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Abstract—The developing consensus across a number of STEM
fields is that each of the NAE game-changing goals is is char-
acterized by an ‘“engineering system” that is analyzed and re-
synthesized using a meta-problem-solving skill set. Two fields in
particular have attempted to traverse this convergence challenge:
systems engineering and network science. Systems engineering
has developed as a practical and interdisciplinary engineering
discipline that enables the successful realization of complex sys-
tems from concept, through design, to full implementation based
upon graphical modeling languages. In contrast, network science
has developed to quantitatively analyze networks that appear in
a wide variety of engineering systems but suffers from disparate
terminology and a lack of consensus. This paper provides a
tensor-based formulation of several of the most important parts
of hetero-functional graph theory. More specifically, it discusses
the system concept, the hetero-functional adjacency matrix, and
introduces the hetero-functional incidence tensor for the first
time. The tensor-based formulation described in this work makes
a stronger tie between HFGT and its ontological foundations
in MBSE. Finally, the tensor-based formulation facilitates an
understanding of the relationships between HFGT and multi-
layer networks ‘‘despite its disparate terminology and lack of
consensus”. In so doing, this tensor-based treatment is likely
to advance Kivela et. al’s goal to discern the similarities and
differences between these mathematical models in as precise a
manner as possible.

Index Terms—Hetero-Functional Graph Theory, Model Based
Systems Engineering, sustainable energy transition, American
Multi-modal Energy System, Sustainability

I. INTRODUCTION

One defining characteristic of twenty-first century engineer-
ing challenges is the breadth of their scope. The National
Academy of Engineering (NAE) has identified 14 “game-
changing goals” [1]. The developing consensus across a num-
ber of STEM (science, technology, engineering, and mathe-
matics) fields is that each of these goals is characterized by
an “engineering system” that is analyzed and re-synthesized
using a meta-problem-solving skill set.

Definition 1: Engineering system [2]: A class of systems
characterized by a high degree of technical complexity, social
intricacy, and elaborate processes, aimed at fulfilling important
functions in society. |
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Two fields in particular have attempted to traverse this con-
vergence challenge: systems engineering and network science.
Systems engineering, and more recently model-based systems
engineering (MBSE), has developed as a practical and inter-
disciplinary engineering discipline that enables the successful
realization of complex systems from concept, through design,
to full implementation [3]. It equips the engineer with methods
and tools to handle systems of ever-greater complexity arising
from greater interactions within these systems or from the
expanding heterogeneity they demonstrate in their structure
and function. Despite its many accomplishments, model-based
systems engineering still relies on graphical modeling lan-
guages that provide limited quantitative insight (on their own)
[4], [5].

In contrast, network science has developed to quantitatively
analyze networks that appear in a wide variety of engineering
systems. And yet, despite its methodological developments in
multi-layer networks, network science has often been unable
to address the explicit heterogeneity often encountered in
engineering systems [5], [6]. In a recent comprehensive review
Kivela et. al [6] write: “Numerous similar ideas have been
developed in parallel, and the literature on multi-layer net-
works has rapidly become extremely messy. Despite a wealth
of antecedent ideas in subjects like sociology and engineering,
many aspects of the theory of multi-layer networks remain
immature, and the rapid onslaught of papers on various types
of multilayer networks necessitates an attempt to unify the
various disparate threads and to discern their similarities and
differences in as precise a manner as possible. ... [The multi-
layer network community] has produced an equally immense
explosion of disparate terminology, and the lack of consensus
(or even generally accepted) set of terminology and mathe-
matical framework for studying is extremely problematic.”

Recently, hetero-functional graph theory (HFGT) has de-
veloped as a means to mathematically model the structure
of large-scale complex, flexible, engineering systems. It does
so by fusing concepts from network science and model-
based systems engineering (MBSE). For the former, it utilizes
multiple graph-based data structures to support a matrix-



based quantitative analysis. For the latter, HFGT inherits the
heterogeneity of conceptual and ontological constructs found
in model-based systems engineering including system form,
system function, and system concept.

