lise Comte², and Dov F. Sax³

Corresponding author: Pinsky, M. L. (malin.pinsky@rutgers.edu)

Text S1: Climate change response comparisons across realms

The last decade has seen a rapid increase in cross-realm studies, providing key insights into the mechanisms by which species are exposed and respond to climate change (Fig. 1, Table S1). For instance, a comparison of climate change velocity across realms over recent decades revealed uneven climate exposure due to fundamental differences in the physical characteristics and structural properties of each realm [S1]. Even though temperature trends have been twice as fast on land as compared to aquatic systems due to the higher heat capacity of water, the velocity of climate change was higher in the ocean than in inland standing waters or over land because spatial temperature gradients were three times less pronounced in the ocean. This velocity difference suggests that marine species will have to move greater distances to follow isotherm shifts. In addition, lower dispersal opportunities for freshwater and terrestrial species (due to a combination of natural and human-induced fragmentation) may impede their redistribution, especially for species with poor dispersal abilities [S2,S3].

Differences in habitat heterogeneity among realms also create important differences in climate responses. Habitat heterogeneity is higher on land, where differences between air and near-surface (subcanopy) air temperature can be as high as 25°C [S4]. This heterogeneity also makes behavioral thermoregulation a more important potential mechanism for terrestrial species to cope with current and future climatic conditions as compared to marine species [S5,S6]. Similarly, microclimatic refugia providing cooler and more stable thermal regimes are likely to be more readily available on land, especially in forested landscapes with sharp topographic gradients [S7], where they could both enhance trailing edge persistence ('holdouts' *sensu* [S8]) and leading edge expansion ('stepping stones' *sensu* [S8]) [S9–S11]. Nonetheless, bathymetric range shifts in the ocean can, to a certain degree, offer alternatives to long-distance latitudinal shifts, especially in regions with strong temperature gradients [S12,S13].

In the freshwater realm, the degree of thermal heterogeneity (and thus the potential for behavioral thermoregulation) is expected to be intermediate between that of terrestrial and marine systems but varies in complex ways across scales of space and time from the interplay between topography, stream channel complexity, and groundwater inputs [S14]. Tributaries can also represent important short-distance microclimatic refugia for some species that allow persistence under deteriorating climatic conditions or provide slower climate velocity pathways that facilitate redistribution [S2]. Understanding the emerging spatio-temporal complexity of microclimate and thermal exposure across realms and their implications for

¹ Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA, malin.pinsky@rutgers.edu

² School of Biological Sciences, Illinois State University, Normal, IL, USA, lccomte@ilstu.edu

³ Department of Ecology, Evolution and Organismal Biology & Institute at Brown for Environment and Society, Brown University, Providence, RI, USA, <u>dov sax@brown.edu</u>

future biodiversity responses under changing climates represent important avenues for future research [S15].

Beyond environmental differences, macro-physiological studies have also helped uncover striking differences and similarities regarding the spatial variation and evolution of thermal sensitivity across realms. Notably, large-scale patterns in thermal tolerance have repeatedly shown a near-invariance of heat tolerance with latitude in terrestrial species (both plants and animals), but a steeper decline for freshwater and especially marine species towards the poles [S16–S19]. Although primarily generated from the study of ectothermic animals, these findings point to the key role of environmental variability in shaping the evolution of thermal tolerance, where the spatial variability in thermal tolerance broadly reflects spatial variation in thermal extremes [S18]. However, spatial differences in climate extremes are generally larger than spatial differences in thermal tolerance, such that species live closer to their thermal limits at midlatitudes on land and in the tropics in the ocean [S6,S20]. Freshwater systems have more variable and intermediate patterns [S21]. Further accounting for the availability of thermal refugia (e.g., shaded habitats on land or deeper waters in the ocean) revealed that marine ectotherms live on average 20% closer to their thermal limits than do their terrestrial counterparts [S6]. Despite some inherent limitations of thermal vulnerability indices [S22], these results suggest that species in the ocean may be more sensitive to future temperature increases, especially in the tropics where populations currently display narrower thermal safety margins.

