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Abstract—As one of the most pressing challenges of the 21st

century, global climate change demands a host of changes across
four critical energy infrastructures: the electric power grid,
the natural gas system, the oil system, and the coal system.
Unfortunately, these systems are rarely studied together. Instead,
holistic multi-energy system models can serve to improve the
understanding of these interdependent systems as they evolve
into the future. The NSF project entitled “American Multi-Modal
Energy system Synthetic & Simulated Data (AMES-3D)” seeks to
fill this void with an open-source structural and behavioral model
of the AMES. To that end, this paper uses a GIS-data-driven,
model-based systems engineering-guided approach to develop
open-source software the produces open structural models of
the American Multi-modal Energy Systems. More specifically,
it reports and contrasts the hetero-functional incidence tensor,
the formal graph adjacency matrix and hetero-functional graph
adjacency matrix statistics for the multi-energy infrastructure
systems of the states of California and New York. The paper
finds that the geography and the sustainable energy policies of
these states are deeply reflected in the structure of their multi-
energy infrastructure systems.

Index Terms—Hetero-Functional Graph Theory, Model Based
Systems Engineering, sustainable energy transition, American
Multi-modal Energy System, Sustainability

I. INTRODUCTION

A. Motivation

As one of the most pressing challenges of the 21st century,
global climate change demands a host of changes across four
critical energy infrastructures: the electric power grid, the
natural gas system, the oil system, and the coal systems.
These four infrastructures make up the American Multi-modal
Energy System (AMES) as a system-of-systems. As the AMES
undergoes a sustainable energy transition, it must not just
mitigate climate change but it must also adapt to its effects
with resilient architectures. These combined requirements ne-
cessitate an understanding of the AMES inter-dependencies
and how they vary geographically and temporally [1].

Holistic multi-energy system models can serve to improve
the understanding of these interdependent systems as they
evolve into the future. Unfortunately, multi-energy system
modeling remains relatively nascent [2]–[9]. A majority of the
works investigating these energy systems in the past have been
performed on individual energy networks [10]–[14]. More
recently, work has been published analyzing only a couple

systems together such as pairing the electric grid with a one
of the others that compose the AMES [2]–[9].These works,
however, do not include all four critical energy infrastructures
and do not extend to the entire American geography. As an
exception, the EIA has developed a comprehensive model
called the National Energy Modeling System (NEMS) which
it uses to produce the annual energy outlook [15]. Despite
serving this important function and being publicly available,
this software tool remains opaque and difficult to use. The
EIA website itself recognize: “[The] NEMS is only used by a
few organizations outside of the EIA. Most people who have
requested NEMS in the past have found out that it was too
difficult or rigid to use [16]”. Consequently, holistic multi-
energy system models of the AMES remain a present need
for open citizen-based science.

The NSF project entitled “American Multi-Modal Energy
system Synthetic & Simulated Data (AMES-3D)” seeks to fill
this void with an open-source structural and behavioral model
of the AMES. Following a Model Based Systems Engineering
(MBSE) approach [17], [18], this project uses openly available
datasets [19] to infer the AMES’ reference architecture [20].
It uses SysML [18] to model the four interdependent energy
systems, and the flows of mass and energy within and between
them. These datasets are then used to instantiate the AMES’
reference architecture into an instantiated architecture [20].
While the NSF project seeks to develop both a structural as
well as a behavioral model of the AMES, this paper restricts
its scope to the former.

The development of an AMES reference architecture pro-
vides several immediate benefits. The first is that a SysML-
based reference architecture describes the system’s form, func-
tion and the allocation of the latter to the former. Therefore,
the reference architecture describes not just what the system
is made up of but also what it does. Second, a SysML-based
reference architecture can be readily translated into numerical
models using Hetero-functional Graph Theory (HFGT) [21].
Thus, when this reference architecture is instantiated, its form
and function are readily translated into mathematical models
including both the form and function. Standard structural
models include formal graphs that describe energy facilities
and how they are interconnected. In the meantime, hetero-
functional graphs (HFG) describe how the wide variety of



functions in a system are interconnected. HFGs have been
shown to provide more information than formal graphs when
analyzing an evolving instantiated architecture [22], [23]. In
effect, HFGT provides a means to quantitatively interpret the
graphical SysML-based models from both a formal as well as
a functional lens. Such an analysis has already been conducted
on small electric power distribution systems [22] as well as at
a large-scale for the entirety of the American electric power
system [23]. This paper now builds on these electricity-only
analyses to study the structure of the American Multi-modal
Energy System.