The ontological strength of hetero-functional graph theory
comes from the “systems thinking” foundations in the model-
based systems engineering literature [5], [7]. In effect, and
very briefly, all systems have a “subject + verb + operand”
form where the system form is the subject, the system function
is the verb + operand (i.e. predicate) and the system concept
is the mapping of the two to each other. The key distin-
guishing feature of HFGT (relative to multi-layer networks)
is its introduction of system function. In that regard, it is
more complete than multi-layer networks if system function is
accepted as part of an engineering system abstraction. Another
key distinguishing feature of HFGT is the differentiation
between elements related to transformation and transportation.
In that regard, it takes great care to not overload mathemat-
ical modeling elements and preserve lucidity. These diverse
conceptual constructs indicate multi-dimensional rather than
two-dimensional relationships.

A. Original Contribution

This paper provides a tensor-based formulation of several
of the most important parts of hetero-functional graph the-
ory. More specifically, it discusses the system concept, the
hetero-functional adjacency matrix, and introduces the hetero-
functional incidence tensor for the first time. Whereas the
hetero-functional graph theory text [5] is a comprehensive
discussion of the subject, the treatment is based entirely
on two-dimensional matrices. The tensor-based formulation
described in this work makes a stronger tie between HFGT
and its ontological foundations in MBSE. Finally, the tensor-
based formulation facilitates an understanding of the relation-
ships between HFGT and multi-layer networks (“despite its
disparate terminology and lack of consensus™). In so doing,
this tensor-based treatment is likely to advance Kivela et. al’s
goal to discern the similarities and differences between these
mathematical models in as precise a manner as possible.

B. Paper Outline

The rest of the paper is organized as follows. Section II
provides some HFGT preliminaries to support the remainder
of the discussion. Section III, then, introduces the hetero-
functional incidence tensor which describes the relationships
between system capabilities, operands, and physical locations
in space (i.e. system buffers as defined later). Section IV
provides a mathematical discussion comparing formal, multi-
layer, and hetero-functional graphs. Section V brings the work
to a close. The interested reader is referred to [8] for deeper
explanations of the tensor-based mathematics.

II. PRELIMINARIES

HFGT is predicated on a system concept Ag that describes
the allocation of system function to system form as the
central question of engineering design. This dichotomy of

form and function is repeatedly emphasized in the fields of
engineering design and systems engineering [7], [9]-[I1].
More specifically, the allocation of system processes to system
resources is captured in the “design equation™ [11], [12]:

P=AsOR (1)

where R is set of system resources, P is the set of system
processes, Ag is the system concept, and © is matrix Boolean
multiplication.

Definition 2 — System Resource: [3] An asset or object r, €
R that is utilized during the execution of a process. ]

Definition 3 — System Process [3], [13]: An activity p €
P that transforms a predefined set of input operands into a
predefined set of outputs. ]

Definition 4 — System Operand: [3] An asset or object I; €
L that is operated on or consumed during the execution of a
process. ]

Definition 5 — System Concept [11], [12], [14]: A binary
matrix Ag of size o(P) x o(R) whose element Ag(w,v) €
{0,1} is equal to one when action e, € Es (in the SysML
sense) is available as a system process p,, € P being executed
by a resource 7, € R. ]

In other words, the system concept forms a bipartite graph
between the set of system processes and the set of system
resources [14].

Hetero-functional graph theory further recognizes that there
are inherent differences within the set of resources as well
as within the set of processes. R = M U B U H where M
is the set of transformation resources, B is the set of inde-
pendent buffers, and H is the set of transportation resources.
Furthermore, the set of buffers Bg = M U B is introduced
for later discussion. Similarly, P = P, U P; where P, is the
set of transformation processes and P is the set of refined
transportation processes. The latter, in turn, is determined from
the Cartesian product (X) of the set of transportation processes
P, and the set of holding processes P,. P; = P,XP,.
Every filled element of the system concept indicates a system
capability of the form: “Resource r, does process p,,”. The
system capabilities are quantified by the structural degrees of
freedom.