By contrast, examining plasticity of heat tolerance across realms indicates that thermal plasticity is about twice as high for marine, and albeit to a lesser extent freshwater, than terrestrial species, but with no clear spatial patterns [S23]. These differences among realms presumably result from the comparatively higher potential for thermoregulation in terrestrial habitats, which creates lower selection pressure on the evolution of thermal plasticity (the Bogert Effect). Nonetheless, Gunderson et al. [S23] also demonstrated an overall limited acclimation ability among all ectotherms, indicating that plasticity alone will be unlikely to be a primary mechanism for species to cope with climate change, even in the most plastic marine groups. Interestingly, a recent meta-analysis of intraspecific thermal plasticity in ectotherms demonstrated that substantial variation in thermal acclimation capacity also exists within species, where populations with the highest heat tolerance display the lowest plasticity [S24]. The same study did not find any appreciable differences among realms [S24].

Theoretical models and experiments also suggest that evolutionary adaptations may enhance persistence and redistribution under changing climates; however, the potential for thermal adaptation is still unknown for most species in the context of variable natural environments [S25]. The often high standing genetic variation and large effective population sizes in marine species might provide the potential for evolutionary rescue in the ocean [S26,S27], though freshwater fishes have even higher diversity if between-population diversity is included [S28]. However, the high degree of phylogenetic conservatism and lower tempo of evolution in heat as compared to cold tolerance also suggests the existence of physiological constraints on the evolution of upper thermal limits and limited scope for further evolutionary adaptation across all realms and major life forms [S17,S29]. Further investigating these evolutionary constraints as well as the role of behavioral thermoregulation and thermal plasticity are needed to more accurately predict the consequences of climate change on species persistence.

Beyond differences in thermal exposure and sensitivity, cross-realm studies have advanced our understanding of the geography and taxonomy of biodiversity responses to ongoing climate change. For instance, shifts in phenology (seasonal timing of ecological events) have now been documented for a wide variety of species and habitats [S30–S32], and although the pace of shifting climates suggests a faster

shift in the seasonal timing of temperatures in the ocean than on land [S33], evidence to date suggests that phenological shifts are more variable across taxonomic groups than across realms [S34,S35]. There is also some indication that mismatches in thermal sensitivity and phenological shifts among interacting species may greatly influence species responses to climate change in all realms, especially in higher trophic level species (see [S36] for a comparison between terrestrial and freshwater species). However, these indirect effects resulting from altered biotic interactions are still poorly understood and deserve further examinations [S37,S38].

Numerous studies have also reported shifts in the distribution ranges of species in response to climate change that result from trailing edge contractions and leading edge expansions along latitudinal, elevation and depth gradients [S39]. Re-analysis of these climate-induced range shifts reveals that extirpations at the trailing edge of species distributions are more common in freshwater relative to marine and terrestrial species [S40] and are almost six times faster in the ocean than on land [S41]. These findings are consistent with overall faster declines in freshwater biodiversity than are observed in marine or terrestrial systems [S42] and with the greater thermal conformity of marine than terrestrial species [S43].

Patterns are similar at the leading edge of species distributions, where marine species follow isotherm shifts more closely than their terrestrial counterparts [S41]. This pattern is consistent with higher dispersal constraints on land, where human activities can strongly affect dispersal by altering the amount and distribution of habitats [S3]. Although evidence is very limited to date (e.g., [S44] reported broadly comparable magnitude of northern latitudinal shifts for terrestrial and freshwater groups in Britain), we hypothesize that habitat fragmentation may be an even stronger impediment to leading edge range expansions in the freshwater realm.

Because of these constraints, freshwater species may face on average a higher risk of extinction from climate change, displaying both a low ability to persist in place and to move in space. Extinction risk may be comparatively lower in the marine realm, where faster rates of colonization at the leading edge may at least partially compensate for the extirpations occurring at the trailing edge, except at the poles where further expansion is not possible [S45] or in rare, insular marine habitats like marine lakes [S46].