B. Original Contributions

This paper uses a data-driven, MBSE-guided approach to
develop open-source software that produces open structural
models of the American Multi-modal Energy System. More
specifically, this approach uses the AMES reference archi-
tecture [20] and an asset-level GIS data called Platts Map
Data Pro [19]. The instantiated structural models include, for
the first time, the electric grid, the natural gas system, the
oil system, the coal system and the interconnections between
them as described by the AMES reference architecture. The
paper organizes its initial results into a 2x2 matrix; a formal
and hetero-functional graph for each of the two states of
California and New York. These two states are chosen for their
large size and progressive energy policies. Consequently, they
have also both made strides to advance the sustainable energy
transition. Despite these similarities, the two states have very
different climates, relative placement with the large AMES,
and trajectories in the sustainable energy transition. In 2019,
CA had the most renewable energy generation out of all the
states [24]. In the meantime, New York’s effort to expand
renewable energy capacity are balanced by its reliance on
natural gas and oil pipelines to meet space heating energy
demands [25]. By using MBSE and HFGT, new open data
models are presented for these two states.

C. Paper Outline

The remainder of the paper proceed as follows. Section
II is a description of the background literature and the data
sets used to develop the instantiated architecture models. The
paper then presents a comparison of the formal graphs and
hetero-functional graphs network statistics for each state in
Section III. A discussion of the energy resources and system
capabilities is then made in Section III. The paper then
presents future work for theses instantiated architectures and
the AMES reference architecture. Finally the paper is brought
to a conclusion in Section IV.

II. METHODOLOGY

As mentioned in the Introduction, this paper utilizes a data-
driven, MBSE-guided approach to develop open structural
models of the American Multi-modal Energy System. This
section succinctly relays this method.

The AMES structural models are inferred from the Platts
Map Data Pro (Fig. 1). This input dataset consists of Graphic
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Fig. 1. GIS Layers from the Platts Map Data Pro dataset for the electric grid,
natural gas system, oil system, and coal system for California (A) and New
York (B).

Information System (GIS) layers for each of the four sub-
systems in the AMES [19]. These geo-spatial layers include
attributes of the physical resources/facilities that compose the
AMES infrastructure. As the Platts Map Data Pro is directed
towards wholesale energy decisions, the data is limited to
transmission system resources and neglects distribution level
assets. Consequently, this paper’s data-driven approach is
similarly limited to transmission level assets. This limitation
in the dataset notably excludes retail distribution of oil and
gas (by truck). It also excludes distributed electric generation
assets such as roof-top solar that are an integral part of the
sustainable energy transition. Nevertheless, the Platts Map
Data Pro is likely the best available dataset because it allows
inferences of not just the AMES’s form but its function too.

The first step of the data processing is to convert the Platts
Map Data Pro GIS shapefile for each state (i.e. CA and
NY) into an associated XML file that serves as the input
for the openly-available HFGT toolbox. The GIS attribute
data is cleaned and processed before being organized into
an XML. When cleaning the data, all resources marked with
a canceled status, closed status, or illegible attributes are
removed. Additionally, geographical clustering is applied to
aggregate overlapping resources, connect disjointed resources,
and remove isolated resources. Once properly cleaned, the
data is organized into the input XML file. Here, the AMES
reference architecture plays a critical role in organizing the
cleaned data into defined resources with the proper allocated
functionality. Figure 2 shows the top-level context diagram of
the AMES reference architecture and it is further elaborated in
[20]. The AMES reference architecture provides a consistent
blueprint from which to develop AMES models irrespective
of the choice of region or scale. It also defines all energy
resources/facilities, and the functions that they can perform. It
also defines the set of operands used to track the flows of mass
and energy between the AMES’ many resources and between
its many functions.