Definition 6 — Structural Degrees of Freedom [12]: The
set of independent actions g that completely defines the
instantiated processes in a large flexible engineering system.
Their number is given by:

o(P)o(R)

DOFs=0(Es) =Y > Ag(w,v) 2)

Once the system’s physical capabilities (or structural de-
grees of freedom have been defined), the hetero-functional
adjacency matrix A, is introduced to represent their pair-wise
sequences. [14], [15].



Definition 7 — Hetero-functional Adjacency Matrix [14]:
A square binary matrix A, of size o(R)o(P) x o(R)o(P)
whose element A,(x1,x2) € {0,1} is equal to one when
String 2y, yo = Cwjv; Cwovs € 2 18 available and exists, where
index x; € [1,...,0(R)o(P)]. ]
In other words, the hetero-functional adjacency matrix cor-
responds to a hetero-functional graph G, = {€g,Z} with
structural degrees of freedom (i.e. capabilities) £s as nodes
and feasible sequences Z as edges. In contrast, formal graphs,
are typically defined as Gr = {Bg, H} where transportation
resources (e.g. power lines, roads, water pipes) connect in-
dependent buffers (e.g. substations, traffic intersections, and
water junctions).

Alternatively, the hetero-functional adjacency matrix may
be expressed as a fourth order tensor.

Definition 8 - Hetero-functional Adjacency Tensor: A
fourth-order tensor A, of size o(R) x o(P) x o(R) x o(P)
whose element A, (w1, v1,ws,v2) € {0,1} is equal to one
when string €., v, €w,0, € Z is available and exists.

Ap = ]:M (Am [17 2]5 [3’4]) (3)

where F); is matricization [8]. |

For systems of substantial size, the size of the hetero-
functional adjacency matrix may be challenging to process
computationally. However, the matrix is generally very sparse.
Therefore, projection operators are used to eliminate the
sparsity by projecting the matrix onto a one’s vector [15].
This is demonstrated below for A% and A,:

PsAY, = 1°¢s) “
PsA,PL =4, 5)

where ()V is shorthand for wvec(), Pg is a (non-unique)
projection matrix for the vectorized system knowledge base
[15].

III. THE HETERO-FUNCTIONAL INCIDENCE TENSOR

To complement the concept of a hetero-functional adja-
cency matrix A,, the hetero-functional incidence tensor M,
describes the structural relationships between the physical
capabilities (i.e. structural degrees of freedom) Eg, the system
operands L, and the system buffers Bg.

M, =M: — M (6)

Definition 9 — The Negative 3¢ Order Hetero-functional
Incidence Tensor M ': The negative hetero-functional in-
cidence tensor /f\/\l;_ € {O,l}iL)X"(BS)X"(‘SS) is a third-
order tensor whose element M (i,y,7) = 1 when the
system capability €, € s pulls operand I; € L from buffer
bsy € Bg. [ ]
Definition 10 — The Positive 3¢ Order Hetero-functional
Incidence Tensor Mj: The positive hetero-functional inci-
dence tensor M| € {0, 1}7(F)x7(Bs)xo() s a third-order

tensor whose element Mj(i,ymb) = 1 when the system
capability e, € &g injects operand [; € L into buffer
bsy € Bg. |

The calculation of these two tensors depends on the definition
of two more matrices.

Definition 11 - The Negative Process-Operand Inci-
dence Matrix M p: A binary incidence matrix M;, €
{0,1}7(F)xo(P) whose element M 5(i,w) = 1 when the
system process p,, € P pulls operand [; € L as an input.
To take into account the heterogeneity of processes, it is
further decomposed into the negative transformation process-
operand incidence matrix Mpp and the negative refined
transformation process-operand 1n01dence matrix M LP, which
by definition is in turn calculated from the negative holdmg
process-operand incidence matrix M p, .