Despite the broad base of studies across hundreds of species and geographic locations, substantial gaps in knowledge persist in our understanding of species responses to climate change across realms. Comparison methods remain relatively rudimentary for cross-realm comparisons, lacking the sophistication possible with detailed single-taxon studies. In addition, sampling across regions and realms remains highly uneven. All of these limitations impede our understanding of the relative importance of different coping mechanisms across realms and thus call for urgent research attention.

Table S1. Climate change responses differ across realms. Table to complement Fig. 1. The relative importance of different mechanisms for coping with changing climates differ on average across terrestrial, freshwater, and marine realms. In the table, +++ represents a mechanism that is relatively more available, while + represents mechanisms least available to species within a realm. Ratings were chosen to represent broad patterns and do not apply to all species. Confidence indicates our qualitative assessment of the degree of support from the scientific literature for the relative ratings.

Consequence	Mechanism	Terrestrial	Freshwater	Marine	Confidence	References
Greater trailing edge persistence		+++	+	++	Low	[S40,S41]
	Physiological tolerance	+++	++	+	High	[S6,S18,S21]
	Plasticity	+	++	+++	High	[S23]
	Behavioral thermoregulation	+++	++	+	Medium	[S6,S12,S23,S47]
	Phenological shifts	++	++	++	Low	[S34,S35]
	Shifts among microclimates	++	+	+	Medium	
	Adaptive evolution	+	+	++	Low	[S27,S29]
Greater leading edge expansion		++	+	+++	Low	[S41]
	Elevation or depth shifts	+++	++	++	Medium	[S41,S48]
	Latitudinal shifts	++	+	+++	High	[S41]
Species survival		++	+	+++	Low	

Table S2. Examples of climate change responses across realms. Examples of species that fit each projected climate change outcome from Fig. 2.

Projected Outcome	Key Mechanism(s)	Terrestrial Example	Marine Example	Freshwater Example	Climate tolerance or adaptive capacity	Dispersal
Adapt in place (without expansion)	Limited dispersal ability or opportunity; broad climatic tolerance or adaptive ability	Osage orange (Maclura pomifera)	Spiny chromis (Acanthochromis polyacanthus)	Daphnia spp.	high	low
Expand distribution	High dispersal ability and expanding climatically suitable habitat	Bark beetles (Scolytinae)	Parrotfish (Scaridae)	Smallmouth bass (Micropterus dolomieu)	medium to high	high
Shift distribution	High dispersal capacity and sensitive to climate	Various butterfly species (Lepidoptera)	Black sea bass (Centropristis striata)	Aquatic pondweed	low or uncertain	high
Contract distribution/ Extinction	Locally distributed, climate sensitive, limited adaptive capacity and dispersal capacity	Tropical, montane epiphytes	Acropora coral	Freshwater mussels (Bivalvia)	low	low

Table S3. Credits for photos in Fig. 2.