The second step is to run the HFGT toolbox on this newly
produced XML file so as to produce the positive and negative
Hetero-Functional Incidence Tensors (HFITs).
Definition 1 – The Negative 3rd Order Hetero-functional
Incidence Tensor M�

⇢ : The negative hetero-functional in-
cidence tensor M⇢

� 2 {0, 1}|L|⇥|BS |⇥|ES | is a third-order
tensor whose element M�

⇢ (i, y, ) = 1 when the system
capability ✏ 2 ES pulls operand li 2 L from buffer
bsy 2 BS . ⌅



Fig. 2. The top-level context diagram for the American Multi-modal Energy Systems Reference Architecture [20]

Definition 2 – The Positive 3rd Order Hetero-functional
Incidence Tensor M+

⇢ : The positive hetero-functional inci-
dence tensor M+

⇢ 2 {0, 1}|L|⇥|BS |⇥|ES | is a third-order tensor
whose element M+

⇢ (i, y, ) = 1 when the system capability
✏ 2 ES injects operand li 2 L into buffer bsy 2 BS . ⌅
In the context of the AMES, the operands are flows of matter
and energy like coal, oil, natural gas, and electricity. The
buffers are point-facilities like electric power plants and re-
fineries. The capabilities are “subject+verb+object” sentences
like NG refinery refines raw natural gas to processed natural
gas. These HFITs are important because: 1.) they include all
of the information necessary to produce a formal adjacency
matrix (ABs) where point-facilities are connected via edge-
facilities, and 2.) they include all of the information necessary
to understand how the system’s capability follow one another
in a hetero-functional graph (A⇢).

Each of these adjacency matrices is then calculated. The
formal graph adjacency matrix ABs requires two steps. First,
the two HFITs are summed along the operand dimension to
produce two incidence matrices:

M+/�
B (y, ) =

|L|X

i

M+/�
⇢ (i, y, ) (1)

It is important to recognize that the operand heterogeneity
information is lost. Then, these incidence matrices are multi-
plied.

ABs = M+
BM�T

B (2)

In the meantime, the hetero-functional graph adjacency matrix
A⇢ is calculated without loss of information after the HFITs
have been matricized (or flattened) into hetero-functional inci-
dence matrices M+

⇢ and M�
⇢ with dimension |L||BS |⇥ |ES |.

A⇢ = M+T
⇢ M�

⇢ (3)

While the formal graph adjacency matrix shows the physical
connections from point facility (i.e. buffer) to another, the
hetero-functional adjacency matrix shows the logical sequence
of capabilities one after the other. As previous works have
shown, the latter allows for more comprehensive resilience
analyses; be it for small electric power distribution systems
[22] or for a full scale analysis of the American electric power
system [23]. The open-source HFGT toolbox [26] provides an
automated means for data processing GIS shapefiles to these
two structural models of the AMES.

III. STRUCTURAL MODEL STATISTICS

Once created, the hetero-functional incidence tensor, the
formal graph, and the hetero-functional graph for the two states
of California and New York can be compared.
A. Hetero-functional Incidence Tensor Statistics

In this regard, the basic statistics of the hetero-functional
incidence tensors provide a common basis for comparing the
two states relative to the size of their populations and land ar-
eas (Table I). As expected by the relative size of its population

TABLE I
HETERO-FUNCTIONAL INCIDENCE TENSOR STATISTICS FOR THE

MULTI-MODAL ENERGY SYSTEMS IN CA AND NY.

California New York
# of Operands 14 14
# of Buffers 7853 2986
# of Capabilities 58038 17558
# of Elements in M+

⇢ . 64303 24898
# of Elements in M�

⇢ . 68870 26218
HFIT Sparsity 9.18E-15 8.76E-14
Population (millions) 39.5 19.5
Land Area (sqr miles) 155,779 47,126
Population Density(ppl/sqr mile) 253 414

and land area, California’s energy infrastructure is larger than
that of New York in terms of the number of point-facilities
and the number of capabilities. The same holds true for the



number of filled elements in the positive and negative HFIT
tensors. While the two states display energy infrastructures of
differing scales, they both have energy mixtures that utilize
the same 14 operands. Also, despite these absolute measures,
New York’s population density is significantly higher than
that of California. This means that, if all else is held equal,
New Yorkers receive more energy infrastructure benefits and
Californians must expend more in energy infrastructure costs.
This same finding is reflected in the sparsity of the HFIT where
New York’s tensor is more than 10 times more dense.