Mip=[Mpp, Mip] =M, Mpp @10007]
@)
where ® is the Kronecker product. ]

Definition 12 - The Positive Process-Operand Inci-
dence Matrix M5t A binary incidence matrix M;, €
{0,1}7(F)xo(P) whose element M ,(i,w) = 1 when the
system process p,, € P injects operand [; € L as an output. To
take into account the heterogeneity of processes, it is further
decomposed into the positive transformation process-operand
incidence matrix M +P and the positive refined transformation
process-operand 1nc1dence matrix M LP, which, by definition,
is, in turn, calculated from the pos1t1ve holding process-
operand incidence matrix MZFP7

Mfp=[Mip, Mip|=[Mip Mip @1707]
(®)
n

With the definitions of these incidence matrices in place,
the calculation of the negative and positive hetero-functional
incidence tensors M and M:{ follows straightforwardly as
a third-order outer product o. For /W;:

a(L) o(Bs) v
My =3 % ¢ WoegPIops((x;,)") ©
=1 y1=1
where
Xo = My el Peg™" | 0
wr MZP (L) ® ( o(Bs) ® ]lO'(Bs)> ® ]la'(R)T
(10)
The X, matrix is equivalent in size to the system concept

Ag. It has a value of one in all elements where the associated
process both withdraws input operand [; and originates at
the buffer b, . Consequently, when X; is vectorized and
then projected with PPg, the result is a vector with a value of
one only where the associated system capabilities meet these
criteria.



For M;’:
M+ B o(L) o(Bs) L) o(Bs) N
p = Z Z e, o€y, s)oPg ((Xiyz) ) (11
i=1 ya=1
where
X, = | MR @ (1959 @ 5P @ 17T |

(12)
The X;,;z matrix is equivalent in size to the system concept
Ag. It also has a value of one in all elements where the as-
sociated process both injects output operand /; and terminates
at the buffer b, . Consequently, when X ;?;2 is vectorized and
then projected with PPg, the result is a vector with a value of
one only where the associated system capabilities meet these
criteria.

It is important to note that the definitions of the 3rd
order hetero-functional incidence tensors M;, and ./\/lj are
provided in projected form as indicated by the presence of the
projection operator IPg in Equations 9 and 11 respectively. It
is often useful to use the un-projected form of these tensors.

o(L) o(Bs)

My =33 P oeg)o(x;, )"

i=1 y1:1

13)

o(L)o(Bs)

o o |4
M= 3 P oep®o (x1)

The third dimension of these unprojected 3"¢ order hetero-
functional incidence tensors can then be split into two dimen-
sions to create 4" order hetero-functional incidence tensors.

MEp =vec™? (M}, [o(P),0(R)],3) (15)
Mpp =vec " (M, [0(P),(R)],3) (16)

(14)

P 3
where vec™1() is inverse vectorization [8]. These fourth
order tensors describe the structural relationships between the
system processes P, the physical resources R that realize
them, the system operands L that are consumed and injected in
the process, and the system buffers Bg from which these are
operands are sent and the system buffers Bg to which these
operands are received. They are used in the following section
as part of the discussion on layers.

Mpp=Mpr— Mpy (17)
Definition 13 -  The Negative 4" Order
Hetero-functional Incidence Tensor Mpp: The
negative 4" Order hetero-functional incidence tensor
Mpp € {0,1}0D)xo(Bs)xa(P)xa(R)  hag  element

Mpp(i,y,w,v) = 1 when the system process p,, € P
realized by resource r, € R pulls operand I; € L from buffer

bs, € Bs. [ |
Definition 14 - The Positive 4th Order
Hetero-functional Incidence Tensor Mgyt The
positive 4" Order hetero-functional incidence tensor

Mpp € {0,1}7E)xo(Bs)xa(P)xo(R) hag  element
Mpp(i,y,w,v) = 1 when the system process p,, € P
realized by resource r, € R injects operand [; € L into buffer
bs, € Bs. ]
__Returning back to the hetero-functional incidence tensor
M,, it and its positive and negative components M p* My,
can also be easily matricized.