Picture	Name	URL	License	Credit
(i)	Osage orange (Maclura pomifera)	https://www.flickr.com/photos/vastateparksstaff/32499331354	CC BY 2.0	Virginia State Parks / flickr
	Daphina magna	https://commons.wikimedia.org/wiki/File:Daphnia_magna_asexual.jpg	CC BY-SA 4.0	Dieter Ebert/Wikimedia Commons
	Tropical fish	https://www.flickr.com/photos/74504731@N00/3355351945	<u>CC BY 2.0</u>	Nikita / flickr
(ii)	European spruce bark beetle (<i>Ips</i> <i>typographus</i>)	https://en.wikipedia.org/wiki/Dendroctonus_micans#/media/File:Dendroctonus_micans_(21931043154).jpg	CC BY-SA 2.0	Gilles San Martin / Wikimedia Commons
	Smallmouth Bass (Micropterus dolomieu)	https://en.wikipedia.org/wiki/Smallmouth bass#/media/File:Detailed u nderwater photo of smallmouth bass fish micropterus dolomieu.jpg	CC0 Public Domain	Engbretson Eric / Wikemedia Commons
	Cetoscarus bicolor	https://upload.wikimedia.org/wikipedia/commons/d/dd/Bicolor_parrotfish.JPG	CC BY-SA 3.0	Richard Ling / Wikimedia Commons
(iii)	Epiphytes (Dominica)	https://en.wikipedia.org/wiki/Epiphyte#/media/File:Epiphytes_(Dominica).jpg	CC BY-SA 3.0	Hans Hillewaert / Wikimedia Commons
	Freshwater pearl mussel	https://en.wikipedia.org/wiki/Freshwater_pearl_mussel#/media/File:Gr_oup_of_Margaritifera_margaritifera.jp	CC BY-SA 3.0	Boldie / Wikimedia Commons
	Acropora (Acroporidae)	https://en.wikipedia.org/wiki/Acropora#/media/File:Acropora_coral_ffsipg	CC0 Public Domain	NOAA / Wikimedia Commons
(iv)	Acraea acrita	https://en.wikipedia.org/wiki/Acraea_(butterfly)#/media/File:Acraea_a_crita_male.jpg	CC0 Public Domain	Dominique Bernaud / Wikimedia Commons
	Vue subaquatique de la rivière La course à Estrée Potamot pectiné	https://commons.wikimedia.org/wiki/File:Vue_subaquatique_de_la_riv_i%C3%A8re_La_course_%C3%A0_Estr%C3%A9e_Potamot_pectin%C3%A9_2017.jpg#/media/File:Vue_subaquatique_de_la_rivi%C3%A8_re_La_course_%C3%A0_Estr%C3%A9e_Potamot_pectin%C3%A9_2_017.jpg	CC BY-SA 4.0	Lamiot / Wikimedia Commons
	Black Sea Bass (Centropristis striata)	https://www.flickr.com/photos/mentalblock/34700700461	CC BY-NC-SA 2.0	Kevin Bryant / flickr

Table S4. Credits for photos in Box 2, Fig. I.

Picture	Name	URL	License	Credit
(a)	Giraffe (<i>Giraffa</i>) and Oryx (<i>Oryx</i>)	https://www.publicdomainpictures.net/en/view-image.php?image=46025&picture=giraffe-and-oryx-under-tree	CC0 Public Domain	Lilla Frerichs
(b)	Atlantic salmon (Salmo salar)	https://www.flickr.com/photos/usfwsnortheast/5198591082/in/photostream	CC0 Public Domain	E. Peter Steenstra/USFWS / flickr
(c)		https://www.piqsels.com/en/public-domain-photo-zvqwa	CC0 Public Domain	
(d)	Kilimanjaro from Amboseli	https://commons.wikimedia.org/wiki/File:Kilimanjaro from Amboseli.jpg	CC BY-SA 4.0	Sergey Pesterev / Wikimedia Commons
(e)	Ganges River Delta	https://www.flickr.com/photos/nasamarshall/14610275771	CC BY-NC 2.0	NASA's Marshall Space Flight Center / flickr
(f)	Fish Sounds - Kelp Forest	https://www.flickr.com/photos/caseagrant/46267906622	CC BY 2.0	Camille Pagniello / flickr
(g)	Windblown trees, Humphrey Head, UK	https://en.wikipedia.org/wiki/File:Windblown trees, Humphrey Head - geograph.org.uk - 48659.jpg	CC BY-SA 2.0	Dave Dunford / Wikimedia Commons
(h)	Mexico Agua Azul Cascades	https://www.needpix.com/photo/607726/mexico-agua-azul-cascades-rapids-water-river-waterfalls-yellow-sandstone-water-courses	CC0 Public Domain	DEZALB / Pixabay
(i)	Perpetual Ocean	https://www.nasa.gov/topics/earth/features/perpetual-ocean.html	May use NASA content without needing explicit permission	Scientific Visualization Studio at NASA's Goddard Space Flight Center
(j)	Shanghai interchange	https://unsplash.com/photos/7nrsVjvALnA	Free to use under the Unsplash License	Jeremy Bishop / Unsplash
(k)	Glen Canyon Dam AZ	https://commons.wikimedia.org/wiki/File:Glen Canyon Dam AZ.jpg	CC BY-SA 4.0	Justjeffaz (Jeff Brunton) / Wikimedia Commons
(1)	Crab boat working the North Sea	https://en.wikipedia.org/wiki/Fishing_vessel#/media/File:Krabbenkutter_Iv_onne_Pellworm_P5242390jm.JPG	CC BY-SA 2.0 de	Joachim Müllerchen / Wikimedia Commons