B. Formal Graph Statistics

While it is important to assess the number of buffers (e.g.
point energy facilities) in the multi-energy infrastructure of
two American states, it is also important to differentiate
them by type. Fig. 3 shows that 76.8% and 69.5% of the
buffers in the formal graphs for California and New York
respectively are electric power substations. This reflects the
highly ubiquitous nature of the electric power system in both
states. Furthermore, another 18.2% and 18.4% respectively
are devoted to electric power generation facilities (of various
types). Because coal, oil, and natural gas are very dense
approximate forms of energy, their processing facilities for
these types of energy have very strong economies of scale.
Therefore, there is a trend towards centralization and a small
number of point-facilities for energy conversion. California,
notably, has a greater shift towards the the electric grid with
a greater presence of substations and power plants than New
York. That New York has a greater reliance on oil and gas
facilities is likely a byproduct of it being located in a more
colder climate. California, on the other hand, with its warm
climate relies on cooling and is further along in in electrifying
its energy demands and adopting renewable energy resources.

Fig. 3. The distribution of point-energy-facilities (buffers) in the formal graphs
of multi-energy infrastructure systems in California and New York.

Beyond the number and type of point-energy-facilities, the
formal graph also measures their interconnectedness. There
are 15454 and 6347 edges in the formal graphs of California
and New York respectively. This corresponds to a sparsity
of 2.51E-4 and 7.12E-4 respectively and mimics the sparsity
of the HFIT. Despite the the heterogeneity of point-energy-
facilities and the sparsity of the two formal graphs, Fig. 4
shows that the formal graph degree distributions for the two
states is remarkably similar. Much like the well-known results

in electric power systems [2], [27]–[29], the multi-energy
systems in the two states follow a decaying power law with
regression coefficients of 0.99. The structural similarity of the
multi-energy system in both states to their counterpart electric
power systems is likely due to the fact that so much of the
structural topology of both multi-energy systems consists of
electrical artifacts. In the meantime, California and New York
follow similar decay constants of 0.68 and 0.62 respectively.
The differences in y-intercept values of 0.929 and .699 can be
attributed to the states’ geographic differences. The relatively
dense state of NY must rely on a relatively more radial network
that consists of nodes of degree 1. In contrast, California
must reach its less densely populated areas with more meshed
nodes.

Fig. 4. The formal graph degree distributions of the multi-energy infrastruc-
ture systems of California and New York follow an exponential decay law.

C. Hetero-functional Graph Statistics

The statistics of the hetero-functional graphs for California
and New York are presented similarly to those of the formal
graph. In that regard, Fig. 5 differentiates the different types of
capabilities found in the multi-energy infrastructure systems
in California and New York. Again, both states show a
predominance of facilities devoted substations that “consume
electric power”1. Despite this common trend, CA has a greater
presence of such “consume electric power” capabilities in
accordance with its more electrified energy demand. The two
states’ relationship to natural gas also differs. CA has a greater
relative presence of generating electric power from natural
gas. As variable energy resources (VER) become increasingly
integrated into the electric grid fast ramping power plants such
as natural gas power plants become increasingly important
to meet the ramping constraints placed on the electric grid.
Meanwhile, in NY, there is a greater presence of capabilities
that import and export natural gas and oil-based products and
reflects the need for heating during the cord Northeast winters.
In brief, the results found in Fig. 5 confirm those found in Fig.
3 and elaborate on them with further detail on the function of
these multi-energy systems.

1From the perspective of the transmission system, substations serve as
load buses that consume electric power when in fact they are simply routing
the electric power to the distribution system for consumption by industrial,
commercial, and residential end-users.



generate electric power
from water energy

from processed natural gas
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Fig. 5. The normalized distributions of the capabilities in the hetero-functional graphs of the multi-energy infrastructure systems of California and New York.