MP:‘FM (MP7[L2]’[3]) (18)
My = Fa (M5, [1,2],[3]) (19)
My = Far (M}, [1,2],[3]) (20)

The resulting matrices have a size of o(L)o(Bg) x o(Es)
which have a corresponding physical intuition. Each buffer by,
has o (L) copies to reflect a place (i.e. bin) for each operand at
that buffer. Each of these places then forms a bipartite graph
with the system’s physical capabilities. Consequently, and as
expected, the hetero-functional adajacency matrix A, can be
calculated as a matrix product of the positive and negative
hetero-functional incidence matrices M, and M.

A, =MSTM; 1)

Such a product systematically enforces all five types of feasi-
bility constraints. I:

1) P,P,. Two transformation processes that follow each
other must occur at the same transformation resource.

2) P, Py. A refined transportation process that follows a
transformation process must have an origin equivalent to
the transformation resource at which the transformation
process was executed.

3) PP,. A refined transportation process that precedes a
transformation process must have a destination equiva-
lent to the transformation resource at which the trans-
formation process was executed.

4) PyP;. A refined transportation process that follows
another must have an origin equivalent to the destination
of the other.

5) PP. The type of operand of one process must be
equivalent to the type of output of another process.

IV. DISCUSSION

The introduction of the hetero-functional incidence tensor
serves to reconcile the gap in terminology between formal,
multi-layer, and hetero-functional graphs.

A. Comparing Formal and Hetero-functional Graphs

At first glance, formal graphs defined as Gp = {Bg, H}
appear entirely unrelated to hetero-functional graphs defined
as G, = {&s, Z}. Nevertheless, they are related by virtue of
the hetero-functional incidence tensor.

Ao ) = \/ (v M;@pth) (v Mmyz,w))
P i i

(22)
Note that first OR operation eliminates any possibility of
distinguishing between two or more operands flowing from



one independent buffer to another. Similarly, the second OR
operation eliminates any possibility of distinguishing between
two or more capabilities occurring in between a pair of (not-
necessarily distinct) buffers. In contrast, this information is not
lost in hetero-functional graph adjacency matrix (or tensor)
A, because the definition of each capability ¢ € £s includes
the associated origin and destination buffers Bg, the flowing
operands L, the associated resources R and the associated
process P. Therefore, the hetero-functional adjacency matrix
is a more complete model of system structure when there are
multiple operands and multiple capabilities between buffers.

B. Comparing Multi-layer and Hetero-functional Graphs

Despite the disparate terminology and lack of consensus
in the multi-layer network literature, we adopt the multi-
layer adjacency tensor (Apsrn) defined by De Dominico et.
al. [16]to facilitate the discussion. This fourth order tensor
has elements Apsrn (@1, as, 81, 82) where the indices aq, as
denote “vertices” and [(;, 32 denote “layers”. De Dominico
et. al write that this multilayer adjacency tensor is a [16]:
“...very general object that can be used to represent a wealth
of complicated relationships among nodes.” The challenge
in reconciling the multi-layer adjacency tensor Ap;rn and
the hetero-functional adjacency tensor A, is an ontological
one as the definition of a “layer” is not well-defined in the
multi-layer network literature. The closest interpretation to
hetero-functional graph theory is if Ayrpn(ar, as, f1,52) =
Aps(Y1,Yy2,11,12) where the multi-layer network’s vertices
are equated to the buffers Bg and the layers are equated to
the operands L. This interpretation would well describe the
departure of an operand I;, from buffer bs,, and arriving as
l;, at bgy,. In such a case, the multi-layer adjacency matrix
can be calculated from the hetero-functional incidence tensor.