References

- S1 Woolway, R.I. and Maberly, S.C. (2020) Climate velocity in inland standing waters. *Nat. Clim. Change* 10, 1124–1129
- S2 Troia, M.J. *et al.* (2019) Species traits and reduced habitat suitability limit efficacy of climate change refugia in streams. *Nat. Ecol. Evol.* 3, 1321–1330
- S3 Fourcade, Y. *et al.* (2021) Habitat amount and distribution modify community dynamics under climate change. *Ecol. Lett.* 24, 950–957
- S4 Haesen, S. *et al.* (2021) ForestTemp Sub-canopy microclimate temperatures of European forests. *Glob. Change Biol.* 27, 6307–6319
- S5 Sunday, J.M. *et al.* (2014) Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. *Proc. Natl. Acad. Sci. U. S. A.* 111, 5610–5
- S6 Pinsky, M.L. *et al.* (2019) Greater vulnerability to warming of marine versus terrestrial ectotherms. *Nature* 569, 108–111
- S7 De Frenne, P. *et al.* (2021) Forest microclimates and climate change: Importance, drivers and future research agenda. *Glob. Change Biol.* 27, 2279–2297
- S8 Hannah, L. *et al.* (2014) Fine-grain modeling of species' response to climate change: holdouts, stepping-stones, and microrefugia. *Trends Ecol. Evol.* 29, 390–397
- S9 Lenoir, J. *et al.* (2017) Climatic microrefugia under anthropogenic climate change: implications for species redistribution. *Ecography* 40, 253–266
- S10 Suggitt, A.J. *et al.* (2018) Extinction risk from climate change is reduced by microclimatic buffering. *Nat. Clim. Change* 8, 713
- S11 Zellweger, F. *et al.* (2020) Forest microclimate dynamics drive plant responses to warming. *Science* 368, 772–775
- S12 Pinsky, M.L. *et al.* (2020) Climate-Driven Shifts in Marine Species Ranges: Scaling from Organisms to Communities. *Annu. Rev. Mar. Sci.* 12, 153–179
- S13 Burrows, M.T. *et al.* (2019) Ocean community warming responses explained by thermal affinities and temperature gradients. *Nat. Clim. Change* 9, 959–963
- S14 Steel, E.A. *et al.* (2017) Envisioning, Quantifying, and Managing Thermal Regimes on River Networks. *BioScience* 67, 506–522
- S15 Zellweger, F. *et al.* (2019) Advances in Microclimate Ecology Arising from Remote Sensing. *Trends Ecol. Evol.* 34, 327–341
- S16 Khaliq, I. *et al.* (2014) Global variation in thermal tolerances and vulnerability of endotherms to climate change. *Proc. R. Soc. B Biol. Sci.* 281, 20141097
- S17 Araújo, M.B. et al. (2013) Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219
- S18 Sunday, J.M. *et al.* (2019) Thermal tolerance patterns across latitude and elevation. *Philos. Trans. R. Soc. B Biol. Sci.* 374, 20190036
- S19 Lancaster, L.T. and Humphreys, A.M. (2020) Global variation in the thermal tolerances of plants. *Proc. Natl. Acad. Sci.* 117, 13580–13587
- S20 O'Sullivan, O.S. *et al.* (2017) Thermal limits of leaf metabolism across biomes. *Glob. Change Biol.* 23, 209–223
- S21 Comte, L. and Olden, J.D. (2017) Climatic vulnerability of the world's freshwater and marine fishes. *Nat. Clim. Change* 7, 718–722
- S22 Clusella-Trullas, S. *et al.* (2021) How useful are thermal vulnerability indices? *Trends Ecol. Evol.* DOI: 10.1016/j.tree.2021.07.001
- S23 Gunderson, A.R. and Stillman, J.H. (2015) Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. *Proc. R. Soc. B Biol. Sci.* 282, 20150401–20150401
- S24 Barley, J.M. *et al.* (2021) Limited plasticity in thermally tolerant ectotherm populations: evidence for a trade-off. *Proc. R. Soc. B Biol. Sci.* 288, 20210765
- S25 Buckley, L.B. and Kingsolver, J.G. (2021) Evolution of Thermal Sensitivity in Changing and Variable Climates. *Annu. Rev. Ecol. Evol. Syst.* 52,
- S26 Kelly, M.W. and Griffiths, J.S. (2021) Selection Experiments in the Sea: What Can Experimental