As the sustainable energy transition requires an electri-
fication of the demands placed on the AMES, it becomes
important to investigate the electric power generation mix. In
this regard, when the electric power generation capabilities in
Fig. 5 are weighted by their generation capacity, it produces
Fig. 6 which shows the electric power generation mix for
the two states. It shows that the main source of generation
capacity for California comes from generating electricity from
processed natural gas. This again indicates the need for quick
response generation sources to support the ramping constraints
placed on the California electric grid from the high penetration
of variable renewable energy resources. In contrast, New York
sees a relatively higher normalized generation capacity in
processed oil, nuclear power, and coal than California. Fi-
nally, California’s commitment to renewable energy generation
comes primarily in the form of solar power. Meanwhile, NY
has balanced its renewable energy between wind and solar
power.

Fig. 6. The electric power generation capacity mix by fuel source for
California and New York.

Finally, the degree distribution of the hetero-functional
graph adjacency matrix is shown in Fig. 7. In [23], the degree
distribution of the hetero-functional graph of the American
electric power system was similar to that of the formal
graph. From an operand point-of-view, electric power systems

are relatively homogeneous, and so the formal and hetero-
functional degree distributions mimic each other. In multi-
energy systems, the hetero-functional graph degree distribution
offers a more detailed view into the interconnectedness than
a formal graph degree distribution. Similar to Fig. 4, Fig. 7
still shows an exponential decay tail. However, the exponential
decay law breaks down for capabilities with a degree of five
or less. This very interesting statistical phenomena is likely
the result of the statistics of coal, oil, natural gas, and electric
power systems being superimposed one on top of the other. In
essence, the hetero-functional graph degree distribution shows
“signatures” of the degree of a system’s capabilities much like
a power spectra shows the signatures of the frequencies of a
waveform. Future work will seek to further investigate which
capabilities contribute to these degree distribution peaks.

Fig. 7. The hetero-functional graph degree distributions for the multi-energy
infrastructure systems of California and New York.

IV. CONCLUSIONS

This paper uses a data-driven, MBSE-guided approach to
develop open-source software that produces open structural
models of the American Multi-modal Energy System. It is
part of a larger NSF project entitled “American Multi-Modal
Energy system Synthetic & Simulated Data (AMES-3D)”
which seeks to produce open-source structural and behavioral



models of the American Multi-modal Energy System. The
creation of open-source software and open-data models of
the AMES fills an important need in the open citizen-based
science in America’s sustainable energy transition. It also pro-
vides one of the few multi-energy system datasets on which to
advance fundamental methods. The AMES structural models
are inferred from the Platts Map Data Pro GIS dataset and is
complemented by the previously developed American Multi-
modal Energy System Reference Architecture [20]. Together,
these two data sources serve as the basis for an XML-based
input data file for the open-source hetero-functional graph
theory toolbox.

This paper specifically reports the hetero-functional inci-
dence tensor, the formal graph adjacency matrix and hetero-
functional graph adjacency matrix statistics for the multi-
energy infrastructure systems of the states of California and
New York. Here, the application of hetero-functional graph
theory facilitates a nuanced analysis that respects the het-
erogeneity in this highly interdependent systems-of-systems.
The paper finds that the geography and sustainable energy
policies of the states are deeply reflected in the structure of
their multi-energy infrastructure. Because New York’s cold
Northeastern climate drives heating demand it has a multi-
energy system with greater emphasis on oil and gas. In the
meantime, California’s warm climate is reflected in a multi-
energy system with greater emphasis on electric power system
assets. Along these lines, California’s natural gas infrastructure
is geared toward electric power generation to support its
growing reliance on variable renewable energy resources.

This paper presents multiple avenues for future open-science
research. First, this analysis can be readily extended to the
entire United States geograph. Second, behavioral data can be
incorporated so as to develop physically-informed machined
learning behavioral models of the AMES. Finally, the AMES
can be studied rigorously for its sustainable and resilience
properties using novel methods rooted in hetero-funtional
graph theory.
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