) =\ M, (i, y1, 0)M (i, y2,9)  (23)
P

Again, the OR operation eliminates any possibility of dis-
tinguishing between two or more capabilities occuring in
between a pair of (not-necessarily distinct) buffers. Therefore,
the hetero-functional adjacency matrix is a more complete
model of system structure when there are multiple operands
and multiple capabilities between buffers.

Aps (Y1, 92,101,102

C. Layers in Hetero-functional Graphs

Definition 15 — Layer: A layer G\ = {€g2, Zs\} of a hetero-
functional graph G = {€s,Zs} is a subset of a hetero-
functional graph, G, C @, for which a predefined layer
selection (or classification) criterion applies. A set of layers in
a hetero-functional graph adhere to a a classification scheme
composed of a number of selection criteria. ]

Note that this definition of a layer is particularly flexible be-
cause it depends on the nature of the classification scheme and
its associated selection criteria. Nevertheless, and as discussed
later, it is important to choose a classification scheme that leads
to a set of mutually exclusive layers that are also collectively
exhaustive of the hetero-functional graph as a whole.

To select out specific subsets of capabilities (or structural
degrees of freedom), HFGT has used the concept of “selector
matrices” of various types [5]. Here a layer selector matrix is
defined.

Definition 16: Layer Selector Matrix: A binary matrix Ay of
size o(P) x o(R) whose element Ay(w,v) = 1 when the
capability e, C Egj. |
From this definition, the calculation of a hetero-functional
graph layer follows straightforwardly. First, a layer projection
operator P is calculated.

PyAY = 17(59) (24)

Next, the associated negative and positive hetero-functional
incidence tensors M o and /\/l+ for a given layer A\ are
calculated straightforwardly.

o) ,
M= Y @ oo op, ((le) ) (25)
=1 =1
:Mp ®3 Py (26)
o(Bs) v
WZ S aWeemiors ((x5,)"Y) @
i=1 ya=1
= M 03 P, (28)

From there, the positive and negative hetero-functional in-
cidence tensors for a given layer can be matricized and
the adjacency matrix of the associated layer A, follows
straightforwardly.

MK = Fu (M, [1,2), 3]) (29)
M, —FM(MW[M], [3]) (30)
A,M = M M* 31)

This approach of separating a hetero-functional graph into
its constituent layers is quite generic because the layer selector
matrix A, can admit a wide variety of classification schemes
including: input operand sets, output operand sets, and process
type. The first of these was used in the HFGT text [5] to
partition the Trimetrica test case into the multi-layer depiction
in Figure 1. One advantage of a classification scheme based
on sets of operands (or processes) is that they lead to the
generation of a mutually exclusive and collectively exhaustive
set of layers. It is worth noting that a classification scheme
based on individual operands would not yield these properties.
For example, a water pump consumes electricity and water as
input operands. Consequently, it would have a problematic
existence in both the “water layer” as well as the “electricity
layer”. In contrast, a classification scheme based on operand
sets creates an “electricity-water” layer.

V. CONCLUSION

This paper provides a tensor-based formulation of several
of the most important parts of hetero-functional graph theory
including the system concept, the hetero-functional adjacency
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Fig. 1. The Trimetrica Smart City Infrastructure Test Case Visualized as
Five Layers Defined by Input Operand Sets: The Potable Water Topology,
The Electrified Potable Water Topology, the Electric Power Topology, the
Charging Topology, and the Transportation Topology [5].

matrix, and introduces the hetero-functional incidence tensor
for the first time. The tensor-based formulation described in
this work makes a stronger tie between HFGT and its ontolog-
ical foundations in MBSE. It also facilitates an understanding
of the relationships between HFGT and multi-layer networks
(“despite its disparate terminology and lack of consensus”).
In so doing, this tensor-based treatment is likely to advance
Kivela et. al’s goal to discern the similarities and differences
between these mathematical models in as precise a manner as
possible.
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