- Evolution Tell Us About How Marine Life Will Respond to Climate Change? *Biol. Bull.* DOI: 10.1086/715109
- S27 Sunday, J.M. et al. (2014) Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–25
- S28 Manel, S. *et al.* (2020) Global determinants of freshwater and marine fish genetic diversity. *Nat. Commun.* 11, 1–9
- S29 Bennett, J.M. *et al.* (2021) The evolution of critical thermal limits of life on Earth. *Nat. Commun.* 12, 1198
- S30 Poloczanska, E.S. *et al.* (2016) Responses of Marine Organisms to Climate Change across Oceans. *Front. Mar. Sci.* 3,
- S31 Kharouba, H.M. *et al.* (2018) Global shifts in the phenological synchrony of species interactions over recent decades. *Proc. Natl. Acad. Sci.* 115, 5211–5216
- Woods, T. *et al.* (2021) Phenology in freshwaters: a review and recommendations for future research. *Ecography* DOI: 10.1111/ecog.05564
- S33 Burrows, M.T. *et al.* (2011) The Pace of Shifting Climate in Marine and Terrestrial Ecosystems. *Science* 334, 652–655
- S34 Thackeray, S.J. *et al.* (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments: PHENOLOGICAL CHANGE ACROSS MAJOR ENVIRONMENTS. *Glob. Change Biol.* 16, 3304–3313
- S35 Cohen, J.M. *et al.* (2018) A global synthesis of animal phenological responses to climate change. *Nat. Clim. Change* 8, 224–228
- S36 Ockendon, N. *et al.* (2014) Mechanisms underpinning climatic impacts on natural populations: Altered species interactions are more important than direct effects. *Glob. Change Biol.* 20, 2221–2229
- S37 Urban, M.C. *et al.* (2017) Searching for Biotic Multipliers of Climate Change. *Integr. Comp. Biol.* 57, 134–147
- S38 Gunderson, A.R. *et al.* (2017) Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences. *Integr. Comp. Biol.* 57, 48–54
- S39 Lenoir, J. and Svenning, J.-C. (2015) Climate-related range shifts a global multidimensional synthesis and new research directions. *Ecography* 38, 15–28
- S40 Wiens, J.J. (2016) Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species. *PLOS Biol.* 14, e2001104
- S41 Lenoir, J. *et al.* (2020) Species better track climate warming in the oceans than on land. *Nat. Ecol. Evol.* 4, 1044–1059
- S42 Albert, J.S. *et al.* (2021) Scientists' warning to humanity on the freshwater biodiversity crisis. *Ambio* 50, 85–94
- S43 Sunday, J.M. *et al.* (2012) Thermal tolerance and the global redistribution of animals. *Nat. Clim. Change* 2, 686–690
- S44 Hickling, R. *et al.* (2006) The distributions of a wide range of taxonomic groups are expanding polewards. *Glob. Change Biol.* 12, 450–455
- S45 Penn, J.L. *et al.* (2018) Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. *Science* 362, eaat1327
- S46 Dawson, M.N. and Hamner, W.M. (2005) Rapid evolutionary radiation of marine zooplankton in peripheral environments. *Proc. Natl. Acad. Sci. U. S. A.* 102, 9235–9240
- S47 Sears, M.W. *et al.* (2016) Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. *Proc. Natl. Acad. Sci. U. S. A.* 113, 10595–10600
- S48 Poloczanska, E.S. *et al.* (2013) Global imprint of climate change on marine life. *Nat. Clim. Change* 3, 919–925